Influence of the micro-geometry of a scaffold for bone regeneration on the stresses of the newly formed tissue

ilustraciones, gráficas, tablas

Autores:
Rodríguez Montaño, Óscar Libardo
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80968
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80968
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines
Tissue Engineering
Tissue Scaffolds
Bone Regeneration
Ingeniería de Tejidos
Andamios del Tejido
Regeneración Ósea
Scaffold
Mechanobiology
Bone
Healing
Computational
Modeling
Degradation
Newly formed tissue
Simulation
Andamio
Hueso
Modelamiento computacional
Diferenciación
Tejido en formación
Simulación
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_82bc7001abdc2f00b7b1ee3be7a1f791
oai_identifier_str oai:repositorio.unal.edu.co:unal/80968
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Influence of the micro-geometry of a scaffold for bone regeneration on the stresses of the newly formed tissue
dc.title.translated.spa.fl_str_mv Influencia de la micro-geometría de un scaffold para regeneración ósea en los esfuerzos en el tejido en formación
title Influence of the micro-geometry of a scaffold for bone regeneration on the stresses of the newly formed tissue
spellingShingle Influence of the micro-geometry of a scaffold for bone regeneration on the stresses of the newly formed tissue
620 - Ingeniería y operaciones afines
Tissue Engineering
Tissue Scaffolds
Bone Regeneration
Ingeniería de Tejidos
Andamios del Tejido
Regeneración Ósea
Scaffold
Mechanobiology
Bone
Healing
Computational
Modeling
Degradation
Newly formed tissue
Simulation
Andamio
Hueso
Modelamiento computacional
Diferenciación
Tejido en formación
Simulación
title_short Influence of the micro-geometry of a scaffold for bone regeneration on the stresses of the newly formed tissue
title_full Influence of the micro-geometry of a scaffold for bone regeneration on the stresses of the newly formed tissue
title_fullStr Influence of the micro-geometry of a scaffold for bone regeneration on the stresses of the newly formed tissue
title_full_unstemmed Influence of the micro-geometry of a scaffold for bone regeneration on the stresses of the newly formed tissue
title_sort Influence of the micro-geometry of a scaffold for bone regeneration on the stresses of the newly formed tissue
dc.creator.fl_str_mv Rodríguez Montaño, Óscar Libardo
dc.contributor.advisor.none.fl_str_mv Cortés Rodríguez, Carlos Julio
Boccaccio, Antonio
dc.contributor.author.none.fl_str_mv Rodríguez Montaño, Óscar Libardo
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Biomecánica / Universidad Nacional de Colombia Gibm-Uncb
dc.contributor.sponsor.none.fl_str_mv MINCIENCIAS
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines
topic 620 - Ingeniería y operaciones afines
Tissue Engineering
Tissue Scaffolds
Bone Regeneration
Ingeniería de Tejidos
Andamios del Tejido
Regeneración Ósea
Scaffold
Mechanobiology
Bone
Healing
Computational
Modeling
Degradation
Newly formed tissue
Simulation
Andamio
Hueso
Modelamiento computacional
Diferenciación
Tejido en formación
Simulación
dc.subject.decs.eng.fl_str_mv Tissue Engineering
Tissue Scaffolds
Bone Regeneration
dc.subject.decs.spa.fl_str_mv Ingeniería de Tejidos
Andamios del Tejido
Regeneración Ósea
dc.subject.proposal.eng.fl_str_mv Scaffold
Mechanobiology
Bone
Healing
Computational
Modeling
Degradation
Newly formed tissue
Simulation
dc.subject.proposal.spa.fl_str_mv Andamio
Hueso
Modelamiento computacional
Diferenciación
Tejido en formación
Simulación
description ilustraciones, gráficas, tablas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-12-17
dc.date.accessioned.none.fl_str_mv 2022-02-14T14:37:50Z
dc.date.available.none.fl_str_mv 2022-02-14T14:37:50Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80968
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80968
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] S. H. Kim, Y. Jung, Y. H. Kim, and S. H. Kim, “Mechano-active scaffolds,” in Handbook of Intelligent Scaffolds for Tissue Engineering and Regenerative Medicine, G. Khang, Ed. Pan Stanford Publishing, 2012, pp. 537–559.
[2] D. A. Wahl and J. T. Czernuszka, “Collagen-hydroxyapatite composites for hard tissue repair,” Eur. Cells Mater., vol. 11, pp. 43–56, 2006, doi: vol011a06 [pii].
[3] J. Guo, D. Y. Nguyen, R. T. Tran, Z. Xie, X. Bai, and J. Yang, “Design Strategies and Applications of Citrate-Based Biodegradable Elastomeric Polymers,” in Natural and Synthetic Biomedical Polymers, 1st ed., S. Kumbar, C. Laurencin, and M. Deng, Eds. Elsevier, 2014, pp. 259–285.
[4] J. Brown, S. Kumbar, and B. Banik, Bio-Instructive Scaffolds for Musculoskeletal Tissue Engineering and Regenerative Medicine. Academic Press, 2016.
[5] L. Geris, J. Vander Sloten, and H. Van Oosterwyck, “In silico biology of bone modelling and remodelling: regeneration,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 367, no. 1895, pp. 2031–2053, 2009, doi: 10.1098/rsta.2008.0293.
[6] Y. Li, S. K. Chen, L. Li, L. Qin, X. L. Wang, and Y. X. Lai, “Bone defect animal models for testing efficacy of bone substitute biomaterials,” J. Orthop. Transl., vol. 3, no. 3, pp. 95–104, 2015, doi: 10.1016/j.jot.2015.05.002.
[7] S. Stewart, S. J. Bryant, J. Ahn, and K. D. Hankenson, “Bone regeneration,” in Translational Regenerative Medicine, A. Atala and J. Allickson, Eds. Academic Press, 2015, pp. 313–334.
[8] A. Oryan, A. Kamali, A. Moshirib, and M. B. Eslaminejad, “Role of Mesenchymal Stem Cells in Bone Regenerative Medicine: What Is the Evidence?,” Cells Tissues Organs, vol. 204, no. 2, pp. 59–83, 2017, doi: 10.1159/000469704.
[9] C. E. Holy, M. S. Shoichet, and J. E. Davies, “Engineering three-dimensional bone tissue in vitro using biodegradable scaffolds: Investigating initial cell-seeding density and culture period,” J. Biomed. Mater. Res., vol. 51, no. 3, pp. 376–382, 2000, doi: 10.1002/1097-4636(20000905)51:3<376::AID-JBM11>3.0.CO;2-G.
[10] E. Gómez-Barrena, P. Rosset, D. Lozano, J. Stanovici, C. Ermthaller, and F. Gerbhard, “Bone fracture healing: Cell therapy in delayed unions and nonunions,” Bone, vol. 70, pp. 93–101, 2015, doi: 10.1016/j.bone.2014.07.033.
[11] K. F. Leong, C. M. Cheah, and C. K. Chua, “Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs,” Biomaterials, vol. 24, no. 13, pp. 2363–2378, 2003, doi: 10.1016/S0142-9612(03)00030-9.
[12] F. J. O’Brien, “Biomaterials & scaffolds for tissue engineering,” Mater. Today, vol. 14, no. 3, pp. 88–95, Mar. 2011, doi: 10.1016/S1369-7021(11)70058-X.
13] C. M. Murphy, F. J. O’Brien, D. G. Little, and A. Schindeler, “Cell-scaffold interactions in the bone tissue engineering triad,” Eur. Cells Mater., vol. 26, pp. 120–132, 2013.
[14] K. A. Hing, “Bone repair in the twenty-first century: Biology, chemistry or engineering?,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 362, no. 1825, pp. 2821–2850, 2004, doi: 10.1098/rsta.2004.1466.
[15] G. Brunetti, P. D’Amelio, M. Wasniewska, G. Mori, and M. F. Faienza, “Editorial: Bone: Endocrine target and organ,” Front. Endocrinol. (Lausanne)., vol. 8, no. DEC, pp. 249–257, Dec. 2017, doi: 10.3389/fendo.2017.00354.
[16] E. F. Morgan, G. L. Barnes, and T. A. Einhorn, “The Bone Organ System,” in Osteoporosis, 4th Ed., Elsevier, 2013, pp. 3–20.
[17] B. Clarke, “Normal bone anatomy and physiology.,” Clinical journal of the American Society of Nephrology : CJASN. 2008, doi: 10.2215/CJN.04151206.
[18] M. Doblaré, J. M. García, and M. J. Gómez, “Modelling bone tissue fracture and healing: A review,” Engineering Fracture Mechanics, vol. 71, no. 13–14. pp. 1809–1840, 2004, doi: 10.1016/j.engfracmech.2003.08.003.
[19] R. Florencio-Silva, G. R. D. S. Sasso, E. Sasso-Cerri, M. J. Simões, and P. S. Cerri, “Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells,” Biomed Res. Int., vol. 2015, 2015, doi: 10.1155/2015/421746.
[20] R. Ozawa, Y. Yamada, T. Nagasaka, and M. Ueda, “A comparison of osteogenesis-related gene expression of mesenchymal stem cells during the osteoblastic differentiation induced by Type-I collagen and/or fibronectin,” Int. J. Oral-Medical Sci., vol. 1, no. 2, pp. 139–146, 2003, doi: 10.5466/ijoms.1.139.
[21] L. Qin, W. Liu, H. Cao, and G. Xiao, “Molecular mechanosensors in osteocytes,” Bone Res., vol. 8, no. 1, pp. 1–24, 2020, doi: 10.1038/s41413-020-0099-y.
[22] B. Alberts et al., Molecular Biology of the Cell. W.W. Norton & Company, 2017.
[23] P. R. Buenzli, P. Pivonka, and D. W. Smith, “Bone refilling in cortical basic multicellular units: Insights into tetracycline double labelling from a computational model,” Biomech. Model. Mechanobiol., vol. 13, no. 1, pp. 185–203, 2014, doi: 10.1007/s10237-013-0495-y.
[24] J. R. Perez, D. Kouroupis, D. J. Li, T. M. Best, L. Kaplan, and D. Correa, “Tissue Engineering and Cell-Based Therapies for Fractures and Bone Defects,” Front. Bioeng. Biotechnol., vol. 6, no. July, pp. 1–23, 2018, doi: 10.3389/fbioe.2018.00105.
[25] T. A. Franz-Odendaal, B. K. Hall, and P. E. Witten, “Buried alive: How osteoblasts become osteocytes,” Dev. Dyn., vol. 235, no. 1, pp. 176–190, 2006, doi: 10.1002/dvdy.20603.
[26] D. C. Betts and R. Müller, “Mechanical regulation of bone regeneration: Theories, models, and experiments,” Front. Endocrinol. (Lausanne)., vol. 5, no. DEC, pp. 1–14, 2014, doi: 10.3389/fendo.2014.00211.
[27] R. Marsell and T. A. Einhorn, “The biology of fracture healing,” Injury, vol. 42, no. 6, pp. 551–555, Jun. 2011, doi: 10.1016/j.injury.2011.03.031.
[28] M. R. Appleford, “Trabecular Calcium Phosphate Scaffolds for Bone Regeneration Trabecular Calcium Phosphate Scaffolds for Bone Regeneration,” 2007, doi: 10.21007/etd.cghs.2007.0017.
[29] P. Su et al., “Mesenchymal stem cell migration during bone formation and bone diseases therapy,” Int. J. Mol. Sci., vol. 19, no. 8, 2018, doi: 10.3390/ijms19082343.
[30] S. J. Shefelbine, P. Augat, L. Claes, and U. Simon, “Trabecular bone fracture healing simulation with finite element analysis and fuzzy logic,” J. Biomech., vol. 38, no. 12, pp. 2440–2450, 2005, doi: 10.1016/j.jbiomech.2004.10.019.
[31] M. A. Fernandez-Yague, S. A. Abbah, L. McNamara, D. I. Zeugolis, A. Pandit, and M. J. Biggs, “Biomimetic Approaches in Bone Tissue Engineering: Integrating Biological and Physicomechanical Strategies,” Adv. Drug Deliv. Rev., vol. 84, pp. 1–29, Sep. 2014, doi: 10.1016/j.addr.2014.09.005.
[32] E. C. Yusko and C. L. Asbury, “Force is a signal that cells cannot ignore,” Mol. Biol. Cell, vol. 25, no. 23, pp. 3717–3725, 2014, doi: 10.1091/mbc.E13-12-0707.
[33] A. Gelmi and C. E. Schutt, “Stimuli-Responsive Biomaterials: Scaffolds for Stem Cell Control,” Adv. Healthc. Mater., vol. 10, no. 1, pp. 1–30, 2021, doi: 10.1002/adhm.202001125.
[34] U. Meyer, T. Meyer, J. Handschel, and H. P. Wiesmann, Fundamentals of Tissue Engineering and Regenerative Medicine. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
[35] L. Polo-Corrales, M. Latorre-Esteves, and J. E. Ramirez-Vick, “Scaffold design for bone regeneration.,” J. Nanosci. Nanotechnol., vol. 14, no. 1, pp. 15–56, 2014, doi: 10.1166/jnn.2014.9127.
[36] K. S. Houschyar et al., “Wnt Pathway in Bone Repair and Regeneration – What Do We Know So Far,” Front. Cell Dev. Biol., vol. 6, no. January, pp. 1–13, 2019, doi: 10.3389/fcell.2018.00170.
[37] M. Levin and C. G. Stevenson, “Regulation of cell behavior and tissue patterning by bioelectrical signals: challenges and opportunities for biomedical engineering.,” Annu. Rev. Biomed. Eng., vol. 14, pp. 295–323, 2012, doi: 10.1146/annurev-bioeng-071811-150114.
[38] C. Chen, X. Bai, Y. Ding, and I. S. Lee, “Electrical stimulation as a novel tool for regulating cell behavior in tissue engineering,” Biomater. Res., vol. 23, no. 1, pp. 1–12, 2019, doi: 10.1186/s40824-019-0176-8.
[39] L. Leppik, K. M. C. Oliveira, M. B. Bhavsar, and J. H. Barker, “Electrical stimulation in bone tissue engineering treatments,” Eur. J. Trauma Emerg. Surg., vol. 46, no. 2, pp. 231–244, 2020, doi: 10.1007/s00068-020-01324-1.
[40] A. S. Çakmak et al., “Synergistic effect of exogeneous and endogeneous electrostimulation on osteogenic differentiation of human mesenchymal stem cells seeded on silk scaffolds,” J. Orthop. Res., 2016, doi: 10.1002/jor.23059.
[41] M. G. Vavva et al., “Effect of ultrasound on bone fracture healing: A computational bioregulatory model,” Comput. Biol. Med., vol. 100, pp. 74–85, 2018, doi: 10.1016/j.compbiomed.2018.06.024.
[42] K. N. Grivas et al., “Effect of ultrasound on bone fracture healing: A computational mechanobioregulatory model,” J. Acoust. Soc. Am., vol. 145, no. 2, pp. 1048–1059, 2019, doi: 10.1121/1.5089221.
