Exploración in silico de estrategias de electro-fermentación en el diseño racional de bioprocesos

ilustraciones, diagramas

Autores:
Vásquez Restrepo, Andrés
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83418
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83418
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología::572 - Bioquímica
Biotechnology
Electrochemistry
Biochemistry
Electroquímica
Biotecnología
Bioquímica
Omics
In silico
Ingeniería metabólica
Diseño Racional de Bioprocesos
Biotermodinámica
Metabolic Engineering
Rational Design of Bioprocesses
Biothermodynamics
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_82dcca9817da77d9375ef98a1b74fc7a
oai_identifier_str oai:repositorio.unal.edu.co:unal/83418
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Exploración in silico de estrategias de electro-fermentación en el diseño racional de bioprocesos
dc.title.translated.eng.fl_str_mv In-silico exploration of Electro-fermentation strategies in the Rational Design of Bioprocesses
title Exploración in silico de estrategias de electro-fermentación en el diseño racional de bioprocesos
spellingShingle Exploración in silico de estrategias de electro-fermentación en el diseño racional de bioprocesos
570 - Biología::572 - Bioquímica
Biotechnology
Electrochemistry
Biochemistry
Electroquímica
Biotecnología
Bioquímica
Omics
In silico
Ingeniería metabólica
Diseño Racional de Bioprocesos
Biotermodinámica
Metabolic Engineering
Rational Design of Bioprocesses
Biothermodynamics
title_short Exploración in silico de estrategias de electro-fermentación en el diseño racional de bioprocesos
title_full Exploración in silico de estrategias de electro-fermentación en el diseño racional de bioprocesos
title_fullStr Exploración in silico de estrategias de electro-fermentación en el diseño racional de bioprocesos
title_full_unstemmed Exploración in silico de estrategias de electro-fermentación en el diseño racional de bioprocesos
title_sort Exploración in silico de estrategias de electro-fermentación en el diseño racional de bioprocesos
dc.creator.fl_str_mv Vásquez Restrepo, Andrés
dc.contributor.advisor.none.fl_str_mv SUAREZ-MENDEZ, CAMILO
dc.contributor.author.none.fl_str_mv Vásquez Restrepo, Andrés
dc.contributor.researchgroup.spa.fl_str_mv Bioprocesos y Flujos Reactivos
dc.contributor.orcid.spa.fl_str_mv Vasquez-Restrepo, Andres [0000-0001-9627-1005]
Suárez Méndez, Camilo[0000-0002-5345-9662]
dc.contributor.cvlac.spa.fl_str_mv https://scienti.colciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000122302
dc.subject.ddc.spa.fl_str_mv 570 - Biología::572 - Bioquímica
topic 570 - Biología::572 - Bioquímica
Biotechnology
Electrochemistry
Biochemistry
Electroquímica
Biotecnología
Bioquímica
Omics
In silico
Ingeniería metabólica
Diseño Racional de Bioprocesos
Biotermodinámica
Metabolic Engineering
Rational Design of Bioprocesses
Biothermodynamics
dc.subject.lemb.eng.fl_str_mv Biotechnology
Electrochemistry
Biochemistry
dc.subject.lemb.spa.fl_str_mv Electroquímica
Biotecnología
Bioquímica
dc.subject.proposal.spa.fl_str_mv Omics
In silico
Ingeniería metabólica
Diseño Racional de Bioprocesos
Biotermodinámica
dc.subject.proposal.eng.fl_str_mv Metabolic Engineering
Rational Design of Bioprocesses
Biothermodynamics
description ilustraciones, diagramas
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-02-10T16:33:23Z
dc.date.available.none.fl_str_mv 2023-02-10T16:33:23Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83418
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83418
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv RedCol
LaReferencia
dc.relation.references.spa.fl_str_mv L. Pedraza, “Análisis metabólico y termodinámico in silico para la biosíntesis de ácido 3-indolacético (AIA) a partir de glicerol en Azospirillum brasilense,” Universidad Nacional de Colombia, 2019.
D. Puerta, “Diseño in silico de una red metabólica, a partir de cultivos microbianos mixtos, para un microorganismo chasís capaz de producir ácido propiónico a partir de glicerol crudo: aproximación desde la termodinámica y la ingeniería metabólica,” Universidad Nacional de Colombia, 2019
L. Avendaño, “Diseño in silico de una plataforma biosintética que permita la valoración del gas de síntesis mediante su conversión en etileno, implementando herramientas de ingeniería metabólica,” Universidad Nacional de Colombia, 2019.
R. Moscoviz, J. Toledo-Alarcón, E. Trably, and N. Bernet, “Electro-Fermentation: How To Drive Fermentation Using Electrochemical Systems,” Trends Biotechnol., vol. 34, no. 11, pp. 856–865, 2016, doi: 10.1016/j.tibtech.2016.04.009.
U. von Stockar, The Role of Thermodynamics in Biochemical Engineering. 2013.
U. Von Stockar and L. A. M. Van Der Wielen, “Thermodynamics in biochemical engineering,” J. Biotechnol., vol. 59, no. 1–2, pp. 25–37, Dec. 1997, doi: 10.1016/S0168-1656(97)00167-3.
M. C. Flickinger, J. J. Heijnen, and R. Kleerebezem, “Bioenergetics of Microbial Growth,” in Encyclopedia of Industrial Biotechnology, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010.
U. Von Stockar, “Biothermodynamics of live cells: A tool for biotechnology and biochemical engineering,” J. Non-Equilibrium Thermodyn., vol. 35, no. 4, pp. 415–475, Dec. 2010, doi: 10.1515/JNETDY.2010.024/MACHINEREADABLECITATION/RIS.
H. F. Cueto-Rojas, A. J. A. van Maris, S. A. Wahl, and J. J. Heijnen, “Thermodynamics-based design of microbial cell factories for anaerobic product formation,” Trends in Biotechnology, vol. 33, no. 9. Elsevier Ltd, pp. 534–546, Sep. 01, 2015, doi: 10.1016/j.tibtech.2015.06.010.
