Seguimiento epidemiológico de los perfiles genómicos de resistencia a antibióticos, en aislamientos clínicos de Pseudomonas aeruginosa mediante secuenciación de genoma completo (WGS)

ilustraciones, fotografías, mapas

Autores:
Cuello Mejia, Mishelle
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84156
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84156
https://repositorio.unal.edu.co/
Palabra clave:
610 - Medicina y salud
000 - Ciencias de la computación, información y obras generales
Bacterias
Bacteria
Epidemiological Monitoring
Monitoreo epidemiológico
Pseudomonas aeruginosa
Infecciones Asociadas a la Atención en Salud
Resistencia a antibióticos
Seguimiento epidemiológico
Secuenciación de Genoma Completo
Grupos clonales
Secuencio-tipos (ST)
Healthcare-Associated Infections (HAIs)
Antibiotic resistance
Epidemiological tracing
Whole Genome Sequencing (WGS)
Sequence-types (ST)
Clonal groups
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_82d381fe6bf51deb455d795205cc3bce
oai_identifier_str oai:repositorio.unal.edu.co:unal/84156
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Seguimiento epidemiológico de los perfiles genómicos de resistencia a antibióticos, en aislamientos clínicos de Pseudomonas aeruginosa mediante secuenciación de genoma completo (WGS)
dc.title.translated.eng.fl_str_mv Epidemiological tracing of the genomic profiles of antibiotic resistance in clinical isolates of P. aeruginosa using Whole Genome Sequencing (WGS)
title Seguimiento epidemiológico de los perfiles genómicos de resistencia a antibióticos, en aislamientos clínicos de Pseudomonas aeruginosa mediante secuenciación de genoma completo (WGS)
spellingShingle Seguimiento epidemiológico de los perfiles genómicos de resistencia a antibióticos, en aislamientos clínicos de Pseudomonas aeruginosa mediante secuenciación de genoma completo (WGS)
610 - Medicina y salud
000 - Ciencias de la computación, información y obras generales
Bacterias
Bacteria
Epidemiological Monitoring
Monitoreo epidemiológico
Pseudomonas aeruginosa
Infecciones Asociadas a la Atención en Salud
Resistencia a antibióticos
Seguimiento epidemiológico
Secuenciación de Genoma Completo
Grupos clonales
Secuencio-tipos (ST)
Healthcare-Associated Infections (HAIs)
Antibiotic resistance
Epidemiological tracing
Whole Genome Sequencing (WGS)
Sequence-types (ST)
Clonal groups
title_short Seguimiento epidemiológico de los perfiles genómicos de resistencia a antibióticos, en aislamientos clínicos de Pseudomonas aeruginosa mediante secuenciación de genoma completo (WGS)
title_full Seguimiento epidemiológico de los perfiles genómicos de resistencia a antibióticos, en aislamientos clínicos de Pseudomonas aeruginosa mediante secuenciación de genoma completo (WGS)
title_fullStr Seguimiento epidemiológico de los perfiles genómicos de resistencia a antibióticos, en aislamientos clínicos de Pseudomonas aeruginosa mediante secuenciación de genoma completo (WGS)
title_full_unstemmed Seguimiento epidemiológico de los perfiles genómicos de resistencia a antibióticos, en aislamientos clínicos de Pseudomonas aeruginosa mediante secuenciación de genoma completo (WGS)
title_sort Seguimiento epidemiológico de los perfiles genómicos de resistencia a antibióticos, en aislamientos clínicos de Pseudomonas aeruginosa mediante secuenciación de genoma completo (WGS)
dc.creator.fl_str_mv Cuello Mejia, Mishelle
dc.contributor.advisor.none.fl_str_mv Barreto Hernández, Emiliano
Reguero Reza, María Teresa Jesús
dc.contributor.author.none.fl_str_mv Cuello Mejia, Mishelle
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Bioinformática
Grupo de Epidemiología Molecular
dc.subject.ddc.spa.fl_str_mv 610 - Medicina y salud
000 - Ciencias de la computación, información y obras generales
topic 610 - Medicina y salud
000 - Ciencias de la computación, información y obras generales
Bacterias
Bacteria
Epidemiological Monitoring
Monitoreo epidemiológico
Pseudomonas aeruginosa
Infecciones Asociadas a la Atención en Salud
Resistencia a antibióticos
Seguimiento epidemiológico
Secuenciación de Genoma Completo
Grupos clonales
Secuencio-tipos (ST)
Healthcare-Associated Infections (HAIs)
Antibiotic resistance
Epidemiological tracing
Whole Genome Sequencing (WGS)
Sequence-types (ST)
Clonal groups
dc.subject.decs.spa.fl_str_mv Bacterias
dc.subject.decs.eng.fl_str_mv Bacteria
Epidemiological Monitoring
dc.subject.decs.epa.fl_str_mv Monitoreo epidemiológico
dc.subject.proposal.spa.fl_str_mv Pseudomonas aeruginosa
Infecciones Asociadas a la Atención en Salud
Resistencia a antibióticos
Seguimiento epidemiológico
Secuenciación de Genoma Completo
Grupos clonales
Secuencio-tipos (ST)
dc.subject.proposal.eng.fl_str_mv Healthcare-Associated Infections (HAIs)
Antibiotic resistance
Epidemiological tracing
Whole Genome Sequencing (WGS)
Sequence-types (ST)
Clonal groups
description ilustraciones, fotografías, mapas
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-10-07
dc.date.accessioned.none.fl_str_mv 2023-07-07T13:55:45Z
dc.date.available.none.fl_str_mv 2023-07-07T13:55:45Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84156
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84156
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abril D, Bravo-Ojeda J, García J, Leal -Castro A, Saavedra-Trujillo C, Madroñero J, Bustos R, Márquez-Ortiz R, Corredor-Rozo Z, Vanegas-Gómez N, E.-P. J. (2022). Nuevas plataformas de movilización de blaKPC-2 y blaKPC-3 en aislamientos clínicos de Pseudomonas aeruginosa ST111 y ST235 de instituciones de Bogotá. XIII Encuentro Nacional - III Encuentro Latinoaméricano de Investigación En Enfermedades Infecciosas.
Adwan, G., & Omar, G. (2021). Phenotypic and molecular characterization of fluoroquinolone resistant Pseudomonas aeruginosa isolates in Palestine. Brazilian Journal of Biology = Revista Brasleira de Biologia, 82. https://doi.org/10.1590/1519-6984.239868
Akpaka, P. E., Swanston, W. H., Ihemere, H. N., Correa, A., Torres, J. A., Tafur, J. D., Montealegre, M. C., Quinn, J. P., & Villegas, M. V. (2009). Emergence of KPC-producing Pseudomonas aeruginosa in Trinidad and Tobago. Journal of Clinical Microbiology, 47(8), 2670–2671. https://doi.org/10.1128/JCM.00362-09
Alós, J.-I. (2015). Resistencia bacteriana a los antibióticos: una crisis global Antibiotic resistance: A global crisis. Enferm Infecc Microbiol Clin, 33(10), 692–699. https://doi.org/10.1016/j.eimc.2014.10.004
Asociación Colombiana de Infectología Capítulo central. (2021). Documento de actualización de criterios de notificación de Infecciones Asociadas a la Atención en Salud (IAAS) al sistema de vigilancia epidemiológica en Bogotá D.C.
Azam, M. W., & Khan, A. U. (2019). Updates on the pathogenicity status of Pseudomonas aeruginosa. Drug Discovery Today, 24(1), 350–359. https://doi.org/10.1016/J.DRUDIS.2018.07.003
Balabanova, L., Shkryl, Y., Slepchenko, L., Cheraneva, D., Podvolotskaya, A., Bakunina, I., Nedashkovskaya, O., Son, O., & Tekutyeva, L. (2020). Genomic Features of a Food-Derived Pseudomonas aeruginosa Strain PAEM and Biofilm-Associated Gene Expression under a Marine Bacterial α-Galactosidase. International Journal of Molecular Sciences, 21(20), 1–25. https://doi.org/10.3390/IJMS21207666
Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., & Pevzner, P. A. (2012). SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 19(5), 455–477. https://doi.org/10.1089/cmb.2012.0021
Berrazeg, M., Jeannot, K., Ntsogo Enguéné, V. Y., Broutin, I., Loeffert, S., Fournier, D., & Plésiat, P. (2015). Mutations in β-Lactamase AmpC Increase Resistance of Pseudomonas aeruginosa Isolates to Antipseudomonal Cephalosporins.