[43] H. Huang, R. D. Kamm, and R. T. Lee, “Cell mechanics and mechanotransduction: pathways, probes, and physiology.,” Am. J. Physiol. Cell Physiol., vol. 287, no. 1, pp. C1-11, 2004, doi: 10.1152/ajpcell.00559.2003.
[44] A. J. Steward and D. J. Kelly, “Mechanical regulation of mesenchymal stem cell differentiation,” J. Anat., vol. 227, no. 6, pp. 717–731, 2015, doi: 10.1111/joa.12243.
[45] D. Huber, A. Oskooei, X. Casadevall Solvas, Andrew Demello, and G. V. Kaigala, “Hydrodynamics in Cell Studies,” Chem. Rev., vol. 118, no. 4, pp. 2042–2079, 2018, doi: 10.1021/acs.chemrev.7b00317.
[46] W. R. Thompson, C. T. Rubin, and J. Rubin, “Mechanical regulation of signaling pathways in bone,” Gene, vol. 503, no. 2, pp. 179–193, 2012, doi: 10.1016/j.gene.2012.04.076.
[47] E. K. Rodriguez, A. Hoger, and A. D. McCulloch, “Stress-dependent finite growth in soft elastic tissues,” J. Biomech., vol. 27, no. 4, pp. 455–467, 1994, doi: 10.1016/0021-9290(94)90021-3.
[48] D. Ambrosi et al., “Growth and remodelling of living tissues: Perspectives, challenges and opportunities,” J. R. Soc. Interface, vol. 16, no. 157, 2019, doi: 10.1098/rsif.2019.0233.
[49] P. J. Prendergast, S. Checa, and D. Lacroix, “Computational Models of Tissue Differentiation,” in Computational Modeling in Biomechanics, S. De, F. Guilak, and M. R. K. Mofrad, Eds. Springer Science, 2010, pp. 353–372.
[50] L. E. Delgado, “Modelos matemáticos de reparación ósea,” Universidad Complutense de Madrid, 2009.
[51] S. M. Perren and J. Cordey, “The concept of interfragmentary strain pp. 63- 77. Current concepts of internal fixation of fractures.,” Curr. concepts Intern. Fixat. Fract., pp. 63–77, 1980.
[52] H. M. Frost, “Bone’s Mechanostat: A 2003 Update,” Anat. Rec. - Part A Discov. Mol. Cell. Evol. Biol., vol. 275, no. 2, pp. 1081–1101, 2003, doi: 10.1002/ar.a.10119.
[53] S. C. Cowin and D. H. Hegedus, “Bone remodeling I: theory of adaptive elasticity,” J. Elast., vol. 6, no. 3, pp. 313–326, 1976, doi: 10.1007/BF00041724.
[54] S. C. Cowin, “Bone poroelasticity,” Bone Mech. Handbook, Second Ed., vol. 32, pp. 23-1-23–31, 2001.
[55] R. Huiskes, H. Weinans, H. J. Grootenboer, M. Dalstra, B. Fudala, and T. J. Slooff, “Adaptive bone-remodeling theory applied to prosthetic-design analysis,” J. Biomech., vol. 20, no. 11–12, pp. 1135–1150, 1987, doi: 10.1016/0021-9290(87)90030-3.
[56] H. Weinans, R. Huiskes, and H. J. Grootenboer, “The behavior of adaptive bone-remodeling simulation models,” J. Biomech., vol. 25, no. 12, pp. 1425–1441, 1992, doi: 10.1016/0021-9290(92)90056-7.
[57] D. R. Carter, G. S. Beaupré, N. J. Giori, and J. A. Helms, “Mechanobiology of skeletal regeneration,” Clin. Orthop. Relat. Res., no. 355 Suppl, pp. S41-55, 1998, doi: Non-programmatic.
[58] L. E. Claes and C. A. Heigele, “Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing,” J. Biomech., vol. 32, pp. 255–266, 1999.
[59] P. J. Prendergast, R. Huiskes, K. Søballe, and S, “Biophysical stimuli on cells during tissue differentiation at implant interfaces,” J. Biomech., vol. 30, no. 6, pp. 539–548, 1997, doi: 10.1016/S0021-9290(96)00140-6.
[60] D. Lacroix and P. J. Prendergast, “A mechano-regulation model for tissue differentiation during fracture healing: Analysis of gap size and loading,” J. Biomech., vol. 35, no. 9, pp. 1163–1171, 2002, doi: 10.1016/S0021-9290(02)00086-6.
[61] D. R. Suárez, “Theories of mechanically induced tissue differentiation and adaptation in the musculoskeletal system,” Ing. y Univ., vol. 20, no. 1, pp. 21–40, 2015, doi: 10.11144/javeriana.iyu20-1.tmit.
[62] D. P. Byrne, D. Lacroix, J. A. Planell, D. J. Kelly, and P. J. Prendergast, “Simulation of tissue differentiation in a scaffold as a function of porosity, Young’s modulus and dissolution rate: Application of mechanobiological models in tissue engineering,” Biomaterials, vol. 28, no. 36, pp. 5544–5554, 2007, doi: 10.1016/j.biomaterials.2007.09.003.
[63] H. Khayyeri, S. Checa, M. Tägil, F. J. O’Brien, and P. J. Prendergast, “Tissue differentiation in an in vivo bioreactor: in silico investigations of scaffold stiffness.,” J. Mater. Sci. Mater. Med., vol. 21, no. 8, pp. 2331–6, 2010, doi: 10.1007/s10856-009-3973-0.
[64] J. A. Sanz-Herrera, J. M. Garcia-Aznar, and M. Doblare, “A mathematical model for bone tissue regeneration inside a specific type of scaffold,” Biomech. Model. Mechanobiol., vol. 7, no. 5, pp. 355–366, 2008, doi: 10.1007/s10237-007-0089-7.
[65] J. A. Sanz-Herrera, J. M. García-Aznar, and M. Doblaré, “Micro-macro numerical modelling of bone regeneration in tissue engineering,” Comput. Methods Appl. Mech. Eng., vol. 197, no. 33–40, pp. 3092–3107, 2008, doi: 10.1016/j.cma.2008.02.010.
[66] T. Adachi, Y. Osako, M. Tanaka, M. Hojo, and S. J. Hollister, “Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration,” Biomaterials, vol. 27, no. 21, pp. 3964–3972, 2006, doi:10.1016/j.biomaterials.2006.02.039.
G. S. Beaupre and T. E. Orr, “An approach for time-dependent bone modeling and remodeling—theoretical development - Beaupré - 2005 - Journal of Orthopaedic Research - Wiley Online Library,” J. Orthop. …, no. 3, pp. 651–661, 1990, [Online]. Available: http://onlinelibrary.wiley.com/doi/10.1002/jor.1100080506/abstract%5Cnpapers2://publication/uuid/945494C3-62EC-49A9-849A-91728212793D.
[68] A. Bailón-Plaza and M. C. H. Van Der Meulen, “A mathematical framework to study the effects of growth factor influences on fracture healing,” J. Theor. Biol., vol. 212, no. 2, pp. 191–209, 2001, doi: 10.1006/jtbi.2001.2372.
[69] D. Lacroix, P. J. Prendergast, G. Li, and D. Marsh, “Biomechanical model to simulate tissue differentiation and bone regeneration: application to fracture healing,” Med. Biol. Eng. Comput., vol. 40, no. 1, pp. 14–21, 2002, doi: 10.1007/BF02347690.
[70] L. Geris, A. Gerisch, J. Vander Sloten, R. Weiner, and H. Van Oosterwyck, “Angiogenesis in bone fracture healing: A bioregulatory model,” J. Theor. Biol., vol. 251, no. 1, pp. 137–158, 2008, doi: 10.1016/j.jtbi.2007.11.008.
[71] M. J. Gómez-Benito, J. M. García-Aznar, J. H. Kuiper, and M. Doblaré, “Influence of fracture gap size on the pattern of long bone healing: A computational study,” J. Theor. Biol., vol. 235, no. 1, pp. 105–119, 2005, doi: 10.1016/j.jtbi.2004.12.023.
[72] J. M. García-Aznar, J. H. Kuiper, M. J. Gómez-Benito, M. Doblaré, and J. B. Richardson, “Computational simulation of fracture healing: Influence of interfragmentary movement on the callus growth,” J. Biomech., vol. 40, no. 7, pp. 1467–1476, 2007, doi: 10.1016/j.jbiomech.2006.06.013.
[73] S. Kawamura et al., “Simulation of Fracture Healing Using Cellular Automata (Influence of Operation Conditions on Healing Result in External Fixation),” JSME Int. J. Ser. A Solid Mech. Mater. Eng., vol. 2, no. 48, pp. 57–64, 2005.
[74] M. Wang and N. Yang, “Three-dimensional computational model simulating the fracture healing process with both biphasic poroelastic finite element analysis and fuzzy logic control,” Sci. Rep., vol. 8, no. 1, pp. 1–13, 2018, doi: 10.1038/s41598-018-25229-7.
[75] C. M. Bidan, F. M. Wang, and J. W. C. Dunlop, “A three-dimensional model for tissue deposition on complex surfaces,” Comput. Methods Biomech. Biomed. Engin., vol. 16, no. 10, pp. 1056–1070, 2013, doi: 10.1080/10255842.2013.774384.
[76] C. M. Bidan, K. P. Kommareddy, M. Rumpler, P. Kollmannsberger, P. Fratzl, and J. W. C. Dunlop, “Geometry as a Factor for Tissue Growth: Towards Shape Optimization of Tissue Engineering Scaffolds,” Adv. Healthc. Mater., vol. 2, no. 1, pp. 186–194, 2013, doi: 10.1002/adhm.201200159.
[77] P. F. Egan, K. A. Shea, and S. J. Ferguson, “Simulated tissue growth for 3D printed scaffolds,” Biomech. Model. Mechanobiol., vol. 17, no. 5, pp. 1481–1495, 2018, doi: 10.1007/s10237-018-1040-9.
[78] Y. F. Feng et al., “Influence of Architecture of β-Tricalcium Phosphate Scaffolds on Biological Performance in Repairing Segmental Bone Defects,” PLoS One, vol. 7, no. 11, 2012, doi: 10.1371/journal.pone.0049955.
[79] J. Chang, X. Zhang, and K. Dai, “Material characteristics, surface/interface, and biological effects on the osteogenesis of bioactive materials,” in Bioactive Materials for Bone Regeneration, Elsevier, 2020, pp. 1–103.
[80] L. J. Gibson and M. F. Ashby, Cellular materials in nature and medicine, vol. 51. Cambridge University Press, 2010.
[81] A. Boccaccio, A. E. Uva, M. Fiorentino, L. Lamberti, and G. Monno, “A Mechanobiology-based Algorithm to Optimize the Microstructure Geometry of Bone Tissue Scaffolds,” Int. J. Biol. Sci., vol. 12, no. 1, pp. 1–17, 2016, doi: 10.7150/ijbs.13158.
[82] J. A. a. Sanz-Herrera, M. Doblaré, and J. M. M. García-Aznar, “Scaffold microarchitecture determines internal bone directional growth structure: A numerical study,” J. Biomech., vol. 43, no. 13, pp. 2480–2486, 2010, doi: 10.1016/j.jbiomech.2010.05.027.
[83] G. Li et al., “In vitro and in vivo study of additive manufactured porous Ti6Al4V scaffolds for repairing bone defects,” Sci. Rep., vol. 6, pp. 1–11, 2016, doi: 10.1038/srep34072.
[84] M. A. Velasco Peña and D. A. Garzón Alvarado, “Implantes Scaffolds para regeneración ósea. Materiales, técnicas y modelado mediante sistemas de reacción-difusión,” Rev. Cuba. Investig. Biomédicas, vol. 29, no. 1, pp. 0–0, 2010.
[85] Q. Fu, E. Saiz, M. N. Rahaman, and A. P. Tomsia, “Bioactive glass scaffolds for bone tissue engineering: State of the art and future perspectives,” Mater. Sci. Eng. C, vol. 31, no. 7, pp. 1245–1256, 2011, doi: 10.1016/j.msec.2011.04.022.
[86] T. Wu, S. Yu, D. Chen, and Y. Wang, “Bionic design, materials and performance of bone tissue scaffolds,” Materials (Basel)., vol. 10, no. 10, 2017, doi: 10.3390/ma10101187.
[87] T. Albrektsson and C. Johansson, “Osteoinduction, osteoconduction and osseointegration,” Eur. Spine J., vol. 10, pp. S96–S101, 2001, doi: 10.1007/s005860100282.
[88] M. A. Velasco, C. A. Narváez-Tovar, and D. A. Garzón-Alvarado, “Design, Materials, and Mechanobiology of Biodegradable Scaffolds for Bone Tissue Engineering,” Biomed Res. Int., vol. 2015, p. 21, 2015, doi: 10.1155/2015/729076.
[89] B. P. Chan and K. W. Leong, “Scaffolding in tissue engineering: General approaches and tissue-specific considerations,” Eur. Spine J., vol. 17, no. SUPPL. 4, 2008, doi: 10.1007/s00586-008-0745-3.
[90] T. W. Gilbert, T. L. Sellaro, and S. F. Badylak, “Decellularization of tissues and organs,” Biomaterials, vol. 27, no. 19, pp. 3675–3683, 2006, doi: 10.1016/j.biomaterials.2006.02.014.
[91] T. S. Karande and C. M. Agrawal, “Functions and requirements of synthetic scaffolds in tissue engineering,” Nanotechnol. Tissue Eng. Scaffold, pp. 53–86, 2008, doi: 10.1201/9781420051834.ch3.
[92] F. R. A. J. Rose and R. O. C. Oreffo, “Bone Tissue Engineering: Hope vs Hype,” Biochem. Biophys. Res. Commun., vol. 292, no. 1, pp. 1–7, 2002, doi: 10.1006/bbrc.2002.6519.
[93] B. Dhandayuthapani, Y. Yoshida, T. Maekawa, and D. S. Kumar, “Polymeric scaffolds in tissue engineering application: A review,” Int. J. Polym. Sci., vol. 2011, no. ii, 2011, doi: 10.1155/2011/290602.
[94] C. Gomez, “A Unit Cell Based Multi-scale Modeling and Design Approach for Tissue Engineered Scaffolds,” Drexel University, 2007.
[95] H. N. Chia and B. M. Wu, “Recent advances in 3D printing of biomaterials,” J. Biol. Eng., vol. 9, no. 1, pp. 1–14, 2015, doi: 10.1186/s13036-015-0001-4.
[96] Z. Gu, J. Fu, H. Lin, and Y. He, “Development of 3D bioprinting: From printing methods to biomedical applications,” Asian J. Pharm. Sci., vol. 15, no. 5, pp. 529–557, 2020, doi: 10.1016/j.ajps.2019.11.003.