B. Kim, W. J. Kim, D. I. Kim, and S. Y. Lee, “Applications of genome-scale metabolic network model in metabolic engineering,” J. Ind. Microbiol. Biotechnol., vol. 42, no. 3, pp. 339–348, Jan. 2015, doi: 10.1007/s10295-014-1554-9.
M. R. Long, W. K. Ong, and J. L. Reed, “Computational methods in metabolic engineering for strain design,” Current Opinion in Biotechnology, vol. 34. Elsevier Ltd, pp. 135–141, Aug. 01, 2015, doi: 10.1016/j.copbio.2014.12.019.
Z. A. King, C. J. Lloyd, A. M. Feist, and B. O. Palsson, “Next-generation genome-scale models for metabolic engineering,” Current Opinion in Biotechnology, vol. 35. Elsevier Ltd, pp. 23–29, Dec. 01, 2015, doi: 10.1016/j.copbio.2014.12.016.
C. A. Suarez-Mendez, M. Hanemaaijer, A. ten Pierick, J. C. Wolters, J. J. Heijnen, and S. A. Wahl, “Interaction of storage carbohydrates and other cyclic fluxes with central metabolism: A quantitative approach by non-stationary 13C metabolic flux analysis,” Metab. Eng. Commun., vol. 3, pp. 52–63, Dec. 2016, doi: 10.1016/j.meteno.2016.01.001.
J. Jordà et al., “Glucose-methanol co-utilization in Pichia pastoris studied by metabolomics and instationary 13C flux analysis,” BMC Syst. Biol., vol. 7, Feb. 2013, doi: 10.1186/1752-0509-7-17.
W. J. Kim, H. U. Kim, and S. Y. Lee, “Current state and applications of microbial genome-scale metabolic models,” Curr. Opin. Syst. Biol., vol. 2, pp. 10–18, 2017, doi: 10.1016/j.coisb.2017.03.001.
H. U. Kim, T. Y. Kim, and S. Y. Lee, “Metabolic flux analysis and metabolic engineering of microorganisms,” Mol. Biosyst., vol. 4, no. 2, pp. 113–120, 2008, doi: 10.1039/b712395g.
K. Rabaey et al., “Microbial ecology meets electrochemistry: electricity-driven and driving communities,” ISME J., vol. 1, pp. 9–18, 2007, doi: 10.1038/ismej.2007.4.
K. Rabaey, “Bioelectrochemical Systems: From Extracellular Electron Transfer to Biotechnological Application,” Water Intell. Online, vol. 8, p. undefined-undefined, Dec. 2009, doi: 10.2166/9781780401621.
B. Korth and F. Harnisch, “Spotlight on the energy harvest of electroactive microorganisms: The impact of the applied anode potential,” Front. Microbiol., vol. 10, no. JUN, Jun. 2019, doi: 10.3389/fmicb.2019.01352
A. Sydow, T. Krieg, F. Mayer, J. Schrader, and D. Holtmann, “Electroactive bacteria—molecular mechanisms and genetic tools,” Appl. Microbiol. Biotechnol, vol. 98, no. 20, pp. 8481–8495, 2014, doi: 10.1007/s00253-014-6005-z.
M. Firer-Sherwood, G. S. Pulcu, and S. J. Elliott, “Electrochemical interrogations of the Mtr cytochromes from Shewanella: opening a poten- tial window,” J Biol Inorg Chem, vol. 13, pp. 849–854, 2008.
A. Sydow, T. Krieg, F. Mayer, J. Schrader, and D. Holtmann, “Electroactive bacteria—molecular mechanisms and genetic tools,” Appl. Microbiol. Biotechnol., vol. 98, no. 20, pp. 8481–8495, 2014, doi: 10.1007/s00253-014-6005-z.
C. Bücking, M. Schicklberger, and J. Gescher, “The Biochemistry of Dissimilatory Ferric Iron and Manganese Reduction in Shewanella oneidensis,” in Microbial Metal Respiration, A. Kappler and J. Gescher, Eds. Verlag Berlin Heidelberg: Springer.
K. Rabaey, L. Angenent, U. Schröder, and J. Keller, Bioelectrochemical systems: from extracellular electrons transfer to biotechnological application. London: IWA Publishing, 2010.
F. Harnisch, L. F. M. Rosa, F. Kracke, B. Virdis, and J. O. Krömer, “Electrifying white biotechnology: Engineering and economic potential of electricity-driven bio-production,” ChemSusChem, vol. 8, no. 5, pp. 758–766, 2015, doi: 10.1002/cssc.201402736.
M. Aghababaie, M. Farhadian, A. Jeihanipour, and D. Biria, “Effective factors on the performance of microbial fuel cells in wastewater treatment–a review,” Environ. Technol. Rev., vol. 4, no. 1, pp. 71–89, 2015, doi: 10.1080/09593330.2015.1077896.
C. I. Torres, A. K. Marcus, H.-S. Lee, P. Parameswaran, R. Krajmalnik-Brown, and B. E. Rittmann, “A kinetic perspective on extracellular electron transfer by anode-respiring bacteria,” FEMS Microbiol. Rev., vol. 34, no. 1, pp. 3–17, Jan. 2010, doi: 10.1111/j.1574-6976.2009.00191.x.
P. Arbter, W. Sabra, T. Utesch, Y. Hong, and A. Zeng, “Metabolomic and kinetic investigations on the electricity‐aided production of butanol by Clostridium pasteurianum strains,” Eng. Life Sci., p. elsc.202000035, Dec. 2020, doi: 10.1002/elsc.202000035.
. Schroder, “Microbial Fuel Cells and Microbial Electrochemistry: Into the Next Century!,” ChemSusChem, vol. 5, pp. 959–961, 2012, doi: 10.1002/cssc.201200319.