Bisht, K., Baishya, J., & Wakeman, C. A. (2020). Pseudomonas aeruginosa polymicrobial interactions during lung infection. Current Opinion in Microbiology, 53, 1–8. https://doi.org/10.1016/J.MIB.2020.01.014
Blanc, D. S., Magalhães, B., Koenig, I., Senn, L., & Grandbastien, B. (2020). Comparison of Whole Genome (wg-) and Core Genome (cg-) MLST (BioNumericsTM) Versus SNP Variant Calling for Epidemiological Investigation of Pseudomonas aeruginosa. Frontiers in Microbiology, 11, 1729. https://doi.org/10.3389/FMICB.2020.01729/FULL
Botelho, J., Grosso, F., & Peixe, L. (2019). Antibiotic resistance in Pseudomonas aeruginosa – Mechanisms, epidemiology and evolution. Drug Resistance Updates, 44, 100640. https://doi.org/10.1016/J.DRUP.2019.07.002
Bouglé, A., Tuffet, S., Federici, L., Leone, M., Monsel, A., Dessalle, T., Amour, J., Dahyot-Fizelier, C., Barbier, F., Luyt, C.-E., Langeron, O., Cholley, B., Pottecher, J., Hissem, T., Lefrant, J.-Y., Veber, B., Legrand, M., Demoule, A., Kalfon, P., … Soussi, N. (2022). Comparison of 8 versus 15 days of antibiotic therapy for Pseudomonas aeruginosa ventilator-associated pneumonia in adults: a randomized, controlled, open-label trial. Intensive Care Medicine, 48(7). https://doi.org/10.1007/S00134-022-06690-5
Boukerb, A. M., Simon, M., Pernet, E., Jouault, A., Portier, E., Persyn, E., Bouffartigues, E., Bazire, A., Chevalier, S., Feuilloley, M. G. J., Lesouhaitier, O., Caillon, J., & Dufour, A. (2020). Draft Genome Sequences of Four Pseudomonas aeruginosa Clinical Strains with Various Biofilm Phenotypes. Microbiology Resource Announcements, 9(1). https://doi.org/10.1128/MRA.01286-19
Brinkman, F. S. L., Winsor, G. L., Done, R. E., Filloux, A., Francis, V. I., Goldberg, J. B., Greenberg, E. P., Han, K., Hancock, R. E. W., Haney, C. H., Häußler, S., Klockgether, J., Lamont, I. L., Levesque, R. C., Lory, S., Nikel, P. I., Porter, S. L., Scurlock, M. W., Schweizer, H. P., … Welch, M. (2021). The Pseudomonas aeruginosa whole genome sequence: A 20th anniversary celebration. Advances in Microbial Physiology, 79, 25–88. https://doi.org/10.1016/BS.AMPBS.2021.07.001
Cantón, R., Gijón, D., & Ruiz-Garbajosa, P. (2020). Antimicrobial resistance in ICUs: An update in the light of the COVID-19 pandemic. Current Opinion in Critical Care, 26(5), 433–441. https://doi.org/10.1097/MCC.0000000000000755
Chevalier, S., Bouffartigues, E., Bodilis, J., Maillot, O., Lesouhaitier, O., Feuilloley, M. G. J., Orange, N., Dufour, A., & Cornelis, P. (2017). Structure, function and regulation of Pseudomonas aeruginosa porins. FEMS Microbiology Reviews, 41(5), 698–722. https://doi.org/10.1093/FEMSRE/FUX020
Choudhury, M. A., Sidjabat, H. E., Zowawi, H. M., Marsh PhD, N., Larsen, E., Runnegar PhD, N., Paterson, D. L., McMillan, D. J., & Rickard, C. M. (2019). Skin colonization at peripheral intravenous catheter insertion sites increases the risk of catheter colonization and infection. American Journal of Infection Control, 47(12), 1484–1488. https://doi.org/10.1016/J.AJIC.2019.06.002
Christaki, E., Marcou, M., & Tofarides, A. (2020). Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. Journal of Molecular Evolution, 88(1), 26–40. https://doi.org/10.1007/S00239-019-09914-3
Cicek, A. Ç., Ertürk, A., Ejder, N., Rakici, E., Kostakoğlu, U., Yıldız, İ. E., Özyurt, S., & Sönmez, E. (2021). Screening of Antimicrobial Resistance Genes and Epidemiological Features in Hospital and Community-Associated Carbapenem-Resistant Pseudomonas aeruginosa Infections. Infection and Drug Resistance, 14, 1517–1526. https://doi.org/10.2147/IDR.S299742
Colque, C. A., Orio, A. G. albarracín, Tomatis, P. E., Dotta, G., Moreno, D. M., Hedemann, L. G., Hickman, R. A., Sommer, L. M., Feliziani, S., Moyano, A. J., Bonomo, R. A., Johansen, H. K., Molin, S., Vila, A. J., & Smania, A. M. (2022). Longitudinal Evolution of the Pseudomonas-Derived Cephalosporinase (PDC) Structure and Activity in a Cystic Fibrosis Patient Treated with β-Lactams. MBio. https://doi.org/10.1128/MBIO.01663-22
Correa, A., Del Campo, R., Perenguez, M., Blanco, V. M., Rodríguez-Baños, M., Perez, F., Maya, J. J., Rojas, L., Cantón, R., Arias, C. A., & Villegas, M. V. (2015b). Dissemination of High-Risk Clones of Extensively Drug-Resistant Pseudomonas aeruginosa in Colombia. Antimicrobial Agents and Chemotherapy, 59(4), 2421. https://doi.org/10.1128/AAC.03926-14
Cuzon, G., Naas, T., & Nordmann, P. (2011). Functional characterization of Tn4401, a Tn3-based transposon involved in bla KPC gene mobilization. Antimicrobial Agents and Chemotherapy, 55(11), 5370–5373. https://doi.org/10.1128/AAC.05202-11/ASSET/8C7C3BCE-2C69-4925-A208-D347394DAC3B/ASSETS/GRAPHIC/ZAC9991003010003.JPEG
Dai, X., Zhou, D., Xiong, W., Feng, J., Luo, W., Luo, G., Wang, H., Sun, F., & Zhou, X. (2016). The IncP-6 plasmid p10265-KPC from Pseudomonas aeruginosa carries a novel ΔISEc33-associated blaKPC-2 gene cluster. Frontiers in Microbiology, 7(MAR), 310. https://doi.org/10.3389/FMICB.2016.00310/BIBTEX
De Oliveira, D. M. P., Forde, B. M., Kidd, T. J., Harris, P. N. A., Schembri, M. A., Beatson, S. A., Paterson, D. L., & Walker, M. J. (2020). Antimicrobial resistance in ESKAPE pathogens. Clinical Microbiology Reviews, 33(3). https://doi.org/10.1128/CMR.00181-19/ASSET/CBA1C1D1-CF90-43DE-A9DF-32D24A4334AC/ASSETS/GRAPHIC/CMR.00181-19-F0001.JPEG
De Sousa, T., Hébraud, M., Enes Dapkevicius, M. L. N., Maltez, L., Pereira, J. E., Capita, R., Alonso-Calleja, C., Igrejas, G., & Poeta, P. (2021). Genomic and Metabolic Characteristics of the Pathogenicity in Pseudomonas aeruginosa. International Journal of Molecular Sciences, 22(23). https://doi.org/10.3390/IJMS222312892
Del Barrio-Tofiño, E., López-Causapé, C., & Oliver, A. (2020). Pseudomonas aeruginosa epidemic high-risk clones and their association with horizontally-acquired β-lactamases: 2020 update. International Journal of Antimicrobial Agents, 56(6),
Deshpande, R., & Zou, C. (2020). Pseudomonas Aeruginosa Induced Cell Death in Acute Lung Injury and Acute Respiratory Distress Syndrome. International Journal of Molecular Sciences, 21(15), 1–17. https://doi.org/10.3390/IJMS21155356
Deurenberg, R. H., Bathoorn, E., Chlebowicz, M. A., Couto, N., Ferdous, M., García-Cobos, S., Kooistra-Smid, A. M. D., Raangs, E. C., Rosema, S., Veloo, A. C. M., Zhou, K., Friedrich, A. W., & Rossen, J. W. A. (2017). Application of next generation sequencing in clinical microbiology and infection prevention. Journal of Biotechnology, 243, 16–24. https://doi.org/10.1016/J.JBIOTEC.2016.12.022
Estepa, V., Rojo-Bezares, B., Torres, C., & Sáenz, Y. (2014). Faecal carriage of Pseudomonas aeruginosa in healthy humans: antimicrobial susceptibility and global genetic lineages. FEMS Microbiology Ecology, 89(1), 15–19. https://doi.org/10.1111/1574-6941.12301
Fabre, V., Amoah, J., Cosgrove, S. E., & Tamma, P. D. (2019). Antibiotic Therapy for Pseudomonas aeruginosa Bloodstream Infections: How Long Is Long Enough? Clinical Infectious Diseases : An Official Publication of the Infectious Diseases Society of America, 69(11), 2011–2014. https://doi.org/10.1093/CID/CIZ223
Ferreiro, J. L. L., Otero, J. Á., Rivo, A. S., González, L. G., Conde, I. R., Soneira, M. F., García, J. P., & de la Fuente Aguado, J. (2021). Outpatient therapy with piperacillin/tazobactam using elastomeric pumps in patients with Pseudomonas aeruginosa infection. Scientific Reports, 11(1), 1–4. https://doi.org/10.1038/s41598-021-88179-7
Fujiwara, M., Yamasaki, S., Morita, Y., & Nishino, K. (2022). Evaluation of efflux pump inhibitors of MexAB- or MexXY-OprM in Pseudomonas aeruginosa using nucleic acid dyes. Journal of Infection and Chemotherapy, 28(5), 595–601. https://doi.org/10.1016/J.JIAC.2022.01.003
Galetti, R., Andrade, L. N., Varani, A. M., & Darini, A. L. C. (2019). A Phage-Like Plasmid Carrying blaKPC-2 Gene in Carbapenem-Resistant Pseudomonas aeruginosa. Frontiers in Microbiology, 10(MAR). https://doi.org/10.3389/FMICB.2019.00572
García-Betancur, J. C., Appel, T. M., Esparza, G., Gales, A. C., Levy-Hara, G., Cornistein, W., Vega, S., Nuñez, D., Cuellar, L., Bavestrello, L., Castañeda-Méndez, P. F., Villalobos-Vindas, J. M., & Villegas, M. V. (2021). Update on the epidemiology of carbapenemases in Latin America and the Caribbean. Expert Review of Anti-Infective Therapy, 19(2), 197–213. https://doi.org/10.1080/14787210.2020.1813023
Ge, C., Wei, Z., Jiang, Y., Shen, P., Yu, Y., & Li, L. (2011). Identification of KPC-2-producing Pseudomonas aeruginosa isolates in China. The Journal of Antimicrobial Chemotherapy, 66(5), 1184–1186. https://doi.org/10.1093/JAC/DKR060
Gerver, S. M., Nsonwu, O., Thelwall, S., Brown, C. S., & Hope, R. (2022). Trends in rates of incidence, fatality and antimicrobial resistance among isolates of Pseudomonas spp. causing bloodstream infections in England between 2009 and 2018: results from a national voluntary surveillance scheme. Journal of Hospital Infection, 120,
Gómez, J., García-Vázquez, E., & Hernández-Torres, A. (2015). Los betalactámicos en la práctica clínica. Rev Esp Quimioter, 28(1), 1–9.