[97] S. Checa, C. Sandino, D. P. Byrne, D. J. Kelly, D. Lacroix, and P. J. Prendergast, “Computational techniques for selection of biomaterial scaffolds for tissue engineering,” in Advances on Modeling in Tissue Engineering, P. R. Fernandes and P. J. Bártolo, Eds. Springer Science & Business Media, 2011, pp. 55–69.
[98] S. R. Caliari and B. A. C. Harley, “2.216 – Collagen–GAG Materials,” in Comprehensive Biomaterials, 2011, pp. 279–302.
[99] R. Hedayati, M. Sadighi, M. Mohammadi-Aghdam, and A. A. Zadpoor, “Mechanical behavior of additively manufactured porous biomaterials made from truncated cuboctahedron unit cells,” Int. J. Mech. Sci., vol. 106, no. November, pp. 19–38, 2016, doi: 10.1016/j.ijmecsci.2015.11.033.
[100] A. Boccaccio, A. E. Uva, M. Fiorentino, G. Mori, and G. Monno, “Geometry design optimization of functionally graded scaffolds for bone tissue engineering: A mechanobiological approach,” PLoS One, vol. 11, no. 1, 2016, doi: 10.1371/journal.pone.0146935.
[101] F. J. O’Brien, B. A. Harley, I. V. Yannas, and L. J. Gibson, “The effect of pore size on cell adhesion in collagen-GAG scaffolds,” Biomaterials, vol. 26, no. 4, pp. 433–441, 2005, doi: 10.1016/j.biomaterials.2004.02.052.
[102] A. J. EL Haj, K. Hampson, and G. Gogniat, “Bioreactors for Connective Tissue Engineering: Design and Monitoring Innovations,” in Bioreactor Systems for Tissue Engineering, vol. 1, C. Kasper, M. Van Griensven, and R. Pörtner, Eds. Springer Science & Business Media, 2009, pp. 81–94.
[103] C. H. Ma, H. B. Zhang, S. M. Yang, R. X. Yin, X. J. Yao, and W. J. Zhang, “Comparison of the degradation behavior of PLGA scaffolds in micro-channel, shaking, and static conditions,” Biomicrofluidics, vol. 12, no. 3, 2018, doi: 10.1063/1.5021394.
[104] H. Zhang, L. Zhou, and W. Zhang, “Control of scaffold degradation in tissue engineering: A review,” Tissue Eng. - Part B Rev., vol. 20, no. 5, pp. 492–502, 2014, doi: 10.1089/ten.teb.2013.0452.
[105] A. H. M. Yusop, A. Alsakkaf, M. R. A. Kadir, I. Sukmana, and H. Nur, “Corrosion of porous Mg and Fe scaffolds: a review of mechanical and biocompatibility responses,” Corros. Eng. Sci. Technol., vol. 0, no. 0, pp. 1–17, 2021, doi: 10.1080/1478422x.2021.1879427.
[106] R. Detsch and A. R. Boccaccini, “The role of osteoclasts in bone tissue engineering.,” J. Tissue Eng. Regen. Med., vol. 9, no. 10, pp. 1133–49, Oct. 2015, doi: 10.1002/term.1851.
[107] M. Brugmans, “The interplay between biomaterial degradation and tissue properties: Relevance for in situ cardiovascular tissue engineering,” Technische Universiteit Eindhoven, 2015.
[108] G. Erkizia, A. Rainer, E. M. De Juan-Pardo, and J. Aldazabal, “Computer Simulation of Scaffold Degradation,” J. Phys. Conf. Ser., vol. 252, no. 1, p. 012004, 2010, doi: 10.1088/1742-6596/252/1/012004.
[109] G. Chao, S. Xiaobo, C. Chenglin, D. Yinsheng, P. Yuepu, and L. Pinghua, “A cellular automaton simulation of the degradation of porous polylactide scaffold: I. Effect of porosity,” Mater. Sci. Eng. C, vol. 29, no. 6, pp. 1950–1958, 2009, doi: 10.1016/j.msec.2009.03.003.
110] L. Yunfeng, Z. Gen, X. Jianbin, J. Xianfeng, and P. Wei, “Simulation of Bone Regeneration within Stress Environment based on Scaffold Degradation,” Int. J. Digit. Content Technol. its Appl., vol. 7, no. 6, pp. 799–807, 2013, doi: 10.4156/jdcta.vol7.issue6.90.
[111] Y. Chen, S. Zhou, and Q. Li, “Biomaterials Microstructure design of biodegradable scaffold and its effect on tissue regeneration,” Biomaterials, vol. 32, no. 22, pp. 5003–5014, 2011, doi: 10.1016/j.biomaterials.2011.03.064.
[112] A. C. Vieir, R. M. Guedes, and V. Tita, “On different approaches to simulate the mechanical behavior of scaffolds during degradation,” Procedia Eng., vol. 110, pp. 21–28, 2015, doi: 10.1016/j.proeng.2015.07.005.
[113] J. Pan, “Modelling Degradation of Bioresorbable Polymeric Medical Devices,” in Modelling Degradation of Bioresorbable Polymeric Medical Devices, J. Pan, Ed. Woodhead Publishing, 2015, pp. 1–14.
[114] Q. Shi, Q. Chen, N. Pugno, and Z. Y. Li, “Effect of rehabilitation exercise durations on the dynamic bone repair process by coupling polymer scaffold degradation and bone formation,” Biomech. Model. Mechanobiol., vol. 17, no. 3, pp. 763–775, 2018, doi: 10.1007/s10237-017-0991-6.
[115] L. Wang, Q. Shi, Y. Cai, Q. Chen, X. Guo, and Z. Li, “Mechanical–chemical coupled modeling of bone regeneration within a biodegradable polymer scaffold loaded with VEGF,” Biomech. Model. Mechanobiol., vol. 19, no. 6, pp. 2285–2306, 2020, doi: 10.1007/s10237-020-01339-y.
[116] M. A. Sulong, I. V. Belova, A. R. Boccaccini, G. E. Murch, and T. Fiedler, “A model of the mechanical degradation of foam replicated scaffolds,” J. Mater. Sci., vol. 51, no. 8, pp. 3824–3835, 2016, doi: 10.1007/s10853-015-9701-x.
[117] D. A. Garzón-Alvarado, M. A. Velasco, and C. A. Narváez-Tovar, “Modeling porous scaffold microstructure by a reaction-diffusion system and its degradation by hydrolysis,” Comput. Biol. Med., vol. 42, no. 2, pp. 147–155, 2012, doi: 10.1016/j.compbiomed.2011.11.002.
[118] S. J. Hollister, “Scaffold engineering: A bridge to where?,” Biofabrication, vol. 1, no. 1, 2009, doi: 10.1088/1758-5082/1/1/012001.
[119] M. Rumpler, A. Woesz, J. W. . Dunlop, J. T. van Dongen, and P. Fratzl, “The effect of geometry on three-dimensional tissue growth,” J. R. Soc. Interface, vol. 5, no. 27, pp. 1173–1180, 2008, doi: 10.1098/rsif.2008.0064.
[120] E. Saito, E. E. Liao, and W.-W. Hu, “Effects of designed PLLA and 50:50 PLGA scaffold architectures on bone formation in vivo,” J. Tissue Eng. Regen. Med., vol. 4, no. 7, pp. 99–111, 2011, doi: 10.1002/term.
[121] W. Bian et al., “Morphological characteristics of cartilage ‑ bone transitional structures in the human knee joint and CAD design of an osteochondral scaffold,” Biomed. Eng. Online, pp. 1–14, 2016, doi: 10.1186/s12938-016-0200-3.
[122] L. Wang, M. Xu, L. Zhang, Q. Zhou, and L. Luo, “Automated quantitative assessment of three-dimensional bioprinted hydrogel scaffolds using optical coherence tomography,” Biomed. Opt. Express, vol. 7, no. 3, p. 894, 2016, doi: 10.1364/BOE.7.000894.
[123] A. Liu et al., “3D Printing Surgical Implants at the clinic: A Experimental Study on Anterior Cruciate Ligament Reconstruction.,” Sci. Rep., vol. 6, no. October 2015, p. 21704, 2016, doi: 10.1038/srep21704.
[124] V. T. Athanasiou, D. J. Papachristou, A. Panagopoulos, A. Saridis, C. D. Scopa, and P. Megas, “Histological comparison of autograft, allograft-DBM, xenograft, and synthetic grafts in a trabecular bone defect: an experimental study in rabbits.,” Med. Sci. Monit., vol. 16, no. 1, pp. BR24-31, Jan. 2010, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/20037482.
[125] A. M. Pobloth et al., “Mechanobiologically optimized 3D titanium-mesh scaffolds enhance bone regeneration in critical segmental defects in sheep,” Sci. Transl. Med., vol. 10, no. 423, 2018, doi: 10.1126/scitranslmed.aam8828.
[126] X. Zhou et al., “Improved Human Bone Marrow Mesenchymal Stem Cell Osteogenesis in 3D Bioprinted Tissue Scaffolds with Low Intensity Pulsed Ultrasound Stimulation,” Sci. Rep., vol. 6, no. August, pp. 1–12, 2016, doi: 10.1038/srep32876.
[127] M. Aliabouzar, S. J. Lee, X. Zhou, G. L. Zhang, and K. Sarkar, “Effects of scaffold microstructure and low intensity pulsed ultrasound on chondrogenic differentiation of human mesenchymal stem cells,” Biotechnol. Bioeng., vol. 115, no. 2, pp. 495–506, 2018, doi: 10.1002/bit.26480.
[128] X. Chen and Q. Hu, “Bioactive Glasses,” Front. Nanobiomedical Res., vol. 3, no. October, pp. 147–182, 2017, doi: 10.1142/9789813202573_0004.
[129] I. Gendviliene et al., “Assessment of the morphology and dimensional accuracy of 3D printed PLA and PLA/HAp scaffolds,” J. Mech. Behav. Biomed. Mater., vol. 104, no. December 2019, p. 103616, 2020, doi: 10.1016/j.jmbbm.2020.103616.
[130] C. Silva, C. J. Cortés-Rodriguez, J. Hazur, S. Reakasame, and A. R. Boccaccini, “Rational design of a triple-layered coaxial extruder system: In silico and in vitro evaluations directed toward optimizing cell viability,” Int. J. Bioprinting, vol. 6, no. 4, pp. 1–10, 2020, doi: 10.18063/IJB.V6I4.282.
[131] J. Zhang, E. Wehrle, J. R. Vetsch, G. R. Paul, M. Rubert, and R. Müller, “Alginate dependent changes of physical properties in 3D bioprinted cell-laden porous scaffolds affect cell viability and cell morphology,” Biomed. Mater., vol. 14, no. 6, p. 065009, Sep. 2019, doi: 10.1088/1748-605X/ab3c74.
[132] W. Li, “45S5 Bioactive Glass-Based Composite Scaffolds with Polymer Coatings for Bone Tissue Engineering Therapeutics,” Friedrich-Alexander-Universität Erlangen-Nürnberg, 2015.
[133] J. Li, M. Chen, X. Wei, Y. Hao, and J. Wang, “Evaluation of 3D-printed polycaprolactone scaffolds coated with freeze-dried platelet-rich plasma for bone regeneration,” Materials (Basel)., vol. 10, no. 7, 2017, doi: 10.3390/ma10070831.
[134] C. D. Chaput, “Optimization of scaffolds and surface-based treatments for orthopedic applications,” Spine (Phila. Pa. 1976)., vol. 41, no. 7, pp. S14–S15, 2016, doi: 10.1097/BRS.0000000000001426.
[135] D. Lin, K. Yang, W. Tang, Y. Liu, Y. Yuan, and C. Liu, “Colloids and Surfaces B : Biointerfaces A poly ( glycerol sebacate ) -coated mesoporous bioactive glass scaffold with adjustable mechanical strength , degradation rate , controlled-release and cell behavior for bone tissue engineering,” Colloids Surfaces B Biointerfaces, vol. 131, pp. 1–11, 2015, doi: 10.1016/j.colsurfb.2015.04.031.
[136] F. Westhauser et al., “Three-dimensional polymer coated 45S5-type bioactive glass scaffolds seeded with human mesenchymal stem cells show bone formation in vivo,” J. Mater. Sci. Mater. Med., vol. 27, no. 7, 2016, doi: 10.1007/s10856-016-5732-3.
[137] A. Cipitria et al., “BMP delivery complements the guiding effect of scaffold architecture without altering bone microstructure in critical-sized long bone defects: A multiscale analysis,” Acta Biomater., vol. 23, pp. 282–294, 2015, doi: 10.1016/j.actbio.2015.05.015.
[138] A. Entezari et al., “Architectural Design of 3D Printed Scaffolds Controls the Volume and Functionality of Newly Formed Bone,” Adv. Healthc. Mater., vol. 8, no. 1, pp. 1–12, 2019, doi: 10.1002/adhm.201801353.
[139] A. Anindyajati, P. Boughton, and A. J. Ruys, “Mechanical and cytocompatibility evaluation of UHMWPE/PCL/Bioglass® fibrous composite for acetabular labrum implant,” Materials (Basel)., vol. 16, no. 6, 2019, doi: 10.3390/ma12060916.
[140] A. A. Zadpoor and R. Hedayati, “Analytical relationships for prediction of the mechanical properties of additively manufactured porous biomaterials,” J. Biomed. Mater. Res. A, vol. 104A, no. 12, pp. 3164–3174, 2016, doi: 10.1002/jbm.a.35855.
[141] K. A. Corin and L. J. Gibson, “Cell Contraction Forces in Scaffolds with Varying Pore Size and Cell Density,” Am. J. Manag. Care, vol. 15, no. 3, pp. 189–193, 2009, doi: 10.1038/jid.2014.371.
[142] M. Afshar, A. P. Anaraki, H. Montazerian, and J. Kadkhodapour, “Additive manufacturing and mechanical characterization of graded porosity scaffolds designed based on triply periodic minimal surface architectures,” J. Mech. Behav. Biomed. Mater., vol. 62, pp. 481–494, 2016, doi: 10.1016/j.jmbbm.2016.05.027.
[143] A. Carlier et al., “Designing optimal calcium phosphate scaffold-cell combinations using an integrative model-based approach,” Acta Biomater., vol. 7, no. 10, pp. 3573–3585, 2011, doi: 10.1016/j.actbio.2011.06.021.
[144] W. Sun, B. Starly, A. Darling, and C. Gomez, “Computer-aided tissue engineering: application to biomimetic modelling and design of tissue scaffolds.,” Biotechnol. Appl. Biochem., vol. 39, no. Pt 1, pp. 49–58, 2004, doi: 10.1042/BA20030109.
[145] F. A. Sabet, A. R. Najafi, E. Hamed, and I. Jasiuk, “Modelling of bone fracture and strength at different length scales: A review,” Interface Focus, vol. 6, no. 1, pp. 20–30, 2016, doi: 10.1098/rsfs.2015.0055.
[146] A. Sharma, S. Molla, K. S. Katti, and D. R. Katti, “Multiscale models of degradation and healing of bone tissue engineering nanocomposite scaffolds,” J. Nanomechanics Micromechanics, vol. 7, no. 4, pp. 1–14, 2017, doi: 10.1061/(ASCE)NM.2153-5477.0000133.