D. R. Lovley, “Microbial fuel cells: novel microbial physiologies and engineering approaches,” Curr. Opin. Biotechnol, vol. 17, pp. 327–332, 2006.
Y. Zhang and I. Angelidaki, “Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges,” Water Res, vol. 56, pp. 11–25, 2014.
K. Rabaey and R. A. Rozendal, “Microbial electrosynthesis– revisiting the electrical route for microbial production,” Nat. Rev. Microbiol, vol. 8, pp. 706–716, 2010.
O. Choi, T. Kim, H. M. Woo, and Y. Um, “Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium pasteurianum,” Sci. Rep., vol. 4, no. 1, p. 6961, May 2015, doi: 10.1038/srep06961.
O. Choi, Y. Um, and B. I. Sang, “Butyrate production enhancement by Clostridium tyrobutyricum using electron mediators and a cathodic electron donor,” Biotechnol. Bioeng., vol. 109, no. 10, pp. 2494–2502, Oct. 2012, doi: 10.1002/bit.24520.
J. M. Flynn, D. E. Ross, K. A. Hunt, D. R. Bond, and J. A. Gralnick, “Enabling unbalanced fermentations by using engineered electrode- interfaced bacteria,” MBio, vol. 1, no. 5, Nov. 2010, doi: 10.1128/mBio.00190-10.
“Basic overview of the working principle of a potentiostat/galvanostat (PGSTAT)-Electrochemical cell setup.”
R. Emde and B. Schink, “Enhanced Propionate Formation by Propionibacterium freudenreichii subsp. freudenreichii in a Three-Electrode Amperometric Culture System Downloaded from,” 1990. Accessed: Jan. 31, 2021. [Online]. Available: http://aem.asm.org/.
C. G. Liu, C. Xue, Y. H. Lin, and F. W. Bai, “Redox potential control and applications in microaerobic and anaerobic fermentations,” Biotechnology Advances, vol. 31, no. 2. Elsevier, pp. 257–265, Mar. 01, 2013, doi: 10.1016/j.biotechadv.2012.11.005.
R. Emde and B. Schink, “Enhanced propionate formation by Propionibacterium freudenreichii subsp. freudenreichii in a three-electrode amperometric culture system,” Appl. Environ. Microbiol, vol. 56, pp. 2771–2776, 1990.
R. Moscoviz, J. Toledo-Alarcón, E. Trably, and N. Bernet, “Electro-Fermentation: How To Drive Fermentation Using Electrochemical Systems,” Trends Biotechnol, vol. 34, no. 11, pp. 856–865, doi: 10.1016/j.tibtech.2016.04.009.
B. Korth and F. Harnisch, “Modeling microbial electrosynthesis,” in Advances in Biochemical Engineering/Biotechnology, vol. 167, Springer Science and Business Media Deutschland GmbH, 2019, pp. 273–325.
H. Rismani-Yazdi, A. D. Christy, S. M. Carver, Z. Yu, B. A. Dehority, and O. H. Tuovinen, “Effect of external resistance on bacterial diversity and metabolism in cellulose-fed microbial fuel cells,” Bioresour. Technol., vol. 102, no. 1, pp. 278–283, 2011, doi: 10.1016/j.biortech.2010.05.012.
F. Kracke and J. O. Krömer, “Identifying target processes for microbial electrosynthesis by elementary mode analysis,” 2014, doi: 10.1186/s12859-014-0410-2.
F. Kracke, B. Lai, S. Yu, and J. O. Krömer, “Balancing cellular redox metabolism in microbial electrosynthesis and electro fermentation – A chance for metabolic engineering,” Metabolic Engineering, vol. 45. Academic Press Inc., pp. 109–120, Jan. 01, 2018, doi: 10.1016/j.ymben.2017.12.003.
T. D. Harrington et al., “The mechanism of neutral red-mediated microbial electrosynthesis in Escherichia coli: menaquinone reduction,” 2015, doi: 10.1016/j.biortech.2015.06.037.
Y. Anraku, “BACTERIAL ELECTRON TRANSPORT CHAINS,” https://doi.org/10.1146/annurev.bi.57.070188.000533, vol. 57, pp. 101–132, Nov. 2003, doi: 10.1146/ANNUREV.BI.57.070188.000533.
L. Heirendt et al., “Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0,” Nat. Protoc. 2019 143, vol. 14, no. 3, pp. 639–702, Feb. 2019, doi: 10.1038/s41596-018-0098-2.
Z. A. King, A. Dräger, A. Ebrahim, N. Sonnenschein, N. E. Lewis, and B. O. Palsson, “Escher: A Web Application for Building, Sharing, and Embedding Data-Rich Visualizations of Biological Pathways,” PLOS Comput. Biol., vol. 11, no. 8, p. e1004321, Aug. 2015, doi: 10.1371/JOURNAL.PCBI.1004321.
P. Raybaut, “Spyder-documentation.” 2009, [Online]. Available: pythonhosted. org.
O. Choi, T. Kim, H. M. Woo, and Y. Um, “Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium pasteurianum,” Sci. Rep., vol. 4, no. 1, pp. 1–10, Nov. 2014, doi: 10.1038/srep06961.
I. Vassilev, G. Gießelmann, S. K. Schwechheimer, C. Wittmann, B. Virdis, and J. O. Krömer, “Anodic electro-fermentation: Anaerobic production of L-Lysine by recombinant Corynebacterium glutamicum,” Biotechnol. Bioeng., vol. 115, no. 6, pp. 1499–1508, 2018, doi: 10.1002/bit.26562.
C. G. Liu, C. Xue, Y. H. Lin, and F. W. Bai, “Redox potential control and applications in microaerobic and anaerobic fermentations,” Biotechnol. Adv., vol. 31, no. 2, pp. 257–265, 2013, doi: 10.1016/j.biotechadv.2012.11.005.