Gu, W., Miller, S., & Chiu, C. Y. (2019). Clinical Metagenomic Next-Generation Sequencing for Pathogen Detection. Annual Review of Pathology, 14, 319–338. https://doi.org/10.1146/ANNUREV-PATHMECHDIS-012418-012751
Gudiol, C., Albasanz-Puig, A., Laporte-Amargós, J., Pallarès, N., Mussetti, A., Ruiz-Camps, I., Puerta-Alcalde, P., Abdala, E., Oltolini, C., Akova, M., Montejo, M., Mikulska, M., Martín-Dávila, P., Herrera, F., Gasch, O., Drgona, L., Paz Morales, H., Brunel, A. S., García, E., … Sangro Del Alcázar, P. (2020). Clinical Predictive Model of Multidrug Resistance in Neutropenic Cancer Patients with Bloodstream Infection Due to Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 64(4). https://doi.org/10.1128/AAC.02494-19
Gurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: quality assessment tool for genome assemblies. Bioinformatics (Oxford, England), 29(8), 1072–1075. https://doi.org/10.1093/BIOINFORMATICS/BTT086
Hadfield, J., Croucher, N. J., Goater, R. J., Abudahab, K., Aanensen, D. M., & Harris, S. R. (2018). Phandango: an interactive viewer for bacterial population genomics. Bioinformatics (Oxford, England), 34(2), 292–293. https://doi.org/10.1093/BIOINFORMATICS/BTX610
Hagemann, J. B., Pfennigwerth, N., Gatermann, S. G., von Baum, H., & Essig, A. (2018). KPC-2 carbapenemase-producing Pseudomonas aeruginosa reaching Germany. The Journal of Antimicrobial Chemotherapy, 73(7), 1812–1814. https://doi.org/10.1093/JAC/DKY105
Hassaine, H., Morghad, T., Bellifa, S., Lachachi, M., Kara-Terki, I., M’Hamedi, I., & Meziani, Z. (2019). In Vitro Inhibition Assay of Pseudomonas Aeruginosa Biofilm Formation on Urinary Catheter. Journal of Infection and Public Health, 12(1), 122. https://doi.org/10.1016/J.JIPH.2018.10.058
Hernández, M., Quijada, N. M., Rodríguez-Lázaro, D., & Eiros, J. M. (2020). Aplicación de la secuenciación masiva y la bioinformática al diagnóstico microbiológico clínico. Revista Argentina de Microbiología, 52(2), 150–161. https://doi.org/10.1016/J.RAM.2019.06.003
Horcajada, J. P., Montero, M., Oliver, A., Sorlí, L., Luque, S., Gómez-Zorrilla, S., Benito, N., & Grau, S. (2019). Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clinical Microbiology Reviews, 32(4), 1–52. https://doi.org/10.1128/CMR.00031-19
Huemer, M., Shambat, S. M., Brugger, S. D., & Zinkernagel, A. S. (2020). Antibiotic resistance and persistence—Implications for human health and treatment perspectives. EMBO Reports, 21(12). https://doi.org/10.15252/EMBR.202051034
Hurley, J. C. (2019). Worldwide variation in Pseudomonas associated ventilator associated pneumonia. A meta-regression. Journal of Critical Care, 51, 88–93. https://doi.org/10.1016/j.jcrc.2019.02.001
Hyatt, D., Chen, G. L., LoCascio, P. F., Land, M. L., Larimer, F. W., & Hauser, L. J. (2010). Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics, 11(1), 1–11. https://doi.org/10.1186/1471-2105-11-119/TABLES/5
Illumina. (2020). Illumina DNA Prep Reference Guide Consumable. In Illumina (Issue June). https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/illumina_prep/illumina-dna-prep-reference-guide-1000000025416-09.pdf
Instituto Nacional de Salud. (2021). Grupo de microbiología, Vigilancia de resistencia antimicrobia. In Boletín epidemiológico semanal. https://doi.org/10.33610/23576189.2022.03
Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T., & Aluru, S. (2017). High-throughput ANI Analysis of 90K Prokaryotic Genomes Reveals Clear Species Boundaries. BioRxiv, 225342. https://doi.org/10.1101/225342
Jiménez Pearson, M. A., Galas, M., Corso, A., Hormazábal, J. C., Duarte Valderrama, C., Salgado Marcano, N., Ramón-Pardo, P., & Melano, R. G. (2019). Consenso latinoamericano para definir, categorizar y notificar patógenos multirresistentes, con resistencia extendida o panresistentes. Rev Panam Salud Publica;43, Ago. 2019, 1–8. https://doi.org/10.26633/RPSP.2019.65
Juarez, P., Broutin, I., Bordi, C., Plésiat, P., & Llanes, C. (2018). Constitutive activation of MexT by amino acid substitutions results in MexEF-OprN overproduction in clinical isolates of pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 62(5). https://doi.org/10.1128/AAC.02445-17
June, C. M., Vallier, B. C., Bonomo, R. A., Leonard, D. A., & Powers, R. A. (2014). Structural origins of oxacillinase specificity in class D β-lactamases. Antimicrobial Agents and Chemotherapy, 58(1), 333–341. https://doi.org/10.1128/AAC.01483-13
Klockgether, J., Cramer, N., Wiehlmann, L., Davenport, C. F., & Tümmler, B. (2011). Pseudomonas aeruginosa Genomic Structure and Diversity. Frontiers in Microbiology, 0(JULY), 150. https://doi.org/10.3389/FMICB.2011.00150
Kolbe, D. L., & Eddy, S. R. (2011). Fast filtering for RNA homology search. Bioinformatics, 27(22), 3102–3109. https://doi.org/10.1093/BIOINFORMATICS/BTR545
Krawczyk, P. S., Lipinski, L., & Dziembowski, A. (2018). PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Research, 46(6), e35. https://doi.org/10.1093/NAR/GKX1321
Kumar, K. R., Cowley, M. J., & Davis, R. L. (2019). Next-Generation Sequencing and Emerging Technologies. Seminars in Thrombosis and Hemostasis, 45(7), 661–673. https://doi.org/10.1055/S-0039-1688446
Lagesen, K., Hallin, P., Rødland, E. A., Stærfeldt, H. H., Rognes, T., & Ussery, D. W. (2007). RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Research, 35(9), 3100–3108. https://doi.org/10.1093/NAR/GKM160
Langendonk, R. F., Neill, D. R., & Fothergill, J. L. (2021). The Building Blocks of Antimicrobial Resistance in Pseudomonas aeruginosa: Implications for Current Resistance-Breaking Therapies. Frontiers in Cellular and Infection Microbiology, 11, 307. https://doi.org/10.3389/FCIMB.2021.665759/BIBTEX
Laslett, D., & Canback, B. (2004). ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Research, 32(1), 11–16. https://doi.org/10.1093/NAR/GKH152
Letunic, I., & Bork, P. (2021). Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), W293–W296. https://doi.org/10.1093/NAR/GKAB301
Li, Z., Cai, Z., Cai, Z., Zhang, Y., Fu, T., Jin, Y., Cheng, Z., Jin, S., Wu, W., Yang, L., & Bai, F. (2020). Molecular genetic analysis of an XDR Pseudomonas aeruginosa ST664 clone carrying multiple conjugal plasmids. Journal of Antimicrobial Chemotherapy, 75(6), 1443–1452. https://doi.org/10.1093/JAC/DKAA063
Lister, P. D., Wolter, D. J., & Hanson, N. D. (2009). Antibacterial-resistant Pseudomonas aeruginosa: Clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clinical Microbiology Reviews, 22(4), 582–610. https://doi.org/10.1128/CMR.00040-09/ASSET/48C39C97-08B3-4013-BC8C-294A69C85D08/ASSETS/GRAPHIC/ZCM0040922970008.JPEG
Liu, M., BZ D, Zeng W, Cheng X, Tao CM, M Kang, & W-X. Jia. (2008). Research on the distribution of OXA-50 gene in carbapenems-resistant Pseudomonas aeruginosas. Chinese Journal of Antibiotics , 33, 733–735. https://www.researchgate.net/publication/289023594_Research_on_the_distribution_of_OXA-50_gene_in_carbapenems-resistant_Pseudomonas_aeruginosa
Loyola-Cruz, M. Á., Durán-Manuel, E. M., Cruz-Cruz, C., Marquez-Valdelamar, L. M., Bravata-Alcantara, J. C., Cortés-Ortíz, I. A., Cureño-Díaz, M. A., Ibáñez-Cervantes, G., Fernández-Sánchez, V., Castro-Escarpulli, G., & Bello-López, J. M. (2022). ESKAPE bacteria characterization reveals the presence of Acinetobacter baumannii and Pseudomonas aeruginosa outbreaks in COVID-19/VAP patients. American Journal of Infection Control. https://doi.org/10.1016/J.AJIC.2022.08.012
Lugo, L., & Barreto- Hernández, E. (2021). A Recurrent Neural Network approach for whole genome bacteria identification. Https://Doi.Org/10.1080/08839514.2021.1922842, 35(9), 642–656. https://doi.org/10.1080/08839514.2021.1922842
Madaha, E. L., Mienie, C., Gonsu, H. K., Bughe, R. N., Fonkoua, M. C., Mbacham, W. F., Alayande, K. A., Bezuidenhout, C. C., & Ateba, C. N. (2020). Whole-genome sequence of multi-drug resistant Pseudomonas aeruginosa strains UY1PSABAL and UY1PSABAL2 isolated from human broncho-alveolar lavage, Yaoundé, Cameroon. PLOS ONE, 15(9), e0238390. https://doi.org/10.1371/JOURNAL.PONE.0238390
McArthur, A. G., Waglechner, N., Nizam, F., Yan, A., Azad, M. A., Baylay, A. J., Bhullar, K., Canova, M. J., De Pascale, G., Ejim, L., Kalan, L., King, A. M., Koteva, K., Morar, M., Mulvey, M. R., O’Brien, J. S., Pawlowski, A. C., Piddock, L. J. V., Spanogiannopoulos, P., … Wright, G. D. (2013). The Comprehensive Antibiotic Resistance Database. Antimicrobial Agents and Chemotherapy, 57(7), 3348.
Mielko, K. A., Jabłoński, S. J., Milczewska, J., Sands, D., Łukaszewicz, M., & Młynarz, P. (2019). Metabolomic studies of Pseudomonas aeruginosa. World Journal of Microbiology and Biotechnology, 35(11), 1–11. https://doi.org/10.1007/s11274-019-2739-1
Ministerio de Salud y Protección Social. (n.d.). Guía Técnica: Buenas prácticas para la seguridad del paciente en la Atención en Salud. Retrieved February 15, 2022, from https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/CA/Detectar-Infecciones.pdf
Moloney, E. M., Deasy, E. C., Swan, J. S., Brennan, G. I., O’Donnell, M. J., & Coleman, D. C. (2020). Whole-genome sequencing identifies highly related Pseudomonas aeruginosa strains in multiple washbasin U-bends at several locations in one hospital: evidence for trafficking of potential pathogens via wastewater pipes. Journal of Hospital Infection, 104(4), 484–491. https://doi.org/10.1016/J.JHIN.2019.11.005
Moradali, M. F., Ghods, S., & Rehm, B. H. A. (2017). Pseudomonas aeruginosa lifestyle: A paradigm for adaptation, survival, and persistence. Frontiers in Cellular and Infection Microbiology, 7(FEB), 39. https://doi.org/10.3389/FCIMB.2017.00039/BIBTEX
Munita, J. M., & Arias, C. A. (2016). Mechanisms of Antibiotic Resistance. Microbiology Spectrum, 4(2), 464–472. https://doi.org/10.1128/MICROBIOLSPEC.VMBF-0016-2015
Murray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Kashef Hamadani, B. H., Kumaran, E. A. P., McManigal, B., … Naghavi, M. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, 0(0). https://doi.org/10.1016/S0140-6736(21)02724-0/ATTACHMENT/29526A6B-96B7-4673-99F3-A624169C1B92/MMC1.PDF
Naas, T., Bonnin, R. A., Cuzon, G., Villegas, M. V., & Nordmann, P. (2013). Complete sequence of two KPC-harbouring plasmids from Pseudomonas aeruginosa. The Journal of Antimicrobial Chemotherapy, 68(8), 1757–1762. https://doi.org/10.1093/JAC/DKT094
Nakayama, R., Inoue-Tsuda, M., Matsui, H., Ito, T., & Hanaki, H. (2022). Classification of the metallo β-lactamase subtype produced by the carbapenem-resistant Pseudomonas aeruginosa isolates in Japan. Journal of Infection and Chemotherapy, 28(2), 170–175. https://doi.org/10.1016/J.JIAC.2021.04.005
Nicolau, C. J., & Oliver, A. (2010). Carbapenemasas en especies del género Pseudomonas. Enfermedades Infecciosas y Microbiologia Clinica, 28(SUPPL. 1), 19–28. https://doi.org/10.1016/S0213-005X(10)70004-5
Onorato, L., Macera, M., Calò, F., Cirillo, P., Di Caprio, G., & Coppola, N. (2022). Beta-lactam monotherapy or combination therapy for bloodstream infections or pneumonia due to Pseudomonas aeruginosa: a meta-analysis. International Journal of Antimicrobial Agents, 59(3), 106512. https://doi.org/10.1016/J.IJANTIMICAG.2021.106512
Oxford Nanopore Technologies. (2021). Native barcoding genomic DNA (with EXP-NBD196 and SQK-LSK109) (Vol. 24, Issue 05386273, pp. 2–17).
Page, A. J., Cummins, C. A., Hunt, M., Wong, V. K., Reuter, S., Holden, M. T. G., Fookes, M., Falush, D., Keane, J. A., & Parkhill, J. (2015). Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics, 31(22), 3691–3693. https://doi.org/10.1093/BIOINFORMATICS/BTV421
Palzkill, T. (2013). Metallo-β-lactamase structure and function. Annals of the New York Academy of Sciences, 1277(1), 91–104. https://doi.org/10.1111/J.1749-6632.2012.06796.X
Pan, Y. ping, Xu, Y. hong, Wang, Z. xin, Fang, Y. ping, & Shen, J. lu. (2016). Overexpression of MexAB-OprM efflux pump in carbapenem-resistant Pseudomonas aeruginosa. Archives of Microbiology 2016 198:6, 198(6), 565–571. https://doi.org/10.1007/S00203-016-1215-7
Pang, Z., Raudonis, R., Glick, B. R., Lin, T. J., & Cheng, Z. (2019). Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnology Advances, 37(1), 177–192. https://doi.org/10.1016/J.BIOTECHADV.2018.11.013
Peleg, A. Y., & Hooper, D. C. (2010). Hospital-Acquired Infections Due to Gram-Negative Bacteria. The New England Journal of Medicine, 362(19), 1804. https://doi.org/10.1056/NEJMRA0904124
Penaranda, C., Chumbler, N. M., & Hung, D. T. (2021). Dual transcriptional analysis reveals adaptation of host and pathogen to intracellular survival of Pseudomonas aeruginosa associated with urinary tract infection. PLoS Pathogens, 17(4). https://doi.org/10.1371/JOURNAL.PPAT.1009534
Pesingi, P. V., Singh, B. R., Pesingi, P. K., Bhardwaj, M., Singh, S. V., Kumawat, M., Sinha, D. K., & Gandham, R. K. (2019). MexAB-OprM Efflux Pump of Pseudomonas aeruginosa Offers Resistance to Carvacrol: A Herbal Antimicrobial Agent. Frontiers in Microbiology, 10, 2664. https://doi.org/10.3389/FMICB.2019.02664/BIBTEX
Petersen, T. N., Brunak, S., Von Heijne, G., & Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods, 8(10), 785–786. https://doi.org/10.1038/NMETH.1701
Peterson, L. R. (2009). Bad Bugs, No Drugs: No ESCAPE Revisited. Clinical Infectious Diseases, 49(6), 992–993. https://doi.org/10.1086/605539
Petrova, A., Feodorova, Y., Miteva-Katrandzhieva, T., Petrov, M., & Murdjeva, M. (2019). First detected OXA-50 carbapenem-resistant clinical isolates Pseudomonas aeruginosa from Bulgaria and interplay between the expression of main efflux pumps, OprD and intrinsic AmpC. Journal of Medical Microbiology, 68(12), 1723–1731. https://doi.org/10.1099/JMM.0.001106/CITE/REFWORKS
Raman, G., Avendano, E. E., Chan, J., Merchant, S., & Puzniak, L. (2018). Risk factors for hospitalized patients with resistant or multidrug-resistant Pseudomonas aeruginosa infections: a systematic review and meta-analysis. Antimicrobial Resistance & Infection Control 2018 7:1, 7(1), 1–14. https://doi.org/10.1186/S13756-018-0370-9
Rice, L. B. (2008). Federal Funding for the Study of Antimicrobial Resistance in Nosocomial Pathogens: No ESKAPE. The Journal of Infectious Diseases, 197(8), 1079–1081. https://doi.org/10.1086/533452
Roy, P. H., Tetu, S. G., Larouche, A., Elbourne, L., Tremblay, S., Ren, Q., Dodson, R., Harkins, D., Shay, R., Watkins, K., Mahamoud, Y., & Paulsen, I. T. (2010). Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7. PLoS ONE, 5(1), 1–10. https://doi.org/10.1371/journal.pone.0008842
Sader, H. S., Castanheira, M., Duncan, L. R., & Mendes, R. E. (2021). Antimicrobial activities of ceftazidime/avibactam, ceftolozane/tazobactam, imipenem/relebactam, meropenem/vaborbactam, and comparators against Pseudomonas aeruginosa from patients with skin and soft tissue infections. International Journal of Infectious Diseases, 113, 279–281. https://doi.org/10.1016/J.IJID.2021.10.022
Saini, H., Vadekeetil, A., Chhibber, S., & Harjai, K. (2017). Azithromycin-Ciprofloxacin-Impregnated Urinary Catheters Avert Bacterial Colonization, Biofilm Formation, and Inflammation in a Murine Model of Foreign-Body-Associated Urinary Tract Infections Caused by Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 61(3). https://doi.org/10.1128/AAC.01906-16
Seemann, T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics (Oxford, England), 30(14), 2068–2069. https://doi.org/10.1093/BIOINFORMATICS/BTU153
Shortridge, D., Gales, A. C., Streit, J. M., Huband, M. D., Tsakris, A., & Jones, R. N. (2019). Geographic and temporal patterns of antimicrobial resistance in pseudomonas aeruginosa over 20 years from the SENTRY Antimicrobial Surveillance Program, 1997-2016. Open Forum Infectious Diseases, 6(Suppl 1), S63–S68. https://doi.org/10.1093/ofid/ofy343
Singh, S., Pulusu, C. P., Pathak, A., Pradeep, B. E., & Prasad, K. N. (2021). Complete genome sequence of an extensively drug-resistant Pseudomonas aeruginosa ST773 clinical isolate from North India. Journal of Global Antimicrobial Resistance, 27, 244–246. https://doi.org/10.1016/J.JGAR.2021.10.010
Sood, U., Hira, P., Kumar, R., Bajaj, A., Rao, D. L. N., Lal, R., & Shakarad, M. (2019). Comparative genomic analyses reveal core-genome-wide genes under positive selection and major regulatory hubs in outlier strains of Pseudomonas aeruginosa. Frontiers in Microbiology, 10(FEB), 53. https://doi.org/10.3389/FMICB.2019.00053/BIBTEX
Spernovasilis, N., Psichogiou, M., & Poulakou, G. (2021). Skin manifestations of Pseudomonas aeruginosa infections. Current Opinion in Infectious Diseases, 34(2), 2–79. https://doi.org/10.1097/QCO.0000000000000717
Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312–1313. https://doi.org/10.1093/BIOINFORMATICS/BTU033
Stover, C. K., Pham, X. Q., Erwin, A. L., Mizoguchi, S. D., Warrener, P., Hickey, M. J., Brinkman, F. S. L., Hufnagle, W. O., Kowallk, D. J., Lagrou, M., Garber, R. L., Goltry, L., Tolentino, E., Westbrock-Wadman, S., Yuan, Y., Brody, L. L., Coulter, S. N., Folger, K. R., Kas, A., … Olson, M. V. (2000). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 2000 406:6799, 406(6799), 959–964. https://doi.org/10.1038/35023079
Sun, Y., Han, R., Ding, L., Yang, Y., Guo, Y., Wu, S., Hu, F., & Yin, D. (2021). First Report of blaOXA-677 with Enhanced Meropenem-Hydrolyzing Ability in Pseudomonas aeruginosa in China. Infection and Drug Resistance, 14, 5725. https://doi.org/10.2147/IDR.S340662
Tavare, S. (1986). Some probabilistic and statistical problems in the analysis of DNA sequences. Some Mathematical Questions in Biology / DNA Sequence Analysis Edited by Robert M. Miura. https://doi.org/10.3/JQUERY-UI.JS
Tsay, T. Bin, Jiang, Y. Z., Hsu, C. M., & Chen, L. W. (2016). Pseudomonas aeruginosa colonization enhances ventilator-associated pneumonia-induced lung injury. Respiratory Research, 17(1). https://doi.org/10.1186/S12931-016-0417-5
Vanegas, J. M., Cienfuegos, A. V., Ocampo, A. M., López, L., Del Corral, H., Roncancio, G., Sierra, P., Echeverri-Toro, L., Ospina, S., Maldonado, N., Robledo, C., Restrepo, A., & Jiménez, J. N. (2014). Similar frequencies of Pseudomonas aeruginosa isolates producing KPC and VIM carbapenemases in diverse genetic clones at tertiary-care hospitals in Medellín, Colombia. Journal of Clinical Microbiology, 52(11), 3978–3986. https://doi.org/10.1128/JCM.01879-14
Villegas, M. V., Lolans, K., Correa, A., Kattan, J. N., Lopez, J. A., & Quinn, J. P. (2007). First identification of Pseudomonas aeruginosa isolates producing a KPC-type carbapenem-hydrolyzing beta-lactamase. Antimicrobial Agents and Chemotherapy, 51(4), 1553–1555. https://doi.org/10.1128/AAC.01405-06
Wei, L., Wu, Q., Zhang, J., Guo, W., Gu, Q., Wu, H., Wang, J., Lei, T., Xue, L., Zhang, Y., Wei, X., & Zeng, X. (2020). Prevalence, Virulence, Antimicrobial Resistance, and Molecular Characterization of Pseudomonas aeruginosa Isolates From Drinking Water in China. Frontiers in Microbiology, 11, 544653. https://doi.org/10.3389/FMICB.2020.544653/FULL
Wencewicz, T. A., & Drive, O. B. (2020). Crossroads of Antibiotic Resistance and Biosynthesis Timothy. J Mol Biol., 431(18), 3370–3399. https://doi.org/10.1016/j.jmb.2019.06.033.Crossroads
WHO. (2017). World Health Organization releases global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. https://doi.org/10.4103/jms.jms_25_17
Wick, R. R., Judd, L. M., Gorrie, C. L., & Holt, K. E. (2017). Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLOS Computational Biology, 13(6), e1005595. https://doi.org/10.1371/JOURNAL.PCBI.1005595
Yang, K., Xiao, T., Shi, Q., Zhu, Y., Ye, J., Zhou, Y., & Xiao, Y. (2021). Socioeconomic burden of bloodstream infections caused by carbapenem-resistant and carbapenem-susceptible Pseudomonas aeruginosa in China. Journal of Global Antimicrobial Resistance, 26, 101–107. https://doi.org/10.1016/J.JGAR.2021.03.032
Yoon, E. J., & Jeong, S. H. (2021). Mobile Carbapenemase Genes in Pseudomonas aeruginosa. Frontiers in Microbiology, 12, 30. https://doi.org/10.3389/FMICB.2021.614058/BIBTEX
Yoshinaga, Y., Daum, C., He, G., & O’Malley, R. (2018). Genome Sequencing. Methods in Molecular Biology (Clifton, N.J.), 1775, 37–52. https://doi.org/10.1007/978-1-4939-7804-5_4
Yuan, M., Guan, H., Sha, D., Cao, W., Song, X., Che, J., Kan, B., & Li, J. (2021). Characterization of blakpc-2-carrying plasmid pr31-kpc from a pseudomonas aeruginosa strain isolated in china. Antibiotics, 10(10). https://doi.org/10.3390/ANTIBIOTICS10101234/S1
Zahedi, A., Rahbar, M., Hamidi-farahani, R., & Asgari, A. (2021). Microbial Pathogenesis Expression of RND efflux pumps mediated antibiotic resistance in Pseudomonas aeruginosa clinical strains. Microbial Pathogenesis, 153(January), 104789. https://doi.org/10.1016/j.micpath.2021.104789
Zhao, W. H., & Hu, Z. Q. (2010). β-Lactamases identified in clinical isolates of Pseudomonas aeruginosa. Http://Dx.Doi.Org/10.3109/1040841X.2010.481763, 36(3), 245–258. https://doi.org/10.3109/1040841X.2010.481763
Zubyk, H. L., & Wright, G. D. (2021). CrpP Is Not a Fluoroquinolone-Inactivating Enzyme. Antimicrobial Agents and Chemotherapy, 65(8). https://doi.org/10.1128/AAC.00773-21
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 124 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Microbiología
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá,Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84156/4/1065651232.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/84156/5/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84156/6/1065651232.2023.pdf.jpg
bitstream.checksum.fl_str_mv 97844219dee4c3d88a696b58b53266fa
eb34b1cf90b7e1103fc9dfd26be24b4a
18e9acb8ea9c688bd4766f35edb17f82
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089280392265728
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Barreto Hernández, Emilianob7a2cae2c08b5d6a549e173576c6c82dReguero Reza, María Teresa Jesús9ba54bc0326cdc978d84a9a9130f2d0cCuello Mejia, Mishelle3266d749cbd282158f458a03d0e4f619Grupo de BioinformáticaGrupo de Epidemiología Molecular2023-07-07T13:55:45Z2023-07-07T13:55:45Z2022-10-07https://repositorio.unal.edu.co/handle/unal/84156Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, mapasPseudomonas aeruginosa es uno de los principales microorganismos causantes de Infecciones Asociadas a la Atención en Salud, importante en el contexto epidemiológico actual debido a la emergencia de resistencia a los carbapenémicos. Teniendo en cuenta este planteamiento, el objetivo general del estudio consistió en realizar el seguimiento epidemiológico de los perfiles genómicos de resistencia a antibióticos, en aislamientos clínicos de P. aeruginosa mediante secuenciación de genoma completo (WGS). Para ello, se planteó un estudio prospectivo, descriptivo en una institución hospitalaria de tercer nivel de complejidad en Bogotá-Colombia, durante los años 2019 y 2020; se analizaron aislamientos clínicos de P. aeruginosa provenientes de pacientes internados en los servicios de UCI y hospitalización. Se obtuvieron 43 aislamientos provenientes de 32 pacientes, secuenciados utilizando las plataformas Illumina y Oxford Nanopore. En cuanto a los genomas analizados, se anotaron 95 genes diferentes mediadores de resistencia, encontrándose la presencia del gen blaKPC-3, este es el segundo reporte de blaKPC-3 en P. aeruginosa en Colombia. Se detectó la presencia 14 secuencio-tipos (ST), siendo el ST111 el más frecuente, adicionalmente se identificaron 7 nuevos ST que a la fecha no han sido reportados. A partir de un árbol de SNP (Single Nucleotide Polymorphism), se evidenció la presencia de 3 grupos clonales. En conclusión, la investigación epidemiológica y genómica combinada permitió identificar las variaciones intrapaciente a nivel de perfiles genómicos de resistencia y la diversidad genética de los aislamientos de P. aeruginosa, lo cual posibilitó establecer posibles rutas de transmisión entre pacientes vinculados por proximidad en periodos de tiempo y espacio. (Texto tomado de la fuente)Pseudomonas aeruginosa is one of the main microorganisms that cause healthcare-associated infections (HAIs), important in the current epidemiological context due to the emergence of resistance to carbapenems. Taking this into consideration, the general objective of the study was to perform the epidemiological tracing of the genomic profiles of antibiotic resistance in clinical isolates of P. aeruginosa using Whole Genome Sequencing (WGS). For this, a prospective and descriptive study was proposed in a third level hospital in Bogotá-Colombia, during 2019 and 2020; clinical isolates of P. aeruginosa from patients of ICU and hospitalization services were analyzed. 43 isolates from 32 patients were obtained and sequenced using the Illumina and Oxford Nanopore platforms. Regarding the analyzed genomes, 95 different resistance mediator genes were annotated, finding the blaKPC-3 gene which is the second report of blaKPC-3 in P. aeruginosa in Colombia. The presence of 14 sequence-types (ST) were identified, being the ST111 the most frequent; in addition, 7 new STs that have not been previously reported were identified in this study. From a SNP (Single Nucleotide Polymorphism) tree, the presence of 3 clonal groups were evidenced. In conclusion, the epidemiological and genomic research allowed to identify intra-patient variations of the genomic resistance profiles and the genetic diversity of the P. aeruginosa isolates, leading to establish possible routes of transmission between patients linked by proximity in periods of time and space.MaestríaMagíster en Ciencias - MicrobiologíaBiología molecular de agentes infecciosos124 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - MicrobiologíaFacultad de CienciasBogotá,ColombiaUniversidad Nacional de Colombia - Sede Bogotá610 - Medicina y salud000 - Ciencias de la computación, información y obras generalesBacteriasBacteriaEpidemiological MonitoringMonitoreo epidemiológicoPseudomonas aeruginosaInfecciones Asociadas a la Atención en SaludResistencia a antibióticosSeguimiento epidemiológicoSecuenciación de Genoma CompletoGrupos clonalesSecuencio-tipos (ST)Healthcare-Associated Infections (HAIs)Antibiotic resistanceEpidemiological tracingWhole Genome Sequencing (WGS)Sequence-types (ST)Clonal groupsSeguimiento epidemiológico de los perfiles genómicos de resistencia a antibióticos, en aislamientos clínicos de Pseudomonas aeruginosa mediante secuenciación de genoma completo (WGS)Epidemiological tracing of the genomic profiles of antibiotic resistance in clinical isolates of P. aeruginosa using Whole Genome Sequencing (WGS)Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbril D, Bravo-Ojeda J, García J, Leal -Castro A, Saavedra-Trujillo C, Madroñero J, Bustos R, Márquez-Ortiz R, Corredor-Rozo Z, Vanegas-Gómez N, E.-P. J. (2022). Nuevas plataformas de movilización de blaKPC-2 y blaKPC-3 en aislamientos clínicos de Pseudomonas aeruginosa ST111 y ST235 de instituciones de Bogotá. XIII Encuentro Nacional - III Encuentro Latinoaméricano de Investigación En Enfermedades Infecciosas.Adwan, G., & Omar, G. (2021). Phenotypic and molecular characterization of fluoroquinolone resistant Pseudomonas aeruginosa isolates in Palestine. Brazilian Journal of Biology = Revista Brasleira de Biologia, 82. https://doi.org/10.1590/1519-6984.239868Akpaka, P. E., Swanston, W. H., Ihemere, H. N., Correa, A., Torres, J. A., Tafur, J. D., Montealegre, M. C., Quinn, J. P., & Villegas, M. V. (2009). Emergence of KPC-producing Pseudomonas aeruginosa in Trinidad and Tobago. Journal of Clinical Microbiology, 47(8), 2670–2671. https://doi.org/10.1128/JCM.00362-09Alós, J.-I. (2015). Resistencia bacteriana a los antibióticos: una crisis global Antibiotic resistance: A global crisis. Enferm Infecc Microbiol Clin, 33(10), 692–699. https://doi.org/10.1016/j.eimc.2014.10.004Asociación Colombiana de Infectología Capítulo central. (2021). Documento de actualización de criterios de notificación de Infecciones Asociadas a la Atención en Salud (IAAS) al sistema de vigilancia epidemiológica en Bogotá D.C.Azam, M. W., & Khan, A. U. (2019). Updates on the pathogenicity status of Pseudomonas aeruginosa. Drug Discovery Today, 24(1), 350–359. https://doi.org/10.1016/J.DRUDIS.2018.07.003Balabanova, L., Shkryl, Y., Slepchenko, L., Cheraneva, D., Podvolotskaya, A., Bakunina, I., Nedashkovskaya, O., Son, O., & Tekutyeva, L. (2020). Genomic Features of a Food-Derived Pseudomonas aeruginosa Strain PAEM and Biofilm-Associated Gene Expression under a Marine Bacterial α-Galactosidase. International Journal of Molecular Sciences, 21(20), 1–25. https://doi.org/10.3390/IJMS21207666Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., & Pevzner, P. A. (2012). SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 19(5), 455–477. https://doi.org/10.1089/cmb.2012.0021Berrazeg, M., Jeannot, K., Ntsogo Enguéné, V. Y., Broutin, I., Loeffert, S., Fournier, D., & Plésiat, P. (2015). Mutations in β-Lactamase AmpC Increase Resistance of Pseudomonas aeruginosa Isolates to Antipseudomonal Cephalosporins.Bisht, K., Baishya, J., & Wakeman, C. A. (2020). Pseudomonas aeruginosa polymicrobial interactions during lung infection. Current Opinion in Microbiology, 53, 1–8. https://doi.org/10.1016/J.MIB.2020.01.014Blanc, D. S., Magalhães, B., Koenig, I., Senn, L., & Grandbastien, B. (2020). Comparison of Whole Genome (wg-) and Core Genome (cg-) MLST (BioNumericsTM) Versus SNP Variant Calling for Epidemiological Investigation of Pseudomonas aeruginosa. Frontiers in Microbiology, 11, 1729. https://doi.org/10.3389/FMICB.2020.01729/FULLBotelho, J., Grosso, F., & Peixe, L. (2019). Antibiotic resistance in Pseudomonas aeruginosa – Mechanisms, epidemiology and evolution. Drug Resistance Updates, 44, 100640. https://doi.org/10.1016/J.DRUP.2019.07.002Bouglé, A., Tuffet, S., Federici, L., Leone, M., Monsel, A., Dessalle, T., Amour, J., Dahyot-Fizelier, C., Barbier, F., Luyt, C.-E., Langeron, O., Cholley, B., Pottecher, J., Hissem, T., Lefrant, J.-Y., Veber, B., Legrand, M., Demoule, A., Kalfon, P., … Soussi, N. (2022). Comparison of 8 versus 15 days of antibiotic therapy for Pseudomonas aeruginosa ventilator-associated pneumonia in adults: a randomized, controlled, open-label trial. Intensive Care Medicine, 48(7). https://doi.org/10.1007/S00134-022-06690-5Boukerb, A. M., Simon, M., Pernet, E., Jouault, A., Portier, E., Persyn, E., Bouffartigues, E., Bazire, A., Chevalier, S., Feuilloley, M. G. J., Lesouhaitier, O., Caillon, J., & Dufour, A. (2020). Draft Genome Sequences of Four Pseudomonas aeruginosa Clinical Strains with Various Biofilm Phenotypes. Microbiology Resource Announcements, 9(1). https://doi.org/10.1128/MRA.01286-19Brinkman, F. S. L., Winsor, G. L., Done, R. E., Filloux, A., Francis, V. I., Goldberg, J. B., Greenberg, E. P., Han, K., Hancock, R. E. W., Haney, C. H., Häußler, S., Klockgether, J., Lamont, I. L., Levesque, R. C., Lory, S., Nikel, P. I., Porter, S. L., Scurlock, M. W., Schweizer, H. P., … Welch, M. (2021). The Pseudomonas aeruginosa whole genome sequence: A 20th anniversary celebration. Advances in Microbial Physiology, 79, 25–88. https://doi.org/10.1016/BS.AMPBS.2021.07.001Cantón, R., Gijón, D., & Ruiz-Garbajosa, P. (2020). Antimicrobial resistance in ICUs: An update in the light of the COVID-19 pandemic. Current Opinion in Critical Care, 26(5), 433–441. https://doi.org/10.1097/MCC.0000000000000755Chevalier, S., Bouffartigues, E., Bodilis, J., Maillot, O., Lesouhaitier, O., Feuilloley, M. G. J., Orange, N., Dufour, A., & Cornelis, P. (2017). Structure, function and regulation of Pseudomonas aeruginosa porins. FEMS Microbiology Reviews, 41(5), 698–722. https://doi.org/10.1093/FEMSRE/FUX020Choudhury, M. A., Sidjabat, H. E., Zowawi, H. M., Marsh PhD, N., Larsen, E., Runnegar PhD, N., Paterson, D. L., McMillan, D. J., & Rickard, C. M. (2019). Skin colonization at peripheral intravenous catheter insertion sites increases the risk of catheter colonization and infection. American Journal of Infection Control, 47(12), 1484–1488. https://doi.org/10.1016/J.AJIC.2019.06.002Christaki, E., Marcou, M., & Tofarides, A. (2020). Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. Journal of Molecular Evolution, 88(1), 26–40. https://doi.org/10.1007/S00239-019-09914-3Cicek, A. Ç., Ertürk, A., Ejder, N., Rakici, E., Kostakoğlu, U., Yıldız, İ. E., Özyurt, S., & Sönmez, E. (2021). Screening of Antimicrobial Resistance Genes and Epidemiological Features in Hospital and Community-Associated Carbapenem-Resistant Pseudomonas aeruginosa Infections. Infection and Drug Resistance, 14, 1517–1526. https://doi.org/10.2147/IDR.S299742Colque, C. A., Orio, A. G. albarracín, Tomatis, P. E., Dotta, G., Moreno, D. M., Hedemann, L. G., Hickman, R. A., Sommer, L. M., Feliziani, S., Moyano, A. J., Bonomo, R. A., Johansen, H. K., Molin, S., Vila, A. J., & Smania, A. M. (2022). Longitudinal Evolution of the Pseudomonas-Derived Cephalosporinase (PDC) Structure and Activity in a Cystic Fibrosis Patient Treated with β-Lactams. MBio. https://doi.org/10.1128/MBIO.01663-22Correa, A., Del Campo, R., Perenguez, M., Blanco, V. M., Rodríguez-Baños, M., Perez, F., Maya, J. J., Rojas, L., Cantón, R., Arias, C. A., & Villegas, M. V. (2015b). Dissemination of High-Risk Clones of Extensively Drug-Resistant Pseudomonas aeruginosa in Colombia. Antimicrobial Agents and Chemotherapy, 59(4), 2421. https://doi.org/10.1128/AAC.03926-14Cuzon, G., Naas, T., & Nordmann, P. (2011). Functional characterization of Tn4401, a Tn3-based transposon involved in bla KPC gene mobilization. Antimicrobial Agents and Chemotherapy, 55(11), 5370–5373. https://doi.org/10.1128/AAC.05202-11/ASSET/8C7C3BCE-2C69-4925-A208-D347394DAC3B/ASSETS/GRAPHIC/ZAC9991003010003.JPEGDai, X., Zhou, D., Xiong, W., Feng, J., Luo, W., Luo, G., Wang, H., Sun, F., & Zhou, X. (2016). The IncP-6 plasmid p10265-KPC from Pseudomonas aeruginosa carries a novel ΔISEc33-associated blaKPC-2 gene cluster. Frontiers in Microbiology, 7(MAR), 310. https://doi.org/10.3389/FMICB.2016.00310/BIBTEXDe Oliveira, D. M. P., Forde, B. M., Kidd, T. J., Harris, P. N. A., Schembri, M. A., Beatson, S. A., Paterson, D. L., & Walker, M. J. (2020). Antimicrobial resistance in ESKAPE pathogens. Clinical Microbiology Reviews, 33(3). https://doi.org/10.1128/CMR.00181-19/ASSET/CBA1C1D1-CF90-43DE-A9DF-32D24A4334AC/ASSETS/GRAPHIC/CMR.00181-19-F0001.JPEGDe Sousa, T., Hébraud, M., Enes Dapkevicius, M. L. N., Maltez, L., Pereira, J. E., Capita, R., Alonso-Calleja, C., Igrejas, G., & Poeta, P. (2021). Genomic and Metabolic Characteristics of the Pathogenicity in Pseudomonas aeruginosa. International Journal of Molecular Sciences, 22(23). https://doi.org/10.3390/IJMS222312892Del Barrio-Tofiño, E., López-Causapé, C., & Oliver, A. (2020). Pseudomonas aeruginosa epidemic high-risk clones and their association with horizontally-acquired β-lactamases: 2020 update. International Journal of Antimicrobial Agents, 56(6),Deshpande, R., & Zou, C. (2020). Pseudomonas Aeruginosa Induced Cell Death in Acute Lung Injury and Acute Respiratory Distress Syndrome. International Journal of Molecular Sciences, 21(15), 1–17. https://doi.org/10.3390/IJMS21155356Deurenberg, R. H., Bathoorn, E., Chlebowicz, M. A., Couto, N., Ferdous, M., García-Cobos, S., Kooistra-Smid, A. M. D., Raangs, E. C., Rosema, S., Veloo, A. C. M., Zhou, K., Friedrich, A. W., & Rossen, J. W. A. (2017). Application of next generation sequencing in clinical microbiology and infection prevention. Journal of Biotechnology, 243, 16–24. https://doi.org/10.1016/J.JBIOTEC.2016.12.022Estepa, V., Rojo-Bezares, B., Torres, C., & Sáenz, Y. (2014). Faecal carriage of Pseudomonas aeruginosa in healthy humans: antimicrobial susceptibility and global genetic lineages. FEMS Microbiology Ecology, 89(1), 15–19. https://doi.org/10.1111/1574-6941.12301Fabre, V., Amoah, J., Cosgrove, S. E., & Tamma, P. D. (2019). Antibiotic Therapy for Pseudomonas aeruginosa Bloodstream Infections: How Long Is Long Enough? Clinical Infectious Diseases : An Official Publication of the Infectious Diseases Society of America, 69(11), 2011–2014. https://doi.org/10.1093/CID/CIZ223Ferreiro, J. L. L., Otero, J. Á., Rivo, A. S., González, L. G., Conde, I. R., Soneira, M. F., García, J. P., & de la Fuente Aguado, J. (2021). Outpatient therapy with piperacillin/tazobactam using elastomeric pumps in patients with Pseudomonas aeruginosa infection. Scientific Reports, 11(1), 1–4. https://doi.org/10.1038/s41598-021-88179-7Fujiwara, M., Yamasaki, S., Morita, Y., & Nishino, K. (2022). Evaluation of efflux pump inhibitors of MexAB- or MexXY-OprM in Pseudomonas aeruginosa using nucleic acid dyes. Journal of Infection and Chemotherapy, 28(5), 595–601. https://doi.org/10.1016/J.JIAC.2022.01.003Galetti, R., Andrade, L. N., Varani, A. M., & Darini, A. L. C. (2019). A Phage-Like Plasmid Carrying blaKPC-2 Gene in Carbapenem-Resistant Pseudomonas aeruginosa. Frontiers in Microbiology, 10(MAR). https://doi.org/10.3389/FMICB.2019.00572García-Betancur, J. C., Appel, T. M., Esparza, G., Gales, A. C., Levy-Hara, G., Cornistein, W., Vega, S., Nuñez, D., Cuellar, L., Bavestrello, L., Castañeda-Méndez, P. F., Villalobos-Vindas, J. M., & Villegas, M. V. (2021). Update on the epidemiology of carbapenemases in Latin America and the Caribbean. Expert Review of Anti-Infective Therapy, 19(2), 197–213. https://doi.org/10.1080/14787210.2020.1813023Ge, C., Wei, Z., Jiang, Y., Shen, P., Yu, Y., & Li, L. (2011). Identification of KPC-2-producing Pseudomonas aeruginosa isolates in China. The Journal of Antimicrobial Chemotherapy, 66(5), 1184–1186. https://doi.org/10.1093/JAC/DKR060Gerver, S. M., Nsonwu, O., Thelwall, S., Brown, C. S., & Hope, R. (2022). Trends in rates of incidence, fatality and antimicrobial resistance among isolates of Pseudomonas spp. causing bloodstream infections in England between 2009 and 2018: results from a national voluntary surveillance scheme. Journal of Hospital Infection, 120,Gómez, J., García-Vázquez, E., & Hernández-Torres, A. (2015). Los betalactámicos en la práctica clínica. Rev Esp Quimioter, 28(1), 1–9.Gu, W., Miller, S., & Chiu, C. Y. (2019). Clinical Metagenomic Next-Generation Sequencing for Pathogen Detection. Annual Review of Pathology, 14, 319–338. https://doi.org/10.1146/ANNUREV-PATHMECHDIS-012418-012751Gudiol, C., Albasanz-Puig, A., Laporte-Amargós, J., Pallarès, N., Mussetti, A., Ruiz-Camps, I., Puerta-Alcalde, P., Abdala, E., Oltolini, C., Akova, M., Montejo, M., Mikulska, M., Martín-Dávila, P., Herrera, F., Gasch, O., Drgona, L., Paz Morales, H., Brunel, A. S., García, E., … Sangro Del Alcázar, P. (2020). Clinical Predictive Model of Multidrug Resistance in Neutropenic Cancer Patients with Bloodstream Infection Due to Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 64(4). https://doi.org/10.1128/AAC.02494-19Gurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: quality assessment tool for genome assemblies. Bioinformatics (Oxford, England), 29(8), 1072–1075. https://doi.org/10.1093/BIOINFORMATICS/BTT086Hadfield, J., Croucher, N. J., Goater, R. J., Abudahab, K., Aanensen, D. M., & Harris, S. R. (2018). Phandango: an interactive viewer for bacterial population genomics. Bioinformatics (Oxford, England), 34(2), 292–293. https://doi.org/10.1093/BIOINFORMATICS/BTX610Hagemann, J. B., Pfennigwerth, N., Gatermann, S. G., von Baum, H., & Essig, A. (2018). KPC-2 carbapenemase-producing Pseudomonas aeruginosa reaching Germany. The Journal of Antimicrobial Chemotherapy, 73(7), 1812–1814. https://doi.org/10.1093/JAC/DKY105Hassaine, H., Morghad, T., Bellifa, S., Lachachi, M., Kara-Terki, I., M’Hamedi, I., & Meziani, Z. (2019). In Vitro Inhibition Assay of Pseudomonas Aeruginosa Biofilm Formation on Urinary Catheter. Journal of Infection and Public Health, 12(1), 122. https://doi.org/10.1016/J.JIPH.2018.10.058Hernández, M., Quijada, N. M., Rodríguez-Lázaro, D., & Eiros, J. M. (2020). Aplicación de la secuenciación masiva y la bioinformática al diagnóstico microbiológico clínico. Revista Argentina de Microbiología, 52(2), 150–161. https://doi.org/10.1016/J.RAM.2019.06.003Horcajada, J. P., Montero, M., Oliver, A., Sorlí, L., Luque, S., Gómez-Zorrilla, S., Benito, N., & Grau, S. (2019). Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clinical Microbiology Reviews, 32(4), 1–52. https://doi.org/10.1128/CMR.00031-19Huemer, M., Shambat, S. M., Brugger, S. D., & Zinkernagel, A. S. (2020). Antibiotic resistance and persistence—Implications for human health and treatment perspectives. EMBO Reports, 21(12). https://doi.org/10.15252/EMBR.202051034Hurley, J. C. (2019). Worldwide variation in Pseudomonas associated ventilator associated pneumonia. A meta-regression. Journal of Critical Care, 51, 88–93. https://doi.org/10.1016/j.jcrc.2019.02.001Hyatt, D., Chen, G. L., LoCascio, P. F., Land, M. L., Larimer, F. W., & Hauser, L. J. (2010). Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics, 11(1), 1–11. https://doi.org/10.1186/1471-2105-11-119/TABLES/5Illumina. (2020). Illumina DNA Prep Reference Guide Consumable. In Illumina (Issue June). https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/illumina_prep/illumina-dna-prep-reference-guide-1000000025416-09.pdfInstituto Nacional de Salud. (2021). Grupo de microbiología, Vigilancia de resistencia antimicrobia. In Boletín epidemiológico semanal. https://doi.org/10.33610/23576189.2022.03Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T., & Aluru, S. (2017). High-throughput ANI Analysis of 90K Prokaryotic Genomes Reveals Clear Species Boundaries. BioRxiv, 225342. https://doi.org/10.1101/225342Jiménez Pearson, M. A., Galas, M., Corso, A., Hormazábal, J. C., Duarte Valderrama, C., Salgado Marcano, N., Ramón-Pardo, P., & Melano, R. G. (2019). Consenso latinoamericano para definir, categorizar y notificar patógenos multirresistentes, con resistencia extendida o panresistentes. Rev Panam Salud Publica;43, Ago. 2019, 1–8. https://doi.org/10.26633/RPSP.2019.65Juarez, P., Broutin, I., Bordi, C., Plésiat, P., & Llanes, C. (2018). Constitutive activation of MexT by amino acid substitutions results in MexEF-OprN overproduction in clinical isolates of pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 62(5). https://doi.org/10.1128/AAC.02445-17June, C. M., Vallier, B. C., Bonomo, R. A., Leonard, D. A., & Powers, R. A. (2014). Structural origins of oxacillinase specificity in class D β-lactamases. Antimicrobial Agents and Chemotherapy, 58(1), 333–341. https://doi.org/10.1128/AAC.01483-13Klockgether, J., Cramer, N., Wiehlmann, L., Davenport, C. F., & Tümmler, B. (2011). Pseudomonas aeruginosa Genomic Structure and Diversity. Frontiers in Microbiology, 0(JULY), 150. https://doi.org/10.3389/FMICB.2011.00150Kolbe, D. L., & Eddy, S. R. (2011). Fast filtering for RNA homology search. Bioinformatics, 27(22), 3102–3109. https://doi.org/10.1093/BIOINFORMATICS/BTR545Krawczyk, P. S., Lipinski, L., & Dziembowski, A. (2018). PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Research, 46(6), e35. https://doi.org/10.1093/NAR/GKX1321Kumar, K. R., Cowley, M. J., & Davis, R. L. (2019). Next-Generation Sequencing and Emerging Technologies. Seminars in Thrombosis and Hemostasis, 45(7), 661–673. https://doi.org/10.1055/S-0039-1688446Lagesen, K., Hallin, P., Rødland, E. A., Stærfeldt, H. H., Rognes, T., & Ussery, D. W. (2007). RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Research, 35(9), 3100–3108. https://doi.org/10.1093/NAR/GKM160Langendonk, R. F., Neill, D. R., & Fothergill, J. L. (2021). The Building Blocks of Antimicrobial Resistance in Pseudomonas aeruginosa: Implications for Current Resistance-Breaking Therapies. Frontiers in Cellular and Infection Microbiology, 11, 307. https://doi.org/10.3389/FCIMB.2021.665759/BIBTEXLaslett, D., & Canback, B. (2004). ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Research, 32(1), 11–16. https://doi.org/10.1093/NAR/GKH152Letunic, I., & Bork, P. (2021). Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), W293–W296. https://doi.org/10.1093/NAR/GKAB301Li, Z., Cai, Z., Cai, Z., Zhang, Y., Fu, T., Jin, Y., Cheng, Z., Jin, S., Wu, W., Yang, L., & Bai, F. (2020). Molecular genetic analysis of an XDR Pseudomonas aeruginosa ST664 clone carrying multiple conjugal plasmids. Journal of Antimicrobial Chemotherapy, 75(6), 1443–1452. https://doi.org/10.1093/JAC/DKAA063Lister, P. D., Wolter, D. J., & Hanson, N. D. (2009). Antibacterial-resistant Pseudomonas aeruginosa: Clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clinical Microbiology Reviews, 22(4), 582–610. https://doi.org/10.1128/CMR.00040-09/ASSET/48C39C97-08B3-4013-BC8C-294A69C85D08/ASSETS/GRAPHIC/ZCM0040922970008.JPEGLiu, M., BZ D, Zeng W, Cheng X, Tao CM, M Kang, & W-X. Jia. (2008). Research on the distribution of OXA-50 gene in carbapenems-resistant Pseudomonas aeruginosas. Chinese Journal of Antibiotics , 33, 733–735. https://www.researchgate.net/publication/289023594_Research_on_the_distribution_of_OXA-50_gene_in_carbapenems-resistant_Pseudomonas_aeruginosaLoyola-Cruz, M. Á., Durán-Manuel, E. M., Cruz-Cruz, C., Marquez-Valdelamar, L. M., Bravata-Alcantara, J. C., Cortés-Ortíz, I. A., Cureño-Díaz, M. A., Ibáñez-Cervantes, G., Fernández-Sánchez, V., Castro-Escarpulli, G., & Bello-López, J. M. (2022). ESKAPE bacteria characterization reveals the presence of Acinetobacter baumannii and Pseudomonas aeruginosa outbreaks in COVID-19/VAP patients. American Journal of Infection Control. https://doi.org/10.1016/J.AJIC.2022.08.012Lugo, L., & Barreto- Hernández, E. (2021). A Recurrent Neural Network approach for whole genome bacteria identification. Https://Doi.Org/10.1080/08839514.2021.1922842, 35(9), 642–656. https://doi.org/10.1080/08839514.2021.1922842Madaha, E. L., Mienie, C., Gonsu, H. K., Bughe, R. N., Fonkoua, M. C., Mbacham, W. F., Alayande, K. A., Bezuidenhout, C. C., & Ateba, C. N. (2020). Whole-genome sequence of multi-drug resistant Pseudomonas aeruginosa strains UY1PSABAL and UY1PSABAL2 isolated from human broncho-alveolar lavage, Yaoundé, Cameroon. PLOS ONE, 15(9), e0238390. https://doi.org/10.1371/JOURNAL.PONE.0238390McArthur, A. G., Waglechner, N., Nizam, F., Yan, A., Azad, M. A., Baylay, A. J., Bhullar, K., Canova, M. J., De Pascale, G., Ejim, L., Kalan, L., King, A. M., Koteva, K., Morar, M., Mulvey, M. R., O’Brien, J. S., Pawlowski, A. C., Piddock, L. J. V., Spanogiannopoulos, P., … Wright, G. D. (2013). The Comprehensive Antibiotic Resistance Database. Antimicrobial Agents and Chemotherapy, 57(7), 3348.Mielko, K. A., Jabłoński, S. J., Milczewska, J., Sands, D., Łukaszewicz, M., & Młynarz, P. (2019). Metabolomic studies of Pseudomonas aeruginosa. World Journal of Microbiology and Biotechnology, 35(11), 1–11. https://doi.org/10.1007/s11274-019-2739-1Ministerio de Salud y Protección Social. (n.d.). Guía Técnica: Buenas prácticas para la seguridad del paciente en la Atención en Salud. Retrieved February 15, 2022, from https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/CA/Detectar-Infecciones.pdfMoloney, E. M., Deasy, E. C., Swan, J. S., Brennan, G. I., O’Donnell, M. J., & Coleman, D. C. (2020). Whole-genome sequencing identifies highly related Pseudomonas aeruginosa strains in multiple washbasin U-bends at several locations in one hospital: evidence for trafficking of potential pathogens via wastewater pipes. Journal of Hospital Infection, 104(4), 484–491. https://doi.org/10.1016/J.JHIN.2019.11.005Moradali, M. F., Ghods, S., & Rehm, B. H. A. (2017). Pseudomonas aeruginosa lifestyle: A paradigm for adaptation, survival, and persistence. Frontiers in Cellular and Infection Microbiology, 7(FEB), 39. https://doi.org/10.3389/FCIMB.2017.00039/BIBTEXMunita, J. M., & Arias, C. A. (2016). Mechanisms of Antibiotic Resistance. Microbiology Spectrum, 4(2), 464–472. https://doi.org/10.1128/MICROBIOLSPEC.VMBF-0016-2015Murray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Kashef Hamadani, B. H., Kumaran, E. A. P., McManigal, B., … Naghavi, M. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, 0(0). https://doi.org/10.1016/S0140-6736(21)02724-0/ATTACHMENT/29526A6B-96B7-4673-99F3-A624169C1B92/MMC1.PDFNaas, T., Bonnin, R. A., Cuzon, G., Villegas, M. V., & Nordmann, P. (2013). Complete sequence of two KPC-harbouring plasmids from Pseudomonas aeruginosa. The Journal of Antimicrobial Chemotherapy, 68(8), 1757–1762. https://doi.org/10.1093/JAC/DKT094Nakayama, R., Inoue-Tsuda, M., Matsui, H., Ito, T., & Hanaki, H. (2022). Classification of the metallo β-lactamase subtype produced by the carbapenem-resistant Pseudomonas aeruginosa isolates in Japan. Journal of Infection and Chemotherapy, 28(2), 170–175. https://doi.org/10.1016/J.JIAC.2021.04.005Nicolau, C. J., & Oliver, A. (2010). Carbapenemasas en especies del género Pseudomonas. Enfermedades Infecciosas y Microbiologia Clinica, 28(SUPPL. 1), 19–28. https://doi.org/10.1016/S0213-005X(10)70004-5Onorato, L., Macera, M., Calò, F., Cirillo, P., Di Caprio, G., & Coppola, N. (2022). Beta-lactam monotherapy or combination therapy for bloodstream infections or pneumonia due to Pseudomonas aeruginosa: a meta-analysis. International Journal of Antimicrobial Agents, 59(3), 106512. https://doi.org/10.1016/J.IJANTIMICAG.2021.106512Oxford Nanopore Technologies. (2021). Native barcoding genomic DNA (with EXP-NBD196 and SQK-LSK109) (Vol. 24, Issue 05386273, pp. 2–17).Page, A. J., Cummins, C. A., Hunt, M., Wong, V. K., Reuter, S., Holden, M. T. G., Fookes, M., Falush, D., Keane, J. A., & Parkhill, J. (2015). Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics, 31(22), 3691–3693. https://doi.org/10.1093/BIOINFORMATICS/BTV421Palzkill, T. (2013). Metallo-β-lactamase structure and function. Annals of the New York Academy of Sciences, 1277(1), 91–104. https://doi.org/10.1111/J.1749-6632.2012.06796.XPan, Y. ping, Xu, Y. hong, Wang, Z. xin, Fang, Y. ping, & Shen, J. lu. (2016). Overexpression of MexAB-OprM efflux pump in carbapenem-resistant Pseudomonas aeruginosa. Archives of Microbiology 2016 198:6, 198(6), 565–571. https://doi.org/10.1007/S00203-016-1215-7Pang, Z., Raudonis, R., Glick, B. R., Lin, T. J., & Cheng, Z. (2019). Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnology Advances, 37(1), 177–192. https://doi.org/10.1016/J.BIOTECHADV.2018.11.013Peleg, A. Y., & Hooper, D. C. (2010). Hospital-Acquired Infections Due to Gram-Negative Bacteria. The New England Journal of Medicine, 362(19), 1804. https://doi.org/10.1056/NEJMRA0904124Penaranda, C., Chumbler, N. M., & Hung, D. T. (2021). Dual transcriptional analysis reveals adaptation of host and pathogen to intracellular survival of Pseudomonas aeruginosa associated with urinary tract infection. PLoS Pathogens, 17(4). https://doi.org/10.1371/JOURNAL.PPAT.1009534Pesingi, P. V., Singh, B. R., Pesingi, P. K., Bhardwaj, M., Singh, S. V., Kumawat, M., Sinha, D. K., & Gandham, R. K. (2019). MexAB-OprM Efflux Pump of Pseudomonas aeruginosa Offers Resistance to Carvacrol: A Herbal Antimicrobial Agent. Frontiers in Microbiology, 10, 2664. https://doi.org/10.3389/FMICB.2019.02664/BIBTEXPetersen, T. N., Brunak, S., Von Heijne, G., & Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods, 8(10), 785–786. https://doi.org/10.1038/NMETH.1701Peterson, L. R. (2009). Bad Bugs, No Drugs: No ESCAPE Revisited. Clinical Infectious Diseases, 49(6), 992–993. https://doi.org/10.1086/605539Petrova, A., Feodorova, Y., Miteva-Katrandzhieva, T., Petrov, M., & Murdjeva, M. (2019). First detected OXA-50 carbapenem-resistant clinical isolates Pseudomonas aeruginosa from Bulgaria and interplay between the expression of main efflux pumps, OprD and intrinsic AmpC. Journal of Medical Microbiology, 68(12), 1723–1731. https://doi.org/10.1099/JMM.0.001106/CITE/REFWORKSRaman, G., Avendano, E. E., Chan, J., Merchant, S., & Puzniak, L. (2018). Risk factors for hospitalized patients with resistant or multidrug-resistant Pseudomonas aeruginosa infections: a systematic review and meta-analysis. Antimicrobial Resistance & Infection Control 2018 7:1, 7(1), 1–14. https://doi.org/10.1186/S13756-018-0370-9Rice, L. B. (2008). Federal Funding for the Study of Antimicrobial Resistance in Nosocomial Pathogens: No ESKAPE. The Journal of Infectious Diseases, 197(8), 1079–1081. https://doi.org/10.1086/533452Roy, P. H., Tetu, S. G., Larouche, A., Elbourne, L., Tremblay, S., Ren, Q., Dodson, R., Harkins, D., Shay, R., Watkins, K., Mahamoud, Y., & Paulsen, I. T. (2010). Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7. PLoS ONE, 5(1), 1–10. https://doi.org/10.1371/journal.pone.0008842Sader, H. S., Castanheira, M., Duncan, L. R., & Mendes, R. E. (2021). Antimicrobial activities of ceftazidime/avibactam, ceftolozane/tazobactam, imipenem/relebactam, meropenem/vaborbactam, and comparators against Pseudomonas aeruginosa from patients with skin and soft tissue infections. International Journal of Infectious Diseases, 113, 279–281. https://doi.org/10.1016/J.IJID.2021.10.022Saini, H., Vadekeetil, A., Chhibber, S., & Harjai, K. (2017). Azithromycin-Ciprofloxacin-Impregnated Urinary Catheters Avert Bacterial Colonization, Biofilm Formation, and Inflammation in a Murine Model of Foreign-Body-Associated Urinary Tract Infections Caused by Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 61(3). https://doi.org/10.1128/AAC.01906-16Seemann, T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics (Oxford, England), 30(14), 2068–2069. https://doi.org/10.1093/BIOINFORMATICS/BTU153Shortridge, D., Gales, A. C., Streit, J. M., Huband, M. D., Tsakris, A., & Jones, R. N. (2019). Geographic and temporal patterns of antimicrobial resistance in pseudomonas aeruginosa over 20 years from the SENTRY Antimicrobial Surveillance Program, 1997-2016. Open Forum Infectious Diseases, 6(Suppl 1), S63–S68. https://doi.org/10.1093/ofid/ofy343Singh, S., Pulusu, C. P., Pathak, A., Pradeep, B. E., & Prasad, K. N. (2021). Complete genome sequence of an extensively drug-resistant Pseudomonas aeruginosa ST773 clinical isolate from North India. Journal of Global Antimicrobial Resistance, 27, 244–246. https://doi.org/10.1016/J.JGAR.2021.10.010Sood, U., Hira, P., Kumar, R., Bajaj, A., Rao, D. L. N., Lal, R., & Shakarad, M. (2019). Comparative genomic analyses reveal core-genome-wide genes under positive selection and major regulatory hubs in outlier strains of Pseudomonas aeruginosa. Frontiers in Microbiology, 10(FEB), 53. https://doi.org/10.3389/FMICB.2019.00053/BIBTEXSpernovasilis, N., Psichogiou, M., & Poulakou, G. (2021). Skin manifestations of Pseudomonas aeruginosa infections. Current Opinion in Infectious Diseases, 34(2), 2–79. https://doi.org/10.1097/QCO.0000000000000717Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312–1313. https://doi.org/10.1093/BIOINFORMATICS/BTU033Stover, C. K., Pham, X. Q., Erwin, A. L., Mizoguchi, S. D., Warrener, P., Hickey, M. J., Brinkman, F. S. L., Hufnagle, W. O., Kowallk, D. J., Lagrou, M., Garber, R. L., Goltry, L., Tolentino, E., Westbrock-Wadman, S., Yuan, Y., Brody, L. L., Coulter, S. N., Folger, K. R., Kas, A., … Olson, M. V. (2000). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 2000 406:6799, 406(6799), 959–964. https://doi.org/10.1038/35023079Sun, Y., Han, R., Ding, L., Yang, Y., Guo, Y., Wu, S., Hu, F., & Yin, D. (2021). First Report of blaOXA-677 with Enhanced Meropenem-Hydrolyzing Ability in Pseudomonas aeruginosa in China. Infection and Drug Resistance, 14, 5725. https://doi.org/10.2147/IDR.S340662Tavare, S. (1986). Some probabilistic and statistical problems in the analysis of DNA sequences. Some Mathematical Questions in Biology / DNA Sequence Analysis Edited by Robert M. Miura. https://doi.org/10.3/JQUERY-UI.JSTsay, T. Bin, Jiang, Y. Z., Hsu, C. M., & Chen, L. W. (2016). Pseudomonas aeruginosa colonization enhances ventilator-associated pneumonia-induced lung injury. Respiratory Research, 17(1). https://doi.org/10.1186/S12931-016-0417-5Vanegas, J. M., Cienfuegos, A. V., Ocampo, A. M., López, L., Del Corral, H., Roncancio, G., Sierra, P., Echeverri-Toro, L., Ospina, S., Maldonado, N., Robledo, C., Restrepo, A., & Jiménez, J. N. (2014). Similar frequencies of Pseudomonas aeruginosa isolates producing KPC and VIM carbapenemases in diverse genetic clones at tertiary-care hospitals in Medellín, Colombia. Journal of Clinical Microbiology, 52(11), 3978–3986. https://doi.org/10.1128/JCM.01879-14Villegas, M. V., Lolans, K., Correa, A., Kattan, J. N., Lopez, J. A., & Quinn, J. P. (2007). First identification of Pseudomonas aeruginosa isolates producing a KPC-type carbapenem-hydrolyzing beta-lactamase. Antimicrobial Agents and Chemotherapy, 51(4), 1553–1555. https://doi.org/10.1128/AAC.01405-06Wei, L., Wu, Q., Zhang, J., Guo, W., Gu, Q., Wu, H., Wang, J., Lei, T., Xue, L., Zhang, Y., Wei, X., & Zeng, X. (2020). Prevalence, Virulence, Antimicrobial Resistance, and Molecular Characterization of Pseudomonas aeruginosa Isolates From Drinking Water in China. Frontiers in Microbiology, 11, 544653. https://doi.org/10.3389/FMICB.2020.544653/FULLWencewicz, T. A., & Drive, O. B. (2020). Crossroads of Antibiotic Resistance and Biosynthesis Timothy. J Mol Biol., 431(18), 3370–3399. https://doi.org/10.1016/j.jmb.2019.06.033.CrossroadsWHO. (2017). World Health Organization releases global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. https://doi.org/10.4103/jms.jms_25_17Wick, R. R., Judd, L. M., Gorrie, C. L., & Holt, K. E. (2017). Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLOS Computational Biology, 13(6), e1005595. https://doi.org/10.1371/JOURNAL.PCBI.1005595Yang, K., Xiao, T., Shi, Q., Zhu, Y., Ye, J., Zhou, Y., & Xiao, Y. (2021). Socioeconomic burden of bloodstream infections caused by carbapenem-resistant and carbapenem-susceptible Pseudomonas aeruginosa in China. Journal of Global Antimicrobial Resistance, 26, 101–107. https://doi.org/10.1016/J.JGAR.2021.03.032Yoon, E. J., & Jeong, S. H. (2021). Mobile Carbapenemase Genes in Pseudomonas aeruginosa. Frontiers in Microbiology, 12, 30. https://doi.org/10.3389/FMICB.2021.614058/BIBTEXYoshinaga, Y., Daum, C., He, G., & O’Malley, R. (2018). Genome Sequencing. Methods in Molecular Biology (Clifton, N.J.), 1775, 37–52. https://doi.org/10.1007/978-1-4939-7804-5_4Yuan, M., Guan, H., Sha, D., Cao, W., Song, X., Che, J., Kan, B., & Li, J. (2021). Characterization of blakpc-2-carrying plasmid pr31-kpc from a pseudomonas aeruginosa strain isolated in china. Antibiotics, 10(10). https://doi.org/10.3390/ANTIBIOTICS10101234/S1Zahedi, A., Rahbar, M., Hamidi-farahani, R., & Asgari, A. (2021). Microbial Pathogenesis Expression of RND efflux pumps mediated antibiotic resistance in Pseudomonas aeruginosa clinical strains. Microbial Pathogenesis, 153(January), 104789. https://doi.org/10.1016/j.micpath.2021.104789Zhao, W. H., & Hu, Z. Q. (2010). β-Lactamases identified in clinical isolates of Pseudomonas aeruginosa. Http://Dx.Doi.Org/10.3109/1040841X.2010.481763, 36(3), 245–258. https://doi.org/10.3109/1040841X.2010.481763Zubyk, H. L., & Wright, G. D. (2021). CrpP Is Not a Fluoroquinolone-Inactivating Enzyme. Antimicrobial Agents and Chemotherapy, 65(8). https://doi.org/10.1128/AAC.00773-21MincienciasEstudiantesInvestigadoresMaestrosORIGINAL1065651232.2023.pdf1065651232.2023.pdfTesis de Maestría en Ciencias - Microbiologíaapplication/pdf3677023https://repositorio.unal.edu.co/bitstream/unal/84156/4/1065651232.2023.pdf97844219dee4c3d88a696b58b53266faMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84156/5/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD55THUMBNAIL1065651232.2023.pdf.jpg1065651232.2023.pdf.jpgGenerated Thumbnailimage/jpeg5026https://repositorio.unal.edu.co/bitstream/unal/84156/6/1065651232.2023.pdf.jpg18e9acb8ea9c688bd4766f35edb17f82MD56unal/84156oai:repositorio.unal.edu.co:unal/841562023-08-10 23:04:22.161Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=