[147] S. Checa and P. J. Prendergast, “Effect of cell seeding and mechanical loading on vascularization and tissue formation inside a scaffold : A mechano-biological model using a lattice approach to simulate cell activity,” J. Biomech., vol. 43, no. 5, pp. 961–968, 2010, doi: 10.1016/j.jbiomech.2009.10.044.
[148] M. J. Song, D. Dean, and M. L. Knothe Tate, “Computational Modeling of Tissue Engineering Scaffolds as Delivery Devices for Mechanical and Mechanically Modulated Signals,” no. February 2011, 2012, pp. 127–143.
[149] N. H. Pham, R. S. Voronov, S. B. Vangordon, V. I. Sikavitsas, and D. V. Papavassiliou, “Predicting the stress distribution within scaffolds with ordered architecture,” Biorheology, vol. 49, no. 4, pp. 235–247, 2012, doi: 10.3233/BIR-2012-0613.
[150] F. Zhao, T. J. Vaughan, and L. M. Mcnamara, “Multiscale fluid–structure interaction modelling to determine the mechanical stimulation of bone cells in a tissue engineered scaffold,” Biomech. Model. Mechanobiol., vol. 14, no. 2, pp. 231–243, 2015, doi: 10.1007/s10237-014-0599-z.
[151] A. Campos Marin and D. Lacroix, “The inter-sample structural variability of regular tissue-engineered scaffolds significantly affects the micromechanical local cell environment,” Interface Focus, vol. 5, no. 2, pp. 20140097–20140097, 2015, doi: 10.1098/rsfs.2014.0097.
[152] H. a. Almeida and P. J. Bártolo, “Design of tissue engineering scaffolds based on hyperbolic surfaces: Structural numerical evaluation,” Med. Eng. Phys., vol. 36, no. 8, pp. 1033–1040, 2014, doi: 10.1016/j.medengphy.2014.05.006.
[153] A. S. Dalaq, D. W. Abueidda, R. K. Abu Al-Rub, and I. M. Jasiuk, “Finite element prediction of effective elastic properties of interpenetrating phase composites with architectured 3D sheet reinforcements,” Int. J. Solids Struct., vol. 83, pp. 169–182, 2016, doi: 10.1016/j.ijsolstr.2016.01.011.
[154] J. Shi, L. Zhu, L. Li, Z. Li, J. Yang, and X. Wang, “A TPMS-based method for modeling porous scaffolds for bionic bone tissue engineering,” Sci. Rep., vol. 8, no. 1, 2018, doi: 10.1038/s41598-018-25750-9.
[155] A. Salehi and A. Daneshmehr, “Using Minimal Surface theory to design bone tissue scaffold and validate it with SLS 3D printer,” 2019.
[156] S. M. Giannitelli, D. Accoto, M. Trombetta, and A. Rainer, “Current trends in the design of scaffolds for computer-aided tissue engineering,” Acta Biomater., vol. 10, no. 2, pp. 580–594, 2014, doi: 10.1016/j.actbio.2013.10.024.
[157] S. Limmahakhun and C. Yan, “Graded Cellular Bone Scaffolds,” Scaffolds Tissue Eng. - Mater. Technol. Clin. Appl., 2017, doi: 10.5772/intechopen.69911.
[158] C. Y. Lin, N. Kikuchi, and S. J. Hollister, “A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity,” J. Biomech., vol. 37, no. 5, pp. 623–636, 2004, doi: 10.1016/j.jbiomech.2003.09.029.
[159] J. Wieding, A. Wolf, and R. Bader, “Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone,” J. Mech. Behav. Biomed. Mater., vol. 37, pp. 56–68, 2014, doi: 10.1016/j.jmbbm.2014.05.002.
[160] N. Reznikov et al., “Individual response variations in scaffold-guided bone regeneration are determined by independent strain- and injury-induced mechanisms,” Biomaterials, vol. 194, no. August 2018, pp. 183–194, 2019, doi: 10.1016/j.biomaterials.2018.11.026.
[161] W. J. Hendrikson, C. A. van Blitterswijk, J. Rouwkema, and L. Moroni, “The use of finite element analyses to design and fabricate three-dimensional scaffolds for skeletal tissue engineering,” Front. Bioeng. Biotechnol., vol. 5, no. MAY, pp. 1–13, 2017, doi: 10.3389/fbioe.2017.00030.
[162] X. Liu, “Application Of Mechano-Regulatory Tissue Differentiation Theory In Tendon Attachment Scaffold Design - A Finite Element Study,” University of Notre Dame, 2006.
[163] C. Liu, Z. Xia, and J. T. Czernuszka, “Design and development of three-dimensional scaffolds for tissue engineering,” Chem. Eng. Res., vol. 85, no. 1, pp. 1051–1064, 2007, doi: 10.1205/cherd06196.
[164] Y. Chen, S. Zhou, and Q. Li, “Microstructure design of biodegradable scaffold and its effect on tissue regeneration,” Biomaterials, vol. 32, no. 22, pp. 5003–5014, 2011, doi: 10.1016/j.biomaterials.2011.03.064.
[165] A. Boccaccio et al., “Rhombicuboctahedron Unit Cell Based Scaffolds for Bone Regeneration : Geometry Optimization with a Mechanobiology – driven Algorithm,” Mater. Sci. Eng. C, 2017.
[166] Ó. L. Rodríguez-Montaño et al., “Irregular Load Adapted Scaffold Optimization: A Computational Framework Based on Mechanobiological Criteria,” ACS Biomater. Sci. Eng., vol. 5, no. 10, pp. 5392–5411, 2019, doi: 10.1021/acsbiomaterials.9b01023.
[167] G. Percoco, A. E. Uva, M. Fiorentino, M. Gattullo, V. M. Manghisi, and A. Boccaccio, “Mechanobiological approach to design and optimize bone tissue scaffolds 3D printed with fused deposition modeling: A feasibility study,” Materials (Basel)., vol. 13, no. 3, 2020, doi: 10.3390/ma13030648.
[168] C. Gorriz, F. Ribeiro, J. M. Guedes, and P. R. Fernandes, “A biomechanical approach for bone regeneration inside scaffolds,” in Procedia Engineering, 2015, vol. 110, pp. 82–89, doi: 10.1016/j.proeng.2015.07.013.
[169] M. A. Velasco, Y. Lancheros, and D. A. Garzón-Alvarado, “Geometric and mechanical properties evaluation of scaffolds for bone tissue applications designing by a reaction-diffusion models and manufactured with a material jetting system,” J. Comput. Des. Eng., vol. 3, no. 4, pp. 1–13, 2016, doi: 10.1016/j.jcde.2016.06.006.
[170] S. Wu, X. Liu, K. W. K. Yeung, C. Liu, and X. Yang, “Biomimetic porous scaffolds for bone tissue engineering,” Mater. Sci. Eng. R Reports, vol. 80, pp. 1–36, Jun. 2014, doi: 10.1016/j.mser.2014.04.001.
[171] G. Falvo D’Urso Labate et al., “Bone structural similarity score: a multiparametric tool to match properties of biomimetic bone substitutes with their target tissues.,” J. Appl. Biomater. Funct. Mater., vol. 14, no. 3, p. 0, 2016, doi: 10.5301/jabfm.5000283.
[172] D. F. Williams, “Challenges With the Development of Biomaterials for Sustainable Tissue Engineering,” Front. Bioeng. Biotechnol., vol. 7, no. May, pp. 1–10, 2019, doi: 10.3389/fbioe.2019.00127.
[173] A. De Pieri, Y. Rochev, and D. I. Zeugolis, “Scaffold-free cell-based tissue engineering therapies: advances, shortfalls and forecast,” npj Regen. Med., vol. 6, no. 1, 2021, doi: 10.1038/s41536-021-00133-3.
[174] O. de Weck and I. Y. Kim, “Finite element method.” Massachusetts Institute of Technology, pp. 1–26, 2004.
[175] A. D. Chandrupatla, T. R., Belegundu, T. Ramesh, and C. Ray, Introduction to finite elements in engineering, Vol. 2. Upper Saddle River: Prentice Hall, 2002.
[176] Dassault Systèmes, “Abaqus 6.11 Documentation.” Abaqus, 2011.
[177] Ó. L. Rodríguez-Montaño et al., “An algorithm to optimize the micro-geometrical dimensions of scaffolds with spherical pores,” Materials (Basel)., vol. 13, no. 18, pp. 1–17, 2020, doi: 10.3390/ma13184062.
[178] C. E. Korenczuk et al., “Isotropic failure criteria are not appropriate for anisotropic fibrous biological tissues,” J. Biomech. Eng., vol. 139, no. 7, pp. 1–10, 2017, doi: 10.1115/1.4036316.
[179] D. J. Kelly and P. J. Prendergast, “Mechano-regulation of stem cell differentiation and tissue regeneration in osteochondral defects,” J. Biomech., vol. 38, no. 7, pp. 1413–1422, 2005, doi: 10.1016/j.jbiomech.2004.06.026.
[180] F. S. L. Bobbert et al., “Additively manufactured metallic porous biomaterials based on minimal surfaces : A unique combination of topological , mechanical , and mass transport properties,” Acta Biomater., vol. 53, pp. 572–584, 2017, doi: 10.1016/j.actbio.2017.02.024.
[181] P. F. Egan, “Integrated Design Approaches for 3D Printed Tissue Scaffolds: Review and Outlook,” Materials (Basel)., vol. 12, no. 15, p. 2355, Jul. 2019, doi: 10.3390/ma12152355.
[182] A. Boccaccio, D. J. Kelly, and C. Pappalettere, “A Mechano-Regulation Model of Fracture Repair in Vertebral Bodies,” no. March, pp. 433–443, 2011, doi: 10.1002/jor.21231.
[183] C. Sandino and D. Lacroix, “A dynamical study of the mechanical stimuli and tissue differentiation within a CaP scaffold based on micro-CT finite element models,” Biomech. Model. Mechanobiol., vol. 10, no. 4, pp. 565–576, 2011, doi: 10.1007/s10237-010-0256-0.
[184] H. Isaksson, W. Wilson, C. C. van Donkelaar, R. Huiskes, and K. Ito, “Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing,” J. Biomech., vol. 39, no. 8, pp. 1507–1516, 2006, doi: 10.1016/j.jbiomech.2005.01.037.
[185] J. A. Sanz-Herrera and A. R. Boccaccini, “Modelling bioactivity and degradation of bioactive glass based tissue engineering scaffolds,” Int. J. Solids Struct., vol. 48, no. 2, pp. 257–268, 2011, doi: 10.1016/j.ijsolstr.2010.09.025.
[186] T. E. G. Krueger, D. L. J. Thorek, S. R. Denmeade, J. T. Isaacs, and W. N. Brennen, “Concise Review: Mesenchymal Stem Cell-Based Drug Delivery: The Good, the Bad, the Ugly, and the Promise,” Stem Cells Transl. Med., vol. 7, no. 9, pp. 651–663, 2018, doi: 10.1002/sctm.18-0024.
[187] M. A. Pérez and P. J. Prendergast, “Random-walk models of cell dispersal included in mechanobiological simulations of tissue differentiation,” J. Biomech., vol. 40, no. 10, pp. 2244–2253, 2007, doi: 10.1016/j.jbiomech.2006.10.020.
[188] P. Schneider, M. Meier, R. Wepf, and R. Müller, “Towards quantitative 3D imaging of the osteocyte lacuno-canalicular network,” Bone, vol. 47, no. 5, pp. 848–858, 2010, doi: 10.1016/j.bone.2010.07.026.
[189] A. Boccaccio, P. J. Prendergast, C. Pappalettere, and D. J. Kelly, “Tissue differentiation and bone regeneration in an osteotomized mandible: A computational analysis of the latency period,” Med. Biol. Eng. Comput., vol. 46, no. 3, pp. 283–298, 2008, doi: 10.1007/s11517-007-0247-1.
[190] A. Göpferich, “Mechanisms of polymer degradation and erosion,” Biomaterials, vol. 17, no. 2, pp. 103–114, 1996, doi: 10.1016/B978-008045154-1.50016-2.
[191] C. Mircioiu et al., “Mathematical modeling of release kinetics from supramolecular drug delivery systems,” Pharmaceutics, vol. 11, no. 3, 2019, doi: 10.3390/pharmaceutics11030140.
[192] F. Ye and H. Wang, “A simple Python code for computing effective properties of 2D and 3D representative volume element under periodic boundary conditions,” arXiv, 2017.
[193] A. Ramos and J. A. Simões, “Tetrahedral versus hexahedral finite elements in numerical modelling of the proximal femur,” Med. Eng. Phys., vol. 28, no. 9, pp. 916–924, 2006, doi: 10.1016/j.medengphy.2005.12.006.
[194] S. C. Tadepalli, A. Erdemir, and P. R. Cavanagh, “Comparison of hexahedral and tetrahedral elements in finite element analysis of the foot and footwear,” J. Biomech., vol. 44, no. 12, pp. 2337–2343, Aug. 2011, doi: 10.1016/j.jbiomech.2011.05.006.
[195] A. Lipphaus and U. Witzel, “Three‑dimensional finite element analysis of the dural folds and the human skull under head acceleration,” Anat. Rec., vol. 304, no. 2, pp. 1–9, Feb. 2020, doi: 10.1002/ar.24401.
[196] J. Y. Won et al., “Evaluation of 3D printed PCL/PLGA/β-TCP versus collagen membranes for guided bone regeneration in a beagle implant model,” Biomed. Mater., vol. 11, no. 5, p. 55013, 2016, doi: 10.1088/1748-6041/11/5/055013.