B. Schuppert, B. Schink, and W. Trösch, “Batch and continuous production of propionic acid from whey permeate by Propionibacterium acidi-propionici in a three-electrode amperometric culture system,” Appl. Microbiol. Biotechnol., vol. 37, no. 5, pp. 549–553, Aug. 1992, doi: 10.1007/BF00240723.
A. M. Feist et al., “A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information,” Mol. Syst. Biol., vol. 3, no. 1, p. 121, Jan. 2007, doi: 10.1038/MSB4100155.
M. Zhou, J. Chen, S. Freguia, K. Rabaey, and J. Keller, “Carbon and electron fluxes during the electricity driven 1,3-propanediol biosynthesis from glycerol,” Environ. Sci. Technol., vol. 47, no. 19, pp. 11199–11205, Oct. 2013, doi: 10.1021/ES402132R/SUPPL_FILE/ES402132R_SI_001.PDF.
C. Kim et al., “Anodic electro-fermentation of 3-hydroxypropionic acid from glycerol by recombinant Klebsiella pneumoniae L17 in a bioelectrochemical system,” Biotechnol. Biofuels, vol. 10, no. 1, p. 199, Aug. 2017, doi: 10.1186/s13068-017-0886-x.
A. M. Feist et al., “A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information,” Mol. Syst. Biol., vol. 3, 2007, doi: 10.1038/MSB4100155.
A. Özcan, Y. Şahin, A. Savaş Koparal, and M. A. Oturan, “Carbon sponge as a new cathode material for the electro-Fenton process: Comparison with carbon felt cathode and application to degradation of synthetic dye basic blue 3 in aqueous medium,” J. Electroanal. Chem., vol. 616, no. 1–2, pp. 71–78, May 2008, doi: 10.1016/J.JELECHEM.2008.01.002.
S. Wang, Y. Zhu, Y. Yang, J. Li, and M. R. Hoffmann, “Electrochemical cell lysis of gram-positive and gram-negative bacteria: DNA extraction from environmental water samples,” Electrochim. Acta, vol. 338, Apr. 2020, doi: 10.1016/J.ELECTACTA.2020.135864.
T. Zhang, R. O. Louro, J. O. Krömer, F. Kracke, and I. Vassilev, “Microbial electron transport and energy conservation-the foundation for optimizing bioelectrochemical systems Microbial electron transport in bioelectrochemical systems,” Front. Microbiol. | www.frontiersin.org, vol. 1, 2015, doi: 10.3389/fmicb.2015.00575.
K. Sturm-Richter et al., “Unbalanced fermentation of glycerol in Escherichia coli via heterologous production of an electron transport chain and electrode interaction in microbial electrochemical cells,” Bioresour. Technol., vol. 186, pp. 89–96, Jun. 2015, doi: 10.1016/j.biortech.2015.02.116.
J. P. O’Brien and N. S. Malvankar, “A Simple and Low-Cost Procedure for Growing Geobacter sulfurreducens Cell Cultures and Biofilms in Bioelectrochemical Systems,” Curr. Protoc. Microbiol., vol. 43, no. 1, p. A.4K.1-A.4K.27, Nov. 2016, doi: 10.1002/CPMC.20.
C. Koch, B. Korth, and F. Harnisch, “Microbial ecology-based engineering of Microbial Electrochemical Technologies,” Microb. Biotechnol., vol. 11, no. 1, pp. 22–38, Jan. 2018, doi: 10.1111/1751-7915.12802.
M. Kanehisa, Y. Sato, and M. Kawashima, “KEGG mapping tools for uncovering hidden features in biological data,” Protein Sci., vol. 31, no. 1, pp. 47–53, Jan. 2022, doi: 10.1002/PRO.4172.
J. M. Flynn, D. E. Ross, K. A. Hunt, D. R. Bond, and J. A. Gralnick, “Enabling unbalanced fermentations by using engineered electrode- interfaced bacteria,” MBio, vol. 1, no. 5, Nov. 2010, doi: 10.1128/mBio.00190-10.
J. M. Monk et al., “Genome-scale metabolic reconstructions of multiple Escherichia coli strains highlight strain-specific adaptations to nutritional environments,” Proc. Natl. Acad. Sci. U. S. A., vol. 110, no. 50, pp. 20338–20343, Dec. 2013, doi: 10.1073/PNAS.1307797110/-/DCSUPPLEMENTAL.
F. C. Neidhardt, “Chemical Composition of Escherichia Coli,” Escherichia coli Salmonella typhimurium - Cell. Mol. Biol., p. 2822, 1987, [Online]. Available: https://www.journals.uchicago.edu/doi/abs/10.1086/416059.
J. Pramanik and J. D. Keasling, “Stoichiometric model of Escherichia coli metabolism: Incorporation of growth-rate dependent biomass composition and mechanistic energy requirements,” Biotechnol. Bioeng., vol. 56, no. 4, pp. 398–421, 1997, doi: 10.1002/(SICI)1097-0290(19971120)56:4<398::AID-BIT6>3.0.CO;2-J.
J. A. Roels, “Application of Macroscopic Principles To Microbial Metabolism,” Ann. N. Y. Acad. Sci., vol. 369, no. 1, pp. 113–134, 1981, doi: 10.1111/j.1749-6632.1981.tb14182.x.
F. Kracke, B. Virdis, P. V. Bernhardt, K. Rabaey, and J. O. Krömer, “Redox dependent metabolic shift in Clostridium autoethanogenum by extracellular electron supply,” Biotechnol. Biofuels, vol. 9, no. 1, pp. 1–12, 2016, doi: 10.1186/s13068-016-0663-2.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 210 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias - Maestría en Ciencias - Biotecnología
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83418/2/1017236136_2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/83418/1/license.txt
bitstream.checksum.fl_str_mv 6245516e50c51bec90a88cca0c814944
eb34b1cf90b7e1103fc9dfd26be24b4a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886194995265536
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2SUAREZ-MENDEZ, CAMILO0cb894551eb9c1f9737a27b5a0b26d87600Vásquez Restrepo, Andrés3c1b08f3bb6101be643086b4f7ed2c3d600Bioprocesos y Flujos ReactivosVasquez-Restrepo, Andres [0000-0001-9627-1005]Suárez Méndez, Camilo[0000-0002-5345-9662]https://scienti.colciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00001223022023-02-10T16:33:23Z2023-02-10T16:33:23Z2022https://repositorio.unal.edu.co/handle/unal/83418Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasLa electro-fermentación es una estrategia emergente para optimizar los bioprocesos al regular el balance redox intracelular y redireccionar los flujos metabólicos. En el presente trabajo se evaluó in silico la electro-fermentación desde el marco del diseño racional de bioprocesos para determinar su efecto en el aprovechamiento de la energía biológicamente disponible y los rendimientos del proceso. Para lo cual, se desarrolló una metodología que permitió estimar sus costos energéticos asociados y evaluar su capacidad de redireccionamiento metabólico. Se definieron un conjunto de semirreacciones que permitieron utilizar los principios de la electroquímica para establecer los requerimientos energéticos del proceso, junto con su modelo de caja negra. Se encontró que la energía libre de Gibbs de reacción depende del voltaje aplicado y el potencial de reducción de la molécula aceptora interna de electrones. Además, se planteó un modelo metabólico que incluyó el transporte extracelular de electrones y permitió evidenciar los diferentes cambios metabólicos al cambiar el balance redox a través de la interacción con el electrodo. Finalmente, se evaluaron diferentes casos de estudio para evidenciar el desempeño de la metodología desarrollada, en donde se logró solucionar déficits de ATP y electrones a expensas de una pequeña desviación de carbonos hacia subproductos debido a la generación de un desbalance redox en el metabolismo celular. La presente metodología representa un primer intento de una estimación in silico de los requerimientos de corriente eléctrica y voltaje asociados a una electro-fermentación a partir de fundamentos teóricos. (Texto tomado de la fuente)Electro-fermentation is a novel strategy for optimizing bioprocesses in which the intracellular redox balance is regulated to redirect the carbon metabolic flux towards a desired product. In this work, an in-silico evaluation of the electro-fermentation has been made within the frame of a methodology referred to as Rational Design of Bioprocesses to evaluate its effects on microbial bioenergetics and process performance. Here, a new methodology is proposed for estimating the associated Gibbs energy costs, the development of a black-box model and the evaluation of its capacity to redirect metabolic fluxes. A set of semi reactions are used to describe the interactions between the electrode and the microbe, where the Gibbs energy involved in the electro-fermentation process is associated to the electrode’s poised voltage and the standard reduction potential of the internal electron acceptor. Besides, a new metabolic model is developed incorporating a set of reactions for the extracellular electron transfer mechanism. It has been proven that metabolic changes occur by an unbalanced NADH pool generated by the interaction of the microbe with a poised electrode. Finally, both thermodynamic and metabolic models are used in different study cases to evaluate the performance of the complete developed framework for electro-fermentations, where it has been proven that it can be used to solve ATP deficits in metabolic networks. To my knowledge, it is the first attempt of an in-silico based theorical framework to describe the energy, current and voltage associated with electro-fermentations.MaestríaMagister en Ciencias - BiotecnologíaDiseño Racional de BioprocesosÁrea Curricular de Bioctecnología210 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias - Maestría en Ciencias - BiotecnologíaFacultad de CienciasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín570 - Biología::572 - BioquímicaBiotechnologyElectrochemistryBiochemistryElectroquímicaBiotecnologíaBioquímicaOmicsIn silicoIngeniería metabólicaDiseño Racional de BioprocesosBiotermodinámicaMetabolic EngineeringRational Design of BioprocessesBiothermodynamicsExploración in silico de estrategias de electro-fermentación en el diseño racional de bioprocesosIn-silico exploration of Electro-fermentation strategies in the Rational Design of BioprocessesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferenciaL. Pedraza, “Análisis metabólico y termodinámico in silico para la biosíntesis de ácido 3-indolacético (AIA) a partir de glicerol en Azospirillum brasilense,” Universidad Nacional de Colombia, 2019.D. Puerta, “Diseño in silico de una red metabólica, a partir de cultivos microbianos mixtos, para un microorganismo chasís capaz de producir ácido propiónico a partir de glicerol crudo: aproximación desde la termodinámica y la ingeniería metabólica,” Universidad Nacional de Colombia, 2019L. Avendaño, “Diseño in silico de una plataforma biosintética que permita la valoración del gas de síntesis mediante su conversión en etileno, implementando herramientas de ingeniería metabólica,” Universidad Nacional de Colombia, 2019.R. Moscoviz, J. Toledo-Alarcón, E. Trably, and N. Bernet, “Electro-Fermentation: How To Drive Fermentation Using Electrochemical Systems,” Trends Biotechnol., vol. 34, no. 11, pp. 856–865, 2016, doi: 10.1016/j.tibtech.2016.04.009.U. von Stockar, The Role of Thermodynamics in Biochemical Engineering. 2013.U. Von Stockar and L. A. M. Van Der Wielen, “Thermodynamics in biochemical engineering,” J. Biotechnol., vol. 59, no. 1–2, pp. 25–37, Dec. 1997, doi: 10.1016/S0168-1656(97)00167-3.M. C. Flickinger, J. J. Heijnen, and R. Kleerebezem, “Bioenergetics of Microbial Growth,” in Encyclopedia of Industrial Biotechnology, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010.U. Von Stockar, “Biothermodynamics of live cells: A tool for biotechnology and biochemical engineering,” J. Non-Equilibrium Thermodyn., vol. 35, no. 4, pp. 415–475, Dec. 2010, doi: 10.1515/JNETDY.2010.024/MACHINEREADABLECITATION/RIS.H. F. Cueto-Rojas, A. J. A. van Maris, S. A. Wahl, and J. J. Heijnen, “Thermodynamics-based design of microbial cell factories for anaerobic product formation,” Trends in Biotechnology, vol. 33, no. 9. Elsevier Ltd, pp. 534–546, Sep. 01, 2015, doi: 10.1016/j.tibtech.2015.06.010.B. Kim, W. J. Kim, D. I. Kim, and S. Y. Lee, “Applications of genome-scale metabolic network model in metabolic engineering,” J. Ind. Microbiol. Biotechnol., vol. 42, no. 3, pp. 339–348, Jan. 2015, doi: 10.1007/s10295-014-1554-9.M. R. Long, W. K. Ong, and J. L. Reed, “Computational methods in metabolic engineering for strain design,” Current Opinion in Biotechnology, vol. 34. Elsevier Ltd, pp. 135–141, Aug. 01, 2015, doi: 10.1016/j.copbio.2014.12.019.Z. A. King, C. J. Lloyd, A. M. Feist, and B. O. Palsson, “Next-generation genome-scale models for metabolic engineering,” Current Opinion in Biotechnology, vol. 35. Elsevier Ltd, pp. 23–29, Dec. 01, 2015, doi: 10.1016/j.copbio.2014.12.016.C. A. Suarez-Mendez, M. Hanemaaijer, A. ten Pierick, J. C. Wolters, J. J. Heijnen, and S. A. Wahl, “Interaction of storage carbohydrates and other cyclic fluxes with central metabolism: A quantitative approach by non-stationary 13C metabolic flux analysis,” Metab. Eng. Commun., vol. 3, pp. 52–63, Dec. 2016, doi: 10.1016/j.meteno.2016.01.001.J. Jordà et al., “Glucose-methanol co-utilization in Pichia pastoris studied by metabolomics and instationary 13C flux analysis,” BMC Syst. Biol., vol. 7, Feb. 2013, doi: 10.1186/1752-0509-7-17.W. J. Kim, H. U. Kim, and S. Y. Lee, “Current state and applications of microbial genome-scale metabolic models,” Curr. Opin. Syst. Biol., vol. 2, pp. 10–18, 2017, doi: 10.1016/j.coisb.2017.03.001.H. U. Kim, T. Y. Kim, and S. Y. Lee, “Metabolic flux analysis and metabolic engineering of microorganisms,” Mol. Biosyst., vol. 4, no. 2, pp. 113–120, 2008, doi: 10.1039/b712395g.K. Rabaey et al., “Microbial ecology meets electrochemistry: electricity-driven and driving communities,” ISME J., vol. 1, pp. 9–18, 2007, doi: 10.1038/ismej.2007.4.K. Rabaey, “Bioelectrochemical Systems: From Extracellular Electron Transfer to Biotechnological Application,” Water Intell. Online, vol. 8, p. undefined-undefined, Dec. 2009, doi: 10.2166/9781780401621.B. Korth and F. Harnisch, “Spotlight on the energy harvest of electroactive microorganisms: The impact of the applied anode potential,” Front. Microbiol., vol. 10, no. JUN, Jun. 2019, doi: 10.3389/fmicb.2019.01352A. Sydow, T. Krieg, F. Mayer, J. Schrader, and D. Holtmann, “Electroactive bacteria—molecular mechanisms and genetic tools,” Appl. Microbiol. Biotechnol, vol. 98, no. 20, pp. 8481–8495, 2014, doi: 10.1007/s00253-014-6005-z.M. Firer-Sherwood, G. S. Pulcu, and S. J. Elliott, “Electrochemical interrogations of the Mtr cytochromes from Shewanella: opening a poten- tial window,” J Biol Inorg Chem, vol. 13, pp. 849–854, 2008.A. Sydow, T. Krieg, F. Mayer, J. Schrader, and D. Holtmann, “Electroactive bacteria—molecular mechanisms and genetic tools,” Appl. Microbiol. Biotechnol., vol. 98, no. 20, pp. 8481–8495, 2014, doi: 10.1007/s00253-014-6005-z.C. Bücking, M. Schicklberger, and J. Gescher, “The Biochemistry of Dissimilatory Ferric Iron and Manganese Reduction in Shewanella oneidensis,” in Microbial Metal Respiration, A. Kappler and J. Gescher, Eds. Verlag Berlin Heidelberg: Springer.K. Rabaey, L. Angenent, U. Schröder, and J. Keller, Bioelectrochemical systems: from extracellular electrons transfer to biotechnological application. London: IWA Publishing, 2010.F. Harnisch, L. F. M. Rosa, F. Kracke, B. Virdis, and J. O. Krömer, “Electrifying white biotechnology: Engineering and economic potential of electricity-driven bio-production,” ChemSusChem, vol. 8, no. 5, pp. 758–766, 2015, doi: 10.1002/cssc.201402736.M. Aghababaie, M. Farhadian, A. Jeihanipour, and D. Biria, “Effective factors on the performance of microbial fuel cells in wastewater treatment–a review,” Environ. Technol. Rev., vol. 4, no. 1, pp. 71–89, 2015, doi: 10.1080/09593330.2015.1077896.C. I. Torres, A. K. Marcus, H.-S. Lee, P. Parameswaran, R. Krajmalnik-Brown, and B. E. Rittmann, “A kinetic perspective on extracellular electron transfer by anode-respiring bacteria,” FEMS Microbiol. Rev., vol. 34, no. 1, pp. 3–17, Jan. 2010, doi: 10.1111/j.1574-6976.2009.00191.x.P. Arbter, W. Sabra, T. Utesch, Y. Hong, and A. Zeng, “Metabolomic and kinetic investigations on the electricity‐aided production of butanol by Clostridium pasteurianum strains,” Eng. Life Sci., p. elsc.202000035, Dec. 2020, doi: 10.1002/elsc.202000035.. Schroder, “Microbial Fuel Cells and Microbial Electrochemistry: Into the Next Century!,” ChemSusChem, vol. 5, pp. 959–961, 2012, doi: 10.1002/cssc.201200319.D. R. Lovley, “Microbial fuel cells: novel microbial physiologies and engineering approaches,” Curr. Opin. Biotechnol, vol. 17, pp. 327–332, 2006.Y. Zhang and I. Angelidaki, “Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges,” Water Res, vol. 56, pp. 11–25, 2014.K. Rabaey and R. A. Rozendal, “Microbial electrosynthesis– revisiting the electrical route for microbial production,” Nat. Rev. Microbiol, vol. 8, pp. 706–716, 2010.O. Choi, T. Kim, H. M. Woo, and Y. Um, “Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium pasteurianum,” Sci. Rep., vol. 4, no. 1, p. 6961, May 2015, doi: 10.1038/srep06961.O. Choi, Y. Um, and B. I. Sang, “Butyrate production enhancement by Clostridium tyrobutyricum using electron mediators and a cathodic electron donor,” Biotechnol. Bioeng., vol. 109, no. 10, pp. 2494–2502, Oct. 2012, doi: 10.1002/bit.24520.J. M. Flynn, D. E. Ross, K. A. Hunt, D. R. Bond, and J. A. Gralnick, “Enabling unbalanced fermentations by using engineered electrode- interfaced bacteria,” MBio, vol. 1, no. 5, Nov. 2010, doi: 10.1128/mBio.00190-10.“Basic overview of the working principle of a potentiostat/galvanostat (PGSTAT)-Electrochemical cell setup.”R. Emde and B. Schink, “Enhanced Propionate Formation by Propionibacterium freudenreichii subsp. freudenreichii in a Three-Electrode Amperometric Culture System Downloaded from,” 1990. Accessed: Jan. 31, 2021. [Online]. Available: http://aem.asm.org/.C. G. Liu, C. Xue, Y. H. Lin, and F. W. Bai, “Redox potential control and applications in microaerobic and anaerobic fermentations,” Biotechnology Advances, vol. 31, no. 2. Elsevier, pp. 257–265, Mar. 01, 2013, doi: 10.1016/j.biotechadv.2012.11.005.R. Emde and B. Schink, “Enhanced propionate formation by Propionibacterium freudenreichii subsp. freudenreichii in a three-electrode amperometric culture system,” Appl. Environ. Microbiol, vol. 56, pp. 2771–2776, 1990.R. Moscoviz, J. Toledo-Alarcón, E. Trably, and N. Bernet, “Electro-Fermentation: How To Drive Fermentation Using Electrochemical Systems,” Trends Biotechnol, vol. 34, no. 11, pp. 856–865, doi: 10.1016/j.tibtech.2016.04.009.B. Korth and F. Harnisch, “Modeling microbial electrosynthesis,” in Advances in Biochemical Engineering/Biotechnology, vol. 167, Springer Science and Business Media Deutschland GmbH, 2019, pp. 273–325.H. Rismani-Yazdi, A. D. Christy, S. M. Carver, Z. Yu, B. A. Dehority, and O. H. Tuovinen, “Effect of external resistance on bacterial diversity and metabolism in cellulose-fed microbial fuel cells,” Bioresour. Technol., vol. 102, no. 1, pp. 278–283, 2011, doi: 10.1016/j.biortech.2010.05.012.F. Kracke and J. O. Krömer, “Identifying target processes for microbial electrosynthesis by elementary mode analysis,” 2014, doi: 10.1186/s12859-014-0410-2.F. Kracke, B. Lai, S. Yu, and J. O. Krömer, “Balancing cellular redox metabolism in microbial electrosynthesis and electro fermentation – A chance for metabolic engineering,” Metabolic Engineering, vol. 45. Academic Press Inc., pp. 109–120, Jan. 01, 2018, doi: 10.1016/j.ymben.2017.12.003.T. D. Harrington et al., “The mechanism of neutral red-mediated microbial electrosynthesis in Escherichia coli: menaquinone reduction,” 2015, doi: 10.1016/j.biortech.2015.06.037.Y. Anraku, “BACTERIAL ELECTRON TRANSPORT CHAINS,” https://doi.org/10.1146/annurev.bi.57.070188.000533, vol. 57, pp. 101–132, Nov. 2003, doi: 10.1146/ANNUREV.BI.57.070188.000533.L. Heirendt et al., “Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0,” Nat. Protoc. 2019 143, vol. 14, no. 3, pp. 639–702, Feb. 2019, doi: 10.1038/s41596-018-0098-2.Z. A. King, A. Dräger, A. Ebrahim, N. Sonnenschein, N. E. Lewis, and B. O. Palsson, “Escher: A Web Application for Building, Sharing, and Embedding Data-Rich Visualizations of Biological Pathways,” PLOS Comput. Biol., vol. 11, no. 8, p. e1004321, Aug. 2015, doi: 10.1371/JOURNAL.PCBI.1004321.P. Raybaut, “Spyder-documentation.” 2009, [Online]. Available: pythonhosted. org.O. Choi, T. Kim, H. M. Woo, and Y. Um, “Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium pasteurianum,” Sci. Rep., vol. 4, no. 1, pp. 1–10, Nov. 2014, doi: 10.1038/srep06961.I. Vassilev, G. Gießelmann, S. K. Schwechheimer, C. Wittmann, B. Virdis, and J. O. Krömer, “Anodic electro-fermentation: Anaerobic production of L-Lysine by recombinant Corynebacterium glutamicum,” Biotechnol. Bioeng., vol. 115, no. 6, pp. 1499–1508, 2018, doi: 10.1002/bit.26562.C. G. Liu, C. Xue, Y. H. Lin, and F. W. Bai, “Redox potential control and applications in microaerobic and anaerobic fermentations,” Biotechnol. Adv., vol. 31, no. 2, pp. 257–265, 2013, doi: 10.1016/j.biotechadv.2012.11.005.B. Schuppert, B. Schink, and W. Trösch, “Batch and continuous production of propionic acid from whey permeate by Propionibacterium acidi-propionici in a three-electrode amperometric culture system,” Appl. Microbiol. Biotechnol., vol. 37, no. 5, pp. 549–553, Aug. 1992, doi: 10.1007/BF00240723.A. M. Feist et al., “A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information,” Mol. Syst. Biol., vol. 3, no. 1, p. 121, Jan. 2007, doi: 10.1038/MSB4100155.M. Zhou, J. Chen, S. Freguia, K. Rabaey, and J. Keller, “Carbon and electron fluxes during the electricity driven 1,3-propanediol biosynthesis from glycerol,” Environ. Sci. Technol., vol. 47, no. 19, pp. 11199–11205, Oct. 2013, doi: 10.1021/ES402132R/SUPPL_FILE/ES402132R_SI_001.PDF.C. Kim et al., “Anodic electro-fermentation of 3-hydroxypropionic acid from glycerol by recombinant Klebsiella pneumoniae L17 in a bioelectrochemical system,” Biotechnol. Biofuels, vol. 10, no. 1, p. 199, Aug. 2017, doi: 10.1186/s13068-017-0886-x.A. M. Feist et al., “A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information,” Mol. Syst. Biol., vol. 3, 2007, doi: 10.1038/MSB4100155.A. Özcan, Y. Şahin, A. Savaş Koparal, and M. A. Oturan, “Carbon sponge as a new cathode material for the electro-Fenton process: Comparison with carbon felt cathode and application to degradation of synthetic dye basic blue 3 in aqueous medium,” J. Electroanal. Chem., vol. 616, no. 1–2, pp. 71–78, May 2008, doi: 10.1016/J.JELECHEM.2008.01.002.S. Wang, Y. Zhu, Y. Yang, J. Li, and M. R. Hoffmann, “Electrochemical cell lysis of gram-positive and gram-negative bacteria: DNA extraction from environmental water samples,” Electrochim. Acta, vol. 338, Apr. 2020, doi: 10.1016/J.ELECTACTA.2020.135864.T. Zhang, R. O. Louro, J. O. Krömer, F. Kracke, and I. Vassilev, “Microbial electron transport and energy conservation-the foundation for optimizing bioelectrochemical systems Microbial electron transport in bioelectrochemical systems,” Front. Microbiol. | www.frontiersin.org, vol. 1, 2015, doi: 10.3389/fmicb.2015.00575.K. Sturm-Richter et al., “Unbalanced fermentation of glycerol in Escherichia coli via heterologous production of an electron transport chain and electrode interaction in microbial electrochemical cells,” Bioresour. Technol., vol. 186, pp. 89–96, Jun. 2015, doi: 10.1016/j.biortech.2015.02.116.J. P. O’Brien and N. S. Malvankar, “A Simple and Low-Cost Procedure for Growing Geobacter sulfurreducens Cell Cultures and Biofilms in Bioelectrochemical Systems,” Curr. Protoc. Microbiol., vol. 43, no. 1, p. A.4K.1-A.4K.27, Nov. 2016, doi: 10.1002/CPMC.20.C. Koch, B. Korth, and F. Harnisch, “Microbial ecology-based engineering of Microbial Electrochemical Technologies,” Microb. Biotechnol., vol. 11, no. 1, pp. 22–38, Jan. 2018, doi: 10.1111/1751-7915.12802.M. Kanehisa, Y. Sato, and M. Kawashima, “KEGG mapping tools for uncovering hidden features in biological data,” Protein Sci., vol. 31, no. 1, pp. 47–53, Jan. 2022, doi: 10.1002/PRO.4172.J. M. Flynn, D. E. Ross, K. A. Hunt, D. R. Bond, and J. A. Gralnick, “Enabling unbalanced fermentations by using engineered electrode- interfaced bacteria,” MBio, vol. 1, no. 5, Nov. 2010, doi: 10.1128/mBio.00190-10.J. M. Monk et al., “Genome-scale metabolic reconstructions of multiple Escherichia coli strains highlight strain-specific adaptations to nutritional environments,” Proc. Natl. Acad. Sci. U. S. A., vol. 110, no. 50, pp. 20338–20343, Dec. 2013, doi: 10.1073/PNAS.1307797110/-/DCSUPPLEMENTAL.F. C. Neidhardt, “Chemical Composition of Escherichia Coli,” Escherichia coli Salmonella typhimurium - Cell. Mol. Biol., p. 2822, 1987, [Online]. Available: https://www.journals.uchicago.edu/doi/abs/10.1086/416059.J. Pramanik and J. D. Keasling, “Stoichiometric model of Escherichia coli metabolism: Incorporation of growth-rate dependent biomass composition and mechanistic energy requirements,” Biotechnol. Bioeng., vol. 56, no. 4, pp. 398–421, 1997, doi: 10.1002/(SICI)1097-0290(19971120)56:4<398::AID-BIT6>3.0.CO;2-J.J. A. Roels, “Application of Macroscopic Principles To Microbial Metabolism,” Ann. N. Y. Acad. Sci., vol. 369, no. 1, pp. 113–134, 1981, doi: 10.1111/j.1749-6632.1981.tb14182.x.F. Kracke, B. Virdis, P. V. Bernhardt, K. Rabaey, and J. O. Krömer, “Redox dependent metabolic shift in Clostridium autoethanogenum by extracellular electron supply,” Biotechnol. Biofuels, vol. 9, no. 1, pp. 1–12, 2016, doi: 10.1186/s13068-016-0663-2.EstudiantesInvestigadoresORIGINAL1017236136_2022.pdf1017236136_2022.pdfTesis de Maestría en Ciencias - Biotecnologíaapplication/pdf2136850https://repositorio.unal.edu.co/bitstream/unal/83418/2/1017236136_2022.pdf6245516e50c51bec90a88cca0c814944MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83418/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51unal/83418oai:repositorio.unal.edu.co:unal/834182023-02-10 11:37:53.286Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=