Local-scale changes in topography influence tree growth and mortality in a terra firme forest in the Northwestern Amazon

ilustraciones, diagramas

Autores:
Jaramillo Mejia, Paola Andrea
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84127
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84127
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología::577 - Ecología
Ecología forestal - Amaonas (Colombia)
Cultivos forestales - Amazonas (Colombia)
Forest ecology - Amaonas (Colombia)
Tree crops - Amazonas (Colombia)
Tree growth
Tree mortality
Tropical forests
Forest dynamics
Species habitat associations
Mortalidad de los árboles
Acquisitive-conservative strategies
Crecimiento de los árboles
Bosques tropicales
Dinámica forestal
Asociaciones de hábitat de las especies
Estrategias adquisitivas-conservadoras
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_82ecc3fcee1ccfc78a0b2aad67d009e2
oai_identifier_str oai:repositorio.unal.edu.co:unal/84127
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Local-scale changes in topography influence tree growth and mortality in a terra firme forest in the Northwestern Amazon
dc.title.translated.spa.fl_str_mv Los cambios en la topografía a escala local influyen en el crecimiento y la mortalidad de los árboles en un bosque de tierra firme del noroeste de la Amazonia
title Local-scale changes in topography influence tree growth and mortality in a terra firme forest in the Northwestern Amazon
spellingShingle Local-scale changes in topography influence tree growth and mortality in a terra firme forest in the Northwestern Amazon
570 - Biología::577 - Ecología
Ecología forestal - Amaonas (Colombia)
Cultivos forestales - Amazonas (Colombia)
Forest ecology - Amaonas (Colombia)
Tree crops - Amazonas (Colombia)
Tree growth
Tree mortality
Tropical forests
Forest dynamics
Species habitat associations
Mortalidad de los árboles
Acquisitive-conservative strategies
Crecimiento de los árboles
Bosques tropicales
Dinámica forestal
Asociaciones de hábitat de las especies
Estrategias adquisitivas-conservadoras
title_short Local-scale changes in topography influence tree growth and mortality in a terra firme forest in the Northwestern Amazon
title_full Local-scale changes in topography influence tree growth and mortality in a terra firme forest in the Northwestern Amazon
title_fullStr Local-scale changes in topography influence tree growth and mortality in a terra firme forest in the Northwestern Amazon
title_full_unstemmed Local-scale changes in topography influence tree growth and mortality in a terra firme forest in the Northwestern Amazon
title_sort Local-scale changes in topography influence tree growth and mortality in a terra firme forest in the Northwestern Amazon
dc.creator.fl_str_mv Jaramillo Mejia, Paola Andrea
dc.contributor.advisor.none.fl_str_mv Duque Montoya, Alvaro
Zuleta, Daniel
dc.contributor.author.none.fl_str_mv Jaramillo Mejia, Paola Andrea
dc.contributor.researchgroup.spa.fl_str_mv Conservación, Uso y Biodiversidad
dc.contributor.orcid.spa.fl_str_mv Zuleta, Daniel [0000-0001-9832-6188]
dc.subject.ddc.spa.fl_str_mv 570 - Biología::577 - Ecología
topic 570 - Biología::577 - Ecología
Ecología forestal - Amaonas (Colombia)
Cultivos forestales - Amazonas (Colombia)
Forest ecology - Amaonas (Colombia)
Tree crops - Amazonas (Colombia)
Tree growth
Tree mortality
Tropical forests
Forest dynamics
Species habitat associations
Mortalidad de los árboles
Acquisitive-conservative strategies
Crecimiento de los árboles
Bosques tropicales
Dinámica forestal
Asociaciones de hábitat de las especies
Estrategias adquisitivas-conservadoras
dc.subject.lemb.spa.fl_str_mv Ecología forestal - Amaonas (Colombia)
Cultivos forestales - Amazonas (Colombia)
dc.subject.lemb.eng.fl_str_mv Forest ecology - Amaonas (Colombia)
Tree crops - Amazonas (Colombia)
dc.subject.proposal.eng.fl_str_mv Tree growth
Tree mortality
Tropical forests
Forest dynamics
Species habitat associations
Mortalidad de los árboles
Acquisitive-conservative strategies
dc.subject.proposal.spa.fl_str_mv Crecimiento de los árboles
Bosques tropicales
Dinámica forestal
Asociaciones de hábitat de las especies
Estrategias adquisitivas-conservadoras
description ilustraciones, diagramas
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-07-04T16:06:47Z
dc.date.available.none.fl_str_mv 2023-07-04T16:06:47Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84127
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84127
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.indexed.spa.fl_str_mv RedCol
LaReferencia
dc.relation.references.spa.fl_str_mv Barton, K. (2022). Package ‘ MuMIn .’ 1.
Bates, D., Mächler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1). https://doi.org/10.18637/jss.v067.i01
Bauman, D., Fortunel, C., Delhaye, G., Malhi, Y., Cernusak, L. A., Bentley, L. P., Rifai, S. W., Aguirre-Gutiérrez, J., Menor, I. O., Phillips, O. L., McNellis, B. E., Bradford, M., Laurance, S. G. W., Hutchinson, M. F., Dempsey, R., Santos-Andrade, P. E., Ninantay-Rivera, H. R., Chambi Paucar, J. R., & McMahon, S. M. (2022). Tropical tree mortality has increased with rising atmospheric water stress. Nature, 608(7923), 528–533. https://doi.org/10.1038/s41586-022-04737-7
Brodribb, T. J., Powers, J., Cochard, H., & Choat, B. (2020). Hanging by a thread? Forests and drought. Science, 368(6488), 261–266. https://doi.org/10.1126/science.aat7631
Chamorro, C. (1989). Biologia de los suelos del Parque Nacional Natural Amacayacu, y zonas adjacentes, Amazonas-Colombia.
Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12(4), 351–366.
Chuyong, G. B., Kenfack, D., Harms, K. E., Thomas, D. W., Condit, R., & Comita, L. S. (2011). Habitat specificity and diversity of tree species in an African wet tropical forest. Plant Ecology, 212(8), 1363–1374. https://doi.org/10.1007/s11258-011-9912-4
Comita, L. S., Condit, R., & Hubbell, S. P. (2007). Developmental changes in habitat associations of tropical trees. 482–492. https://doi.org/10.1111/j.1365-2745.2007.01229.x
Comita, L. S., & Engelbrecht, B. M. J. (2009). Seasonal and spatial variation in water availability drive habitat associations in a tropical forest. 90(10), 2755–2765.
Condit. (1998). Tropical forest census plots: methods and results from Barro Colorado Island, Panama and a comparison with other plots.
Condit, R. (1998). Tropical forest census plot. In Springer-verlag: Vol. CONDIT, R.
Condit, Richard, Hubbell, S. P., & Foster, R. B. (1993). Identifying fast-growing native trees from the neotropics using data from a large, permanent census plot. Forest Ecology and Management, 62(1–4), 123–143. https://doi.org/10.1016/0378-1127(93)90046-P
Condit, Richard, Hubbell, S. P., & Foster, R. B. (1995). Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecological Monographs, 65(4), 419–439. https://doi.org/10.2307/2963497
Condit, Richard, Lao, S., Singh, A., Esufali, S., & Dolins, S. (2014). Data and database standards for permanent forest plots in a global network. Forest Ecology and Management, 316, 21–31.
Condit, Richard, Pitman, N., Leigh, E. G., Chave, J., Terborgh, J., Foster, R. B., Núñez, P. V., Aguilar, S., Valencia, R., Villa, G., Muller-Landau, H. C., Losos, E., & Hubbell, S. P. (2002). Beta-diversity in tropical forest trees. Science, 295(5555), 666–669. https://doi.org/10.1126/science.1066854
Cosme, L. H. M., Schietti, J., Costa, F. R. C., & Oliveira, R. S. (2017). The importance of hydraulic architecture to the distribution patterns of trees in a central Amazonian forest. New Phytologist, 215(1), 113–125. https://doi.org/10.1111/nph.14508
Costa, F., Schietti, J., Stark, S. C., & Smith, M. N. (2022). The other side of tropical forest drought: do shallow water table regions of Amazonia act as large-scale hydrological refugia from drought? New Phytologist. https://doi.org/10.1111/nph.17914
Cushman, K. C., Bunyavejchewin, S., Cárdenas, D., Condit, R., Davies, S. J., Duque, Á., Hubbell, S. P., Kiratiprayoon, S., Lum, S. K. Y., & Muller-Landau, H. C. (2021). Variation in trunk taper of buttressed trees within and among five lowland tropical forests. Biotropica, 53(5), 1442–1453. https://doi.org/10.1111/btp.12994
Davies, S. J., Abiem, I., Abu Salim, K., Aguilar, S., Allen, D., Alonso, A., Anderson-Teixeira, K., Andrade, A., Arellano, G., Ashton, P. S., Baker, P. J., Baker, M. E., Baltzer, J. L., Basset, Y., Bissiengou, P., Bohlman, S., Bourg, N. A., Brockelman, W. Y., Bunyavejchewin, S., … Zuleta, D. (2021). ForestGEO: Understanding forest diversity and dynamics through a global observatory network. Biological Conservation, 253(December 2020). https://doi.org/10.1016/j.biocon.2020.108907
DeWitt, T. J., Sih, A., & Wilson, D. S. (1998). Costs and limits of phenotypic plasticity. Trends in Ecology and Evolution, 13(2), 77–81.
Duffy, P. B., Brando, P., Asner, G. P., & Field, C. B. (2015). Projections of future meteorological drought and wet periods in the Amazon. Proceedings of the National Academy of Sciences of the United States of America, 112(43), 13172–13177. https://doi.org/10.1073/pnas.1421010112
Duque, A., Muller-landau, H. C., Valencia, R., Cardenas, D., Davies, S., Oliveira, A. De, Romero-saltos, H., & Vicentini, A. (2017). Insights into regional patterns of Amazonian forest structure , diversity , and dominance from three large. 669–686. https://doi.org/10.1007/s10531-016-1265-9
Esteban, E. J. L., Castilho, C. V., Melgaço, K. L., & Costa, F. R. C. (2021). The other side of droughts: wet extremes and topography as buffers of negative drought effects in an Amazonian forest. New Phytologist, 229(4), 1995–2006. https://doi.org/10.1111/nph.17005
Feeley, K. J., Rehm, E. M., & Machovina, B. (2012). perspective: The responses of tropical forest species to global climate change: acclimate, adapt, migrate, or go extinct? Frontiers of Biogeography, 4(2). https://doi.org/10.21425/f5fbg12621
Feeley, K. J., & Zuleta, D. (2022). Changing forests under climate change. Nature Plants, 8(9), 984–985. https://doi.org/10.1038/s41477-022-01228-5
Fortunel, C., McFadden, I. R., Valencia, R., & Kraft, N. J. B. (2019). Neither species geographic range size, climatic envelope, nor intraspecific leaf trait variability capture habitat specialization in a hyperdiverse Amazonian forest. Biotropica, 51(3), 304–310. https://doi.org/10.1111/btp.12643
Fortunel, C., Timothy Paine, C. E., Fine, P. V. A., Mesones, I., Goret, J.-Y., Burban, B., Cazal, J., & Baraloto, C. (2016). There ’ s no place like home : seedling mortality contributes to the habitat specialisation of tree species across Amazonia. Ecology Letters, 1256–1266. https://doi.org/10.1111/ele.12661
Harms, K. E., Condit, R., Hubbell, S. P., & Foster, R. B. (2001). Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. Journal of Ecology, 89(6), 947–959. https://doi.org/10.1046/j.0022-0477.2001.00615.x
Harms, K. E., Wright, S. J., Caldero, O., & Herre, E. A. (2000). Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. 30(1997), 493–495.
Holdridge, L. R. (1978). Ecología : basada en zonas de vida. San José [Costa Rica] IICA 1978. http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat02704a&AN=unc.000741904&lang=es&site=eds-live
Hoorn, C. (1994). An environmental reconstruction of the palaeo-Amazon River system (Middle-Late Miocene, NW Amazonia). Palaeogeography, Palaeoclimatology, Palaeoecology, 112(3–4), 187–238. https://doi.org/10.1016/0031-0182(94)90074-4
Hubbell, S. P. (2001). The Unified Neutral Theory of Biodiversity and Biogeography.
Hubbell, S. P., Foster, R. B., O’Brien, S. T., Harms, K. E., Condit, R., Wechsler, B., Wright, S. J., & Loo De Lao, S. (1999). Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science, 283(5401), 554–557. https://doi.org/10.1126/science.283.5401.554
Itoh, A., Nanami, S., Harata, T., Ohkubo, T., Tan, S., Chong, L., Stuart, J. D., & Yamakura, T. (2012). The Effect of Habitat Association and Edaphic Conditions on Tree Mortality during El Niño-induced Drought in a Bornean Dipterocarp Forest. 44(5), 606–617.
Jucker, T., Bongalov, B., Burslem, D. F. R. P., Nilus, R., Dalponte, M., Lewis, S. L., Phillips, O. L., Qie, L., & Coomes, D. A. (2018). Topography shapes the structure, composition and function of tropical forest landscapes. Ecology Letters, 21(7), 989–1000. https://doi.org/10.1111/ele.12964
Kenfack, D., Chuyong, G. B., Condit, R., Russo, S. E., & Thomas, D. W. (2014). Demographic variation and habitat specialization of tree species in a diverse tropical forest of cameroon. Forest Ecosystems, 1(1), 1–13. https://doi.org/10.1186/s40663-014-0022-3
Lenth, R. V. (2016). Least-squares means: The R package lsmeans. Journal of Statistical Software, 69(1). https://doi.org/10.18637/jss.v069.i01
Malhi, Y., Aragão, L. E. O. C., Galbraith, D., Huntingford, C., Fisher, R., Zelazowski, P., Sitch, S., McSweeney, C., & Meir, P. (2009). Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proceedings of the National Academy of Sciences of the United States of America, 106(49), 20610–20615. https://doi.org/10.1073/pnas.0804619106
Mazerolle, M. J. (2020). Model selection and multimodel inference using the AICcmodavg package. 1–22.
McDowell, J. M., & Simon, S. A. (2008). Molecular diversity at the plant-pathogen interface. Developmental and Comparative Immunology, 32(7), 736–744. https://doi.org/10.1016/j.dci.2007.11.005
McDowell, N., Sapes, G., Pivovaroff, A., Adams, H. D., Allen, C. D., Anderegg, W. R. L., Arend, M., Breshears, D. D., Brodribb, T., Choat, B., Cochard, H., De Cáceres, M., De Kauwe, M. G., Grossiord, C., Hammond, W. M., Hartmann, H., Hoch, G., Kahmen, A., Klein, T., … Xu, C. (2022). Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nature Reviews Earth & Environment, 3(5), 294–308. https://doi.org/10.1038/s43017-022-00272-1
Metcalf, C. J. E., Clark, J. S., & Clark, D. A. (2009). Tree growth inference and prediction when the point of measurement changes: modelling around buttresses in tropical forests. Journal of Tropical Ecology, 25(1), 1–12. https://doi.org/DOI: 10.1017/S0266467408005646
Oliveira, R. S., Costa, F. R. C., van Baalen, E., de Jonge, A., Bittencourt, P. R., Almanza, Y., Barros, F. de V., Cordoba, E. C., Fagundes, M. V., Garcia, S., Guimaraes, Z. T. M., Hertel, M., Schietti, J., Rodrigues-Souza, J., & Poorter, L. (2019). Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro-topographic gradients. New Phytologist, 221(3), 1457–1465. https://doi.org/10.1111/nph.15463
Oliveira, R. S., Eller, C. B., Barros, F. de V., Hirota, M., Brum, M., & Bittencourt, P. (2021). Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems. New Phytologist, 230(3), 904–923. https://doi.org/10.1111/nph.17266
Poorter, L., McDonald, I., Alarcón, A., Fichtler, E., Licona, J. C., Peña-Claros, M., Sterck, F., Villegas, Z., & Sass-Klaassen, U. (2010). The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytologist, 185(2), 481–492. https://doi.org/10.1111/j.1469-8137.2009.03092.x
Russo, S. E., Brown, P., Tan, S., & Davies, S. J. (2008). Interspecific demographic trade-offs and soil-related habitat associations of tree species along resource gradients. Journal of Ecology, 192–203. https://doi.org/10.1111/j.1365-2745.2007.01330.x
Russo, S. E., Davies, S. J., King, D. A., & Tan, S. (2005). Soil-related performance variation and distributions of tree species in a Bornean rain forest. Journal of Ecology, 93(5), 879–889. https://doi.org/10.1111/j.1365-2745.2005.01030.x
Russo, S. E., McMahon, S. M., Detto, M., Ledder, G., Wright, S. J., Condit, R. S., Davies, S. J., Ashton, P. S., Bunyavejchewin, S., Chang-Yang, C. H., Ediriweera, S., Ewango, C. E. N., Fletcher, C., Foster, R. B., Gunatilleke, C. V. S., Gunatilleke, I. A. U. N., Hart, T., Hsieh, C. F., Hubbell, S. P., … Zimmerman, J. K. (2021). The interspecific growth–mortality trade-off is not a general framework for tropical forest community structure. Nature Ecology and Evolution, 5(2), 174–183. https://doi.org/10.1038/s41559-020-01340-9
Santiago, L. S., De Guzman, M. E., Baraloto, C., Vogenberg, J. E., Brodie, M., Hérault, B., Fortunel, C., & Bonal, D. (2018). Coordination and trade-offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species. New Phytologist, 218(3), 1015–1024. https://doi.org/10.1111/nph.15058
Sousa, T. R., Schietti, J., Coelho de Souza, F., Esquivel-Muelbert, A., Ribeiro, I. O., Emílio, T., Pequeno, P. A. C. L., Phillips, O., & Costa, F. R. C. (2020). Palms and trees resist extreme drought in Amazon forests with shallow water tables. Journal of Ecology, 108(5), 2070–2082. https://doi.org/10.1111/1365-2745.13377
Valencia, R., Condit, R., Muller-landau, H. C., Hernandez, C., & Navarrete, H. (2009). Dissecting biomass dynamics in a large Amazonian forest plot. Journal of Tropical Ecology, 473–482. https://doi.org/10.1017/S0266467409990095
Valencia, R., Foster, R. B., Villa, G., Condit, R., Svenning, J. C., Hernández, C., Romoleroux, K., Losos, E., Magård, E., & Balslev, H. (2004). Tree species distributions and local habitat variation in the Amazon: Large forest plot in eastern Ecuador. Journal of Ecology, 92(2), 214–229. https://doi.org/10.1111/j.0022-0477.2004.00876.x
Wright, J. S., Kitajima, K., Kraft, N. J. B., Reich, P. B., Wright, I. J., Bunker, D. E., Condit, R., Dalling, J. W., Davies, S. J., Diaz, S., Engelbrecht, B. M. J., Harms, K. E., Hubbell, S. P., Marks, C. O., Ruiz-Jaen, M. C., Salvador, C. M., & Zanne, A. E. (2010). Functional traits and the growth – mortality trade-off in tropical trees. Ecological Society of America, 91(12), 3664–3674.
Zanne, A. E., Lopez-Gonzalez, G., Coomes, D. A., Ilic, J., Jansen, S., Lewis, S. L., Miller, R. B., Swenson, N. G., Wiemann, M. C., & Chave, J. (2009). Global wood density database.
Zuleta, D., Duque, A., Cardenas, D., Muller-Landau, H. C., & Davies, S. (2017). Drought-induced mortality patterns and rapid biomass recovery in a terra firme forest in the Colombian Amazon. Ecology, 98(10), 2538–2546. https://doi.org/10.1002/ecy.1950
Zuleta, D., Muller-Landau, H. C., Duque, A., Caro, N., Cardenas, D., Leon-Pelaez, J. D., & Feeley, K. J. (In Press). Interspecific and intraspecific variation of tree branch, leaf, and stomatal traits in relation to topography in an aseasonal Amazon forest. Functional Ecology.
Zuleta, D., Russo, S. E., Barona, A., Barreto-Silva, J. S., Cardenas, D., Castaño, N., Davies, S. J., Detto, M., Sua, S., Turner, B. L., & Duque, A. (2020). Importance of topography for tree species habitat distributions in a terra firme forest in the Colombian Amazon. Plant and Soil, 450(1–2), 133–149. https://doi.org/10.1007/s11104-018-3878-0
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xviii, 38 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.region.none.fl_str_mv Amazonas, Colombia
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias Agrarias - Maestría en Bosques y Conservación Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agrarias
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84127/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84127/3/1036656048.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/84127/4/1036656048.2022.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
e318c9c808dd638294f9e73ea47c358c
8f98a4188415c7b6a108d67227e06411
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089838769471488
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Duque Montoya, Alvaroaacace71d29a1898916091e475e4119aZuleta, Danielf6ae889b2551e6e30cf9655b743b5168Jaramillo Mejia, Paola Andrea0540297b7ea59dee2116d065dbe04b89Conservación, Uso y BiodiversidadZuleta, Daniel [0000-0001-9832-6188]2023-07-04T16:06:47Z2023-07-04T16:06:47Z2022https://repositorio.unal.edu.co/handle/unal/84127Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasSpatial variation in tree species diversity and distribution is thought to be mediated by environmental variation, including topography, but the underlying processes are not well understood. Wetter habitats like valleys should support higher growth and survival than drier habitats like ridges. However, deviations from this pattern may occur due to species’ habitat associations, which should be aligned with species’ ecological strategy along the interspecific acquisitive-conservative spectrum: fast growth at the cost of lower survival, and higher survival at the cost of slower growth. Here, we assess the influence of topography on the growth and mortality of 123,977 trees (1,266 species) in the 25-ha Amacayacu Forest Dynamics Plot, Northwestern Amazon. Specifically, we asked: (1) Do tree growth and mortality rates vary across topographic habitats (valleys, slopes, and ridges)? (2) Do growth and mortality vary depending on species' habitat associations? and (3) are the observed patterns of tree growth and mortality consistent with expectations based on the acquisitive-conservative spectrum? Mixed-effects models were used to examine demographic variation across topographic habitats and species habitat associations controlling for tree size. Trees growing on valleys had significantly higher mortality and growth rates compared to trees growing on slopes and ridges, which was consistent with the acquisitive-conservative spectrum. This pattern held true regardless of the species habitat associations. Our findings suggest that even small differences in topography can translate into differences in access to soil water affecting tree performance, which has implications for understanding species’ ecological strategies and forest responses to climate change.Se cree que la variación espacial en la diversidad y distribución de las especies arbóreas está influenciada por la variación ambiental, incluida la topografía, pero los procesos subyacentes no se comprenden bien. Hábitats más húmedos, como los valles, deberían soportar un mayor crecimiento y supervivencia que hábitats más secos, como las colinas. Sin embargo, pueden ocurrir desviaciones de este patrón debido a las asociaciones de hábitat de las especies, que deben estar alineadas con la estrategia ecológica de las especies a lo largo del espectro adquisitivo-conservador interespecífico: crecimiento rápido a costa de una menor supervivencia y mayor supervivencia a costa de un crecimiento más lento. Aquí, evaluamos la influencia de la topografía en el crecimiento y la mortalidad de 123,977 árboles (1,266 especies) en la Parcela de Dinámica Forestal Amacayacu de 25 ha, en el noroeste de la Amazonía. Específicamente, preguntamos: (1) ¿Varían las tasas de crecimiento y mortalidad de los árboles entre los hábitats topográficos (valles, pendientes y colinas)? (2) ¿Varían el crecimiento y la mortalidad dependiendo de las asociaciones de hábitat de las especies? y (3) ¿los patrones observados de crecimiento y mortalidad de árboles son consistentes con las expectativas basadas en el espectro adquisitivo-conservador? Se utilizaron modelos de efectos mixtos para examinar la variación demográfica entre los hábitats topográficos y las asociaciones de hábitats de especies que controlan el tamaño de los árboles. Los árboles que crecían en valles tenían tasas de mortalidad y crecimiento significativamente más altas en comparación con los árboles que crecían en pendientes y colinas, lo que era consistente con el espectro adquisitivo-conservador. Este patrón se mantuvo independientemente de las asociaciones de hábitat de las especies. Nuestros hallazgos sugieren que incluso pequeñas diferencias en la topografía pueden traducirse en diferencias en el acceso al agua del suelo que afectan el rendimiento de los árboles, lo que tiene implicaciones para comprender las estrategias ecológicas de las especies y las respuestas de los bosques al cambio climático. (Texto tomado de la fuente)MaestríaDinámica de los bosques de la Amazonia ColombianaÁrea Curricular en Bosques y Conservación Ambientalxviii, 38 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Ciencias Agrarias - Maestría en Bosques y Conservación AmbientalFacultad de Ciencias AgrariasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín570 - Biología::577 - EcologíaEcología forestal - Amaonas (Colombia)Cultivos forestales - Amazonas (Colombia)Forest ecology - Amaonas (Colombia)Tree crops - Amazonas (Colombia)Tree growthTree mortalityTropical forestsForest dynamicsSpecies habitat associationsMortalidad de los árbolesAcquisitive-conservative strategiesCrecimiento de los árbolesBosques tropicalesDinámica forestalAsociaciones de hábitat de las especiesEstrategias adquisitivas-conservadorasLocal-scale changes in topography influence tree growth and mortality in a terra firme forest in the Northwestern AmazonLos cambios en la topografía a escala local influyen en el crecimiento y la mortalidad de los árboles en un bosque de tierra firme del noroeste de la AmazoniaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAmazonas, ColombiaRedColLaReferenciaBarton, K. (2022). Package ‘ MuMIn .’ 1.Bates, D., Mächler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1). https://doi.org/10.18637/jss.v067.i01Bauman, D., Fortunel, C., Delhaye, G., Malhi, Y., Cernusak, L. A., Bentley, L. P., Rifai, S. W., Aguirre-Gutiérrez, J., Menor, I. O., Phillips, O. L., McNellis, B. E., Bradford, M., Laurance, S. G. W., Hutchinson, M. F., Dempsey, R., Santos-Andrade, P. E., Ninantay-Rivera, H. R., Chambi Paucar, J. R., & McMahon, S. M. (2022). Tropical tree mortality has increased with rising atmospheric water stress. Nature, 608(7923), 528–533. https://doi.org/10.1038/s41586-022-04737-7Brodribb, T. J., Powers, J., Cochard, H., & Choat, B. (2020). Hanging by a thread? Forests and drought. Science, 368(6488), 261–266. https://doi.org/10.1126/science.aat7631Chamorro, C. (1989). Biologia de los suelos del Parque Nacional Natural Amacayacu, y zonas adjacentes, Amazonas-Colombia.Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12(4), 351–366.Chuyong, G. B., Kenfack, D., Harms, K. E., Thomas, D. W., Condit, R., & Comita, L. S. (2011). Habitat specificity and diversity of tree species in an African wet tropical forest. Plant Ecology, 212(8), 1363–1374. https://doi.org/10.1007/s11258-011-9912-4Comita, L. S., Condit, R., & Hubbell, S. P. (2007). Developmental changes in habitat associations of tropical trees. 482–492. https://doi.org/10.1111/j.1365-2745.2007.01229.xComita, L. S., & Engelbrecht, B. M. J. (2009). Seasonal and spatial variation in water availability drive habitat associations in a tropical forest. 90(10), 2755–2765.Condit. (1998). Tropical forest census plots: methods and results from Barro Colorado Island, Panama and a comparison with other plots.Condit, R. (1998). Tropical forest census plot. In Springer-verlag: Vol. CONDIT, R.Condit, Richard, Hubbell, S. P., & Foster, R. B. (1993). Identifying fast-growing native trees from the neotropics using data from a large, permanent census plot. Forest Ecology and Management, 62(1–4), 123–143. https://doi.org/10.1016/0378-1127(93)90046-PCondit, Richard, Hubbell, S. P., & Foster, R. B. (1995). Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecological Monographs, 65(4), 419–439. https://doi.org/10.2307/2963497Condit, Richard, Lao, S., Singh, A., Esufali, S., & Dolins, S. (2014). Data and database standards for permanent forest plots in a global network. Forest Ecology and Management, 316, 21–31.Condit, Richard, Pitman, N., Leigh, E. G., Chave, J., Terborgh, J., Foster, R. B., Núñez, P. V., Aguilar, S., Valencia, R., Villa, G., Muller-Landau, H. C., Losos, E., & Hubbell, S. P. (2002). Beta-diversity in tropical forest trees. Science, 295(5555), 666–669. https://doi.org/10.1126/science.1066854Cosme, L. H. M., Schietti, J., Costa, F. R. C., & Oliveira, R. S. (2017). The importance of hydraulic architecture to the distribution patterns of trees in a central Amazonian forest. New Phytologist, 215(1), 113–125. https://doi.org/10.1111/nph.14508Costa, F., Schietti, J., Stark, S. C., & Smith, M. N. (2022). The other side of tropical forest drought: do shallow water table regions of Amazonia act as large-scale hydrological refugia from drought? New Phytologist. https://doi.org/10.1111/nph.17914Cushman, K. C., Bunyavejchewin, S., Cárdenas, D., Condit, R., Davies, S. J., Duque, Á., Hubbell, S. P., Kiratiprayoon, S., Lum, S. K. Y., & Muller-Landau, H. C. (2021). Variation in trunk taper of buttressed trees within and among five lowland tropical forests. Biotropica, 53(5), 1442–1453. https://doi.org/10.1111/btp.12994Davies, S. J., Abiem, I., Abu Salim, K., Aguilar, S., Allen, D., Alonso, A., Anderson-Teixeira, K., Andrade, A., Arellano, G., Ashton, P. S., Baker, P. J., Baker, M. E., Baltzer, J. L., Basset, Y., Bissiengou, P., Bohlman, S., Bourg, N. A., Brockelman, W. Y., Bunyavejchewin, S., … Zuleta, D. (2021). ForestGEO: Understanding forest diversity and dynamics through a global observatory network. Biological Conservation, 253(December 2020). https://doi.org/10.1016/j.biocon.2020.108907DeWitt, T. J., Sih, A., & Wilson, D. S. (1998). Costs and limits of phenotypic plasticity. Trends in Ecology and Evolution, 13(2), 77–81.Duffy, P. B., Brando, P., Asner, G. P., & Field, C. B. (2015). Projections of future meteorological drought and wet periods in the Amazon. Proceedings of the National Academy of Sciences of the United States of America, 112(43), 13172–13177. https://doi.org/10.1073/pnas.1421010112Duque, A., Muller-landau, H. C., Valencia, R., Cardenas, D., Davies, S., Oliveira, A. De, Romero-saltos, H., & Vicentini, A. (2017). Insights into regional patterns of Amazonian forest structure , diversity , and dominance from three large. 669–686. https://doi.org/10.1007/s10531-016-1265-9Esteban, E. J. L., Castilho, C. V., Melgaço, K. L., & Costa, F. R. C. (2021). The other side of droughts: wet extremes and topography as buffers of negative drought effects in an Amazonian forest. New Phytologist, 229(4), 1995–2006. https://doi.org/10.1111/nph.17005Feeley, K. J., Rehm, E. M., & Machovina, B. (2012). perspective: The responses of tropical forest species to global climate change: acclimate, adapt, migrate, or go extinct? Frontiers of Biogeography, 4(2). https://doi.org/10.21425/f5fbg12621Feeley, K. J., & Zuleta, D. (2022). Changing forests under climate change. Nature Plants, 8(9), 984–985. https://doi.org/10.1038/s41477-022-01228-5Fortunel, C., McFadden, I. R., Valencia, R., & Kraft, N. J. B. (2019). Neither species geographic range size, climatic envelope, nor intraspecific leaf trait variability capture habitat specialization in a hyperdiverse Amazonian forest. Biotropica, 51(3), 304–310. https://doi.org/10.1111/btp.12643Fortunel, C., Timothy Paine, C. E., Fine, P. V. A., Mesones, I., Goret, J.-Y., Burban, B., Cazal, J., & Baraloto, C. (2016). There ’ s no place like home : seedling mortality contributes to the habitat specialisation of tree species across Amazonia. Ecology Letters, 1256–1266. https://doi.org/10.1111/ele.12661Harms, K. E., Condit, R., Hubbell, S. P., & Foster, R. B. (2001). Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. Journal of Ecology, 89(6), 947–959. https://doi.org/10.1046/j.0022-0477.2001.00615.xHarms, K. E., Wright, S. J., Caldero, O., & Herre, E. A. (2000). Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. 30(1997), 493–495.Holdridge, L. R. (1978). Ecología : basada en zonas de vida. San José [Costa Rica] IICA 1978. http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat02704a&AN=unc.000741904&lang=es&site=eds-liveHoorn, C. (1994). An environmental reconstruction of the palaeo-Amazon River system (Middle-Late Miocene, NW Amazonia). Palaeogeography, Palaeoclimatology, Palaeoecology, 112(3–4), 187–238. https://doi.org/10.1016/0031-0182(94)90074-4Hubbell, S. P. (2001). The Unified Neutral Theory of Biodiversity and Biogeography.Hubbell, S. P., Foster, R. B., O’Brien, S. T., Harms, K. E., Condit, R., Wechsler, B., Wright, S. J., & Loo De Lao, S. (1999). Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science, 283(5401), 554–557. https://doi.org/10.1126/science.283.5401.554Itoh, A., Nanami, S., Harata, T., Ohkubo, T., Tan, S., Chong, L., Stuart, J. D., & Yamakura, T. (2012). The Effect of Habitat Association and Edaphic Conditions on Tree Mortality during El Niño-induced Drought in a Bornean Dipterocarp Forest. 44(5), 606–617.Jucker, T., Bongalov, B., Burslem, D. F. R. P., Nilus, R., Dalponte, M., Lewis, S. L., Phillips, O. L., Qie, L., & Coomes, D. A. (2018). Topography shapes the structure, composition and function of tropical forest landscapes. Ecology Letters, 21(7), 989–1000. https://doi.org/10.1111/ele.12964Kenfack, D., Chuyong, G. B., Condit, R., Russo, S. E., & Thomas, D. W. (2014). Demographic variation and habitat specialization of tree species in a diverse tropical forest of cameroon. Forest Ecosystems, 1(1), 1–13. https://doi.org/10.1186/s40663-014-0022-3Lenth, R. V. (2016). Least-squares means: The R package lsmeans. Journal of Statistical Software, 69(1). https://doi.org/10.18637/jss.v069.i01Malhi, Y., Aragão, L. E. O. C., Galbraith, D., Huntingford, C., Fisher, R., Zelazowski, P., Sitch, S., McSweeney, C., & Meir, P. (2009). Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proceedings of the National Academy of Sciences of the United States of America, 106(49), 20610–20615. https://doi.org/10.1073/pnas.0804619106Mazerolle, M. J. (2020). Model selection and multimodel inference using the AICcmodavg package. 1–22.McDowell, J. M., & Simon, S. A. (2008). Molecular diversity at the plant-pathogen interface. Developmental and Comparative Immunology, 32(7), 736–744. https://doi.org/10.1016/j.dci.2007.11.005McDowell, N., Sapes, G., Pivovaroff, A., Adams, H. D., Allen, C. D., Anderegg, W. R. L., Arend, M., Breshears, D. D., Brodribb, T., Choat, B., Cochard, H., De Cáceres, M., De Kauwe, M. G., Grossiord, C., Hammond, W. M., Hartmann, H., Hoch, G., Kahmen, A., Klein, T., … Xu, C. (2022). Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nature Reviews Earth & Environment, 3(5), 294–308. https://doi.org/10.1038/s43017-022-00272-1Metcalf, C. J. E., Clark, J. S., & Clark, D. A. (2009). Tree growth inference and prediction when the point of measurement changes: modelling around buttresses in tropical forests. Journal of Tropical Ecology, 25(1), 1–12. https://doi.org/DOI: 10.1017/S0266467408005646Oliveira, R. S., Costa, F. R. C., van Baalen, E., de Jonge, A., Bittencourt, P. R., Almanza, Y., Barros, F. de V., Cordoba, E. C., Fagundes, M. V., Garcia, S., Guimaraes, Z. T. M., Hertel, M., Schietti, J., Rodrigues-Souza, J., & Poorter, L. (2019). Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro-topographic gradients. New Phytologist, 221(3), 1457–1465. https://doi.org/10.1111/nph.15463Oliveira, R. S., Eller, C. B., Barros, F. de V., Hirota, M., Brum, M., & Bittencourt, P. (2021). Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems. New Phytologist, 230(3), 904–923. https://doi.org/10.1111/nph.17266Poorter, L., McDonald, I., Alarcón, A., Fichtler, E., Licona, J. C., Peña-Claros, M., Sterck, F., Villegas, Z., & Sass-Klaassen, U. (2010). The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytologist, 185(2), 481–492. https://doi.org/10.1111/j.1469-8137.2009.03092.xRusso, S. E., Brown, P., Tan, S., & Davies, S. J. (2008). Interspecific demographic trade-offs and soil-related habitat associations of tree species along resource gradients. Journal of Ecology, 192–203. https://doi.org/10.1111/j.1365-2745.2007.01330.xRusso, S. E., Davies, S. J., King, D. A., & Tan, S. (2005). Soil-related performance variation and distributions of tree species in a Bornean rain forest. Journal of Ecology, 93(5), 879–889. https://doi.org/10.1111/j.1365-2745.2005.01030.xRusso, S. E., McMahon, S. M., Detto, M., Ledder, G., Wright, S. J., Condit, R. S., Davies, S. J., Ashton, P. S., Bunyavejchewin, S., Chang-Yang, C. H., Ediriweera, S., Ewango, C. E. N., Fletcher, C., Foster, R. B., Gunatilleke, C. V. S., Gunatilleke, I. A. U. N., Hart, T., Hsieh, C. F., Hubbell, S. P., … Zimmerman, J. K. (2021). The interspecific growth–mortality trade-off is not a general framework for tropical forest community structure. Nature Ecology and Evolution, 5(2), 174–183. https://doi.org/10.1038/s41559-020-01340-9Santiago, L. S., De Guzman, M. E., Baraloto, C., Vogenberg, J. E., Brodie, M., Hérault, B., Fortunel, C., & Bonal, D. (2018). Coordination and trade-offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species. New Phytologist, 218(3), 1015–1024. https://doi.org/10.1111/nph.15058Sousa, T. R., Schietti, J., Coelho de Souza, F., Esquivel-Muelbert, A., Ribeiro, I. O., Emílio, T., Pequeno, P. A. C. L., Phillips, O., & Costa, F. R. C. (2020). Palms and trees resist extreme drought in Amazon forests with shallow water tables. Journal of Ecology, 108(5), 2070–2082. https://doi.org/10.1111/1365-2745.13377Valencia, R., Condit, R., Muller-landau, H. C., Hernandez, C., & Navarrete, H. (2009). Dissecting biomass dynamics in a large Amazonian forest plot. Journal of Tropical Ecology, 473–482. https://doi.org/10.1017/S0266467409990095Valencia, R., Foster, R. B., Villa, G., Condit, R., Svenning, J. C., Hernández, C., Romoleroux, K., Losos, E., Magård, E., & Balslev, H. (2004). Tree species distributions and local habitat variation in the Amazon: Large forest plot in eastern Ecuador. Journal of Ecology, 92(2), 214–229. https://doi.org/10.1111/j.0022-0477.2004.00876.xWright, J. S., Kitajima, K., Kraft, N. J. B., Reich, P. B., Wright, I. J., Bunker, D. E., Condit, R., Dalling, J. W., Davies, S. J., Diaz, S., Engelbrecht, B. M. J., Harms, K. E., Hubbell, S. P., Marks, C. O., Ruiz-Jaen, M. C., Salvador, C. M., & Zanne, A. E. (2010). Functional traits and the growth – mortality trade-off in tropical trees. Ecological Society of America, 91(12), 3664–3674.Zanne, A. E., Lopez-Gonzalez, G., Coomes, D. A., Ilic, J., Jansen, S., Lewis, S. L., Miller, R. B., Swenson, N. G., Wiemann, M. C., & Chave, J. (2009). Global wood density database.Zuleta, D., Duque, A., Cardenas, D., Muller-Landau, H. C., & Davies, S. (2017). Drought-induced mortality patterns and rapid biomass recovery in a terra firme forest in the Colombian Amazon. Ecology, 98(10), 2538–2546. https://doi.org/10.1002/ecy.1950Zuleta, D., Muller-Landau, H. C., Duque, A., Caro, N., Cardenas, D., Leon-Pelaez, J. D., & Feeley, K. J. (In Press). Interspecific and intraspecific variation of tree branch, leaf, and stomatal traits in relation to topography in an aseasonal Amazon forest. Functional Ecology.Zuleta, D., Russo, S. E., Barona, A., Barreto-Silva, J. S., Cardenas, D., Castaño, N., Davies, S. J., Detto, M., Sua, S., Turner, B. L., & Duque, A. (2020). Importance of topography for tree species habitat distributions in a terra firme forest in the Colombian Amazon. Plant and Soil, 450(1–2), 133–149. https://doi.org/10.1007/s11104-018-3878-0EstudiantesGrupos comunitariosInvestigadoresMaestrosMedios de comunicaciónLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84127/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1036656048.2022.pdf1036656048.2022.pdfTesis de Maestría en Bosques y Conservación Ambientalapplication/pdf1697949https://repositorio.unal.edu.co/bitstream/unal/84127/3/1036656048.2022.pdfe318c9c808dd638294f9e73ea47c358cMD53THUMBNAIL1036656048.2022.pdf.jpg1036656048.2022.pdf.jpgGenerated Thumbnailimage/jpeg5149https://repositorio.unal.edu.co/bitstream/unal/84127/4/1036656048.2022.pdf.jpg8f98a4188415c7b6a108d67227e06411MD54unal/84127oai:repositorio.unal.edu.co:unal/841272024-08-12 23:12:20.527Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=