[197] A. Tsoularis and J. Wallace, “Analysis of logistic growth models,” Math. Biosci., vol. 179, no. 1, pp. 21–55, Jul. 2002, doi: 10.1016/S0025-5564(02)00096-2.
dc.rights.spa.fl_str_mv Derechos reservados al autor, 2021
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
Derechos reservados al autor, 2021
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvii, 169 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Mecánica y Mecatrónica
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Mecánica y Mecatrónica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80968/1/80658337.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/80968/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80968/3/80658337.2022.pdf.jpg
bitstream.checksum.fl_str_mv b76c1e78b1eef844816efd76aac4d594
8153f7789df02f0a4c9e079953658ab2
06c0170f39e0a9336b66061da9761b47
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090240565968896
spelling Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados al autor, 2021http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cortés Rodríguez, Carlos Julio48fe60e7734d42e4e2cd46b83acff1c3Boccaccio, Antonio06586762dee6aa947bfa673a6ca1f876600Rodríguez Montaño, Óscar Libardo2b17b615d7065adabcfe96a6c08fe92d600Grupo de Investigación en Biomecánica / Universidad Nacional de Colombia Gibm-UncbMINCIENCIAS2022-02-14T14:37:50Z2022-02-14T14:37:50Z2021-12-17https://repositorio.unal.edu.co/handle/unal/80968Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasScaffolds for tissue engineering are porous devices that have gain an enormous attention in the last decades for multiple disciplines, as solution to help the repair process that cannot heal spontaneously by natural mechanisms. Since the in vitro and in vivo procedures test the different key factors in the design and its outcomes, in silico research brings an unbeatable tool for understanding the processes that occur within these devices and how different design variables will influence the final result of the treatment. It is well known that the biomechanical cues are relevant in the bone repair processes and those are related to the stimuli transmitted to the repair environment, as the callus in a normal healing process, or to the support structure, such as orthopedic fixation devices and/or the scaffold to help the regeneration process. Researchers in the last decades have made efforts to characterize the favorable biophysical stimuli to the formation of bone and other types of tissue. Different geometric configurations of the scaffold microstructure can transmit the loads to the newly formed tissue in different ways, depending on the topology of the microstructure, but it is not clear how this process takes place during the regeneration, and moreover, how it changes if the biophysical environment is changing, as a consequence of the scaffold degradation. However, it has been demonstrated that there are more favorable scaffold micro-geometries to the bone healing process than others. The general aim of this research was to investigate computationally, how the micro-geometry of scaffolds for bone regeneration influences the stresses on the newly formed tissue. To achieve this objective, an in silico framework based on the finite element method is used to represent the tissue evolution inside the scaffold and statistical analysis is used to determine the evolution of the stresses within the neo-formed tissue. The in silico framework is also used to find favorable parameters that define the micro-geometry of different bone tissue scaffold designs. The results obtained in this thesis enrich the understanding and discussion regarding the biophysical phenomena that occur inside the scaffold, thus allowing to identify better designs from a biomechanical perspective.Los scaffolds para ingeniería de tejidos son dispositivos que han ganado una enorme atención en múltiples disciplinas durante las últimas décadas, como apoyo para los procesos de reparación que no ocurren de forma espontánea por medio de mecanismos naturales. Dado que los procedimientos in vitro e in vivo permiten evaluar los diferentes factores claves en el diseño de scaffolds y sus resultados, la investigación in silico brinda una herramienta excepcional para entender los procesos que ocurren dentro de estos dispositivos y cómo las diferentes variables de diseño influencian sus resultados finales. Es bien sabido que las señales biomecánicas son relevantes en los procesos de reparación ósea y éstas están relacionadas con los estímulos transmitidos al ambiente de reparación como el callo en procesos normales o a las estructuras de soporte como dispositivos ortopédicos de fijación y/o scaffolds que favorecen el proceso de regeneración. En las últimas décadas los investigadores han hecho esfuerzos por caracterizar los estímulos biofísicos favorables para la formación de hueso y otros tipos de tejidos. Diferentes configuraciones geométricas de un scaffold pueden transmitir las cargas al tejido en formación en diferentes maneras dependiendo de la topología de su microestructura, pero no es claro como es este proceso durante la regeneración, y más aún, se desconoce como el ambiente biofísico dentro del scaffold está cambiando como consecuencia de su degradación. Pese a lo anterior, ha sido demostrado que hay micro-geometrías de scaffolds más favorables que otras para la regeneración ósea. El objetivo general es investigar computacionalmente como la micro-geometría de un scaffold para regeneración ósea influencia los esfuerzos en el tejido en formación. Para lograr este objetivo, un marco computacional basado en el método de los elementos finitos es usado para representar la evolución del tejido dentro del scaffold, en conjunto con análisis estadísticos para determinar la evolución de los esfuerzos en el tejido. Dicho marco tambien es usado para encontrar parámetros favorables que definen la micro-geometría de diferentes diseños de scaffolds. Los resultados obtenidos en esta tesis enriquecen la comprensión y discusión sobre los fenómenos biofísicos que suceden dentro del scaffold, permitiendo identificar mejores diseños desde una perspectiva biomecánica. (Texto tomado de la fuente).Ministerio de Ciencia, Tecnología e Innovación MINCIENCIASIncluye anexosDoctoradoDoctor en IngenieríaBiomecánicaxvii, 169 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Mecánica y MecatrónicaDepartamento de Ingeniería Mecánica y MecatrónicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afinesTissue EngineeringTissue ScaffoldsBone RegenerationIngeniería de TejidosAndamios del TejidoRegeneración ÓseaScaffoldMechanobiologyBoneHealingComputationalModelingDegradationNewly formed tissueSimulationAndamioHuesoModelamiento computacionalDiferenciaciónTejido en formaciónSimulaciónInfluence of the micro-geometry of a scaffold for bone regeneration on the stresses of the newly formed tissueInfluencia de la micro-geometría de un scaffold para regeneración ósea en los esfuerzos en el tejido en formaciónTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TD[1] S. H. Kim, Y. Jung, Y. H. Kim, and S. H. Kim, “Mechano-active scaffolds,” in Handbook of Intelligent Scaffolds for Tissue Engineering and Regenerative Medicine, G. Khang, Ed. Pan Stanford Publishing, 2012, pp. 537–559.[2] D. A. Wahl and J. T. Czernuszka, “Collagen-hydroxyapatite composites for hard tissue repair,” Eur. Cells Mater., vol. 11, pp. 43–56, 2006, doi: vol011a06 [pii].[3] J. Guo, D. Y. Nguyen, R. T. Tran, Z. Xie, X. Bai, and J. Yang, “Design Strategies and Applications of Citrate-Based Biodegradable Elastomeric Polymers,” in Natural and Synthetic Biomedical Polymers, 1st ed., S. Kumbar, C. Laurencin, and M. Deng, Eds. Elsevier, 2014, pp. 259–285.[4] J. Brown, S. Kumbar, and B. Banik, Bio-Instructive Scaffolds for Musculoskeletal Tissue Engineering and Regenerative Medicine. Academic Press, 2016.[5] L. Geris, J. Vander Sloten, and H. Van Oosterwyck, “In silico biology of bone modelling and remodelling: regeneration,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 367, no. 1895, pp. 2031–2053, 2009, doi: 10.1098/rsta.2008.0293.[6] Y. Li, S. K. Chen, L. Li, L. Qin, X. L. Wang, and Y. X. Lai, “Bone defect animal models for testing efficacy of bone substitute biomaterials,” J. Orthop. Transl., vol. 3, no. 3, pp. 95–104, 2015, doi: 10.1016/j.jot.2015.05.002.[7] S. Stewart, S. J. Bryant, J. Ahn, and K. D. Hankenson, “Bone regeneration,” in Translational Regenerative Medicine, A. Atala and J. Allickson, Eds. Academic Press, 2015, pp. 313–334.[8] A. Oryan, A. Kamali, A. Moshirib, and M. B. Eslaminejad, “Role of Mesenchymal Stem Cells in Bone Regenerative Medicine: What Is the Evidence?,” Cells Tissues Organs, vol. 204, no. 2, pp. 59–83, 2017, doi: 10.1159/000469704.[9] C. E. Holy, M. S. Shoichet, and J. E. Davies, “Engineering three-dimensional bone tissue in vitro using biodegradable scaffolds: Investigating initial cell-seeding density and culture period,” J. Biomed. Mater. Res., vol. 51, no. 3, pp. 376–382, 2000, doi: 10.1002/1097-4636(20000905)51:3<376::AID-JBM11>3.0.CO;2-G.[10] E. Gómez-Barrena, P. Rosset, D. Lozano, J. Stanovici, C. Ermthaller, and F. Gerbhard, “Bone fracture healing: Cell therapy in delayed unions and nonunions,” Bone, vol. 70, pp. 93–101, 2015, doi: 10.1016/j.bone.2014.07.033.[11] K. F. Leong, C. M. Cheah, and C. K. Chua, “Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs,” Biomaterials, vol. 24, no. 13, pp. 2363–2378, 2003, doi: 10.1016/S0142-9612(03)00030-9.[12] F. J. O’Brien, “Biomaterials & scaffolds for tissue engineering,” Mater. Today, vol. 14, no. 3, pp. 88–95, Mar. 2011, doi: 10.1016/S1369-7021(11)70058-X.13] C. M. Murphy, F. J. O’Brien, D. G. Little, and A. Schindeler, “Cell-scaffold interactions in the bone tissue engineering triad,” Eur. Cells Mater., vol. 26, pp. 120–132, 2013.[14] K. A. Hing, “Bone repair in the twenty-first century: Biology, chemistry or engineering?,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 362, no. 1825, pp. 2821–2850, 2004, doi: 10.1098/rsta.2004.1466.[15] G. Brunetti, P. D’Amelio, M. Wasniewska, G. Mori, and M. F. Faienza, “Editorial: Bone: Endocrine target and organ,” Front. Endocrinol. (Lausanne)., vol. 8, no. DEC, pp. 249–257, Dec. 2017, doi: 10.3389/fendo.2017.00354.[16] E. F. Morgan, G. L. Barnes, and T. A. Einhorn, “The Bone Organ System,” in Osteoporosis, 4th Ed., Elsevier, 2013, pp. 3–20.[17] B. Clarke, “Normal bone anatomy and physiology.,” Clinical journal of the American Society of Nephrology : CJASN. 2008, doi: 10.2215/CJN.04151206.[18] M. Doblaré, J. M. García, and M. J. Gómez, “Modelling bone tissue fracture and healing: A review,” Engineering Fracture Mechanics, vol. 71, no. 13–14. pp. 1809–1840, 2004, doi: 10.1016/j.engfracmech.2003.08.003.[19] R. Florencio-Silva, G. R. D. S. Sasso, E. Sasso-Cerri, M. J. Simões, and P. S. Cerri, “Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells,” Biomed Res. Int., vol. 2015, 2015, doi: 10.1155/2015/421746.[20] R. Ozawa, Y. Yamada, T. Nagasaka, and M. Ueda, “A comparison of osteogenesis-related gene expression of mesenchymal stem cells during the osteoblastic differentiation induced by Type-I collagen and/or fibronectin,” Int. J. Oral-Medical Sci., vol. 1, no. 2, pp. 139–146, 2003, doi: 10.5466/ijoms.1.139.[21] L. Qin, W. Liu, H. Cao, and G. Xiao, “Molecular mechanosensors in osteocytes,” Bone Res., vol. 8, no. 1, pp. 1–24, 2020, doi: 10.1038/s41413-020-0099-y.[22] B. Alberts et al., Molecular Biology of the Cell. W.W. Norton & Company, 2017.[23] P. R. Buenzli, P. Pivonka, and D. W. Smith, “Bone refilling in cortical basic multicellular units: Insights into tetracycline double labelling from a computational model,” Biomech. Model. Mechanobiol., vol. 13, no. 1, pp. 185–203, 2014, doi: 10.1007/s10237-013-0495-y.[24] J. R. Perez, D. Kouroupis, D. J. Li, T. M. Best, L. Kaplan, and D. Correa, “Tissue Engineering and Cell-Based Therapies for Fractures and Bone Defects,” Front. Bioeng. Biotechnol., vol. 6, no. July, pp. 1–23, 2018, doi: 10.3389/fbioe.2018.00105.[25] T. A. Franz-Odendaal, B. K. Hall, and P. E. Witten, “Buried alive: How osteoblasts become osteocytes,” Dev. Dyn., vol. 235, no. 1, pp. 176–190, 2006, doi: 10.1002/dvdy.20603.[26] D. C. Betts and R. Müller, “Mechanical regulation of bone regeneration: Theories, models, and experiments,” Front. Endocrinol. (Lausanne)., vol. 5, no. DEC, pp. 1–14, 2014, doi: 10.3389/fendo.2014.00211.[27] R. Marsell and T. A. Einhorn, “The biology of fracture healing,” Injury, vol. 42, no. 6, pp. 551–555, Jun. 2011, doi: 10.1016/j.injury.2011.03.031.[28] M. R. Appleford, “Trabecular Calcium Phosphate Scaffolds for Bone Regeneration Trabecular Calcium Phosphate Scaffolds for Bone Regeneration,” 2007, doi: 10.21007/etd.cghs.2007.0017.