Evaluación de la técnica de control de flujo tipo chorro sintético para la modulación de niveles de ruido en flujos de inyección turbulenta

ilustraciones, graficas

Autores:
Murillo Rincon, Jairo Alberto
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81180
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81180
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
PROPULSION A CHORRO
CORRIENTE EN CHORRO
Jet stram
Ruido de chorro
Control de flujo
Aeroacústica
Dinamica de fluidos computacional
Jet noise
Flow control
Aeroacoustics
Computational fluid dynamics
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_82f3e692ce4d6bcd90d2555e6a7531d8
oai_identifier_str oai:repositorio.unal.edu.co:unal/81180
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación de la técnica de control de flujo tipo chorro sintético para la modulación de niveles de ruido en flujos de inyección turbulenta
dc.title.translated.eng.fl_str_mv Evaluation of synthetic jet flow control technique for modulating turbulent jet noise
title Evaluación de la técnica de control de flujo tipo chorro sintético para la modulación de niveles de ruido en flujos de inyección turbulenta
spellingShingle Evaluación de la técnica de control de flujo tipo chorro sintético para la modulación de niveles de ruido en flujos de inyección turbulenta
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
PROPULSION A CHORRO
CORRIENTE EN CHORRO
Jet stram
Ruido de chorro
Control de flujo
Aeroacústica
Dinamica de fluidos computacional
Jet noise
Flow control
Aeroacoustics
Computational fluid dynamics
title_short Evaluación de la técnica de control de flujo tipo chorro sintético para la modulación de niveles de ruido en flujos de inyección turbulenta
title_full Evaluación de la técnica de control de flujo tipo chorro sintético para la modulación de niveles de ruido en flujos de inyección turbulenta
title_fullStr Evaluación de la técnica de control de flujo tipo chorro sintético para la modulación de niveles de ruido en flujos de inyección turbulenta
title_full_unstemmed Evaluación de la técnica de control de flujo tipo chorro sintético para la modulación de niveles de ruido en flujos de inyección turbulenta
title_sort Evaluación de la técnica de control de flujo tipo chorro sintético para la modulación de niveles de ruido en flujos de inyección turbulenta
dc.creator.fl_str_mv Murillo Rincon, Jairo Alberto
dc.contributor.advisor.none.fl_str_mv Duque Daza, Carlos Alberto
dc.contributor.author.none.fl_str_mv Murillo Rincon, Jairo Alberto
dc.contributor.researchgroup.spa.fl_str_mv Gnum Grupo de Modelado y Métodos Numericos en Ingeniería
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
PROPULSION A CHORRO
CORRIENTE EN CHORRO
Jet stram
Ruido de chorro
Control de flujo
Aeroacústica
Dinamica de fluidos computacional
Jet noise
Flow control
Aeroacoustics
Computational fluid dynamics
dc.subject.lemb.spa.fl_str_mv PROPULSION A CHORRO
CORRIENTE EN CHORRO
dc.subject.lemb.eng.fl_str_mv Jet stram
dc.subject.proposal.spa.fl_str_mv Ruido de chorro
Control de flujo
Aeroacústica
Dinamica de fluidos computacional
dc.subject.proposal.eng.fl_str_mv Jet noise
Flow control
Aeroacoustics
Computational fluid dynamics
description ilustraciones, graficas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-03-10T17:38:37Z
dc.date.available.none.fl_str_mv 2022-03-10T17:38:37Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81180
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81180
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Ball, C., Fellouah, H., and Pollard, A. (2012). The flow field in turbulent round free jets. Progress in Aerospace Sciences, 50:1–26.
Bogey, C., Marsden, O., and Bailly, C. (2012). Influence of initial turbulence level on the flow and sound fields of a subsonic jet at a diameter-based reynolds number of 10 (5). Journal of Fluid Mechanics, 701:352–385.
Bonelli, F., Viggiano, A., and Magi, V. (2021). High-speed turbulent gas jets: an les inves- tigation of mach and reynolds number effects on the velocity decay and spreading rate. Flow, Turbulence and Combustion, pages 1–32.
Bosshard, C., Deville, M. O., Dehbi, A., Leriche, E., et al. (2015). Udns or les, that is the question. Open Journal of Fluid Dynamics, 5(04):339.
Brès, G., Jordan, P., Jaunet, V., Le Rallic, M., Cavalieri, A., Towne, A., Lele, S., Colonius, T., and Schmidt, O. (2018). Importance of the nozzle-exit boundary-layer state in subsonic turbulent jets. Journal of Fluid Mechanics, 851:83–124.
Caeti, R. B. and Kalkhoran, I. M. (2014). Jet noise reduction via fluidic injection. AIAA journal, 52(1):26–32.
Callender, B., Gutmark, E., and Martens, S. (2007). A comprehensive study of fluidic injection technology for jet noise reduction. In 13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference), page 3608.
Camussi, R. (2013). Noise sources in turbulent shear flows: fundamentals and applications, volume 545. Springer Science & Business Media.
Casalino, D., Diozzi, F., Sannino, R., and Paonessa, A. (2008). Aircraft noise reduction technologies: a bibliographic review. Aerospace Science and Technology, 12(1):1–17.
Cianferra, M. (2018). Acoustic analogies and large-eddy simulations of incompressible and cavitating flows around bluff bodies.
Colonius, T., Sinha, A., Rodrı́guez, D., Towne, A., Liu, J., Brès, G., Appelö, D., and Hags- trom, T. (2015). Simulation and modeling of turbulent jet noise. In Direct and Large-Eddy Simulation IX, pages 305–310. Springer.
Curle, N. (1955). The influence of solid boundaries upon aerodynamic sound. Procee- dings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 231(1187):505–514.
Dhamankar, N. S., Blaisdell, G. A., and Lyrintzis, A. S. (2016). Analysis of turbulent jet flow and associated noise with round and chevron nozzles using large eddy simulation. In 22nd AIAA/CEAS aeroacoustics conference, page 3045.
Epikhin, A., Evdokimov, I., Kraposhin, M., Kalugin, M., and Strijhak, S. (2015). Develop- ment of a dynamic library for computational aeroacoustics applications using the openfoam open source package. Procedia Computer Science, 66:150–157. 4th International Young Scientist Conference on Computational Science.
Ffowcs Williams, J. E. and Hawkings, D. L. (1969). Sound generation by turbulence and surfaces in arbitrary motion. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 264(1151):321–342.
Gerges, S., Sehrndt, G., and Parthey, W. (2001). 5 noise sources. Occupational Exposure to Noise.
Geuzaine, C. and Remacle, J.-F. (2009). Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11):1309–1331.
Glegg, S. and Devenport, W. (2017). Aeroacoustics of low Mach number flows: fundamentals, analysis, and measurement. Academic Press.
Henderson, B. (2010). Fifty years of fluidic injection for jet noise reduction. International Journal of Aeroacoustics, 9(1-2):91–122.
Howe, M. S. and Howe, M. S. (1998). Acoustics of fluid-structure interactions. Cambridge university press.
Hussein, H. J., Capp, S. P., George, W. K., et al. (1994). Velocity measurements in a high- reynolds-number, momentum-conserving, axisymmetric, turbulent jet. Journal of Fluid Mechanics, 258(1):31–75.
Jawahar, H. K., Markesteijn, A. P., Karabasov, S. A., and Azarpeyvand, M. (2021). Effects of Chevrons on Jet-installation Noise.
Jordan, E. L. P., Delville, J., and Bonnet, J.-P. (2008). Source-mechanism identification by nearfield-farfield pressure correlations in subsonic jets. International Journal of Aero- acoustics, 7(1):41–68.
Kaltenbacher, M., Escobar, M., Becker, S., and Ali, I. (2008). Computational aeroacoustics based on lighthill’s acoustic analogy. In Computational Acoustics of Noise Propagation in Fluids-Finite and Boundary Element Methods, pages 115–142. Springer.
Komen, E., Shams, A., Camilo, L., and Koren, B. (2014). Quasi-dns capabilities of openfoam for different mesh types. Computers & Fluids, 96:87–104.
Kramer, C., Gerhardt, H., and Knoch, M. (1984). Applications of jet flows in industrial flow circuits. Journal of Wind Engineering and Industrial Aerodynamics, 16(2-3):173–188.
Kurbjun, M. C. (1958). Limited Investigation of Noise Suppression by Injection of Water Into Exaust of Afterburning Jet Engine, volume 40. National Advisory Committee for Aeronautics.
Lighthill, M. J. (1952). On sound generated aerodynamically i. general theory. Procee- dings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 211(1107):564–587.
Lubert, C. P. (2017). Sixty years of launch vehicle acoustics. In Proceedings of Meetings on Acoustics 174ASA, volume 31, page 040004. Acoustical Society of America.
Manneville, P. and Rolland, J. (2011). On modelling transitional turbulent flows using under-resolved direct numerical simulations: the case of plane couette flow. Theoretical and Computational Fluid Dynamics, 25(6):407–420.
Mendez, S., Shoeybi, M., Lele, S., and Moin, P. (2013). On the use of the ffowcs williams- hawkings equation to predict far-field jet noise from large-eddy simulations. International Journal of Aeroacoustics, 12(1-2):1–20.
Michael, L. G. (1961). Jet noise suppression means. US Patent 2,990,905.
Moura, R. C., Sherwin, S. J., and Peiró, J. (2015). Linear dispersion–diffusion analysis and its application to under-resolved turbulence simulations using discontinuous galerkin spectral/hp methods. Journal of Computational Physics, 298:695–710.
Nikam, S. and Sharma, S. (2021). Mach number effect on aeroacoustic characteristics of compressible jet due to chevron. In Design and Development of Aerospace Vehicles and Propulsion Systems: Proceedings of SAROD 2018, pages 1–13. Springer Singapore.
Panchapakesan, N. R. and Lumley, J. L. (1993). Turbulence measurements in axisymmetric jets of air and helium. part 1. air jet. Journal of Fluid Mechanics, 246:197–223.
Pope, S. B. (2001). Turbulent flows.
Powell, A. (1954). The influence of the exit velocity profile on the noise of a jet. The Aeronautical Quarterly, 4(4):341–360.
Prasad, C. and Morris, P. J. (2020). A study of noise reduction mechanisms of jets with fluid inserts. Journal of Sound and Vibration, 476:115331.
Rajput, P. and Kumar, S. (2019). Use of downstream fluid injection to reduce subsonic jet noise. International Journal of Aeroacoustics, 18(4-5):554–574.
Sadeghian, M. and Bandpy, M. (2020). Technologies for aircraft noise reduction: Review paper. J Aeronaut Aerospace Eng, 9:218.
Sautet, J. and Stepowski, D. (1995). Dynamic behavior of variable-density, turbulent jets in their near development fields. Physics of Fluids, 7(11):2796–2806.
Sheen, S.-C. and Hsiao, Y.-H. (2007). On using multiple-jet nozzles to suppress industrial jet noise. Journal of occupational and environmental hygiene, 4(9):669–677.
Shin, D.-H., Aparece-Scutariu, V., and Richardson, E. (2017). High fidelity simulation of turbulent jet and identification of acoustic sources. , (2017 03):1–9.
Stich, G.-D., Housman, J. A., Ghate, A. S., and Kiris, C. C. (2021). Jet noise prediction with large-eddy simulation for chevron nozzle flows. In AIAA Scitech 2021 Forum, page 1185.
Tam, C., Golebiowski, M., and Seiner, J. (1996). On the two components of turbulent mixing noise from supersonic jets. In Aeroacoustics conference, page 1716.
Todde, V., Spazzini, P. G., and Sandberg, M. (2009). Experimental analysis of low-reynolds number free jets. Experiments in fluids, 47(2):279–294.
Utzmann, J., Munz, C.-D., Dumbser, M., Sonnendrücker, E., Salmon, S., Jund, S., and Frénod, E. (2009). Fluid-acoustic coupling and wave propagation. In Numerical Simulation of Turbulent Flows and Noise Generation, pages 47–74. Springer.
Viswanathan, K. (2004). Aeroacoustics of hot jets. In 8th AIAA/CEAS Aeroacoustics Conference & Exhibit, page 2481.
Viswanathan, K. (2008). Investigation of noise source mechanisms in subsonic jets. AIAA journal, 46(8):2020–2032.
WHO et al. (2018). Environmental noise guidelines for the european region.
Yenigelen, E. and Morris, P. J. (2020). Numerical investigation of a noise reduction strategy for rocket launch vehicles. In AIAA Aviation 2020 Forum, page 2606.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xv, 66 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Mecánica y Mecatrónica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81180/3/1032470804.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/81180/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81180/5/1032470804.2021.pdf.jpg
bitstream.checksum.fl_str_mv 81434c858e87c7a60fe065735fdf8a0c
8153f7789df02f0a4c9e079953658ab2
79bf864edcfd1d11f61752b871547ddd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089842988941312
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Duque Daza, Carlos Alberto2af3fa9fc1551951a8ddefbc637c4cd8Murillo Rincon, Jairo Albertodebbff25e37107a1052715d6813f3f4fGnum Grupo de Modelado y Métodos Numericos en Ingeniería2022-03-10T17:38:37Z2022-03-10T17:38:37Z2021https://repositorio.unal.edu.co/handle/unal/81180Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, graficasEn esta tesis se estudia el uso la técnica de control activo tipo chorro sintético en un chorro circular turbulento con Reynolds de 11e10^3 y Mach 0.1 usando simulaciones numéricas. Para determinar el efecto de aplicar la técnica de control se calcularon diferentes estadísticas turbulentas y la respuesta acústica del flujo en el campo lejano. Se utilizó la estrategia de simulación de efectos turbulentos UDNS (Under-resolved Direct Numerical Simulation) y posteriormente usando la analogía acústica de FWH (Ffowcs-Williams and Hawkings) se determinó la respuesta acústica en el campo lejano. Se realizaron simulaciones utilizando diferentes valores de operación del chorro sintético y se compararon con el caso canónico del chorro turbulento. Desde el punto de vista de la modulación de la turbulencia, se observó que dependiendo de los parámetros de operación del chorro sintético se puede incentivar la aparición de inestabilidades cerca de la boquilla, que aceleran el proceso de producción y disipación de la energía cinética turbulenta, u obtener una respuesta similar al caso canónico. Sin embargo, desde el punto de vista de la respuesta acústica en el campo lejano, se observó la aparición de un tono puro en los espectros de ruido con una frecuencia de 0.5 la frecuencia de oscilación del chorro sintético, el cual varia su amplitud para diferentes ángulos de medición. (Texto tomado de la fuente)In this thesis we study the use of the synthetic jet active control technique in a turbulent round jet with Reynolds of 11e10^3 and Mach 0.1 using numerical simulations. To determine the effect of applying the control technique different turbulent statistics and the acoustic response of the far-field were calculated. The UDNS (Under-resolved Direct Numerical Simulation)turbulent effects simulation strategy was used and then using the FWH (Ffowcs-Williams and Hawkings) acoustic analogy, the far-field acoustic response was determined. Simulations were performed using different operating values of the synthetic jet and compared with the canonical case of the turbulent jet. From the point of view of turbulence modulation, it was observed that depending on the operating parameters of the synthetic jet, instabilities near the nozzle, which accelerate the process of production and dissipation of turbulent kinetic energy, can be encouraged or a similar response to the canonical case can be obtained. However, from the point of view of the acoustic response in the far field, a pure tone was observed in the noise spectra with a frequency of 0.5 the oscillation frequency of the synthetic jet, which varies in amplitude for different measurement angles.MaestríaMagíster en Ingeniería MecánicaDinámica de fluidos computacional y Aeroacusticaxv, 66 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería MecánicaDepartamento de Ingeniería Mecánica y MecatrónicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaPROPULSION A CHORROCORRIENTE EN CHORROJet stramRuido de chorroControl de flujoAeroacústicaDinamica de fluidos computacionalJet noiseFlow controlAeroacousticsComputational fluid dynamicsEvaluación de la técnica de control de flujo tipo chorro sintético para la modulación de niveles de ruido en flujos de inyección turbulentaEvaluation of synthetic jet flow control technique for modulating turbulent jet noiseTrabajo de grado - Maestríainfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBall, C., Fellouah, H., and Pollard, A. (2012). The flow field in turbulent round free jets. Progress in Aerospace Sciences, 50:1–26.Bogey, C., Marsden, O., and Bailly, C. (2012). Influence of initial turbulence level on the flow and sound fields of a subsonic jet at a diameter-based reynolds number of 10 (5). Journal of Fluid Mechanics, 701:352–385.Bonelli, F., Viggiano, A., and Magi, V. (2021). High-speed turbulent gas jets: an les inves- tigation of mach and reynolds number effects on the velocity decay and spreading rate. Flow, Turbulence and Combustion, pages 1–32.Bosshard, C., Deville, M. O., Dehbi, A., Leriche, E., et al. (2015). Udns or les, that is the question. Open Journal of Fluid Dynamics, 5(04):339.Brès, G., Jordan, P., Jaunet, V., Le Rallic, M., Cavalieri, A., Towne, A., Lele, S., Colonius, T., and Schmidt, O. (2018). Importance of the nozzle-exit boundary-layer state in subsonic turbulent jets. Journal of Fluid Mechanics, 851:83–124.Caeti, R. B. and Kalkhoran, I. M. (2014). Jet noise reduction via fluidic injection. AIAA journal, 52(1):26–32.Callender, B., Gutmark, E., and Martens, S. (2007). A comprehensive study of fluidic injection technology for jet noise reduction. In 13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference), page 3608.Camussi, R. (2013). Noise sources in turbulent shear flows: fundamentals and applications, volume 545. Springer Science & Business Media.Casalino, D., Diozzi, F., Sannino, R., and Paonessa, A. (2008). Aircraft noise reduction technologies: a bibliographic review. Aerospace Science and Technology, 12(1):1–17.Cianferra, M. (2018). Acoustic analogies and large-eddy simulations of incompressible and cavitating flows around bluff bodies.Colonius, T., Sinha, A., Rodrı́guez, D., Towne, A., Liu, J., Brès, G., Appelö, D., and Hags- trom, T. (2015). Simulation and modeling of turbulent jet noise. In Direct and Large-Eddy Simulation IX, pages 305–310. Springer.Curle, N. (1955). The influence of solid boundaries upon aerodynamic sound. Procee- dings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 231(1187):505–514.Dhamankar, N. S., Blaisdell, G. A., and Lyrintzis, A. S. (2016). Analysis of turbulent jet flow and associated noise with round and chevron nozzles using large eddy simulation. In 22nd AIAA/CEAS aeroacoustics conference, page 3045.Epikhin, A., Evdokimov, I., Kraposhin, M., Kalugin, M., and Strijhak, S. (2015). Develop- ment of a dynamic library for computational aeroacoustics applications using the openfoam open source package. Procedia Computer Science, 66:150–157. 4th International Young Scientist Conference on Computational Science.Ffowcs Williams, J. E. and Hawkings, D. L. (1969). Sound generation by turbulence and surfaces in arbitrary motion. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 264(1151):321–342.Gerges, S., Sehrndt, G., and Parthey, W. (2001). 5 noise sources. Occupational Exposure to Noise.Geuzaine, C. and Remacle, J.-F. (2009). Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11):1309–1331.Glegg, S. and Devenport, W. (2017). Aeroacoustics of low Mach number flows: fundamentals, analysis, and measurement. Academic Press.Henderson, B. (2010). Fifty years of fluidic injection for jet noise reduction. International Journal of Aeroacoustics, 9(1-2):91–122.Howe, M. S. and Howe, M. S. (1998). Acoustics of fluid-structure interactions. Cambridge university press.Hussein, H. J., Capp, S. P., George, W. K., et al. (1994). Velocity measurements in a high- reynolds-number, momentum-conserving, axisymmetric, turbulent jet. Journal of Fluid Mechanics, 258(1):31–75.Jawahar, H. K., Markesteijn, A. P., Karabasov, S. A., and Azarpeyvand, M. (2021). Effects of Chevrons on Jet-installation Noise.Jordan, E. L. P., Delville, J., and Bonnet, J.-P. (2008). Source-mechanism identification by nearfield-farfield pressure correlations in subsonic jets. International Journal of Aero- acoustics, 7(1):41–68.Kaltenbacher, M., Escobar, M., Becker, S., and Ali, I. (2008). Computational aeroacoustics based on lighthill’s acoustic analogy. In Computational Acoustics of Noise Propagation in Fluids-Finite and Boundary Element Methods, pages 115–142. Springer.Komen, E., Shams, A., Camilo, L., and Koren, B. (2014). Quasi-dns capabilities of openfoam for different mesh types. Computers & Fluids, 96:87–104.Kramer, C., Gerhardt, H., and Knoch, M. (1984). Applications of jet flows in industrial flow circuits. Journal of Wind Engineering and Industrial Aerodynamics, 16(2-3):173–188.Kurbjun, M. C. (1958). Limited Investigation of Noise Suppression by Injection of Water Into Exaust of Afterburning Jet Engine, volume 40. National Advisory Committee for Aeronautics.Lighthill, M. J. (1952). On sound generated aerodynamically i. general theory. Procee- dings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 211(1107):564–587.Lubert, C. P. (2017). Sixty years of launch vehicle acoustics. In Proceedings of Meetings on Acoustics 174ASA, volume 31, page 040004. Acoustical Society of America.Manneville, P. and Rolland, J. (2011). On modelling transitional turbulent flows using under-resolved direct numerical simulations: the case of plane couette flow. Theoretical and Computational Fluid Dynamics, 25(6):407–420.Mendez, S., Shoeybi, M., Lele, S., and Moin, P. (2013). On the use of the ffowcs williams- hawkings equation to predict far-field jet noise from large-eddy simulations. International Journal of Aeroacoustics, 12(1-2):1–20.Michael, L. G. (1961). Jet noise suppression means. US Patent 2,990,905.Moura, R. C., Sherwin, S. J., and Peiró, J. (2015). Linear dispersion–diffusion analysis and its application to under-resolved turbulence simulations using discontinuous galerkin spectral/hp methods. Journal of Computational Physics, 298:695–710.Nikam, S. and Sharma, S. (2021). Mach number effect on aeroacoustic characteristics of compressible jet due to chevron. In Design and Development of Aerospace Vehicles and Propulsion Systems: Proceedings of SAROD 2018, pages 1–13. Springer Singapore.Panchapakesan, N. R. and Lumley, J. L. (1993). Turbulence measurements in axisymmetric jets of air and helium. part 1. air jet. Journal of Fluid Mechanics, 246:197–223.Pope, S. B. (2001). Turbulent flows.Powell, A. (1954). The influence of the exit velocity profile on the noise of a jet. The Aeronautical Quarterly, 4(4):341–360.Prasad, C. and Morris, P. J. (2020). A study of noise reduction mechanisms of jets with fluid inserts. Journal of Sound and Vibration, 476:115331.Rajput, P. and Kumar, S. (2019). Use of downstream fluid injection to reduce subsonic jet noise. International Journal of Aeroacoustics, 18(4-5):554–574.Sadeghian, M. and Bandpy, M. (2020). Technologies for aircraft noise reduction: Review paper. J Aeronaut Aerospace Eng, 9:218.Sautet, J. and Stepowski, D. (1995). Dynamic behavior of variable-density, turbulent jets in their near development fields. Physics of Fluids, 7(11):2796–2806.Sheen, S.-C. and Hsiao, Y.-H. (2007). On using multiple-jet nozzles to suppress industrial jet noise. Journal of occupational and environmental hygiene, 4(9):669–677.Shin, D.-H., Aparece-Scutariu, V., and Richardson, E. (2017). High fidelity simulation of turbulent jet and identification of acoustic sources. , (2017 03):1–9.Stich, G.-D., Housman, J. A., Ghate, A. S., and Kiris, C. C. (2021). Jet noise prediction with large-eddy simulation for chevron nozzle flows. In AIAA Scitech 2021 Forum, page 1185.Tam, C., Golebiowski, M., and Seiner, J. (1996). On the two components of turbulent mixing noise from supersonic jets. In Aeroacoustics conference, page 1716.Todde, V., Spazzini, P. G., and Sandberg, M. (2009). Experimental analysis of low-reynolds number free jets. Experiments in fluids, 47(2):279–294.Utzmann, J., Munz, C.-D., Dumbser, M., Sonnendrücker, E., Salmon, S., Jund, S., and Frénod, E. (2009). Fluid-acoustic coupling and wave propagation. In Numerical Simulation of Turbulent Flows and Noise Generation, pages 47–74. Springer.Viswanathan, K. (2004). Aeroacoustics of hot jets. In 8th AIAA/CEAS Aeroacoustics Conference & Exhibit, page 2481.Viswanathan, K. (2008). Investigation of noise source mechanisms in subsonic jets. AIAA journal, 46(8):2020–2032.WHO et al. (2018). Environmental noise guidelines for the european region.Yenigelen, E. and Morris, P. J. (2020). Numerical investigation of a noise reduction strategy for rocket launch vehicles. In AIAA Aviation 2020 Forum, page 2606.EstudiantesInvestigadoresMaestrosPúblico generalORIGINAL1032470804.2021.pdf1032470804.2021.pdfTesis de Maestría en Ingeniería Mecánicaapplication/pdf19227949https://repositorio.unal.edu.co/bitstream/unal/81180/3/1032470804.2021.pdf81434c858e87c7a60fe065735fdf8a0cMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81180/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1032470804.2021.pdf.jpg1032470804.2021.pdf.jpgGenerated Thumbnailimage/jpeg4616https://repositorio.unal.edu.co/bitstream/unal/81180/5/1032470804.2021.pdf.jpg79bf864edcfd1d11f61752b871547dddMD55unal/81180oai:repositorio.unal.edu.co:unal/811802023-08-02 23:03:55.141Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK