Green's functions for sturm-liouville problems on directed tree graphs
Let $\Gamma$ be geometric tree graph with $m$ edges and consider the second order Sturm-Liouville operator $\mathcal{L}[u]=(-pu')'+qu$ acting on functions that are continuous on all of $\Gamma$, and twice continuously differentiable in the interior of each edge. The functions $p$ and $q$ a...
- Autores:
-
Ramirez, Jorge M.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2012
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/42249
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/42249
http://bdigital.unal.edu.co/32346/
- Palabra clave:
- Problema Sturm-Liouville en grafo
función de Green
34B24
35R02
35J08
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_823afdca19001395636a2b61c041a8de |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/42249 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ramirez, Jorge M.ebd11590-841b-43a7-aa47-7332ebd1e1f43002019-06-28T10:39:21Z2019-06-28T10:39:21Z2012https://repositorio.unal.edu.co/handle/unal/42249http://bdigital.unal.edu.co/32346/Let $\Gamma$ be geometric tree graph with $m$ edges and consider the second order Sturm-Liouville operator $\mathcal{L}[u]=(-pu')'+qu$ acting on functions that are continuous on all of $\Gamma$, and twice continuously differentiable in the interior of each edge. The functions $p$ and $q$ are assumed continuous on each edge, and $p$ strictly positive on $\Gamma$. The problem is to find a solution $f:\Gamma \to \mathbb{R}$ to the problem $\mathcal{L}[f] = h$ with $2m$ additional conditions at the nodes of $\Gamma$. These node conditions include continuity at internal nodes, and jump conditions on the derivatives of $f$ with respect to a positive measure $\rho$. Node conditions are given in the form of linear functionals $\l_1,\ldots,\l_{2m}$ acting on the space of admissible functions. A novel formula is given for the Green's function $G:\Gamma\times \Gamma \to \mathbb{R}$ associated to this problem. Namely, the solution to the semi-homogenous problem $\mathcal{L}[f] = h$, $\l_i[f] =0$ for $i=1,\ldots,2m$ is given by $f(x) = \int_\Gamma G(x,y) h(y)\,d\rho$.application/pdfspaUniversidad Nacuional de Colombia; Sociedad Colombiana de matemáticashttp://revistas.unal.edu.co/index.php/recolma/article/view/31839Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de MatemáticasRevista Colombiana de MatemáticasRevista Colombiana de Matemáticas; Vol. 46, núm. 1 (2012); 15-25 0034-7426Ramirez, Jorge M. (2012) Green's functions for sturm-liouville problems on directed tree graphs. Revista Colombiana de Matemáticas; Vol. 46, núm. 1 (2012); 15-25 0034-7426 .Green's functions for sturm-liouville problems on directed tree graphsArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTProblema Sturm-Liouville en grafofunción de Green34B2435R0235J08ORIGINAL31839-116348-1-PB.pdfapplication/pdf463717https://repositorio.unal.edu.co/bitstream/unal/42249/1/31839-116348-1-PB.pdf2448ee62a718fdfe1cbeab7516dd3e0fMD5131839-142397-1-PB.htmltext/html5977https://repositorio.unal.edu.co/bitstream/unal/42249/2/31839-142397-1-PB.htmlf453d5ccac3bc9233a0412fd25c38594MD52THUMBNAIL31839-116348-1-PB.pdf.jpg31839-116348-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg5117https://repositorio.unal.edu.co/bitstream/unal/42249/3/31839-116348-1-PB.pdf.jpg407f596a5b8314aac684ae41da56b142MD53unal/42249oai:repositorio.unal.edu.co:unal/422492023-02-06 23:16:19.61Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
Green's functions for sturm-liouville problems on directed tree graphs |
title |
Green's functions for sturm-liouville problems on directed tree graphs |
spellingShingle |
Green's functions for sturm-liouville problems on directed tree graphs Problema Sturm-Liouville en grafo función de Green 34B24 35R02 35J08 |
title_short |
Green's functions for sturm-liouville problems on directed tree graphs |
title_full |
Green's functions for sturm-liouville problems on directed tree graphs |
title_fullStr |
Green's functions for sturm-liouville problems on directed tree graphs |
title_full_unstemmed |
Green's functions for sturm-liouville problems on directed tree graphs |
title_sort |
Green's functions for sturm-liouville problems on directed tree graphs |
dc.creator.fl_str_mv |
Ramirez, Jorge M. |
dc.contributor.author.spa.fl_str_mv |
Ramirez, Jorge M. |
dc.subject.proposal.spa.fl_str_mv |
Problema Sturm-Liouville en grafo función de Green 34B24 35R02 35J08 |
topic |
Problema Sturm-Liouville en grafo función de Green 34B24 35R02 35J08 |
description |
Let $\Gamma$ be geometric tree graph with $m$ edges and consider the second order Sturm-Liouville operator $\mathcal{L}[u]=(-pu')'+qu$ acting on functions that are continuous on all of $\Gamma$, and twice continuously differentiable in the interior of each edge. The functions $p$ and $q$ are assumed continuous on each edge, and $p$ strictly positive on $\Gamma$. The problem is to find a solution $f:\Gamma \to \mathbb{R}$ to the problem $\mathcal{L}[f] = h$ with $2m$ additional conditions at the nodes of $\Gamma$. These node conditions include continuity at internal nodes, and jump conditions on the derivatives of $f$ with respect to a positive measure $\rho$. Node conditions are given in the form of linear functionals $\l_1,\ldots,\l_{2m}$ acting on the space of admissible functions. A novel formula is given for the Green's function $G:\Gamma\times \Gamma \to \mathbb{R}$ associated to this problem. Namely, the solution to the semi-homogenous problem $\mathcal{L}[f] = h$, $\l_i[f] =0$ for $i=1,\ldots,2m$ is given by $f(x) = \int_\Gamma G(x,y) h(y)\,d\rho$. |
publishDate |
2012 |
dc.date.issued.spa.fl_str_mv |
2012 |
dc.date.accessioned.spa.fl_str_mv |
2019-06-28T10:39:21Z |
dc.date.available.spa.fl_str_mv |
2019-06-28T10:39:21Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/42249 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/32346/ |
url |
https://repositorio.unal.edu.co/handle/unal/42249 http://bdigital.unal.edu.co/32346/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
http://revistas.unal.edu.co/index.php/recolma/article/view/31839 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Matemáticas Revista Colombiana de Matemáticas |
dc.relation.ispartofseries.none.fl_str_mv |
Revista Colombiana de Matemáticas; Vol. 46, núm. 1 (2012); 15-25 0034-7426 |
dc.relation.references.spa.fl_str_mv |
Ramirez, Jorge M. (2012) Green's functions for sturm-liouville problems on directed tree graphs. Revista Colombiana de Matemáticas; Vol. 46, núm. 1 (2012); 15-25 0034-7426 . |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacuional de Colombia; Sociedad Colombiana de matemáticas |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/42249/1/31839-116348-1-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/42249/2/31839-142397-1-PB.html https://repositorio.unal.edu.co/bitstream/unal/42249/3/31839-116348-1-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
2448ee62a718fdfe1cbeab7516dd3e0f f453d5ccac3bc9233a0412fd25c38594 407f596a5b8314aac684ae41da56b142 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089690576322560 |