[29] P. Su et al., “Mesenchymal stem cell migration during bone formation and bone diseases therapy,” Int. J. Mol. Sci., vol. 19, no. 8, 2018, doi: 10.3390/ijms19082343.[30] S. J. Shefelbine, P. Augat, L. Claes, and U. Simon, “Trabecular bone fracture healing simulation with finite element analysis and fuzzy logic,” J. Biomech., vol. 38, no. 12, pp. 2440–2450, 2005, doi: 10.1016/j.jbiomech.2004.10.019.[31] M. A. Fernandez-Yague, S. A. Abbah, L. McNamara, D. I. Zeugolis, A. Pandit, and M. J. Biggs, “Biomimetic Approaches in Bone Tissue Engineering: Integrating Biological and Physicomechanical Strategies,” Adv. Drug Deliv. Rev., vol. 84, pp. 1–29, Sep. 2014, doi: 10.1016/j.addr.2014.09.005.[32] E. C. Yusko and C. L. Asbury, “Force is a signal that cells cannot ignore,” Mol. Biol. Cell, vol. 25, no. 23, pp. 3717–3725, 2014, doi: 10.1091/mbc.E13-12-0707.[33] A. Gelmi and C. E. Schutt, “Stimuli-Responsive Biomaterials: Scaffolds for Stem Cell Control,” Adv. Healthc. Mater., vol. 10, no. 1, pp. 1–30, 2021, doi: 10.1002/adhm.202001125.[34] U. Meyer, T. Meyer, J. Handschel, and H. P. Wiesmann, Fundamentals of Tissue Engineering and Regenerative Medicine. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.[35] L. Polo-Corrales, M. Latorre-Esteves, and J. E. Ramirez-Vick, “Scaffold design for bone regeneration.,” J. Nanosci. Nanotechnol., vol. 14, no. 1, pp. 15–56, 2014, doi: 10.1166/jnn.2014.9127.[36] K. S. Houschyar et al., “Wnt Pathway in Bone Repair and Regeneration – What Do We Know So Far,” Front. Cell Dev. Biol., vol. 6, no. January, pp. 1–13, 2019, doi: 10.3389/fcell.2018.00170.[37] M. Levin and C. G. Stevenson, “Regulation of cell behavior and tissue patterning by bioelectrical signals: challenges and opportunities for biomedical engineering.,” Annu. Rev. Biomed. Eng., vol. 14, pp. 295–323, 2012, doi: 10.1146/annurev-bioeng-071811-150114.[38] C. Chen, X. Bai, Y. Ding, and I. S. Lee, “Electrical stimulation as a novel tool for regulating cell behavior in tissue engineering,” Biomater. Res., vol. 23, no. 1, pp. 1–12, 2019, doi: 10.1186/s40824-019-0176-8.[39] L. Leppik, K. M. C. Oliveira, M. B. Bhavsar, and J. H. Barker, “Electrical stimulation in bone tissue engineering treatments,” Eur. J. Trauma Emerg. Surg., vol. 46, no. 2, pp. 231–244, 2020, doi: 10.1007/s00068-020-01324-1.[40] A. S. Çakmak et al., “Synergistic effect of exogeneous and endogeneous electrostimulation on osteogenic differentiation of human mesenchymal stem cells seeded on silk scaffolds,” J. Orthop. Res., 2016, doi: 10.1002/jor.23059.[41] M. G. Vavva et al., “Effect of ultrasound on bone fracture healing: A computational bioregulatory model,” Comput. Biol. Med., vol. 100, pp. 74–85, 2018, doi: 10.1016/j.compbiomed.2018.06.024.[42] K. N. Grivas et al., “Effect of ultrasound on bone fracture healing: A computational mechanobioregulatory model,” J. Acoust. Soc. Am., vol. 145, no. 2, pp. 1048–1059, 2019, doi: 10.1121/1.5089221.[43] H. Huang, R. D. Kamm, and R. T. Lee, “Cell mechanics and mechanotransduction: pathways, probes, and physiology.,” Am. J. Physiol. Cell Physiol., vol. 287, no. 1, pp. C1-11, 2004, doi: 10.1152/ajpcell.00559.2003.[44] A. J. Steward and D. J. Kelly, “Mechanical regulation of mesenchymal stem cell differentiation,” J. Anat., vol. 227, no. 6, pp. 717–731, 2015, doi: 10.1111/joa.12243.[45] D. Huber, A. Oskooei, X. Casadevall Solvas, Andrew Demello, and G. V. Kaigala, “Hydrodynamics in Cell Studies,” Chem. Rev., vol. 118, no. 4, pp. 2042–2079, 2018, doi: 10.1021/acs.chemrev.7b00317.[46] W. R. Thompson, C. T. Rubin, and J. Rubin, “Mechanical regulation of signaling pathways in bone,” Gene, vol. 503, no. 2, pp. 179–193, 2012, doi: 10.1016/j.gene.2012.04.076.[47] E. K. Rodriguez, A. Hoger, and A. D. McCulloch, “Stress-dependent finite growth in soft elastic tissues,” J. Biomech., vol. 27, no. 4, pp. 455–467, 1994, doi: 10.1016/0021-9290(94)90021-3.[48] D. Ambrosi et al., “Growth and remodelling of living tissues: Perspectives, challenges and opportunities,” J. R. Soc. Interface, vol. 16, no. 157, 2019, doi: 10.1098/rsif.2019.0233.[49] P. J. Prendergast, S. Checa, and D. Lacroix, “Computational Models of Tissue Differentiation,” in Computational Modeling in Biomechanics, S. De, F. Guilak, and M. R. K. Mofrad, Eds. Springer Science, 2010, pp. 353–372.[50] L. E. Delgado, “Modelos matemáticos de reparación ósea,” Universidad Complutense de Madrid, 2009.[51] S. M. Perren and J. Cordey, “The concept of interfragmentary strain pp. 63- 77. Current concepts of internal fixation of fractures.,” Curr. concepts Intern. Fixat. Fract., pp. 63–77, 1980.[52] H. M. Frost, “Bone’s Mechanostat: A 2003 Update,” Anat. Rec. - Part A Discov. Mol. Cell. Evol. Biol., vol. 275, no. 2, pp. 1081–1101, 2003, doi: 10.1002/ar.a.10119.[53] S. C. Cowin and D. H. Hegedus, “Bone remodeling I: theory of adaptive elasticity,” J. Elast., vol. 6, no. 3, pp. 313–326, 1976, doi: 10.1007/BF00041724.[54] S. C. Cowin, “Bone poroelasticity,” Bone Mech. Handbook, Second Ed., vol. 32, pp. 23-1-23–31, 2001.[55] R. Huiskes, H. Weinans, H. J. Grootenboer, M. Dalstra, B. Fudala, and T. J. Slooff, “Adaptive bone-remodeling theory applied to prosthetic-design analysis,” J. Biomech., vol. 20, no. 11–12, pp. 1135–1150, 1987, doi: 10.1016/0021-9290(87)90030-3.[56] H. Weinans, R. Huiskes, and H. J. Grootenboer, “The behavior of adaptive bone-remodeling simulation models,” J. Biomech., vol. 25, no. 12, pp. 1425–1441, 1992, doi: 10.1016/0021-9290(92)90056-7.[57] D. R. Carter, G. S. Beaupré, N. J. Giori, and J. A. Helms, “Mechanobiology of skeletal regeneration,” Clin. Orthop. Relat. Res., no. 355 Suppl, pp. S41-55, 1998, doi: Non-programmatic.[58] L. E. Claes and C. A. Heigele, “Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing,” J. Biomech., vol. 32, pp. 255–266, 1999.[59] P. J. Prendergast, R. Huiskes, K. Søballe, and S, “Biophysical stimuli on cells during tissue differentiation at implant interfaces,” J. Biomech., vol. 30, no. 6, pp. 539–548, 1997, doi: 10.1016/S0021-9290(96)00140-6.[60] D. Lacroix and P. J. Prendergast, “A mechano-regulation model for tissue differentiation during fracture healing: Analysis of gap size and loading,” J. Biomech., vol. 35, no. 9, pp. 1163–1171, 2002, doi: 10.1016/S0021-9290(02)00086-6.[61] D. R. Suárez, “Theories of mechanically induced tissue differentiation and adaptation in the musculoskeletal system,” Ing. y Univ., vol. 20, no. 1, pp. 21–40, 2015, doi: 10.11144/javeriana.iyu20-1.tmit.[62] D. P. Byrne, D. Lacroix, J. A. Planell, D. J. Kelly, and P. J. Prendergast, “Simulation of tissue differentiation in a scaffold as a function of porosity, Young’s modulus and dissolution rate: Application of mechanobiological models in tissue engineering,” Biomaterials, vol. 28, no. 36, pp. 5544–5554, 2007, doi: 10.1016/j.biomaterials.2007.09.003.[63] H. Khayyeri, S. Checa, M. Tägil, F. J. O’Brien, and P. J. Prendergast, “Tissue differentiation in an in vivo bioreactor: in silico investigations of scaffold stiffness.,” J. Mater. Sci. Mater. Med., vol. 21, no. 8, pp. 2331–6, 2010, doi: 10.1007/s10856-009-3973-0.[64] J. A. Sanz-Herrera, J. M. Garcia-Aznar, and M. Doblare, “A mathematical model for bone tissue regeneration inside a specific type of scaffold,” Biomech. Model. Mechanobiol., vol. 7, no. 5, pp. 355–366, 2008, doi: 10.1007/s10237-007-0089-7.[65] J. A. Sanz-Herrera, J. M. García-Aznar, and M. Doblaré, “Micro-macro numerical modelling of bone regeneration in tissue engineering,” Comput. Methods Appl. Mech. Eng., vol. 197, no. 33–40, pp. 3092–3107, 2008, doi: 10.1016/j.cma.2008.02.010.[66] T. Adachi, Y. Osako, M. Tanaka, M. Hojo, and S. J. Hollister, “Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration,” Biomaterials, vol. 27, no. 21, pp. 3964–3972, 2006, doi:10.1016/j.biomaterials.2006.02.039.G. S. Beaupre and T. E. Orr, “An approach for time-dependent bone modeling and remodeling—theoretical development - Beaupré - 2005 - Journal of Orthopaedic Research - Wiley Online Library,” J. Orthop. …, no. 3, pp. 651–661, 1990, [Online]. Available: http://onlinelibrary.wiley.com/doi/10.1002/jor.1100080506/abstract%5Cnpapers2://publication/uuid/945494C3-62EC-49A9-849A-91728212793D.[68] A. Bailón-Plaza and M. C. H. Van Der Meulen, “A mathematical framework to study the effects of growth factor influences on fracture healing,” J. Theor. Biol., vol. 212, no. 2, pp. 191–209, 2001, doi: 10.1006/jtbi.2001.2372.[69] D. Lacroix, P. J. Prendergast, G. Li, and D. Marsh, “Biomechanical model to simulate tissue differentiation and bone regeneration: application to fracture healing,” Med. Biol. Eng. Comput., vol. 40, no. 1, pp. 14–21, 2002, doi: 10.1007/BF02347690.[70] L. Geris, A. Gerisch, J. Vander Sloten, R. Weiner, and H. Van Oosterwyck, “Angiogenesis in bone fracture healing: A bioregulatory model,” J. Theor. Biol., vol. 251, no. 1, pp. 137–158, 2008, doi: 10.1016/j.jtbi.2007.11.008.[71] M. J. Gómez-Benito, J. M. García-Aznar, J. H. Kuiper, and M. Doblaré, “Influence of fracture gap size on the pattern of long bone healing: A computational study,” J. Theor. Biol., vol. 235, no. 1, pp. 105–119, 2005, doi: 10.1016/j.jtbi.2004.12.023.[72] J. M. García-Aznar, J. H. Kuiper, M. J. Gómez-Benito, M. Doblaré, and J. B. Richardson, “Computational simulation of fracture healing: Influence of interfragmentary movement on the callus growth,” J. Biomech., vol. 40, no. 7, pp. 1467–1476, 2007, doi: 10.1016/j.jbiomech.2006.06.013.[73] S. Kawamura et al., “Simulation of Fracture Healing Using Cellular Automata (Influence of Operation Conditions on Healing Result in External Fixation),” JSME Int. J. Ser. A Solid Mech. Mater. Eng., vol. 2, no. 48, pp. 57–64, 2005.[74] M. Wang and N. Yang, “Three-dimensional computational model simulating the fracture healing process with both biphasic poroelastic finite element analysis and fuzzy logic control,” Sci. Rep., vol. 8, no. 1, pp. 1–13, 2018, doi: 10.1038/s41598-018-25229-7.[75] C. M. Bidan, F. M. Wang, and J. W. C. Dunlop, “A three-dimensional model for tissue deposition on complex surfaces,” Comput. Methods Biomech. Biomed. Engin., vol. 16, no. 10, pp. 1056–1070, 2013, doi: 10.1080/10255842.2013.774384.[76] C. M. Bidan, K. P. Kommareddy, M. Rumpler, P. Kollmannsberger, P. Fratzl, and J. W. C. Dunlop, “Geometry as a Factor for Tissue Growth: Towards Shape Optimization of Tissue Engineering Scaffolds,” Adv. Healthc. Mater., vol. 2, no. 1, pp. 186–194, 2013, doi: 10.1002/adhm.201200159.[77] P. F. Egan, K. A. Shea, and S. J. Ferguson, “Simulated tissue growth for 3D printed scaffolds,” Biomech. Model. Mechanobiol., vol. 17, no. 5, pp. 1481–1495, 2018, doi: 10.1007/s10237-018-1040-9.[78] Y. F. Feng et al., “Influence of Architecture of β-Tricalcium Phosphate Scaffolds on Biological Performance in Repairing Segmental Bone Defects,” PLoS One, vol. 7, no. 11, 2012, doi: 10.1371/journal.pone.0049955.[79] J. Chang, X. Zhang, and K. Dai, “Material characteristics, surface/interface, and biological effects on the osteogenesis of bioactive materials,” in Bioactive Materials for Bone Regeneration, Elsevier, 2020, pp. 1–103.[80] L. J. Gibson and M. F. Ashby, Cellular materials in nature and medicine, vol. 51. Cambridge University Press, 2010.[81] A. Boccaccio, A. E. Uva, M. Fiorentino, L. Lamberti, and G. Monno, “A Mechanobiology-based Algorithm to Optimize the Microstructure Geometry of Bone Tissue Scaffolds,” Int. J. Biol. Sci., vol. 12, no. 1, pp. 1–17, 2016, doi: 10.7150/ijbs.13158.[82] J. A. a. Sanz-Herrera, M. Doblaré, and J. M. M. García-Aznar, “Scaffold microarchitecture determines internal bone directional growth structure: A numerical study,” J. Biomech., vol. 43, no. 13, pp. 2480–2486, 2010, doi: 10.1016/j.jbiomech.2010.05.027.[83] G. Li et al., “In vitro and in vivo study of additive manufactured porous Ti6Al4V scaffolds for repairing bone defects,” Sci. Rep., vol. 6, pp. 1–11, 2016, doi: 10.1038/srep34072.[84] M. A. Velasco Peña and D. A. Garzón Alvarado, “Implantes Scaffolds para regeneración ósea. Materiales, técnicas y modelado mediante sistemas de reacción-difusión,” Rev. Cuba. Investig. Biomédicas, vol. 29, no. 1, pp. 0–0, 2010.[85] Q. Fu, E. Saiz, M. N. Rahaman, and A. P. Tomsia, “Bioactive glass scaffolds for bone tissue engineering: State of the art and future perspectives,” Mater. Sci. Eng. C, vol. 31, no. 7, pp. 1245–1256, 2011, doi: 10.1016/j.msec.2011.04.022.[86] T. Wu, S. Yu, D. Chen, and Y. Wang, “Bionic design, materials and performance of bone tissue scaffolds,” Materials (Basel)., vol. 10, no. 10, 2017, doi: 10.3390/ma10101187.[87] T. Albrektsson and C. Johansson, “Osteoinduction, osteoconduction and osseointegration,” Eur. Spine J., vol. 10, pp. S96–S101, 2001, doi: 10.1007/s005860100282.[88] M. A. Velasco, C. A. Narváez-Tovar, and D. A. Garzón-Alvarado, “Design, Materials, and Mechanobiology of Biodegradable Scaffolds for Bone Tissue Engineering,” Biomed Res. Int., vol. 2015, p. 21, 2015, doi: 10.1155/2015/729076.[89] B. P. Chan and K. W. Leong, “Scaffolding in tissue engineering: General approaches and tissue-specific considerations,” Eur. Spine J., vol. 17, no. SUPPL. 4, 2008, doi: 10.1007/s00586-008-0745-3.[90] T. W. Gilbert, T. L. Sellaro, and S. F. Badylak, “Decellularization of tissues and organs,” Biomaterials, vol. 27, no. 19, pp. 3675–3683, 2006, doi: 10.1016/j.biomaterials.2006.02.014.[91] T. S. Karande and C. M. Agrawal, “Functions and requirements of synthetic scaffolds in tissue engineering,” Nanotechnol. Tissue Eng. Scaffold, pp. 53–86, 2008, doi: 10.1201/9781420051834.ch3.[92] F. R. A. J. Rose and R. O. C. Oreffo, “Bone Tissue Engineering: Hope vs Hype,” Biochem. Biophys. Res. Commun., vol. 292, no. 1, pp. 1–7, 2002, doi: 10.1006/bbrc.2002.6519.[93] B. Dhandayuthapani, Y. Yoshida, T. Maekawa, and D. S. Kumar, “Polymeric scaffolds in tissue engineering application: A review,” Int. J. Polym. Sci., vol. 2011, no. ii, 2011, doi: 10.1155/2011/290602.[94] C. Gomez, “A Unit Cell Based Multi-scale Modeling and Design Approach for Tissue Engineered Scaffolds,” Drexel University, 2007.[95] H. N. Chia and B. M. Wu, “Recent advances in 3D printing of biomaterials,” J. Biol. Eng., vol. 9, no. 1, pp. 1–14, 2015, doi: 10.1186/s13036-015-0001-4.[96] Z. Gu, J. Fu, H. Lin, and Y. He, “Development of 3D bioprinting: From printing methods to biomedical applications,” Asian J. Pharm. Sci., vol. 15, no. 5, pp. 529–557, 2020, doi: 10.1016/j.ajps.2019.11.003.[97] S. Checa, C. Sandino, D. P. Byrne, D. J. Kelly, D. Lacroix, and P. J. Prendergast, “Computational techniques for selection of biomaterial scaffolds for tissue engineering,” in Advances on Modeling in Tissue Engineering, P. R. Fernandes and P. J. Bártolo, Eds. Springer Science & Business Media, 2011, pp. 55–69.[98] S. R. Caliari and B. A. C. Harley, “2.216 – Collagen–GAG Materials,” in Comprehensive Biomaterials, 2011, pp. 279–302.[99] R. Hedayati, M. Sadighi, M. Mohammadi-Aghdam, and A. A. Zadpoor, “Mechanical behavior of additively manufactured porous biomaterials made from truncated cuboctahedron unit cells,” Int. J. Mech. Sci., vol. 106, no. November, pp. 19–38, 2016, doi: 10.1016/j.ijmecsci.2015.11.033.[100] A. Boccaccio, A. E. Uva, M. Fiorentino, G. Mori, and G. Monno, “Geometry design optimization of functionally graded scaffolds for bone tissue engineering: A mechanobiological approach,” PLoS One, vol. 11, no. 1, 2016, doi: 10.1371/journal.pone.0146935.[101] F. J. O’Brien, B. A. Harley, I. V. Yannas, and L. J. Gibson, “The effect of pore size on cell adhesion in collagen-GAG scaffolds,” Biomaterials, vol. 26, no. 4, pp. 433–441, 2005, doi: 10.1016/j.biomaterials.2004.02.052.[102] A. J. EL Haj, K. Hampson, and G. Gogniat, “Bioreactors for Connective Tissue Engineering: Design and Monitoring Innovations,” in Bioreactor Systems for Tissue Engineering, vol. 1, C. Kasper, M. Van Griensven, and R. Pörtner, Eds. Springer Science & Business Media, 2009, pp. 81–94.[103] C. H. Ma, H. B. Zhang, S. M. Yang, R. X. Yin, X. J. Yao, and W. J. Zhang, “Comparison of the degradation behavior of PLGA scaffolds in micro-channel, shaking, and static conditions,” Biomicrofluidics, vol. 12, no. 3, 2018, doi: 10.1063/1.5021394.[104] H. Zhang, L. Zhou, and W. Zhang, “Control of scaffold degradation in tissue engineering: A review,” Tissue Eng. - Part B Rev., vol. 20, no. 5, pp. 492–502, 2014, doi: 10.1089/ten.teb.2013.0452.[105] A. H. M. Yusop, A. Alsakkaf, M. R. A. Kadir, I. Sukmana, and H. Nur, “Corrosion of porous Mg and Fe scaffolds: a review of mechanical and biocompatibility responses,” Corros. Eng. Sci. Technol., vol. 0, no. 0, pp. 1–17, 2021, doi: 10.1080/1478422x.2021.1879427.[106] R. Detsch and A. R. Boccaccini, “The role of osteoclasts in bone tissue engineering.,” J. Tissue Eng. Regen. Med., vol. 9, no. 10, pp. 1133–49, Oct. 2015, doi: 10.1002/term.1851.[107] M. Brugmans, “The interplay between biomaterial degradation and tissue properties: Relevance for in situ cardiovascular tissue engineering,” Technische Universiteit Eindhoven, 2015.[108] G. Erkizia, A. Rainer, E. M. De Juan-Pardo, and J. Aldazabal, “Computer Simulation of Scaffold Degradation,” J. Phys. Conf. Ser., vol. 252, no. 1, p. 012004, 2010, doi: 10.1088/1742-6596/252/1/012004.[109] G. Chao, S. Xiaobo, C. Chenglin, D. Yinsheng, P. Yuepu, and L. Pinghua, “A cellular automaton simulation of the degradation of porous polylactide scaffold: I. Effect of porosity,” Mater. Sci. Eng. C, vol. 29, no. 6, pp. 1950–1958, 2009, doi: 10.1016/j.msec.2009.03.003.110] L. Yunfeng, Z. Gen, X. Jianbin, J. Xianfeng, and P. Wei, “Simulation of Bone Regeneration within Stress Environment based on Scaffold Degradation,” Int. J. Digit. Content Technol. its Appl., vol. 7, no. 6, pp. 799–807, 2013, doi: 10.4156/jdcta.vol7.issue6.90.[111] Y. Chen, S. Zhou, and Q. Li, “Biomaterials Microstructure design of biodegradable scaffold and its effect on tissue regeneration,” Biomaterials, vol. 32, no. 22, pp. 5003–5014, 2011, doi: 10.1016/j.biomaterials.2011.03.064.[112] A. C. Vieir, R. M. Guedes, and V. Tita, “On different approaches to simulate the mechanical behavior of scaffolds during degradation,” Procedia Eng., vol. 110, pp. 21–28, 2015, doi: 10.1016/j.proeng.2015.07.005.[113] J. Pan, “Modelling Degradation of Bioresorbable Polymeric Medical Devices,” in Modelling Degradation of Bioresorbable Polymeric Medical Devices, J. Pan, Ed. Woodhead Publishing, 2015, pp. 1–14.[114] Q. Shi, Q. Chen, N. Pugno, and Z. Y. Li, “Effect of rehabilitation exercise durations on the dynamic bone repair process by coupling polymer scaffold degradation and bone formation,” Biomech. Model. Mechanobiol., vol. 17, no. 3, pp. 763–775, 2018, doi: 10.1007/s10237-017-0991-6.[115] L. Wang, Q. Shi, Y. Cai, Q. Chen, X. Guo, and Z. Li, “Mechanical–chemical coupled modeling of bone regeneration within a biodegradable polymer scaffold loaded with VEGF,” Biomech. Model. Mechanobiol., vol. 19, no. 6, pp. 2285–2306, 2020, doi: 10.1007/s10237-020-01339-y.[116] M. A. Sulong, I. V. Belova, A. R. Boccaccini, G. E. Murch, and T. Fiedler, “A model of the mechanical degradation of foam replicated scaffolds,” J. Mater. Sci., vol. 51, no. 8, pp. 3824–3835, 2016, doi: 10.1007/s10853-015-9701-x.[117] D. A. Garzón-Alvarado, M. A. Velasco, and C. A. Narváez-Tovar, “Modeling porous scaffold microstructure by a reaction-diffusion system and its degradation by hydrolysis,” Comput. Biol. Med., vol. 42, no. 2, pp. 147–155, 2012, doi: 10.1016/j.compbiomed.2011.11.002.[118] S. J. Hollister, “Scaffold engineering: A bridge to where?,” Biofabrication, vol. 1, no. 1, 2009, doi: 10.1088/1758-5082/1/1/012001.[119] M. Rumpler, A. Woesz, J. W. . Dunlop, J. T. van Dongen, and P. Fratzl, “The effect of geometry on three-dimensional tissue growth,” J. R. Soc. Interface, vol. 5, no. 27, pp. 1173–1180, 2008, doi: 10.1098/rsif.2008.0064.[120] E. Saito, E. E. Liao, and W.-W. Hu, “Effects of designed PLLA and 50:50 PLGA scaffold architectures on bone formation in vivo,” J. Tissue Eng. Regen. Med., vol. 4, no. 7, pp. 99–111, 2011, doi: 10.1002/term.[121] W. Bian et al., “Morphological characteristics of cartilage ‑ bone transitional structures in the human knee joint and CAD design of an osteochondral scaffold,” Biomed. Eng. Online, pp. 1–14, 2016, doi: 10.1186/s12938-016-0200-3.[122] L. Wang, M. Xu, L. Zhang, Q. Zhou, and L. Luo, “Automated quantitative assessment of three-dimensional bioprinted hydrogel scaffolds using optical coherence tomography,” Biomed. Opt. Express, vol. 7, no. 3, p. 894, 2016, doi: 10.1364/BOE.7.000894.[123] A. Liu et al., “3D Printing Surgical Implants at the clinic: A Experimental Study on Anterior Cruciate Ligament Reconstruction.,” Sci. Rep., vol. 6, no. October 2015, p. 21704, 2016, doi: 10.1038/srep21704.[124] V. T. Athanasiou, D. J. Papachristou, A. Panagopoulos, A. Saridis, C. D. Scopa, and P. Megas, “Histological comparison of autograft, allograft-DBM, xenograft, and synthetic grafts in a trabecular bone defect: an experimental study in rabbits.,” Med. Sci. Monit., vol. 16, no. 1, pp. BR24-31, Jan. 2010, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/20037482.[125] A. M. Pobloth et al., “Mechanobiologically optimized 3D titanium-mesh scaffolds enhance bone regeneration in critical segmental defects in sheep,” Sci. Transl. Med., vol. 10, no. 423, 2018, doi: 10.1126/scitranslmed.aam8828.[126] X. Zhou et al., “Improved Human Bone Marrow Mesenchymal Stem Cell Osteogenesis in 3D Bioprinted Tissue Scaffolds with Low Intensity Pulsed Ultrasound Stimulation,” Sci. Rep., vol. 6, no. August, pp. 1–12, 2016, doi: 10.1038/srep32876.[127] M. Aliabouzar, S. J. Lee, X. Zhou, G. L. Zhang, and K. Sarkar, “Effects of scaffold microstructure and low intensity pulsed ultrasound on chondrogenic differentiation of human mesenchymal stem cells,” Biotechnol. Bioeng., vol. 115, no. 2, pp. 495–506, 2018, doi: 10.1002/bit.26480.[128] X. Chen and Q. Hu, “Bioactive Glasses,” Front. Nanobiomedical Res., vol. 3, no. October, pp. 147–182, 2017, doi: 10.1142/9789813202573_0004.[129] I. Gendviliene et al., “Assessment of the morphology and dimensional accuracy of 3D printed PLA and PLA/HAp scaffolds,” J. Mech. Behav. Biomed. Mater., vol. 104, no. December 2019, p. 103616, 2020, doi: 10.1016/j.jmbbm.2020.103616.[130] C. Silva, C. J. Cortés-Rodriguez, J. Hazur, S. Reakasame, and A. R. Boccaccini, “Rational design of a triple-layered coaxial extruder system: In silico and in vitro evaluations directed toward optimizing cell viability,” Int. J. Bioprinting, vol. 6, no. 4, pp. 1–10, 2020, doi: 10.18063/IJB.V6I4.282.[131] J. Zhang, E. Wehrle, J. R. Vetsch, G. R. Paul, M. Rubert, and R. Müller, “Alginate dependent changes of physical properties in 3D bioprinted cell-laden porous scaffolds affect cell viability and cell morphology,” Biomed. Mater., vol. 14, no. 6, p. 065009, Sep. 2019, doi: 10.1088/1748-605X/ab3c74.[132] W. Li, “45S5 Bioactive Glass-Based Composite Scaffolds with Polymer Coatings for Bone Tissue Engineering Therapeutics,” Friedrich-Alexander-Universität Erlangen-Nürnberg, 2015.[133] J. Li, M. Chen, X. Wei, Y. Hao, and J. Wang, “Evaluation of 3D-printed polycaprolactone scaffolds coated with freeze-dried platelet-rich plasma for bone regeneration,” Materials (Basel)., vol. 10, no. 7, 2017, doi: 10.3390/ma10070831.[134] C. D. Chaput, “Optimization of scaffolds and surface-based treatments for orthopedic applications,” Spine (Phila. Pa. 1976)., vol. 41, no. 7, pp. S14–S15, 2016, doi: 10.1097/BRS.0000000000001426.[135] D. Lin, K. Yang, W. Tang, Y. Liu, Y. Yuan, and C. Liu, “Colloids and Surfaces B : Biointerfaces A poly ( glycerol sebacate ) -coated mesoporous bioactive glass scaffold with adjustable mechanical strength , degradation rate , controlled-release and cell behavior for bone tissue engineering,” Colloids Surfaces B Biointerfaces, vol. 131, pp. 1–11, 2015, doi: 10.1016/j.colsurfb.2015.04.031.[136] F. Westhauser et al., “Three-dimensional polymer coated 45S5-type bioactive glass scaffolds seeded with human mesenchymal stem cells show bone formation in vivo,” J. Mater. Sci. Mater. Med., vol. 27, no. 7, 2016, doi: 10.1007/s10856-016-5732-3.[137] A. Cipitria et al., “BMP delivery complements the guiding effect of scaffold architecture without altering bone microstructure in critical-sized long bone defects: A multiscale analysis,” Acta Biomater., vol. 23, pp. 282–294, 2015, doi: 10.1016/j.actbio.2015.05.015.[138] A. Entezari et al., “Architectural Design of 3D Printed Scaffolds Controls the Volume and Functionality of Newly Formed Bone,” Adv. Healthc. Mater., vol. 8, no. 1, pp. 1–12, 2019, doi: 10.1002/adhm.201801353.[139] A. Anindyajati, P. Boughton, and A. J. Ruys, “Mechanical and cytocompatibility evaluation of UHMWPE/PCL/Bioglass® fibrous composite for acetabular labrum implant,” Materials (Basel)., vol. 16, no. 6, 2019, doi: 10.3390/ma12060916.[140] A. A. Zadpoor and R. Hedayati, “Analytical relationships for prediction of the mechanical properties of additively manufactured porous biomaterials,” J. Biomed. Mater. Res. A, vol. 104A, no. 12, pp. 3164–3174, 2016, doi: 10.1002/jbm.a.35855.[141] K. A. Corin and L. J. Gibson, “Cell Contraction Forces in Scaffolds with Varying Pore Size and Cell Density,” Am. J. Manag. Care, vol. 15, no. 3, pp. 189–193, 2009, doi: 10.1038/jid.2014.371.[142] M. Afshar, A. P. Anaraki, H. Montazerian, and J. Kadkhodapour, “Additive manufacturing and mechanical characterization of graded porosity scaffolds designed based on triply periodic minimal surface architectures,” J. Mech. Behav. Biomed. Mater., vol. 62, pp. 481–494, 2016, doi: 10.1016/j.jmbbm.2016.05.027.[143] A. Carlier et al., “Designing optimal calcium phosphate scaffold-cell combinations using an integrative model-based approach,” Acta Biomater., vol. 7, no. 10, pp. 3573–3585, 2011, doi: 10.1016/j.actbio.2011.06.021.[144] W. Sun, B. Starly, A. Darling, and C. Gomez, “Computer-aided tissue engineering: application to biomimetic modelling and design of tissue scaffolds.,” Biotechnol. Appl. Biochem., vol. 39, no. Pt 1, pp. 49–58, 2004, doi: 10.1042/BA20030109.[145] F. A. Sabet, A. R. Najafi, E. Hamed, and I. Jasiuk, “Modelling of bone fracture and strength at different length scales: A review,” Interface Focus, vol. 6, no. 1, pp. 20–30, 2016, doi: 10.1098/rsfs.2015.0055.[146] A. Sharma, S. Molla, K. S. Katti, and D. R. Katti, “Multiscale models of degradation and healing of bone tissue engineering nanocomposite scaffolds,” J. Nanomechanics Micromechanics, vol. 7, no. 4, pp. 1–14, 2017, doi: 10.1061/(ASCE)NM.2153-5477.0000133.[147] S. Checa and P. J. Prendergast, “Effect of cell seeding and mechanical loading on vascularization and tissue formation inside a scaffold : A mechano-biological model using a lattice approach to simulate cell activity,” J. Biomech., vol. 43, no. 5, pp. 961–968, 2010, doi: 10.1016/j.jbiomech.2009.10.044.[148] M. J. Song, D. Dean, and M. L. Knothe Tate, “Computational Modeling of Tissue Engineering Scaffolds as Delivery Devices for Mechanical and Mechanically Modulated Signals,” no. February 2011, 2012, pp. 127–143.[149] N. H. Pham, R. S. Voronov, S. B. Vangordon, V. I. Sikavitsas, and D. V. Papavassiliou, “Predicting the stress distribution within scaffolds with ordered architecture,” Biorheology, vol. 49, no. 4, pp. 235–247, 2012, doi: 10.3233/BIR-2012-0613.[150] F. Zhao, T. J. Vaughan, and L. M. Mcnamara, “Multiscale fluid–structure interaction modelling to determine the mechanical stimulation of bone cells in a tissue engineered scaffold,” Biomech. Model. Mechanobiol., vol. 14, no. 2, pp. 231–243, 2015, doi: 10.1007/s10237-014-0599-z.[151] A. Campos Marin and D. Lacroix, “The inter-sample structural variability of regular tissue-engineered scaffolds significantly affects the micromechanical local cell environment,” Interface Focus, vol. 5, no. 2, pp. 20140097–20140097, 2015, doi: 10.1098/rsfs.2014.0097.[152] H. a. Almeida and P. J. Bártolo, “Design of tissue engineering scaffolds based on hyperbolic surfaces: Structural numerical evaluation,” Med. Eng. Phys., vol. 36, no. 8, pp. 1033–1040, 2014, doi: 10.1016/j.medengphy.2014.05.006.[153] A. S. Dalaq, D. W. Abueidda, R. K. Abu Al-Rub, and I. M. Jasiuk, “Finite element prediction of effective elastic properties of interpenetrating phase composites with architectured 3D sheet reinforcements,” Int. J. Solids Struct., vol. 83, pp. 169–182, 2016, doi: 10.1016/j.ijsolstr.2016.01.011.[154] J. Shi, L. Zhu, L. Li, Z. Li, J. Yang, and X. Wang, “A TPMS-based method for modeling porous scaffolds for bionic bone tissue engineering,” Sci. Rep., vol. 8, no. 1, 2018, doi: 10.1038/s41598-018-25750-9.[155] A. Salehi and A. Daneshmehr, “Using Minimal Surface theory to design bone tissue scaffold and validate it with SLS 3D printer,” 2019.[156] S. M. Giannitelli, D. Accoto, M. Trombetta, and A. Rainer, “Current trends in the design of scaffolds for computer-aided tissue engineering,” Acta Biomater., vol. 10, no. 2, pp. 580–594, 2014, doi: 10.1016/j.actbio.2013.10.024.[157] S. Limmahakhun and C. Yan, “Graded Cellular Bone Scaffolds,” Scaffolds Tissue Eng. - Mater. Technol. Clin. Appl., 2017, doi: 10.5772/intechopen.69911.[158] C. Y. Lin, N. Kikuchi, and S. J. Hollister, “A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity,” J. Biomech., vol. 37, no. 5, pp. 623–636, 2004, doi: 10.1016/j.jbiomech.2003.09.029.[159] J. Wieding, A. Wolf, and R. Bader, “Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone,” J. Mech. Behav. Biomed. Mater., vol. 37, pp. 56–68, 2014, doi: 10.1016/j.jmbbm.2014.05.002.[160] N. Reznikov et al., “Individual response variations in scaffold-guided bone regeneration are determined by independent strain- and injury-induced mechanisms,” Biomaterials, vol. 194, no. August 2018, pp. 183–194, 2019, doi: 10.1016/j.biomaterials.2018.11.026.[161] W. J. Hendrikson, C. A. van Blitterswijk, J. Rouwkema, and L. Moroni, “The use of finite element analyses to design and fabricate three-dimensional scaffolds for skeletal tissue engineering,” Front. Bioeng. Biotechnol., vol. 5, no. MAY, pp. 1–13, 2017, doi: 10.3389/fbioe.2017.00030.[162] X. Liu, “Application Of Mechano-Regulatory Tissue Differentiation Theory In Tendon Attachment Scaffold Design - A Finite Element Study,” University of Notre Dame, 2006.[163] C. Liu, Z. Xia, and J. T. Czernuszka, “Design and development of three-dimensional scaffolds for tissue engineering,” Chem. Eng. Res., vol. 85, no. 1, pp. 1051–1064, 2007, doi: 10.1205/cherd06196.[164] Y. Chen, S. Zhou, and Q. Li, “Microstructure design of biodegradable scaffold and its effect on tissue regeneration,” Biomaterials, vol. 32, no. 22, pp. 5003–5014, 2011, doi: 10.1016/j.biomaterials.2011.03.064.[165] A. Boccaccio et al., “Rhombicuboctahedron Unit Cell Based Scaffolds for Bone Regeneration : Geometry Optimization with a Mechanobiology – driven Algorithm,” Mater. Sci. Eng. C, 2017.[166] Ó. L. Rodríguez-Montaño et al., “Irregular Load Adapted Scaffold Optimization: A Computational Framework Based on Mechanobiological Criteria,” ACS Biomater. Sci. Eng., vol. 5, no. 10, pp. 5392–5411, 2019, doi: 10.1021/acsbiomaterials.9b01023.[167] G. Percoco, A. E. Uva, M. Fiorentino, M. Gattullo, V. M. Manghisi, and A. Boccaccio, “Mechanobiological approach to design and optimize bone tissue scaffolds 3D printed with fused deposition modeling: A feasibility study,” Materials (Basel)., vol. 13, no. 3, 2020, doi: 10.3390/ma13030648.[168] C. Gorriz, F. Ribeiro, J. M. Guedes, and P. R. Fernandes, “A biomechanical approach for bone regeneration inside scaffolds,” in Procedia Engineering, 2015, vol. 110, pp. 82–89, doi: 10.1016/j.proeng.2015.07.013.[169] M. A. Velasco, Y. Lancheros, and D. A. Garzón-Alvarado, “Geometric and mechanical properties evaluation of scaffolds for bone tissue applications designing by a reaction-diffusion models and manufactured with a material jetting system,” J. Comput. Des. Eng., vol. 3, no. 4, pp. 1–13, 2016, doi: 10.1016/j.jcde.2016.06.006.[170] S. Wu, X. Liu, K. W. K. Yeung, C. Liu, and X. Yang, “Biomimetic porous scaffolds for bone tissue engineering,” Mater. Sci. Eng. R Reports, vol. 80, pp. 1–36, Jun. 2014, doi: 10.1016/j.mser.2014.04.001.[171] G. Falvo D’Urso Labate et al., “Bone structural similarity score: a multiparametric tool to match properties of biomimetic bone substitutes with their target tissues.,” J. Appl. Biomater. Funct. Mater., vol. 14, no. 3, p. 0, 2016, doi: 10.5301/jabfm.5000283.[172] D. F. Williams, “Challenges With the Development of Biomaterials for Sustainable Tissue Engineering,” Front. Bioeng. Biotechnol., vol. 7, no. May, pp. 1–10, 2019, doi: 10.3389/fbioe.2019.00127.[173] A. De Pieri, Y. Rochev, and D. I. Zeugolis, “Scaffold-free cell-based tissue engineering therapies: advances, shortfalls and forecast,” npj Regen. Med., vol. 6, no. 1, 2021, doi: 10.1038/s41536-021-00133-3.[174] O. de Weck and I. Y. Kim, “Finite element method.” Massachusetts Institute of Technology, pp. 1–26, 2004.[175] A. D. Chandrupatla, T. R., Belegundu, T. Ramesh, and C. Ray, Introduction to finite elements in engineering, Vol. 2. Upper Saddle River: Prentice Hall, 2002.[176] Dassault Systèmes, “Abaqus 6.11 Documentation.” Abaqus, 2011.[177] Ó. L. Rodríguez-Montaño et al., “An algorithm to optimize the micro-geometrical dimensions of scaffolds with spherical pores,” Materials (Basel)., vol. 13, no. 18, pp. 1–17, 2020, doi: 10.3390/ma13184062.[178] C. E. Korenczuk et al., “Isotropic failure criteria are not appropriate for anisotropic fibrous biological tissues,” J. Biomech. Eng., vol. 139, no. 7, pp. 1–10, 2017, doi: 10.1115/1.4036316.[179] D. J. Kelly and P. J. Prendergast, “Mechano-regulation of stem cell differentiation and tissue regeneration in osteochondral defects,” J. Biomech., vol. 38, no. 7, pp. 1413–1422, 2005, doi: 10.1016/j.jbiomech.2004.06.026.[180] F. S. L. Bobbert et al., “Additively manufactured metallic porous biomaterials based on minimal surfaces : A unique combination of topological , mechanical , and mass transport properties,” Acta Biomater., vol. 53, pp. 572–584, 2017, doi: 10.1016/j.actbio.2017.02.024.[181] P. F. Egan, “Integrated Design Approaches for 3D Printed Tissue Scaffolds: Review and Outlook,” Materials (Basel)., vol. 12, no. 15, p. 2355, Jul. 2019, doi: 10.3390/ma12152355.[182] A. Boccaccio, D. J. Kelly, and C. Pappalettere, “A Mechano-Regulation Model of Fracture Repair in Vertebral Bodies,” no. March, pp. 433–443, 2011, doi: 10.1002/jor.21231.[183] C. Sandino and D. Lacroix, “A dynamical study of the mechanical stimuli and tissue differentiation within a CaP scaffold based on micro-CT finite element models,” Biomech. Model. Mechanobiol., vol. 10, no. 4, pp. 565–576, 2011, doi: 10.1007/s10237-010-0256-0.[184] H. Isaksson, W. Wilson, C. C. van Donkelaar, R. Huiskes, and K. Ito, “Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing,” J. Biomech., vol. 39, no. 8, pp. 1507–1516, 2006, doi: 10.1016/j.jbiomech.2005.01.037.[185] J. A. Sanz-Herrera and A. R. Boccaccini, “Modelling bioactivity and degradation of bioactive glass based tissue engineering scaffolds,” Int. J. Solids Struct., vol. 48, no. 2, pp. 257–268, 2011, doi: 10.1016/j.ijsolstr.2010.09.025.[186] T. E. G. Krueger, D. L. J. Thorek, S. R. Denmeade, J. T. Isaacs, and W. N. Brennen, “Concise Review: Mesenchymal Stem Cell-Based Drug Delivery: The Good, the Bad, the Ugly, and the Promise,” Stem Cells Transl. Med., vol. 7, no. 9, pp. 651–663, 2018, doi: 10.1002/sctm.18-0024.[187] M. A. Pérez and P. J. Prendergast, “Random-walk models of cell dispersal included in mechanobiological simulations of tissue differentiation,” J. Biomech., vol. 40, no. 10, pp. 2244–2253, 2007, doi: 10.1016/j.jbiomech.2006.10.020.[188] P. Schneider, M. Meier, R. Wepf, and R. Müller, “Towards quantitative 3D imaging of the osteocyte lacuno-canalicular network,” Bone, vol. 47, no. 5, pp. 848–858, 2010, doi: 10.1016/j.bone.2010.07.026.[189] A. Boccaccio, P. J. Prendergast, C. Pappalettere, and D. J. Kelly, “Tissue differentiation and bone regeneration in an osteotomized mandible: A computational analysis of the latency period,” Med. Biol. Eng. Comput., vol. 46, no. 3, pp. 283–298, 2008, doi: 10.1007/s11517-007-0247-1.[190] A. Göpferich, “Mechanisms of polymer degradation and erosion,” Biomaterials, vol. 17, no. 2, pp. 103–114, 1996, doi: 10.1016/B978-008045154-1.50016-2.[191] C. Mircioiu et al., “Mathematical modeling of release kinetics from supramolecular drug delivery systems,” Pharmaceutics, vol. 11, no. 3, 2019, doi: 10.3390/pharmaceutics11030140.[192] F. Ye and H. Wang, “A simple Python code for computing effective properties of 2D and 3D representative volume element under periodic boundary conditions,” arXiv, 2017.[193] A. Ramos and J. A. Simões, “Tetrahedral versus hexahedral finite elements in numerical modelling of the proximal femur,” Med. Eng. Phys., vol. 28, no. 9, pp. 916–924, 2006, doi: 10.1016/j.medengphy.2005.12.006.[194] S. C. Tadepalli, A. Erdemir, and P. R. Cavanagh, “Comparison of hexahedral and tetrahedral elements in finite element analysis of the foot and footwear,” J. Biomech., vol. 44, no. 12, pp. 2337–2343, Aug. 2011, doi: 10.1016/j.jbiomech.2011.05.006.[195] A. Lipphaus and U. Witzel, “Three‑dimensional finite element analysis of the dural folds and the human skull under head acceleration,” Anat. Rec., vol. 304, no. 2, pp. 1–9, Feb. 2020, doi: 10.1002/ar.24401.[196] J. Y. Won et al., “Evaluation of 3D printed PCL/PLGA/β-TCP versus collagen membranes for guided bone regeneration in a beagle implant model,” Biomed. Mater., vol. 11, no. 5, p. 55013, 2016, doi: 10.1088/1748-6041/11/5/055013.[197] A. Tsoularis and J. Wallace, “Analysis of logistic growth models,” Math. Biosci., vol. 179, no. 1, pp. 21–55, Jul. 2002, doi: 10.1016/S0025-5564(02)00096-2.InvestigadoresPúblico generalORIGINAL80658337.2022.pdf80658337.2022.pdfTesis de Doctorado en Ingeniería Mecánica y Mecatrónicaapplication/pdf10262762https://repositorio.unal.edu.co/bitstream/unal/80968/1/80658337.2022.pdfb76c1e78b1eef844816efd76aac4d594MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/80968/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAIL80658337.2022.pdf.jpg80658337.2022.pdf.jpgGenerated Thumbnailimage/jpeg5425https://repositorio.unal.edu.co/bitstream/unal/80968/3/80658337.2022.pdf.jpg06c0170f39e0a9336b66061da9761b47MD53unal/80968oai:repositorio.unal.edu.co:unal/809682023-08-01 23:03:43.673Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK