Local-scale changes in topography influence tree growth and mortality in a terra firme forest in the Northwestern Amazon
ilustraciones, diagramas
- Autores:
-
Jaramillo Mejia, Paola Andrea
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/84127
- Palabra clave:
- 570 - Biología::577 - Ecología
Ecología forestal - Amaonas (Colombia)
Cultivos forestales - Amazonas (Colombia)
Forest ecology - Amaonas (Colombia)
Tree crops - Amazonas (Colombia)
Tree growth
Tree mortality
Tropical forests
Forest dynamics
Species habitat associations
Mortalidad de los árboles
Acquisitive-conservative strategies
Crecimiento de los árboles
Bosques tropicales
Dinámica forestal
Asociaciones de hábitat de las especies
Estrategias adquisitivas-conservadoras
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_82ecc3fcee1ccfc78a0b2aad67d009e2 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/84127 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Local-scale changes in topography influence tree growth and mortality in a terra firme forest in the Northwestern Amazon |
dc.title.translated.spa.fl_str_mv |
Los cambios en la topografía a escala local influyen en el crecimiento y la mortalidad de los árboles en un bosque de tierra firme del noroeste de la Amazonia |
title |
Local-scale changes in topography influence tree growth and mortality in a terra firme forest in the Northwestern Amazon |
spellingShingle |
Local-scale changes in topography influence tree growth and mortality in a terra firme forest in the Northwestern Amazon 570 - Biología::577 - Ecología Ecología forestal - Amaonas (Colombia) Cultivos forestales - Amazonas (Colombia) Forest ecology - Amaonas (Colombia) Tree crops - Amazonas (Colombia) Tree growth Tree mortality Tropical forests Forest dynamics Species habitat associations Mortalidad de los árboles Acquisitive-conservative strategies Crecimiento de los árboles Bosques tropicales Dinámica forestal Asociaciones de hábitat de las especies Estrategias adquisitivas-conservadoras |
title_short |
Local-scale changes in topography influence tree growth and mortality in a terra firme forest in the Northwestern Amazon |
title_full |
Local-scale changes in topography influence tree growth and mortality in a terra firme forest in the Northwestern Amazon |
title_fullStr |
Local-scale changes in topography influence tree growth and mortality in a terra firme forest in the Northwestern Amazon |
title_full_unstemmed |
Local-scale changes in topography influence tree growth and mortality in a terra firme forest in the Northwestern Amazon |
title_sort |
Local-scale changes in topography influence tree growth and mortality in a terra firme forest in the Northwestern Amazon |
dc.creator.fl_str_mv |
Jaramillo Mejia, Paola Andrea |
dc.contributor.advisor.none.fl_str_mv |
Duque Montoya, Alvaro Zuleta, Daniel |
dc.contributor.author.none.fl_str_mv |
Jaramillo Mejia, Paola Andrea |
dc.contributor.researchgroup.spa.fl_str_mv |
Conservación, Uso y Biodiversidad |
dc.contributor.orcid.spa.fl_str_mv |
Zuleta, Daniel [0000-0001-9832-6188] |
dc.subject.ddc.spa.fl_str_mv |
570 - Biología::577 - Ecología |
topic |
570 - Biología::577 - Ecología Ecología forestal - Amaonas (Colombia) Cultivos forestales - Amazonas (Colombia) Forest ecology - Amaonas (Colombia) Tree crops - Amazonas (Colombia) Tree growth Tree mortality Tropical forests Forest dynamics Species habitat associations Mortalidad de los árboles Acquisitive-conservative strategies Crecimiento de los árboles Bosques tropicales Dinámica forestal Asociaciones de hábitat de las especies Estrategias adquisitivas-conservadoras |
dc.subject.lemb.spa.fl_str_mv |
Ecología forestal - Amaonas (Colombia) Cultivos forestales - Amazonas (Colombia) |
dc.subject.lemb.eng.fl_str_mv |
Forest ecology - Amaonas (Colombia) Tree crops - Amazonas (Colombia) |
dc.subject.proposal.eng.fl_str_mv |
Tree growth Tree mortality Tropical forests Forest dynamics Species habitat associations Mortalidad de los árboles Acquisitive-conservative strategies |
dc.subject.proposal.spa.fl_str_mv |
Crecimiento de los árboles Bosques tropicales Dinámica forestal Asociaciones de hábitat de las especies Estrategias adquisitivas-conservadoras |
description |
ilustraciones, diagramas |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022 |
dc.date.accessioned.none.fl_str_mv |
2023-07-04T16:06:47Z |
dc.date.available.none.fl_str_mv |
2023-07-04T16:06:47Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/84127 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/84127 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.indexed.spa.fl_str_mv |
RedCol LaReferencia |
dc.relation.references.spa.fl_str_mv |
Barton, K. (2022). Package ‘ MuMIn .’ 1. Bates, D., Mächler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1). https://doi.org/10.18637/jss.v067.i01 Bauman, D., Fortunel, C., Delhaye, G., Malhi, Y., Cernusak, L. A., Bentley, L. P., Rifai, S. W., Aguirre-Gutiérrez, J., Menor, I. O., Phillips, O. L., McNellis, B. E., Bradford, M., Laurance, S. G. W., Hutchinson, M. F., Dempsey, R., Santos-Andrade, P. E., Ninantay-Rivera, H. R., Chambi Paucar, J. R., & McMahon, S. M. (2022). Tropical tree mortality has increased with rising atmospheric water stress. Nature, 608(7923), 528–533. https://doi.org/10.1038/s41586-022-04737-7 Brodribb, T. J., Powers, J., Cochard, H., & Choat, B. (2020). Hanging by a thread? Forests and drought. Science, 368(6488), 261–266. https://doi.org/10.1126/science.aat7631 Chamorro, C. (1989). Biologia de los suelos del Parque Nacional Natural Amacayacu, y zonas adjacentes, Amazonas-Colombia. Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12(4), 351–366. Chuyong, G. B., Kenfack, D., Harms, K. E., Thomas, D. W., Condit, R., & Comita, L. S. (2011). Habitat specificity and diversity of tree species in an African wet tropical forest. Plant Ecology, 212(8), 1363–1374. https://doi.org/10.1007/s11258-011-9912-4 Comita, L. S., Condit, R., & Hubbell, S. P. (2007). Developmental changes in habitat associations of tropical trees. 482–492. https://doi.org/10.1111/j.1365-2745.2007.01229.x Comita, L. S., & Engelbrecht, B. M. J. (2009). Seasonal and spatial variation in water availability drive habitat associations in a tropical forest. 90(10), 2755–2765. Condit. (1998). Tropical forest census plots: methods and results from Barro Colorado Island, Panama and a comparison with other plots. Condit, R. (1998). Tropical forest census plot. In Springer-verlag: Vol. CONDIT, R. Condit, Richard, Hubbell, S. P., & Foster, R. B. (1993). Identifying fast-growing native trees from the neotropics using data from a large, permanent census plot. Forest Ecology and Management, 62(1–4), 123–143. https://doi.org/10.1016/0378-1127(93)90046-P Condit, Richard, Hubbell, S. P., & Foster, R. B. (1995). Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecological Monographs, 65(4), 419–439. https://doi.org/10.2307/2963497 Condit, Richard, Lao, S., Singh, A., Esufali, S., & Dolins, S. (2014). Data and database standards for permanent forest plots in a global network. Forest Ecology and Management, 316, 21–31. Condit, Richard, Pitman, N., Leigh, E. G., Chave, J., Terborgh, J., Foster, R. B., Núñez, P. V., Aguilar, S., Valencia, R., Villa, G., Muller-Landau, H. C., Losos, E., & Hubbell, S. P. (2002). Beta-diversity in tropical forest trees. Science, 295(5555), 666–669. https://doi.org/10.1126/science.1066854 Cosme, L. H. M., Schietti, J., Costa, F. R. C., & Oliveira, R. S. (2017). The importance of hydraulic architecture to the distribution patterns of trees in a central Amazonian forest. New Phytologist, 215(1), 113–125. https://doi.org/10.1111/nph.14508 Costa, F., Schietti, J., Stark, S. C., & Smith, M. N. (2022). The other side of tropical forest drought: do shallow water table regions of Amazonia act as large-scale hydrological refugia from drought? New Phytologist. https://doi.org/10.1111/nph.17914 Cushman, K. C., Bunyavejchewin, S., Cárdenas, D., Condit, R., Davies, S. J., Duque, Á., Hubbell, S. P., Kiratiprayoon, S., Lum, S. K. Y., & Muller-Landau, H. C. (2021). Variation in trunk taper of buttressed trees within and among five lowland tropical forests. Biotropica, 53(5), 1442–1453. https://doi.org/10.1111/btp.12994 Davies, S. J., Abiem, I., Abu Salim, K., Aguilar, S., Allen, D., Alonso, A., Anderson-Teixeira, K., Andrade, A., Arellano, G., Ashton, P. S., Baker, P. J., Baker, M. E., Baltzer, J. L., Basset, Y., Bissiengou, P., Bohlman, S., Bourg, N. A., Brockelman, W. Y., Bunyavejchewin, S., … Zuleta, D. (2021). ForestGEO: Understanding forest diversity and dynamics through a global observatory network. Biological Conservation, 253(December 2020). https://doi.org/10.1016/j.biocon.2020.108907 DeWitt, T. J., Sih, A., & Wilson, D. S. (1998). Costs and limits of phenotypic plasticity. Trends in Ecology and Evolution, 13(2), 77–81. Duffy, P. B., Brando, P., Asner, G. P., & Field, C. B. (2015). Projections of future meteorological drought and wet periods in the Amazon. Proceedings of the National Academy of Sciences of the United States of America, 112(43), 13172–13177. https://doi.org/10.1073/pnas.1421010112 Duque, A., Muller-landau, H. C., Valencia, R., Cardenas, D., Davies, S., Oliveira, A. De, Romero-saltos, H., & Vicentini, A. (2017). Insights into regional patterns of Amazonian forest structure , diversity , and dominance from three large. 669–686. https://doi.org/10.1007/s10531-016-1265-9 Esteban, E. J. L., Castilho, C. V., Melgaço, K. L., & Costa, F. R. C. (2021). The other side of droughts: wet extremes and topography as buffers of negative drought effects in an Amazonian forest. New Phytologist, 229(4), 1995–2006. https://doi.org/10.1111/nph.17005 Feeley, K. J., Rehm, E. M., & Machovina, B. (2012). perspective: The responses of tropical forest species to global climate change: acclimate, adapt, migrate, or go extinct? Frontiers of Biogeography, 4(2). https://doi.org/10.21425/f5fbg12621 Feeley, K. J., & Zuleta, D. (2022). Changing forests under climate change. Nature Plants, 8(9), 984–985. https://doi.org/10.1038/s41477-022-01228-5 Fortunel, C., McFadden, I. R., Valencia, R., & Kraft, N. J. B. (2019). Neither species geographic range size, climatic envelope, nor intraspecific leaf trait variability capture habitat specialization in a hyperdiverse Amazonian forest. Biotropica, 51(3), 304–310. https://doi.org/10.1111/btp.12643 Fortunel, C., Timothy Paine, C. E., Fine, P. V. A., Mesones, I., Goret, J.-Y., Burban, B., Cazal, J., & Baraloto, C. (2016). There ’ s no place like home : seedling mortality contributes to the habitat specialisation of tree species across Amazonia. Ecology Letters, 1256–1266. https://doi.org/10.1111/ele.12661 Harms, K. E., Condit, R., Hubbell, S. P., & Foster, R. B. (2001). Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. Journal of Ecology, 89(6), 947–959. https://doi.org/10.1046/j.0022-0477.2001.00615.x Harms, K. E., Wright, S. J., Caldero, O., & Herre, E. A. (2000). Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. 30(1997), 493–495. Holdridge, L. R. (1978). Ecología : basada en zonas de vida. San José [Costa Rica] IICA 1978. http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat02704a&AN=unc.000741904&lang=es&site=eds-live Hoorn, C. (1994). An environmental reconstruction of the palaeo-Amazon River system (Middle-Late Miocene, NW Amazonia). Palaeogeography, Palaeoclimatology, Palaeoecology, 112(3–4), 187–238. https://doi.org/10.1016/0031-0182(94)90074-4 Hubbell, S. P. (2001). The Unified Neutral Theory of Biodiversity and Biogeography. Hubbell, S. P., Foster, R. B., O’Brien, S. T., Harms, K. E., Condit, R., Wechsler, B., Wright, S. J., & Loo De Lao, S. (1999). Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science, 283(5401), 554–557. https://doi.org/10.1126/science.283.5401.554 Itoh, A., Nanami, S., Harata, T., Ohkubo, T., Tan, S., Chong, L., Stuart, J. D., & Yamakura, T. (2012). The Effect of Habitat Association and Edaphic Conditions on Tree Mortality during El Niño-induced Drought in a Bornean Dipterocarp Forest. 44(5), 606–617. Jucker, T., Bongalov, B., Burslem, D. F. R. P., Nilus, R., Dalponte, M., Lewis, S. L., Phillips, O. L., Qie, L., & Coomes, D. A. (2018). Topography shapes the structure, composition and function of tropical forest landscapes. Ecology Letters, 21(7), 989–1000. https://doi.org/10.1111/ele.12964 Kenfack, D., Chuyong, G. B., Condit, R., Russo, S. E., & Thomas, D. W. (2014). Demographic variation and habitat specialization of tree species in a diverse tropical forest of cameroon. Forest Ecosystems, 1(1), 1–13. https://doi.org/10.1186/s40663-014-0022-3 Lenth, R. V. (2016). Least-squares means: The R package lsmeans. Journal of Statistical Software, 69(1). https://doi.org/10.18637/jss.v069.i01 Malhi, Y., Aragão, L. E. O. C., Galbraith, D., Huntingford, C., Fisher, R., Zelazowski, P., Sitch, S., McSweeney, C., & Meir, P. (2009). Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proceedings of the National Academy of Sciences of the United States of America, 106(49), 20610–20615. https://doi.org/10.1073/pnas.0804619106 Mazerolle, M. J. (2020). Model selection and multimodel inference using the AICcmodavg package. 1–22. McDowell, J. M., & Simon, S. A. (2008). Molecular diversity at the plant-pathogen interface. Developmental and Comparative Immunology, 32(7), 736–744. https://doi.org/10.1016/j.dci.2007.11.005 McDowell, N., Sapes, G., Pivovaroff, A., Adams, H. D., Allen, C. D., Anderegg, W. R. L., Arend, M., Breshears, D. D., Brodribb, T., Choat, B., Cochard, H., De Cáceres, M., De Kauwe, M. G., Grossiord, C., Hammond, W. M., Hartmann, H., Hoch, G., Kahmen, A., Klein, T., … Xu, C. (2022). Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nature Reviews Earth & Environment, 3(5), 294–308. https://doi.org/10.1038/s43017-022-00272-1 Metcalf, C. J. E., Clark, J. S., & Clark, D. A. (2009). Tree growth inference and prediction when the point of measurement changes: modelling around buttresses in tropical forests. Journal of Tropical Ecology, 25(1), 1–12. https://doi.org/DOI: 10.1017/S0266467408005646 Oliveira, R. S., Costa, F. R. C., van Baalen, E., de Jonge, A., Bittencourt, P. R., Almanza, Y., Barros, F. de V., Cordoba, E. C., Fagundes, M. V., Garcia, S., Guimaraes, Z. T. M., Hertel, M., Schietti, J., Rodrigues-Souza, J., & Poorter, L. (2019). Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro-topographic gradients. New Phytologist, 221(3), 1457–1465. https://doi.org/10.1111/nph.15463 Oliveira, R. S., Eller, C. B., Barros, F. de V., Hirota, M., Brum, M., & Bittencourt, P. (2021). Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems. New Phytologist, 230(3), 904–923. https://doi.org/10.1111/nph.17266 Poorter, L., McDonald, I., Alarcón, A., Fichtler, E., Licona, J. C., Peña-Claros, M., Sterck, F., Villegas, Z., & Sass-Klaassen, U. (2010). The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytologist, 185(2), 481–492. https://doi.org/10.1111/j.1469-8137.2009.03092.x Russo, S. E., Brown, P., Tan, S., & Davies, S. J. (2008). Interspecific demographic trade-offs and soil-related habitat associations of tree species along resource gradients. Journal of Ecology, 192–203. https://doi.org/10.1111/j.1365-2745.2007.01330.x Russo, S. E., Davies, S. J., King, D. A., & Tan, S. (2005). Soil-related performance variation and distributions of tree species in a Bornean rain forest. Journal of Ecology, 93(5), 879–889. https://doi.org/10.1111/j.1365-2745.2005.01030.x Russo, S. E., McMahon, S. M., Detto, M., Ledder, G., Wright, S. J., Condit, R. S., Davies, S. J., Ashton, P. S., Bunyavejchewin, S., Chang-Yang, C. H., Ediriweera, S., Ewango, C. E. N., Fletcher, C., Foster, R. B., Gunatilleke, C. V. S., Gunatilleke, I. A. U. N., Hart, T., Hsieh, C. F., Hubbell, S. P., … Zimmerman, J. K. (2021). The interspecific growth–mortality trade-off is not a general framework for tropical forest community structure. Nature Ecology and Evolution, 5(2), 174–183. https://doi.org/10.1038/s41559-020-01340-9 Santiago, L. S., De Guzman, M. E., Baraloto, C., Vogenberg, J. E., Brodie, M., Hérault, B., Fortunel, C., & Bonal, D. (2018). Coordination and trade-offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species. New Phytologist, 218(3), 1015–1024. https://doi.org/10.1111/nph.15058 Sousa, T. R., Schietti, J., Coelho de Souza, F., Esquivel-Muelbert, A., Ribeiro, I. O., Emílio, T., Pequeno, P. A. C. L., Phillips, O., & Costa, F. R. C. (2020). Palms and trees resist extreme drought in Amazon forests with shallow water tables. Journal of Ecology, 108(5), 2070–2082. https://doi.org/10.1111/1365-2745.13377 Valencia, R., Condit, R., Muller-landau, H. C., Hernandez, C., & Navarrete, H. (2009). Dissecting biomass dynamics in a large Amazonian forest plot. Journal of Tropical Ecology, 473–482. https://doi.org/10.1017/S0266467409990095 Valencia, R., Foster, R. B., Villa, G., Condit, R., Svenning, J. C., Hernández, C., Romoleroux, K., Losos, E., Magård, E., & Balslev, H. (2004). Tree species distributions and local habitat variation in the Amazon: Large forest plot in eastern Ecuador. Journal of Ecology, 92(2), 214–229. https://doi.org/10.1111/j.0022-0477.2004.00876.x Wright, J. S., Kitajima, K., Kraft, N. J. B., Reich, P. B., Wright, I. J., Bunker, D. E., Condit, R., Dalling, J. W., Davies, S. J., Diaz, S., Engelbrecht, B. M. J., Harms, K. E., Hubbell, S. P., Marks, C. O., Ruiz-Jaen, M. C., Salvador, C. M., & Zanne, A. E. (2010). Functional traits and the growth – mortality trade-off in tropical trees. Ecological Society of America, 91(12), 3664–3674. Zanne, A. E., Lopez-Gonzalez, G., Coomes, D. A., Ilic, J., Jansen, S., Lewis, S. L., Miller, R. B., Swenson, N. G., Wiemann, M. C., & Chave, J. (2009). Global wood density database. Zuleta, D., Duque, A., Cardenas, D., Muller-Landau, H. C., & Davies, S. (2017). Drought-induced mortality patterns and rapid biomass recovery in a terra firme forest in the Colombian Amazon. Ecology, 98(10), 2538–2546. https://doi.org/10.1002/ecy.1950 Zuleta, D., Muller-Landau, H. C., Duque, A., Caro, N., Cardenas, D., Leon-Pelaez, J. D., & Feeley, K. J. (In Press). Interspecific and intraspecific variation of tree branch, leaf, and stomatal traits in relation to topography in an aseasonal Amazon forest. Functional Ecology. Zuleta, D., Russo, S. E., Barona, A., Barreto-Silva, J. S., Cardenas, D., Castaño, N., Davies, S. J., Detto, M., Sua, S., Turner, B. L., & Duque, A. (2020). Importance of topography for tree species habitat distributions in a terra firme forest in the Colombian Amazon. Plant and Soil, 450(1–2), 133–149. https://doi.org/10.1007/s11104-018-3878-0 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xviii, 38 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.region.none.fl_str_mv |
Amazonas, Colombia |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Ciencias Agrarias - Maestría en Bosques y Conservación Ambiental |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Agrarias |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/84127/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/84127/3/1036656048.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/84127/4/1036656048.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a e318c9c808dd638294f9e73ea47c358c 8f98a4188415c7b6a108d67227e06411 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089838769471488 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Duque Montoya, Alvaroaacace71d29a1898916091e475e4119aZuleta, Danielf6ae889b2551e6e30cf9655b743b5168Jaramillo Mejia, Paola Andrea0540297b7ea59dee2116d065dbe04b89Conservación, Uso y BiodiversidadZuleta, Daniel [0000-0001-9832-6188]2023-07-04T16:06:47Z2023-07-04T16:06:47Z2022https://repositorio.unal.edu.co/handle/unal/84127Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasSpatial variation in tree species diversity and distribution is thought to be mediated by environmental variation, including topography, but the underlying processes are not well understood. Wetter habitats like valleys should support higher growth and survival than drier habitats like ridges. However, deviations from this pattern may occur due to species’ habitat associations, which should be aligned with species’ ecological strategy along the interspecific acquisitive-conservative spectrum: fast growth at the cost of lower survival, and higher survival at the cost of slower growth. Here, we assess the influence of topography on the growth and mortality of 123,977 trees (1,266 species) in the 25-ha Amacayacu Forest Dynamics Plot, Northwestern Amazon. Specifically, we asked: (1) Do tree growth and mortality rates vary across topographic habitats (valleys, slopes, and ridges)? (2) Do growth and mortality vary depending on species' habitat associations? and (3) are the observed patterns of tree growth and mortality consistent with expectations based on the acquisitive-conservative spectrum? Mixed-effects models were used to examine demographic variation across topographic habitats and species habitat associations controlling for tree size. Trees growing on valleys had significantly higher mortality and growth rates compared to trees growing on slopes and ridges, which was consistent with the acquisitive-conservative spectrum. This pattern held true regardless of the species habitat associations. Our findings suggest that even small differences in topography can translate into differences in access to soil water affecting tree performance, which has implications for understanding species’ ecological strategies and forest responses to climate change.Se cree que la variación espacial en la diversidad y distribución de las especies arbóreas está influenciada por la variación ambiental, incluida la topografía, pero los procesos subyacentes no se comprenden bien. Hábitats más húmedos, como los valles, deberían soportar un mayor crecimiento y supervivencia que hábitats más secos, como las colinas. Sin embargo, pueden ocurrir desviaciones de este patrón debido a las asociaciones de hábitat de las especies, que deben estar alineadas con la estrategia ecológica de las especies a lo largo del espectro adquisitivo-conservador interespecífico: crecimiento rápido a costa de una menor supervivencia y mayor supervivencia a costa de un crecimiento más lento. Aquí, evaluamos la influencia de la topografía en el crecimiento y la mortalidad de 123,977 árboles (1,266 especies) en la Parcela de Dinámica Forestal Amacayacu de 25 ha, en el noroeste de la Amazonía. Específicamente, preguntamos: (1) ¿Varían las tasas de crecimiento y mortalidad de los árboles entre los hábitats topográficos (valles, pendientes y colinas)? (2) ¿Varían el crecimiento y la mortalidad dependiendo de las asociaciones de hábitat de las especies? y (3) ¿los patrones observados de crecimiento y mortalidad de árboles son consistentes con las expectativas basadas en el espectro adquisitivo-conservador? Se utilizaron modelos de efectos mixtos para examinar la variación demográfica entre los hábitats topográficos y las asociaciones de hábitats de especies que controlan el tamaño de los árboles. Los árboles que crecían en valles tenían tasas de mortalidad y crecimiento significativamente más altas en comparación con los árboles que crecían en pendientes y colinas, lo que era consistente con el espectro adquisitivo-conservador. Este patrón se mantuvo independientemente de las asociaciones de hábitat de las especies. Nuestros hallazgos sugieren que incluso pequeñas diferencias en la topografía pueden traducirse en diferencias en el acceso al agua del suelo que afectan el rendimiento de los árboles, lo que tiene implicaciones para comprender las estrategias ecológicas de las especies y las respuestas de los bosques al cambio climático. (Texto tomado de la fuente)MaestríaDinámica de los bosques de la Amazonia ColombianaÁrea Curricular en Bosques y Conservación Ambientalxviii, 38 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Ciencias Agrarias - Maestría en Bosques y Conservación AmbientalFacultad de Ciencias AgrariasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín570 - Biología::577 - EcologíaEcología forestal - Amaonas (Colombia)Cultivos forestales - Amazonas (Colombia)Forest ecology - Amaonas (Colombia)Tree crops - Amazonas (Colombia)Tree growthTree mortalityTropical forestsForest dynamicsSpecies habitat associationsMortalidad de los árbolesAcquisitive-conservative strategiesCrecimiento de los árbolesBosques tropicalesDinámica forestalAsociaciones de hábitat de las especiesEstrategias adquisitivas-conservadorasLocal-scale changes in topography influence tree growth and mortality in a terra firme forest in the Northwestern AmazonLos cambios en la topografía a escala local influyen en el crecimiento y la mortalidad de los árboles en un bosque de tierra firme del noroeste de la AmazoniaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAmazonas, ColombiaRedColLaReferenciaBarton, K. (2022). Package ‘ MuMIn .’ 1.Bates, D., Mächler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1). https://doi.org/10.18637/jss.v067.i01Bauman, D., Fortunel, C., Delhaye, G., Malhi, Y., Cernusak, L. A., Bentley, L. P., Rifai, S. W., Aguirre-Gutiérrez, J., Menor, I. O., Phillips, O. L., McNellis, B. E., Bradford, M., Laurance, S. G. W., Hutchinson, M. F., Dempsey, R., Santos-Andrade, P. E., Ninantay-Rivera, H. R., Chambi Paucar, J. R., & McMahon, S. M. (2022). Tropical tree mortality has increased with rising atmospheric water stress. Nature, 608(7923), 528–533. https://doi.org/10.1038/s41586-022-04737-7Brodribb, T. J., Powers, J., Cochard, H., & Choat, B. (2020). Hanging by a thread? Forests and drought. Science, 368(6488), 261–266. https://doi.org/10.1126/science.aat7631Chamorro, C. (1989). Biologia de los suelos del Parque Nacional Natural Amacayacu, y zonas adjacentes, Amazonas-Colombia.Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12(4), 351–366.Chuyong, G. B., Kenfack, D., Harms, K. E., Thomas, D. W., Condit, R., & Comita, L. S. (2011). Habitat specificity and diversity of tree species in an African wet tropical forest. Plant Ecology, 212(8), 1363–1374. https://doi.org/10.1007/s11258-011-9912-4Comita, L. S., Condit, R., & Hubbell, S. P. (2007). Developmental changes in habitat associations of tropical trees. 482–492. https://doi.org/10.1111/j.1365-2745.2007.01229.xComita, L. S., & Engelbrecht, B. M. J. (2009). Seasonal and spatial variation in water availability drive habitat associations in a tropical forest. 90(10), 2755–2765.Condit. (1998). Tropical forest census plots: methods and results from Barro Colorado Island, Panama and a comparison with other plots.Condit, R. (1998). Tropical forest census plot. In Springer-verlag: Vol. CONDIT, R.Condit, Richard, Hubbell, S. P., & Foster, R. B. (1993). Identifying fast-growing native trees from the neotropics using data from a large, permanent census plot. Forest Ecology and Management, 62(1–4), 123–143. https://doi.org/10.1016/0378-1127(93)90046-PCondit, Richard, Hubbell, S. P., & Foster, R. B. (1995). Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecological Monographs, 65(4), 419–439. https://doi.org/10.2307/2963497Condit, Richard, Lao, S., Singh, A., Esufali, S., & Dolins, S. (2014). Data and database standards for permanent forest plots in a global network. Forest Ecology and Management, 316, 21–31.Condit, Richard, Pitman, N., Leigh, E. G., Chave, J., Terborgh, J., Foster, R. B., Núñez, P. V., Aguilar, S., Valencia, R., Villa, G., Muller-Landau, H. C., Losos, E., & Hubbell, S. P. (2002). Beta-diversity in tropical forest trees. Science, 295(5555), 666–669. https://doi.org/10.1126/science.1066854Cosme, L. H. M., Schietti, J., Costa, F. R. C., & Oliveira, R. S. (2017). The importance of hydraulic architecture to the distribution patterns of trees in a central Amazonian forest. New Phytologist, 215(1), 113–125. https://doi.org/10.1111/nph.14508Costa, F., Schietti, J., Stark, S. C., & Smith, M. N. (2022). The other side of tropical forest drought: do shallow water table regions of Amazonia act as large-scale hydrological refugia from drought? New Phytologist. https://doi.org/10.1111/nph.17914Cushman, K. C., Bunyavejchewin, S., Cárdenas, D., Condit, R., Davies, S. J., Duque, Á., Hubbell, S. P., Kiratiprayoon, S., Lum, S. K. Y., & Muller-Landau, H. C. (2021). Variation in trunk taper of buttressed trees within and among five lowland tropical forests. Biotropica, 53(5), 1442–1453. https://doi.org/10.1111/btp.12994Davies, S. J., Abiem, I., Abu Salim, K., Aguilar, S., Allen, D., Alonso, A., Anderson-Teixeira, K., Andrade, A., Arellano, G., Ashton, P. S., Baker, P. J., Baker, M. E., Baltzer, J. L., Basset, Y., Bissiengou, P., Bohlman, S., Bourg, N. A., Brockelman, W. Y., Bunyavejchewin, S., … Zuleta, D. (2021). ForestGEO: Understanding forest diversity and dynamics through a global observatory network. Biological Conservation, 253(December 2020). https://doi.org/10.1016/j.biocon.2020.108907DeWitt, T. J., Sih, A., & Wilson, D. S. (1998). Costs and limits of phenotypic plasticity. Trends in Ecology and Evolution, 13(2), 77–81.Duffy, P. B., Brando, P., Asner, G. P., & Field, C. B. (2015). Projections of future meteorological drought and wet periods in the Amazon. Proceedings of the National Academy of Sciences of the United States of America, 112(43), 13172–13177. https://doi.org/10.1073/pnas.1421010112Duque, A., Muller-landau, H. C., Valencia, R., Cardenas, D., Davies, S., Oliveira, A. De, Romero-saltos, H., & Vicentini, A. (2017). Insights into regional patterns of Amazonian forest structure , diversity , and dominance from three large. 669–686. https://doi.org/10.1007/s10531-016-1265-9Esteban, E. J. L., Castilho, C. V., Melgaço, K. L., & Costa, F. R. C. (2021). The other side of droughts: wet extremes and topography as buffers of negative drought effects in an Amazonian forest. New Phytologist, 229(4), 1995–2006. https://doi.org/10.1111/nph.17005Feeley, K. J., Rehm, E. M., & Machovina, B. (2012). perspective: The responses of tropical forest species to global climate change: acclimate, adapt, migrate, or go extinct? Frontiers of Biogeography, 4(2). https://doi.org/10.21425/f5fbg12621Feeley, K. J., & Zuleta, D. (2022). Changing forests under climate change. Nature Plants, 8(9), 984–985. https://doi.org/10.1038/s41477-022-01228-5Fortunel, C., McFadden, I. R., Valencia, R., & Kraft, N. J. B. (2019). Neither species geographic range size, climatic envelope, nor intraspecific leaf trait variability capture habitat specialization in a hyperdiverse Amazonian forest. Biotropica, 51(3), 304–310. https://doi.org/10.1111/btp.12643Fortunel, C., Timothy Paine, C. E., Fine, P. V. A., Mesones, I., Goret, J.-Y., Burban, B., Cazal, J., & Baraloto, C. (2016). There ’ s no place like home : seedling mortality contributes to the habitat specialisation of tree species across Amazonia. Ecology Letters, 1256–1266. https://doi.org/10.1111/ele.12661Harms, K. E., Condit, R., Hubbell, S. P., & Foster, R. B. (2001). Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. Journal of Ecology, 89(6), 947–959. https://doi.org/10.1046/j.0022-0477.2001.00615.xHarms, K. E., Wright, S. J., Caldero, O., & Herre, E. A. (2000). Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. 30(1997), 493–495.Holdridge, L. R. (1978). Ecología : basada en zonas de vida. San José [Costa Rica] IICA 1978. http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat02704a&AN=unc.000741904&lang=es&site=eds-liveHoorn, C. (1994). An environmental reconstruction of the palaeo-Amazon River system (Middle-Late Miocene, NW Amazonia). Palaeogeography, Palaeoclimatology, Palaeoecology, 112(3–4), 187–238. https://doi.org/10.1016/0031-0182(94)90074-4Hubbell, S. P. (2001). The Unified Neutral Theory of Biodiversity and Biogeography.Hubbell, S. P., Foster, R. B., O’Brien, S. T., Harms, K. E., Condit, R., Wechsler, B., Wright, S. J., & Loo De Lao, S. (1999). Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science, 283(5401), 554–557. https://doi.org/10.1126/science.283.5401.554Itoh, A., Nanami, S., Harata, T., Ohkubo, T., Tan, S., Chong, L., Stuart, J. D., & Yamakura, T. (2012). The Effect of Habitat Association and Edaphic Conditions on Tree Mortality during El Niño-induced Drought in a Bornean Dipterocarp Forest. 44(5), 606–617.Jucker, T., Bongalov, B., Burslem, D. F. R. P., Nilus, R., Dalponte, M., Lewis, S. L., Phillips, O. L., Qie, L., & Coomes, D. A. (2018). Topography shapes the structure, composition and function of tropical forest landscapes. Ecology Letters, 21(7), 989–1000. https://doi.org/10.1111/ele.12964Kenfack, D., Chuyong, G. B., Condit, R., Russo, S. E., & Thomas, D. W. (2014). Demographic variation and habitat specialization of tree species in a diverse tropical forest of cameroon. Forest Ecosystems, 1(1), 1–13. https://doi.org/10.1186/s40663-014-0022-3Lenth, R. V. (2016). Least-squares means: The R package lsmeans. Journal of Statistical Software, 69(1). https://doi.org/10.18637/jss.v069.i01Malhi, Y., Aragão, L. E. O. C., Galbraith, D., Huntingford, C., Fisher, R., Zelazowski, P., Sitch, S., McSweeney, C., & Meir, P. (2009). Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proceedings of the National Academy of Sciences of the United States of America, 106(49), 20610–20615. https://doi.org/10.1073/pnas.0804619106Mazerolle, M. J. (2020). Model selection and multimodel inference using the AICcmodavg package. 1–22.McDowell, J. M., & Simon, S. A. (2008). Molecular diversity at the plant-pathogen interface. Developmental and Comparative Immunology, 32(7), 736–744. https://doi.org/10.1016/j.dci.2007.11.005McDowell, N., Sapes, G., Pivovaroff, A., Adams, H. D., Allen, C. D., Anderegg, W. R. L., Arend, M., Breshears, D. D., Brodribb, T., Choat, B., Cochard, H., De Cáceres, M., De Kauwe, M. G., Grossiord, C., Hammond, W. M., Hartmann, H., Hoch, G., Kahmen, A., Klein, T., … Xu, C. (2022). Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nature Reviews Earth & Environment, 3(5), 294–308. https://doi.org/10.1038/s43017-022-00272-1Metcalf, C. J. E., Clark, J. S., & Clark, D. A. (2009). Tree growth inference and prediction when the point of measurement changes: modelling around buttresses in tropical forests. Journal of Tropical Ecology, 25(1), 1–12. https://doi.org/DOI: 10.1017/S0266467408005646Oliveira, R. S., Costa, F. R. C., van Baalen, E., de Jonge, A., Bittencourt, P. R., Almanza, Y., Barros, F. de V., Cordoba, E. C., Fagundes, M. V., Garcia, S., Guimaraes, Z. T. M., Hertel, M., Schietti, J., Rodrigues-Souza, J., & Poorter, L. (2019). Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro-topographic gradients. New Phytologist, 221(3), 1457–1465. https://doi.org/10.1111/nph.15463Oliveira, R. S., Eller, C. B., Barros, F. de V., Hirota, M., Brum, M., & Bittencourt, P. (2021). Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems. New Phytologist, 230(3), 904–923. https://doi.org/10.1111/nph.17266Poorter, L., McDonald, I., Alarcón, A., Fichtler, E., Licona, J. C., Peña-Claros, M., Sterck, F., Villegas, Z., & Sass-Klaassen, U. (2010). The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytologist, 185(2), 481–492. https://doi.org/10.1111/j.1469-8137.2009.03092.xRusso, S. E., Brown, P., Tan, S., & Davies, S. J. (2008). Interspecific demographic trade-offs and soil-related habitat associations of tree species along resource gradients. Journal of Ecology, 192–203. https://doi.org/10.1111/j.1365-2745.2007.01330.xRusso, S. E., Davies, S. J., King, D. A., & Tan, S. (2005). Soil-related performance variation and distributions of tree species in a Bornean rain forest. Journal of Ecology, 93(5), 879–889. https://doi.org/10.1111/j.1365-2745.2005.01030.xRusso, S. E., McMahon, S. M., Detto, M., Ledder, G., Wright, S. J., Condit, R. S., Davies, S. J., Ashton, P. S., Bunyavejchewin, S., Chang-Yang, C. H., Ediriweera, S., Ewango, C. E. N., Fletcher, C., Foster, R. B., Gunatilleke, C. V. S., Gunatilleke, I. A. U. N., Hart, T., Hsieh, C. F., Hubbell, S. P., … Zimmerman, J. K. (2021). The interspecific growth–mortality trade-off is not a general framework for tropical forest community structure. Nature Ecology and Evolution, 5(2), 174–183. https://doi.org/10.1038/s41559-020-01340-9Santiago, L. S., De Guzman, M. E., Baraloto, C., Vogenberg, J. E., Brodie, M., Hérault, B., Fortunel, C., & Bonal, D. (2018). Coordination and trade-offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species. New Phytologist, 218(3), 1015–1024. https://doi.org/10.1111/nph.15058Sousa, T. R., Schietti, J., Coelho de Souza, F., Esquivel-Muelbert, A., Ribeiro, I. O., Emílio, T., Pequeno, P. A. C. L., Phillips, O., & Costa, F. R. C. (2020). Palms and trees resist extreme drought in Amazon forests with shallow water tables. Journal of Ecology, 108(5), 2070–2082. https://doi.org/10.1111/1365-2745.13377Valencia, R., Condit, R., Muller-landau, H. C., Hernandez, C., & Navarrete, H. (2009). Dissecting biomass dynamics in a large Amazonian forest plot. Journal of Tropical Ecology, 473–482. https://doi.org/10.1017/S0266467409990095Valencia, R., Foster, R. B., Villa, G., Condit, R., Svenning, J. C., Hernández, C., Romoleroux, K., Losos, E., Magård, E., & Balslev, H. (2004). Tree species distributions and local habitat variation in the Amazon: Large forest plot in eastern Ecuador. Journal of Ecology, 92(2), 214–229. https://doi.org/10.1111/j.0022-0477.2004.00876.xWright, J. S., Kitajima, K., Kraft, N. J. B., Reich, P. B., Wright, I. J., Bunker, D. E., Condit, R., Dalling, J. W., Davies, S. J., Diaz, S., Engelbrecht, B. M. J., Harms, K. E., Hubbell, S. P., Marks, C. O., Ruiz-Jaen, M. C., Salvador, C. M., & Zanne, A. E. (2010). Functional traits and the growth – mortality trade-off in tropical trees. Ecological Society of America, 91(12), 3664–3674.Zanne, A. E., Lopez-Gonzalez, G., Coomes, D. A., Ilic, J., Jansen, S., Lewis, S. L., Miller, R. B., Swenson, N. G., Wiemann, M. C., & Chave, J. (2009). Global wood density database.Zuleta, D., Duque, A., Cardenas, D., Muller-Landau, H. C., & Davies, S. (2017). Drought-induced mortality patterns and rapid biomass recovery in a terra firme forest in the Colombian Amazon. Ecology, 98(10), 2538–2546. https://doi.org/10.1002/ecy.1950Zuleta, D., Muller-Landau, H. C., Duque, A., Caro, N., Cardenas, D., Leon-Pelaez, J. D., & Feeley, K. J. (In Press). Interspecific and intraspecific variation of tree branch, leaf, and stomatal traits in relation to topography in an aseasonal Amazon forest. Functional Ecology.Zuleta, D., Russo, S. E., Barona, A., Barreto-Silva, J. S., Cardenas, D., Castaño, N., Davies, S. J., Detto, M., Sua, S., Turner, B. L., & Duque, A. (2020). Importance of topography for tree species habitat distributions in a terra firme forest in the Colombian Amazon. Plant and Soil, 450(1–2), 133–149. https://doi.org/10.1007/s11104-018-3878-0EstudiantesGrupos comunitariosInvestigadoresMaestrosMedios de comunicaciónLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84127/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1036656048.2022.pdf1036656048.2022.pdfTesis de Maestría en Bosques y Conservación Ambientalapplication/pdf1697949https://repositorio.unal.edu.co/bitstream/unal/84127/3/1036656048.2022.pdfe318c9c808dd638294f9e73ea47c358cMD53THUMBNAIL1036656048.2022.pdf.jpg1036656048.2022.pdf.jpgGenerated Thumbnailimage/jpeg5149https://repositorio.unal.edu.co/bitstream/unal/84127/4/1036656048.2022.pdf.jpg8f98a4188415c7b6a108d67227e06411MD54unal/84127oai:repositorio.unal.edu.co:unal/841272024-08-12 23:12:20.527Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |