Passive dynamic system for energy returning on transtibial prosthesis

ilustraciones, diagramas, graficas

Autores:
Prieto Parrado, Edwin Nikolay
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82662
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82662
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Computational modeling
Explicit dynamics optimization
Finite element analysis
Lower limb prosthesis
Gait data analysis
Lower limb biomechanics
Energy storage and return
Ankle dynamics joint stiffness
Bayesian optimization
Surrogate modeling
Ankle-foot
Prosthesis
Quasi-stiffness
Modelado computacional
Optimización dinámica explícita computacional
Prótesis de miembro inferior
Análisis de marcha
Biomecánica de marcha
Energía acumulada y de retorno
Rigidéz de la dinámica del tobillo
Optimización bayesiana
Modelos surrogados
Prótesis de pie y tobillo
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional
id UNACIONAL2_8202b5aac33fdea7d3ff7e1e1f17fc49
oai_identifier_str oai:repositorio.unal.edu.co:unal/82662
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Passive dynamic system for energy returning on transtibial prosthesis
dc.title.translated.spa.fl_str_mv Sistema Dinámico Pasivo de Retorno Energético en prótesis transtibiales
title Passive dynamic system for energy returning on transtibial prosthesis
spellingShingle Passive dynamic system for energy returning on transtibial prosthesis
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Computational modeling
Explicit dynamics optimization
Finite element analysis
Lower limb prosthesis
Gait data analysis
Lower limb biomechanics
Energy storage and return
Ankle dynamics joint stiffness
Bayesian optimization
Surrogate modeling
Ankle-foot
Prosthesis
Quasi-stiffness
Modelado computacional
Optimización dinámica explícita computacional
Prótesis de miembro inferior
Análisis de marcha
Biomecánica de marcha
Energía acumulada y de retorno
Rigidéz de la dinámica del tobillo
Optimización bayesiana
Modelos surrogados
Prótesis de pie y tobillo
title_short Passive dynamic system for energy returning on transtibial prosthesis
title_full Passive dynamic system for energy returning on transtibial prosthesis
title_fullStr Passive dynamic system for energy returning on transtibial prosthesis
title_full_unstemmed Passive dynamic system for energy returning on transtibial prosthesis
title_sort Passive dynamic system for energy returning on transtibial prosthesis
dc.creator.fl_str_mv Prieto Parrado, Edwin Nikolay
dc.contributor.advisor.none.fl_str_mv Cortés-Rodríguez, Carlos Julio
Tovar, Andres
dc.contributor.author.none.fl_str_mv Prieto Parrado, Edwin Nikolay
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Biomecánica (GIBM)
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Computational modeling
Explicit dynamics optimization
Finite element analysis
Lower limb prosthesis
Gait data analysis
Lower limb biomechanics
Energy storage and return
Ankle dynamics joint stiffness
Bayesian optimization
Surrogate modeling
Ankle-foot
Prosthesis
Quasi-stiffness
Modelado computacional
Optimización dinámica explícita computacional
Prótesis de miembro inferior
Análisis de marcha
Biomecánica de marcha
Energía acumulada y de retorno
Rigidéz de la dinámica del tobillo
Optimización bayesiana
Modelos surrogados
Prótesis de pie y tobillo
dc.subject.proposal.eng.fl_str_mv Computational modeling
Explicit dynamics optimization
Finite element analysis
Lower limb prosthesis
Gait data analysis
Lower limb biomechanics
Energy storage and return
Ankle dynamics joint stiffness
Bayesian optimization
Surrogate modeling
Ankle-foot
Prosthesis
Quasi-stiffness
dc.subject.proposal.spa.fl_str_mv Modelado computacional
Optimización dinámica explícita computacional
Prótesis de miembro inferior
Análisis de marcha
Biomecánica de marcha
Energía acumulada y de retorno
Rigidéz de la dinámica del tobillo
Optimización bayesiana
Modelos surrogados
Prótesis de pie y tobillo
description ilustraciones, diagramas, graficas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-11-08T16:32:49Z
dc.date.available.none.fl_str_mv 2022-11-08T16:32:49Z
dc.date.issued.none.fl_str_mv 2022
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82662
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82662
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.indexed.spa.fl_str_mv RedCol
LaReferencia
dc.relation.references.spa.fl_str_mv K. Ziegler-graham et al., “Estimating the Prevalence of Limb Loss in the United States : 2005 to 2050,” vol. 89, no. March, pp. 422–429, 2008, doi: 10.1016/j.apmr.2007.11.005.
IDF, “Annual Report 2017,” tech. rep., International Diabetes Federation, 2017.
Kroger Knut, “Major and minor amputation rates: What do they tell us?,” vol. 15, no. 1, pp. 2014–2016, 2015.
R. LeMoyne, Advances for Prosthetic Technology. Tokyo: Springer Japan, 2016.
P. Cherelle, G. Mathijssen, Q. Wang, B. Vanderborght, and D. Lefeber, “Advances in Propulsive Bionic Feet and Their Actuation Principles,” Advances in Mechanical Engineering, vol. 2014, pp. 1–21, 2014.
R. Versluys, P. Beyl, M. Van Damme, A. Desomer, R. Van Ham, and D. Lefeber, “Prosthetic feet: state-of-the-art review and the importance of mimicking human ankle-foot biomechanics.,” Disability and rehabilitation. Assistive technology, vol. 4, no. 2, pp. 65–75, 2009.
BostonNews, “A Brand-New Kick: The New BiOM Ankle Prosthetic by MIT’s Hugh Herr,” March 2015.
R. Jena, “Ossur: Design that walks the line,” July 2007.
“Low-cost prosthetic foot mimics natural walking | MIT News | Massachusetts Institute of Technology.”
“High Quality Sach Foot For Disable People - Buy Polyurethane Prosthetic Foot, Sach Foot Prosthet,Sach Foot Price Product on Alibaba.com.”
K. E. Zelik, T.-W. P. Huang, P. G. Adamczyk, and A. D. Kuo, “The role of series ankle elasticity in bipedal walking.,” Journal of theoretical biology, vol. 346, pp. 75–85, Apr. 2014.
H. A. Varol, F. Sup, and M. Goldfarb, “Multiclass real-time intent recognition of a powered lower limb prosthesis,” IEEE Transactions on Biomedical Engineering, vol. 57, no. 3, pp. 542–551, 2010.
S. K. Au, J. Weber, and H. Herr, “Powered Ankle–Foot Prosthesis Improves Walking Metabolic Economy,” IEEE Transactions on Robotics, vol. 25, no. 1, pp. 51–66, 2009.
H. M. Herr, J. A. Weber, K. W. S. Au, B. W. Deffenbaugh, L. H. Magnusson, A. G. Hofmann, and B. B. Aisen, “Powered Ankle-Foot Prosthesis,” 2014.
E. C. Martinez-Villalpando and H. Herr, “Agonist-antagonist active knee prosthesis: a preliminary study in level-ground walking.,” Journal of rehabilitation research and development, vol. 46, no. 3, pp. 361–373, 2009.
E. R. Esposito, J. M. a. Whitehead, and J. M. Wilken, “Step-to-step transition work during level and inclined walking using passive and powered ankle-foot prostheses,” Prosthetics and Orthotics International, 2015.
S. Au, M. Berniker, and H. Herr, “Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits,” Neural Networks, vol. 21, pp. 654–666, May 2008.
A. R. De Asha, R. Munjal, J. Kulkarni, and J. G. Buckley, “Impact on the biomechanics of overground gait of using an ’Echelon’ hydraulic ankle-foot device in unilateral trans-tibial and trans-femoral amputees.,” Clinical biomechanics (Bristol, Avon), vol. 29, pp. 728–34, Aug 2014.
T. Schmalz, S. Blumentritt, and R. Jarasch, “Energy expenditure and biomechanical characteristics of lower limb amputee gait: The influence of prosthetic alignment and different prosthetic components,” Gait and Posture, vol. 16, no. 3, pp. 255–263, 2002.
J. G. Buckley, W. D. Spence, and S. E. Solomonidis, “Energy cost of walking: Comparison of ’intelligent prosthesis’ with conventional mechanism,” Archives of Physical Medicine and Rehabilitation, vol. 78, no. 3, pp. 330–333, 1997.
H. M. Herr and A. M. Grabowski, “Powered ankle-foot improves metabolic demand of unilateral transtibial amputees during walking,” Meeting of the American Society of Biomechanics, 2010.
D. H. Gates, J. M. Aldridge, and J. M. Wilken, “Kinematic comparison of walking on uneven ground using powered and unpowered prostheses.,” Clinical biomechanics (Bristol, Avon), vol. 28, pp. 467–72, Apr. 2013.
D. Hill and H. Herr, “Effects of a powered ankle-foot prosthesis on kinetic loading of the contralateral limb: A case series,” IEEE International Conference on Rehabilitation Robotics, vol. 10, no. 1, p. 1, 2013.
E. C. Martinez-Villalpando, L. Mooney, G. Elliott, and H. Herr, “Antagonistic active knee prosthesis. A metabolic cost of walking comparison with a variable-damping prosthetic knee,” Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, pp. 8519–8522, 2011.
D. C. Morgenroth, A. D. Segal, K. E. Zelik, J. M. Czerniecki, G. K. Klute, P. G. Adamczyk, M. S. Orendurff, M. E. Hahn, S. H. Collins, and A. D. Kuo, “The effect of prosthetic foot push-off on mechanical loading associated with knee osteoarthritis in lower extremity amputees,” Gait & Posture, vol. 34, pp. 502–507, Oct 2011.
H. Bateni and S. J. Olney, “Kinematic and Kinetic Variations of Below-Knee Amputee Gait,” JPO Journal of Prosthetics and Orthotics, vol. 14, no. 1, pp. 2–10, 2002.
S. J. Mattes, P. E. Martin, and T. D. Royer, “Walking symmetry and energy cost in persons with unilateral transtibial amputations: Matching prosthetic and intact limb inertial properties,” Archives of Physical Medicine and Rehabilitation, vol. 81, pp. 561–568, May 2000.
A. M. Grabowski and S. D. Andrea, “Effects of a powered ankle-foot prosthesis on kinetic loading of the unaffected leg during level-ground walking,” Journal of NeuroEngineering and Rehabilitation, 2013.
H. Devan, P. Hendrick, D. C. Ribeiro, L. A Hale, and A. Carman, “Asymmetrical movements of the lumbopelvic region: Is this a potential mechanism for low back pain in people with lower limb amputation?,” Medical Hypotheses, vol. 82, no. 1, pp. 77–85, 2014.
B. E. Lawson, H. A. Varol, and M. Goldfarb, “Ground adaptive standing controller for a powered transfemoral prosthesis,” IEEE International Conference on Rehabilitation Robotics, 2011.
ASME, “Making Strides with Bionic Ankle,” March 2015.
L. P. Reis and C. P. Santos, “Robot 2015: Second Iberian Robotics Conference,” vol. 418, pp. 209–220, 2016.
S. I. Wolf, M. Alimusaj, L. Fradet, J. Siegel, and F. Braatz, “Pressure characteristics at the stump/socket interface in transtibial amputees using an adaptive prosthetic foot.,” Clinical biomechanics (Bristol, Avon), vol. 24, pp. 860–5, Dec. 2009.
A. Hansen and E. Nickel, “Ankle-foot prosthesis for automatic adaptation to sloped walking surfaces,” Mar. 27, 2014.
A. Eshraghi, N. A. A. Osman, H. Gholizadeh, S. Ali, and B. Shadgan, “100 Top-Cited Scientific Papers in Limb Prosthetics.,” Biomedical engineering online, vol. 12, no. 1, p. 119, 2013.
B. Vanderborght, A. Albu-Schaeffer, A. Bicchi, E. Burdet, D. Caldwell, R. Carloni, M. Catalano, O. Eiberger, W. Friedl, G. Ganesh, M. Garabini, M. Grebenstein, G. Grioli, S. Haddadin, H. Hoppner, A. Jafari, M. Laffranchi, D. Lefeber, F. Petit, S. Stramigioli, N. Tsagarakis, M. Van Damme, R. Van Ham, L. Visser, and S. Wolf, “Variable impedance actuators: A review,” Robotics and Autonomous Systems, vol. 61, pp. 1601–1614, Dec. 2013.
M. Grimmer, M. Eslamy, S. Gliech, and A. Seyfarth, “A comparison of parallel- and series elastic elements in an actuator for mimicking human ankle joint in walking and running,” Proceedings - IEEE International Conference on Robotics and Automation, pp. 2463–2470, 2012.
M. Grimmer, M. Eslamy, and A. Seyfarth, “Energetic and Peak Power Advantages of Series Elastic Actuators in an Actuated Prosthetic Leg for Walking and Running,” Actuators, vol. 3, no. 1, pp. 1–19, 2014.
M. Eslamy, M. Grimmer, S. Rinderknecht, and A. Seyfarth, “Does it pay to have a damper in a powered ankle prosthesis? A power-energy perspective.,” IEEE ... International Conference on Rehabilitation Robotics : [proceedings], vol. 2013, p. 6650362, June 2013.
M. Eslamy, M. Grimmer, and A. Seyfarth, “Adding passive biarticular spring to active monoarticular foot prosthesis: Effects on power and energy requirement,” in 2014 IEEE-RAS International Conference on Humanoid Robots, pp. 677–684, Nov 2014.
J. M. Donelan, R. Kram, and A. D. Kuo, “Simultaneous positive and negative external mechanical work in human walking,” Journal of Biomechanics, vol. 35, no. 1, pp. 117–124, 2002.
S. H. Collins and A. D. Kuo, “Recycling energy to restore impaired ankle function during human walking,” PLoS ONE, vol. 5, no. 2, 2010.
T. McGeer, “Passive dynamic walking,” The international journal of robotics research, vol. 9, no. 2, pp. 62–82, 1990.
M. H. Michalski and J. S. Ross, “The Shape of Things to Come,” JAMA, vol. 312, p. 2213, Dec 2014.
O. Diegel, Additive Manufacturing: An Overview, vol. 10. Elsevier, 2014.
C. Weller, R. Kleer, and F. T. Piller, “Economic Implications of 3D printing: Market structure Models in light of additive manufacturing Revisited,” International Journal of Production Economics, Mar. 2015.
B. J. South, N. P. Fey, G. Bosker, and R. R. Neptune, “Manufacture of energy storage and return prosthetic feet using selective laser sintering.,” Journal of biomechanical engineering, vol. 132, no. 1, p. 015001, 2010.
J. Yap and G. Renda, “Low-cost 3D-printable Prosthetic Foot,” in European Conference Design4Health, (Sheffield), pp. 1–10, Design4Health, 2015.
S. Tibbits, “4D printing: Multi-material shape change,” Architectural Design, vol. 84, pp. 116–121, 2014.
D. Raviv, W. Zhao, C. McKnelly, A. Papadopoulou, A. Kadambi, B. Shi, S. Hirsch, D. Dikovsky, M. Zyracki, C. Olguin, R. Raskar, and S. Tibbits, “Active Printed Materials for Complex Self-Evolving Deformations,” Scientific Reports, vol. 4, p. 7422, 2014.
K. Yu, A. Ritchie, Y. Mao, M. L. Dunn, and H. J. Qi, “Controlled Sequential Shape Changing Components by 3D Printing of Shape Memory Polymer Multimaterials,” Procedia IUTAM, vol. 12, pp. 193–203, 2015.
Z. Tao, H. J. Ahn, C. Lian, K. H. Lee, and C. H. Lee, “Design and optimization of prosthetic foot by using polylactic acid 3D printing,” Journal of Mechanical Science and Technology, vol. 31, no. 5, pp. 2393–2398, 2017.
B. Rochlitz and D. Pammer, “Design and analysis of 3D printable foot prosthesis,” Periodica Polytechnica Mechanical Engineering, vol. 61, no. 4, pp. 282–287, 2017.
F. M. Rohjoni, M. N. A. A. Patar, J. Mahmud, H. Lee, and A. Hanafusa, “Finite element analysis of a transtibial prosthetic during gait cycle,” International Journal of Mechanical Engineering and Robotics Research, vol. 9, no. 5, pp. 764–770, 2020.
H. Kamel, O. Harraz, K. Azab, and T. Attia, “Developing an Optimized Low-Cost Transtibial Energy Storage and Release Prosthetic Foot Using Three-Dimensional Printing,” Journal of Engineering and Science in Medical Diagnostics and Therapy, vol. 3, no. 2, pp. 1–9, 2020.
V. Vijayan, S. Arun Kumar, S. Gautham, M. Mohamed Masthan, and N. Piraichudan, “Design and analysis of prosthetic foot using additive manufacturing technique,” Materials To day: Proceedings, no. xxxx, 2020.
A. Hansen and F. Starker, “Prosthetic Foot Principles and Their Influence on Gait,” Handbook of Human Motion, pp. 1–15, 2016.
T. M. Balaramakrishnan, S. Natarajan, and S. Srinivasan, “Roll-over shape of a prosthetic foot: a finite element evaluation and experimental validation,” Medical and Biological Engineering and Computing, vol. 58, no. 10, pp. 2259–2270, 2020.
J. Hallquist, LS-DYNA® theory manual. No. March, 2006.
H. M. Herr and a. M. Grabowski, “Bionic ankle-foot prosthesis normalizes walking gait for persons with leg amputation,” Proceedings of the Royal Society B: Biological Sciences, vol. 279, no. 1728, pp. 457–464, 2012.
M. K. Shepherd and E. J. Rouse, “The VSPA Foot: A Quasi-Passive Ankle-Foot Prosthesis with Continuously Variable Stiffness,” vol. 4320, no. c, 2017.
R. B. Davis and P. A. DeLuca, “Gait characterization via dynamic joint stiffness,” Gait and Posture, vol. 4, no. 3, pp. 224–231, 1996.
E. J. Rouse, R. D. Gregg, L. J. Hargrove, and J. W. Sensinger, “The difference between stiffness and quasi-stiffness in the context of biomechanical modeling,” IEEE Transactions on Biomedical Engineering, vol. 60, no. 2, pp. 562–568, 2013.
A. H. Hansen, D. S. Childress, S. C. Miff, S. a. Gard, and K. P. Mesplay, “The human ankle during walking: Implications for design of biomimetic ankle prostheses,” Journal of Biomechanics, vol. 37, pp. 1467–1474, 2004.
P. Crenna and C. Frigo, “Dynamics of the ankle joint analyzed through moment-angle loops during human walking: gender and age effects.,” Human movement science, vol. 30, pp. 1185–98, dec 2011.
K. Shamaei, G. S. Sawicki, and A. M. Dollar, “Estimation of Quasi-Stiffness and Propulsive Work of the Human Ankle in the Stance Phase of Walking,” PLoS ONE, vol. 8, no. 3, 2013.
E. Schaffalitzky, P. Gallagher, M. MacLachlan, and N. Ryall, “Understanding the benefits of prosthetic prescription: Exploring the experiences of practitioners and lower limb prosthetic users,” Disability and Rehabilitation, vol. 33, no. 15-16, pp. 1314–1323, 2011.
P. M. Stevens, J. Rheinstein, and S. R. Wurdeman, “Prosthetic foot selection for individuals with lower-limb amputation: A clinical practice guideline,” Journal of Prosthetics and Orthotics, vol. 30, no. 4, pp. 175–180, 2018.
H. Van Der Linde, C. J. Hofstad, J. Van Limbeek, K. Postema, and J. H. Geertzen, “Use of the Delphi Technique for developing national clinical guidelines for prescription of lower-limb prostheses,” Journal of Rehabilitation Research and Development, vol. 42, no. 5, pp. 693–704, 2005.
J. D. Collins, E. S. Arch, J. R. Crenshaw, and K. A. Bernhardt, “Net ankle quasi-stiffness is in fluenced by walking speed but not age for older adult women,” Gait & Posture, vol. 62, no. January 2017, pp. 311–316, 2018.
A. R. Akl, A. Baca, J. Richards, and F. Conceição, “Leg and lower limb dynamic joint stiffness during different walking speeds in healthy adults,” Gait and Posture, vol. 82, no. October 2019, pp. 294–300, 2020.
H. Argunsah Bayram and M. B. Bayram, “Dynamic Functional Stiffness Index of the Ankle Joint During Daily Living,” The Journal of Foot and Ankle Surgery, vol. 57, pp. 668–674, jul 2018.
D. W. Powell, D. S. B. Williams, B. Windsor, R. J. Butler, and S. Zhang, “Ankle work and dynamic joint stiffness in high- compared to low-arched athletes during a barefoot running task,” Human Movement Science, vol. 34, no. 1, pp. 147–156, 2014.
P. Aleixo, J. Vaz Patto, I. Roupa, H. Moreira, and J. Abrantes, “Dynamic joint stiffness of the ankle in healthy and rheumatoid arthritis postmenopausal women,” Gait & Posture, vol. 60, no. October 2017, pp. 225–234, 2015.
R. C. Gabriel, J. Abrantes, K. Granata, J. Bulas-Cruz, P. Melo-Pinto, and V. Filipe, “Dynamic joint stiffness of the ankle during walking: gender-related differences.,” Physical therapy in sport: official journal of the Association of Chartered Physiotherapists in Sports Medicine, vol. 9, pp. 16–24, feb 2008.
R. Holgate, T. Sugar, A. Nash, J. Kianpour, C. T. Johnson, and E. Santos, “A Passive Ankle-Foot Prosthesis With Energy Return to Mimic Able-Bodied Gait,” in Volume 5A: 41st Mechanisms and Robotics Conference, p. V05AT08A056, ASME, aug 2017.
L. Jin and M. E. Hahn, “Modulation of lower extremity joint stiffness, work and power at different walking and running speeds,” Human Movement Science, vol. 58, no. January, pp. 1–9, 2018.
R. Ferber, S. T. Osis, J. L. Hicks, and S. L. Delp, “Gait biomechanics in the era of data science,” Journal of Biomechanics, vol. 49, no. 16, pp. 3759–3761, 2016.
Winter DA, The biomechanics and motor control of human gait. 1987.
W. McKinney et al., “Data structures for statistical computing in python,” in Proceedings of the 9th Python in Science Conference, vol. 445, pp. 51–56, Austin, TX, 2010.
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.
P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,” Nature Methods, vol. 17, pp. 261–272, 2020.
S. Seabold and J. Perktold, “statsmodels: Econometric and statistical modeling with python,” in 9th Python in Science Conference, 2010.
S. Gillies et al., “Shapely: manipulation and analysis of geometric objects,” 2007.
T. E. Oliphant, A guide to NumPy, vol. 1. Trelgol Publishing USA, 2006.
J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007.
B. W. Stansfield, S. J. Hillman, M. E. Hazlewood, and J. E. Robb, “Regression analysis of gait parameters with speed in normal children walking at self-selected speeds,” Gait and Posture, vol. 23, no. 3, pp. 288–294, 2006.
M. H. Schwartz, A. Rozumalski, and J. P. Trost, “The effect of walking speed on the gait of typically developing children,” Gait and Posture, vol. 41, no. 3, pp. 351–357, 2008.
G. Bovi, M. Rabuffetti, P. Mazzoleni, and M. Ferrarin, “A multiple-task gait analysis approach: Kinematic, kinetic and EMG reference data for healthy young and adult subjects,” Gait and Posture, vol. 33, no. 1, pp. 6–13, 2011.
C. A. Fukuchi, R. K. Fukuchi, and M. Duarte, “A public dataset of overground and treadmill walking kinematics and kinetics in healthy individuals,” PeerJ, vol. 2018, no. 4, pp. 1–17, 2018.
J. K. Moore, S. K. Hnat, and A. J. van den Bogert, “An elaborate data set on human gait and the effect of mechanical perturbations,” PeerJ, vol. 3, no. April, p. e918, 2015.
F. Horst, A. Eekhoff, K. M. Newell, and W. I. Schöllhorn, “Intra-individual gait patterns across different time-scales as revealed by means of a supervised learning model using kernel-based discriminant regression,” PLoS ONE, vol. 12, no. 6, 2017.
F. Horst, M. Mildner, and W. I. Schöllhorn, “One-year persistence of individual gait patterns identified in a follow-up study â C“ A call for individualised diagnose and therapy,” Gait and Posture, vol. 58, no. August, pp. 476–480, 2017.
F. Horst, S. Lapuschkin, W. Samek, K. R. Müller, and W. I. Schöllhorn, “Explaining the unique nature of individual gait patterns with deep learning,” Scientific Reports, vol. 9, no. 1, pp. 1–13, 2019.
T. Lencioni, I. Carpinella, M. Rabuffetti, A. Marzegan, and M. Ferrarin, “Human kinematic, kinetic and EMG data during different walking and stair ascending and descending tasks,” Scientific Data, vol. 6, no. 1, 2019.
S. Hood, M. K. Ishmael, A. Gunnell, K. B. Foreman, and tommaso Lenzi, “A kinematic and kinetic dataset of 18 above-knee amputees walking at various speeds.,” 2020.
A. L. Hof, “Scaling gait data to body size,” Gait & Posture, vol. 4, no. 3, pp. 222 – 223, 1996.
A. E. Ferris, J. D. Smith, G. D. Heise, R. N. Hinrichs, and P. E. Martin, “A general model for estimating lower extremity inertial properties of individuals with transtibial amputation,” Journal of Biomechanics, vol. 54, no. January, pp. 44–48, 2017.
A. Sawers and M. Hahn, “The potential for error with use of inverse dynamic calculations in gait analysis of individuals with lower limb loss: A review of model selection and assumptions,” JPO: Journal of Prosthetics and Orthotics, vol. 22, pp. 56–61, 01 2010.
L. O. Tedeschi, “Assessment of the adequacy of mathematical models,” Agricultural Systems, vol. 89, no. 2-3, pp. 225–247, 2006.
J. R. Jeffers and A. M. Grabowski, “Individual Leg and Joint Work during Sloped Walking for People with a Transtibial Amputation Using Passive and Powered Prostheses,” Frontiers in Robotics and AI, vol. 4, no. December, pp. 1–10, 2017.
N. P. Fey, G. K. Klute, and R. R. Neptune, “The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees,” Clinical Biomechanics, vol. 26, pp. 1025–1032, dec 2011.
C. E. Shell, A. D. Segal, G. K. Klute, and R. R. Neptune, “The effects of prosthetic foot stiffness on transtibial amputee walking mechanics and balance control during turning,” Clinical Biomechanics, vol. 49, no. November 2016, pp. 56–63, 2017.
K. A. Ingraham, H. Choi, E. S. Gardinier, C. D. Remy, and D. H. Gates, “Choosing appropriate prosthetic ankle work to reduce the metabolic cost of individuals with transtibial amputation,” Scientific Reports, vol. 8, no. 1, p. 15303, 2018.
K. M. Olesnavage and A. G. Winter, “Passive Prosthetic Foot Shape and Size Optimization Using Lower Leg Trajectory Error,” Volume 5A: 41st Mechanisms and Robotics Conference, vol. 140, no. October 2018, p. V05AT08A011, 2017.
K. M. Olesnavage and A. G. Winter, “A Novel Framework for Quantitatively Connecting the Mechanical Design of Passive Prosthetic Feet to Lower Leg Trajectory,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 26, no. 8, pp. 1544–1555, 2018.
L. Jin, P. G. Adamczyk, M. Roland, and M. E. Hahn, “The effect of high- and low-damping prosthetic foot structures on knee loading in the uninvolved limb across different walking speeds,” Journal of Applied Biomechanics, vol. 32, no. 3, pp. 233–240, 2016.
S. Portnoy, A. Kristal, A. Gefen, and I. Siev-Ner, “Outdoor dynamic subject-specific evaluation of internal stresses in the residual limb: Hydraulic energy-stored prosthetic foot compared to conventional energy-stored prosthetic feet,” Gait and Posture, vol. 35, no. 1, pp. 121–125, 2012.
Z. Safaeepour, A. Eshraghi, and M. Geil, “The effect of damping in prosthetic ankle and knee joints on the biomechanical outcomes: A literature review,” Prosthetics and Orthotics International, vol. 41, no. 4, pp. 336–344, 2017.
B. I. S. O. Store, “International Standard ISO 22675,” 2007.
H. Tryggvason, F. Starker, C. Lecomte, and F. Jonsdottir, “Use of dynamic FEA for design modification and energy analysis of a variable stiffness prosthetic foot,” Applied Sciences (Switzerland), vol. 10, no. 2, 2020.
C. Geuzaine and J.-F. Remacle, “Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities,” International Journal for Numerical Methods in Engineering, vol. 79, pp. 1309 – 1331, 2009.
O. R. Bingol and A. Krishnamurthy, “NURBS-Python: An open-source object-oriented NURBS modeling framework in Python,” SoftwareX, vol. 9, pp. 85–94, 2019.
F. Orban, “Damping of materials and members in structures,” Journal of Physics: Conference Series, vol. 268, no. 1, 2011.
E. Costamilan, A. M. Löw, M. D. F. Awruch, J. Humberto, and S. A. Jr, “Damping ratio in carbon fiber reinforced epoxy filament-wound composites using Hilbert transform,” Preprints, no. January, 2018.
LS-DYNA, “Damping âC” Welcome to the LS-DYNA support site.”
I. Szabó, Barna; Babuska, “Introduction to Finite Element Analysis: Formulation, Verification and Validation,” in Wiley, vol. 9, pp. 251–267, 2011.
B. Iooss and P. Lemaître, “A review on Global Sensitivity Analysis Methods,” Operations Research/ Computer Science Interfaces Series, vol. 59, pp. 101–122, 2015.
F. Antonio, C. Viana, V. Steffen, G. Venter, and V. Balabanov, “On how to implement an affordable optimal latin hypercube,” Mechanical Engineering, no. 1979, pp. 1–15, 2007.
J. C. Helton and F. J. Davis, “Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems,” Reliability Engineering and System Safety, vol. 81, no. 1, pp. 23–69, 2003.
G. Manache and C. S. Melching, “Sensitivity of Latin Hypercube Sampling to Sample Size and Distributional Assumptions-Uncertainty and Sensitivity Analysis,” no. July 2007, 2015.
C. Lecomte, F. Starker, E. Ã. Guðnadóttir, S. Rafnsdóttir, K. Guðmundsson, K. Briem, and S. Brynjolfsson, “Functional joint center of prosthetic feet during level ground and incline walking,” Medical Engineering & Physics, may 2020.
M. Waskom and the seaborn development team, “mwaskom/seaborn,” Sept. 2020.
M. A. Bouhlel, J. T. Hwang, N. Bartoli, R. Lafage, J. Morlier, and J. R. R. A. Martins, “A python surrogate modeling framework with derivatives,” Advances in Engineering Software, p. 102662, 2019.
C. Diez, “qd“ Build your own LS-DYNA ® Tools Quickly in Python,” pp. 1–9.
J. Herman and W. Usher, “SALib: An open-source python library for sensitivity analysis,” The Journal of Open Source Software, vol. 2, jan 2017.
P. S. Palar and K. Shimoyama, “On efficient global optimization via universal Kriging surrogate models,” Structural and Multidisciplinary Optimization, vol. 57, no. 6, pp. 2377–2397, 2018.
G. G. Wang and S. Shan, “Review of Metamodeling Techniques in Support of Engineering Design Optimization,” Journal of Mechanical Design, vol. 129, no. 4, p. 370, 2007.
A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, and S. Tarantola, Global Sensitivity Analysis. The Primer. Chichester, UK: John Wiley & Sons, Ltd, dec 2007.
T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning. Springer Series in Statistics, New York, NY: Springer New York, 2009.
A. I. J. Forrester, A. Sóbester, and A. J. Keane, Engineering Design via surrogate optimization. 2008.
L. Breiman, “Random forests,” Random Forests, pp. 1–122, 2001.
B. Sudret, “Global sensitivity analysis using polynomial chaos expansions,” Reliability Engineering and System Safety, vol. 93, no. 7, pp. 964–979, 2008.
S. Touzani and D. Busby, “Smoothing spline analysis of variance approach for global sensitivity analysis of computer codes,” Reliability Engineering and System Safety, vol. 112, pp. 67–81, 2013.
H. Valladares, A. Jones, and A. Tovar, “Surrogate-Based Global Optimization of Composite Material Parts under Dynamic Loading,” SAE Technical Papers, vol. 2018-April, pp. 1–12, 2018.
P. Probst, M. N. Wright, and A. L. Boulesteix, “Hyperparameters and tuning strategies for random forest,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 9, no. 3, pp. 1–19, 2019.
M. A. Bouhlel, N. Bartoli, A. Otsmane, and J. Morlier, “Improving kriging surrogates of high-dimensional design models by Partial Least Squares dimension reduction,” Structural and Multidisciplinary Optimization, vol. 53, no. 5, pp. 935–952, 2016.
B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas, “Taking the Human Out of the Loop: A Review of Bayesian Optimization,”
R. Martinez-Cantin, “BayesOpt: A Bayesian optimization library for nonlinear optimization, experimental design and bandits,” Journal of Machine Learning Research, vol. 15, pp. 3735–3739, 2015.
E. Brochu, V. M. Cora, and N. de Freitas, “A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning,” 2010.
T. G. authors, “Gpyopt: A bayesian optimization framework in python.” http://github.com/SheffieldML/GPyOpt, 2016.
“BiOM® Changes Name to BionX| Business Wire.”
R. K. Fukuchi, C. A. Fukuchi, and M. Duarte, “A public dataset of running biomechanics and the effects of running speed on lower extremity kinematics and kinetics,” PeerJ, vol. 2017, no. 5, p. 3298, 2017.
A. Seth, M. Sherman, J. a. Reinbolt, and S. L. Delp, “OpenSim: A musculoskeletal modeling and simulation framework for in silico investigations and exchange,” Procedia IUTAM, vol. 2, pp. 212–232, 2011.
S. L. Delp, F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman, and D. G. Thelen, “OpenSim: Open-source software to create and analyze dynamic simulations of movement,” IEEE Transactions on Biomedical Engineering, vol. 54, no. 11, pp. 1940–1950, 2007.
Ossur Corp., “PROPRIO FOOT OSSUR,” 2014.
D. Paluska and H. Herr, “Series elasticity and actuator power output,” Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., no. May, pp. 1830–1833, 2006.
M. a. Holgate, J. K. Hitt, R. D. Bellman, T. G. Sugar, and K. W. Hollander, “The SPARKy (spring ankle with regenerative kinetics) project: Choosing a DC motor based actuation method,” Proceedings of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2008, pp. 163–168, 2008.
R. D. Bellman, M. a. Holgate, and T. G. Sugar, “SPARKy 3: Design of an active robotic ankle prosthesis with two actuated degrees of freedom using regenerative kinetics,” Proceedings of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2008, pp. 511–516, 2008.
F. Sup, H. A. Varol, J. Mitchell, T. Withrow, and M. Goldfarb, “Design and Control of an Active Electrical Knee and Ankle Prosthesis.,” Proceedings of the ... IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, vol. 2008, pp. 523–528, Oct. 2008.
F. Sup, H. A. Varol, J. Mitchell, T. J. Withrow, and M. Goldfarb, “Preliminary evaluations of a self-contained anthropomorphic transfemoral prosthesis,” IEEE/ASME Transactions on Mechatronics, vol. 14, no. 6, pp. 667–676, 2009.
K. H. Ha, H. A. Varol, and M. Goldfarb, “Volitional control of a prosthetic knee using surface electromyography.,” IEEE transactions on bio-medical engineering, vol. 58, pp. 144–51, Jan. 2011
E. J. Rouse, L. M. Mooney, E. C. Martinez-Villalpando, and H. M. Herr, “Clutchable series-elastic actuator: Design of a robotic knee prosthesis for minimum energy consumption,” IEEE International Conference on Rehabilitation Robotics, no. 1122374, 2013.
L. Mooney and H. Herr, “Continuously-variable series-elastic actuator.,” IEEE ... International Conference on Rehabilitation Robotics : [proceedings], vol. 2013, p. 6650402, June 2013.
Z. Han, C. Barnhart, D. Garlow, A. Bolger, H. Herr, G. Girzon, R. Casler, and J. McCarthy, “Controlling powered human augmentation devices,” Oct. 11 2012.
T. Wahl and K. Berns, Modeling, Simulation and Optimization of Bipedal Walking, vol. 18. 2013.
P. Cherelle, K. Junius, V. Grosu, H. Cuypers, B. Vanderborght, and D. Lefeber, “The AMP-Foot 2.1 : actuator design, control and experiments with an amputee.,” Robotica, no. September 2014, pp. 1–15, 2014.
P. Cherelle, V. Grosu, A. Matthys, B. Vanderborght, and D. Lefeber, “Design and validation of the ankle mimicking prosthetic (AMP) Foot 2.0,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 22, no. 1, pp. 138–148, 2014.
J. Geeroms, L. Flynn, R. Jimenez-Fabian, B. Vanderborght, and D. Lefeber, “Ankle-Knee prosthesis with powered ankle and energy transfer for CYBERLEGs α-prototype,” IEEE International Conference on Rehabilitation Robotics, 2013.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxii, 107 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Mecánica y Mecatrónica
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Mecánica y Mecatrónica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82662/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82662/3/PhDThesis.pdf
https://repositorio.unal.edu.co/bitstream/unal/82662/4/PhDThesis.pdf.jpg
bitstream.checksum.fl_str_mv 8153f7789df02f0a4c9e079953658ab2
e1d730f62e12d660575e9ab6fa9a43d7
94e02d253c03a2d0ca791ab20d5aa7e4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089241964052480
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cortés-Rodríguez, Carlos Julio6e1ffc457deda052c02a6d114daf58e5Tovar, Andreseb67fc88ff729bb107ee3f83c35d6734Prieto Parrado, Edwin Nikolayb660f84bb0e376ea54934124c452aa2aGrupo de Investigación en Biomecánica (GIBM)2022-11-08T16:32:49Z2022-11-08T16:32:49Z2022https://repositorio.unal.edu.co/handle/unal/82662Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, graficasNowadays, Lower Limb Prostheses (LLP) are changing at a very fast pace, due to technological developments implemented in such devices. In addition, users have new demands about their prostheses and they require absolute comfort and good performance. Unfortunately, the demand of LLP has risen mostly in third world countries because of the increment of vascular diseases (e.g., Diabetes Mellitus) and trauma (vehicle accidents, landmines, etc.). However, people do not have enough funds to acquire advanced prostheses that return the capabilities of walking or jogging in a proper way. Despite the fact that active prostheses help people to reduce metabolic cost, those are heavier and more expensive than Energy Storage and Return(ESR) prosthesis devices, produce uncomfortable noises and require more maintenance than passive ones. Moreover, components of the bionic prosthesis (i.e., actuators, battery, gearbox, among others) make the system highly inefficient. As a consequence, a higher quantity of external energy is required to allow the user to have enough autonomy for daily use. The current work pretends to obtain a novel customizable configuration of the transtibial prosthesis. However, the lack of qualitative and quantitative information on the ankle joint dynamics of LLP users cannot establish a reference target to optimize. In consequence, we processed recent gait data of trans-femoral amputees and compared them with sound groups at different gait speeds. From here, it is reported a formal comparative analysis between those groups. After dynamical data from the gait patterns are obtained, we proposed an explicit dynamic model to emulate the dynamic gait based on the ISO 22675 standard. We proposed a series of design variables in terms of shape, size and laminate thickness for the ankle-foot design. A global sensitivity analysis was performed in order to identify the most influential variables in terms of the outputs established to enhance and, contribute to the validation of the model. Then, a surrogate-model-based optimization algorithm is evaluated to adjust the best design variables for the given input. By means of Bayesian optimization, we found the prosthesis designs with the highest mechanical network for different gait speeds and groups. In the near future, this work will allow customizing, through additive manufacturing, a low-cost ankle-foot prosthesis with the best energetic return at the final stance phase.El avance en el desarrollo de prótesis de miembro inferior se ha acelerado durante la última decada debido a la implementación de dispositivos y materiales óptimos para la función perdida. Así mismo, el estilo de vida de los usuarios de prótesis ha cambiado, por lo que se demanda un mayor confort y rendimiento para una calidad de vida aceptable. Infortunadamente, los sectores más demandados son las poblaciones más vulnerables de los países, que en su mayoría, están en vía de desarrollo. Éstas poblaciones afectadas no cuentan con los recursos necesarios para adquirir una prótesis adecuada al grado de movilidad requerido, lo que produce una reducción en la velocidad preferida para caminar o correr sin alteraciones biomecánicas. Las principales causas de una amputación de miembro inferior se dan por la diabetes mellitus, los traumas (accidentes de tránsito, minas anti-persona, munición sin explotar, etc) y por último, el cáncer. A pesar que las prótesis biónicas ayudan a los usuarios a reducir el costo metabólico extra, estas son más pesadas y costosas en comparación a las prótesis pasivas. Más aún, los componentes de las propulsivas contienen elementos tales como actuadores, baterías, cajas de transmisión, entre otros, que dificultan el mantenimiento a mediano y largo plazo, a parte de generar ruido y hacer el sistema altamente inificiente. Como consecuencia, se afecta la autonomía del usuario en comparación a las de retorno energético. El presente trabajo pretende obtener una metodología de configuración de pie transtibial personalizada. La estrategia para su consecución se basa en la reciclaje de la energía mecánica externa que se pierde en el contacto inicial de la marcha. Sin embargo, la caracterización cualitativa y cuantitativa en la marcha de amputados de miembro inferior es limitada, y por tanto, no existe un parámetro de referencia a optimizar. En consecuencia, se procedió a realizar un análisis de datos con información disponible en estudios revisados por pares de la articulación de tobillo en pacientes con amputación unilateral trans-femoral, y se estableció el valor diferencial de la quasi-rigidéz en comparación con sujetos sin patologías. Posteriormente, se propuso un modelo dinámico explícito de un pie transtibial emulando la dinámica de marcha propuesta en el estándar ISO 22675. En dicho modelo, se establecieron variables de diseño tanto de forma, tamaño y ancho del laminado. Con el fin de determinar el comportamiento de las variables en el entorno y su modelo, un Análisis de Sensibilidad Global se estableció para contribuir a la validación del mismo. El GSA nos permitió implementar un algoritmo de optimización basado en un modelo surrogado cuyo propósito es establecer las variables óptimas de diseño con base en los parámetros de entrada (dinámica de la marcha). Este algoritmo de optimización presenta una cantidad de variables de diseño que no le permiten converger (≥ 20) a una solución óptima. Para solventar este inconveniente,se propone una optimización Bayesiana para determinar las variables de diseño que obtengan la dinámica de tobillo más aproximada a la no patológica. A la cual se obtuvieron resultados muy favorables a lo dispuesto en el mercado de las prótesis pasivas. Con esta propuesta, se pueden configurar prótesis personalizables que, a travéz de la manufactura aditiva, se pueden tangibilizar y adaptar a los pacientes amputados, independientemente de su grado de movilidad y su antropometría. (Texto tomado de la fuente)Ministerio de Ciencia, Tecnología e InnovaciónUniversidad Nacional de ColombiaDoctoradoDoctor en IngenieríaBiomecánica AplicadaSimulación por Elementos FinitosOptimización en Diseñoxxii, 107 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Mecánica y MecatrónicaDepartamento de Ingeniería Mecánica y MecatrónicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaComputational modelingExplicit dynamics optimizationFinite element analysisLower limb prosthesisGait data analysisLower limb biomechanicsEnergy storage and returnAnkle dynamics joint stiffnessBayesian optimizationSurrogate modelingAnkle-footProsthesisQuasi-stiffnessModelado computacionalOptimización dinámica explícita computacionalPrótesis de miembro inferiorAnálisis de marchaBiomecánica de marchaEnergía acumulada y de retornoRigidéz de la dinámica del tobilloOptimización bayesianaModelos surrogadosPrótesis de pie y tobilloPassive dynamic system for energy returning on transtibial prosthesisSistema Dinámico Pasivo de Retorno Energético en prótesis transtibialesTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDRedColLaReferenciaK. Ziegler-graham et al., “Estimating the Prevalence of Limb Loss in the United States : 2005 to 2050,” vol. 89, no. March, pp. 422–429, 2008, doi: 10.1016/j.apmr.2007.11.005.IDF, “Annual Report 2017,” tech. rep., International Diabetes Federation, 2017.Kroger Knut, “Major and minor amputation rates: What do they tell us?,” vol. 15, no. 1, pp. 2014–2016, 2015.R. LeMoyne, Advances for Prosthetic Technology. Tokyo: Springer Japan, 2016.P. Cherelle, G. Mathijssen, Q. Wang, B. Vanderborght, and D. Lefeber, “Advances in Propulsive Bionic Feet and Their Actuation Principles,” Advances in Mechanical Engineering, vol. 2014, pp. 1–21, 2014.R. Versluys, P. Beyl, M. Van Damme, A. Desomer, R. Van Ham, and D. Lefeber, “Prosthetic feet: state-of-the-art review and the importance of mimicking human ankle-foot biomechanics.,” Disability and rehabilitation. Assistive technology, vol. 4, no. 2, pp. 65–75, 2009.BostonNews, “A Brand-New Kick: The New BiOM Ankle Prosthetic by MIT’s Hugh Herr,” March 2015.R. Jena, “Ossur: Design that walks the line,” July 2007.“Low-cost prosthetic foot mimics natural walking | MIT News | Massachusetts Institute of Technology.”“High Quality Sach Foot For Disable People - Buy Polyurethane Prosthetic Foot, Sach Foot Prosthet,Sach Foot Price Product on Alibaba.com.”K. E. Zelik, T.-W. P. Huang, P. G. Adamczyk, and A. D. Kuo, “The role of series ankle elasticity in bipedal walking.,” Journal of theoretical biology, vol. 346, pp. 75–85, Apr. 2014.H. A. Varol, F. Sup, and M. Goldfarb, “Multiclass real-time intent recognition of a powered lower limb prosthesis,” IEEE Transactions on Biomedical Engineering, vol. 57, no. 3, pp. 542–551, 2010.S. K. Au, J. Weber, and H. Herr, “Powered Ankle–Foot Prosthesis Improves Walking Metabolic Economy,” IEEE Transactions on Robotics, vol. 25, no. 1, pp. 51–66, 2009.H. M. Herr, J. A. Weber, K. W. S. Au, B. W. Deffenbaugh, L. H. Magnusson, A. G. Hofmann, and B. B. Aisen, “Powered Ankle-Foot Prosthesis,” 2014.E. C. Martinez-Villalpando and H. Herr, “Agonist-antagonist active knee prosthesis: a preliminary study in level-ground walking.,” Journal of rehabilitation research and development, vol. 46, no. 3, pp. 361–373, 2009.E. R. Esposito, J. M. a. Whitehead, and J. M. Wilken, “Step-to-step transition work during level and inclined walking using passive and powered ankle-foot prostheses,” Prosthetics and Orthotics International, 2015.S. Au, M. Berniker, and H. Herr, “Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits,” Neural Networks, vol. 21, pp. 654–666, May 2008.A. R. De Asha, R. Munjal, J. Kulkarni, and J. G. Buckley, “Impact on the biomechanics of overground gait of using an ’Echelon’ hydraulic ankle-foot device in unilateral trans-tibial and trans-femoral amputees.,” Clinical biomechanics (Bristol, Avon), vol. 29, pp. 728–34, Aug 2014.T. Schmalz, S. Blumentritt, and R. Jarasch, “Energy expenditure and biomechanical characteristics of lower limb amputee gait: The influence of prosthetic alignment and different prosthetic components,” Gait and Posture, vol. 16, no. 3, pp. 255–263, 2002.J. G. Buckley, W. D. Spence, and S. E. Solomonidis, “Energy cost of walking: Comparison of ’intelligent prosthesis’ with conventional mechanism,” Archives of Physical Medicine and Rehabilitation, vol. 78, no. 3, pp. 330–333, 1997.H. M. Herr and A. M. Grabowski, “Powered ankle-foot improves metabolic demand of unilateral transtibial amputees during walking,” Meeting of the American Society of Biomechanics, 2010.D. H. Gates, J. M. Aldridge, and J. M. Wilken, “Kinematic comparison of walking on uneven ground using powered and unpowered prostheses.,” Clinical biomechanics (Bristol, Avon), vol. 28, pp. 467–72, Apr. 2013.D. Hill and H. Herr, “Effects of a powered ankle-foot prosthesis on kinetic loading of the contralateral limb: A case series,” IEEE International Conference on Rehabilitation Robotics, vol. 10, no. 1, p. 1, 2013.E. C. Martinez-Villalpando, L. Mooney, G. Elliott, and H. Herr, “Antagonistic active knee prosthesis. A metabolic cost of walking comparison with a variable-damping prosthetic knee,” Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, pp. 8519–8522, 2011.D. C. Morgenroth, A. D. Segal, K. E. Zelik, J. M. Czerniecki, G. K. Klute, P. G. Adamczyk, M. S. Orendurff, M. E. Hahn, S. H. Collins, and A. D. Kuo, “The effect of prosthetic foot push-off on mechanical loading associated with knee osteoarthritis in lower extremity amputees,” Gait & Posture, vol. 34, pp. 502–507, Oct 2011.H. Bateni and S. J. Olney, “Kinematic and Kinetic Variations of Below-Knee Amputee Gait,” JPO Journal of Prosthetics and Orthotics, vol. 14, no. 1, pp. 2–10, 2002.S. J. Mattes, P. E. Martin, and T. D. Royer, “Walking symmetry and energy cost in persons with unilateral transtibial amputations: Matching prosthetic and intact limb inertial properties,” Archives of Physical Medicine and Rehabilitation, vol. 81, pp. 561–568, May 2000.A. M. Grabowski and S. D. Andrea, “Effects of a powered ankle-foot prosthesis on kinetic loading of the unaffected leg during level-ground walking,” Journal of NeuroEngineering and Rehabilitation, 2013.H. Devan, P. Hendrick, D. C. Ribeiro, L. A Hale, and A. Carman, “Asymmetrical movements of the lumbopelvic region: Is this a potential mechanism for low back pain in people with lower limb amputation?,” Medical Hypotheses, vol. 82, no. 1, pp. 77–85, 2014.B. E. Lawson, H. A. Varol, and M. Goldfarb, “Ground adaptive standing controller for a powered transfemoral prosthesis,” IEEE International Conference on Rehabilitation Robotics, 2011.ASME, “Making Strides with Bionic Ankle,” March 2015.L. P. Reis and C. P. Santos, “Robot 2015: Second Iberian Robotics Conference,” vol. 418, pp. 209–220, 2016.S. I. Wolf, M. Alimusaj, L. Fradet, J. Siegel, and F. Braatz, “Pressure characteristics at the stump/socket interface in transtibial amputees using an adaptive prosthetic foot.,” Clinical biomechanics (Bristol, Avon), vol. 24, pp. 860–5, Dec. 2009.A. Hansen and E. Nickel, “Ankle-foot prosthesis for automatic adaptation to sloped walking surfaces,” Mar. 27, 2014.A. Eshraghi, N. A. A. Osman, H. Gholizadeh, S. Ali, and B. Shadgan, “100 Top-Cited Scientific Papers in Limb Prosthetics.,” Biomedical engineering online, vol. 12, no. 1, p. 119, 2013.B. Vanderborght, A. Albu-Schaeffer, A. Bicchi, E. Burdet, D. Caldwell, R. Carloni, M. Catalano, O. Eiberger, W. Friedl, G. Ganesh, M. Garabini, M. Grebenstein, G. Grioli, S. Haddadin, H. Hoppner, A. Jafari, M. Laffranchi, D. Lefeber, F. Petit, S. Stramigioli, N. Tsagarakis, M. Van Damme, R. Van Ham, L. Visser, and S. Wolf, “Variable impedance actuators: A review,” Robotics and Autonomous Systems, vol. 61, pp. 1601–1614, Dec. 2013.M. Grimmer, M. Eslamy, S. Gliech, and A. Seyfarth, “A comparison of parallel- and series elastic elements in an actuator for mimicking human ankle joint in walking and running,” Proceedings - IEEE International Conference on Robotics and Automation, pp. 2463–2470, 2012.M. Grimmer, M. Eslamy, and A. Seyfarth, “Energetic and Peak Power Advantages of Series Elastic Actuators in an Actuated Prosthetic Leg for Walking and Running,” Actuators, vol. 3, no. 1, pp. 1–19, 2014.M. Eslamy, M. Grimmer, S. Rinderknecht, and A. Seyfarth, “Does it pay to have a damper in a powered ankle prosthesis? A power-energy perspective.,” IEEE ... International Conference on Rehabilitation Robotics : [proceedings], vol. 2013, p. 6650362, June 2013.M. Eslamy, M. Grimmer, and A. Seyfarth, “Adding passive biarticular spring to active monoarticular foot prosthesis: Effects on power and energy requirement,” in 2014 IEEE-RAS International Conference on Humanoid Robots, pp. 677–684, Nov 2014.J. M. Donelan, R. Kram, and A. D. Kuo, “Simultaneous positive and negative external mechanical work in human walking,” Journal of Biomechanics, vol. 35, no. 1, pp. 117–124, 2002.S. H. Collins and A. D. Kuo, “Recycling energy to restore impaired ankle function during human walking,” PLoS ONE, vol. 5, no. 2, 2010.T. McGeer, “Passive dynamic walking,” The international journal of robotics research, vol. 9, no. 2, pp. 62–82, 1990.M. H. Michalski and J. S. Ross, “The Shape of Things to Come,” JAMA, vol. 312, p. 2213, Dec 2014.O. Diegel, Additive Manufacturing: An Overview, vol. 10. Elsevier, 2014.C. Weller, R. Kleer, and F. T. Piller, “Economic Implications of 3D printing: Market structure Models in light of additive manufacturing Revisited,” International Journal of Production Economics, Mar. 2015.B. J. South, N. P. Fey, G. Bosker, and R. R. Neptune, “Manufacture of energy storage and return prosthetic feet using selective laser sintering.,” Journal of biomechanical engineering, vol. 132, no. 1, p. 015001, 2010.J. Yap and G. Renda, “Low-cost 3D-printable Prosthetic Foot,” in European Conference Design4Health, (Sheffield), pp. 1–10, Design4Health, 2015.S. Tibbits, “4D printing: Multi-material shape change,” Architectural Design, vol. 84, pp. 116–121, 2014.D. Raviv, W. Zhao, C. McKnelly, A. Papadopoulou, A. Kadambi, B. Shi, S. Hirsch, D. Dikovsky, M. Zyracki, C. Olguin, R. Raskar, and S. Tibbits, “Active Printed Materials for Complex Self-Evolving Deformations,” Scientific Reports, vol. 4, p. 7422, 2014.K. Yu, A. Ritchie, Y. Mao, M. L. Dunn, and H. J. Qi, “Controlled Sequential Shape Changing Components by 3D Printing of Shape Memory Polymer Multimaterials,” Procedia IUTAM, vol. 12, pp. 193–203, 2015.Z. Tao, H. J. Ahn, C. Lian, K. H. Lee, and C. H. Lee, “Design and optimization of prosthetic foot by using polylactic acid 3D printing,” Journal of Mechanical Science and Technology, vol. 31, no. 5, pp. 2393–2398, 2017.B. Rochlitz and D. Pammer, “Design and analysis of 3D printable foot prosthesis,” Periodica Polytechnica Mechanical Engineering, vol. 61, no. 4, pp. 282–287, 2017.F. M. Rohjoni, M. N. A. A. Patar, J. Mahmud, H. Lee, and A. Hanafusa, “Finite element analysis of a transtibial prosthetic during gait cycle,” International Journal of Mechanical Engineering and Robotics Research, vol. 9, no. 5, pp. 764–770, 2020.H. Kamel, O. Harraz, K. Azab, and T. Attia, “Developing an Optimized Low-Cost Transtibial Energy Storage and Release Prosthetic Foot Using Three-Dimensional Printing,” Journal of Engineering and Science in Medical Diagnostics and Therapy, vol. 3, no. 2, pp. 1–9, 2020.V. Vijayan, S. Arun Kumar, S. Gautham, M. Mohamed Masthan, and N. Piraichudan, “Design and analysis of prosthetic foot using additive manufacturing technique,” Materials To day: Proceedings, no. xxxx, 2020.A. Hansen and F. Starker, “Prosthetic Foot Principles and Their Influence on Gait,” Handbook of Human Motion, pp. 1–15, 2016.T. M. Balaramakrishnan, S. Natarajan, and S. Srinivasan, “Roll-over shape of a prosthetic foot: a finite element evaluation and experimental validation,” Medical and Biological Engineering and Computing, vol. 58, no. 10, pp. 2259–2270, 2020.J. Hallquist, LS-DYNA® theory manual. No. March, 2006.H. M. Herr and a. M. Grabowski, “Bionic ankle-foot prosthesis normalizes walking gait for persons with leg amputation,” Proceedings of the Royal Society B: Biological Sciences, vol. 279, no. 1728, pp. 457–464, 2012.M. K. Shepherd and E. J. Rouse, “The VSPA Foot: A Quasi-Passive Ankle-Foot Prosthesis with Continuously Variable Stiffness,” vol. 4320, no. c, 2017.R. B. Davis and P. A. DeLuca, “Gait characterization via dynamic joint stiffness,” Gait and Posture, vol. 4, no. 3, pp. 224–231, 1996.E. J. Rouse, R. D. Gregg, L. J. Hargrove, and J. W. Sensinger, “The difference between stiffness and quasi-stiffness in the context of biomechanical modeling,” IEEE Transactions on Biomedical Engineering, vol. 60, no. 2, pp. 562–568, 2013.A. H. Hansen, D. S. Childress, S. C. Miff, S. a. Gard, and K. P. Mesplay, “The human ankle during walking: Implications for design of biomimetic ankle prostheses,” Journal of Biomechanics, vol. 37, pp. 1467–1474, 2004.P. Crenna and C. Frigo, “Dynamics of the ankle joint analyzed through moment-angle loops during human walking: gender and age effects.,” Human movement science, vol. 30, pp. 1185–98, dec 2011.K. Shamaei, G. S. Sawicki, and A. M. Dollar, “Estimation of Quasi-Stiffness and Propulsive Work of the Human Ankle in the Stance Phase of Walking,” PLoS ONE, vol. 8, no. 3, 2013.E. Schaffalitzky, P. Gallagher, M. MacLachlan, and N. Ryall, “Understanding the benefits of prosthetic prescription: Exploring the experiences of practitioners and lower limb prosthetic users,” Disability and Rehabilitation, vol. 33, no. 15-16, pp. 1314–1323, 2011.P. M. Stevens, J. Rheinstein, and S. R. Wurdeman, “Prosthetic foot selection for individuals with lower-limb amputation: A clinical practice guideline,” Journal of Prosthetics and Orthotics, vol. 30, no. 4, pp. 175–180, 2018.H. Van Der Linde, C. J. Hofstad, J. Van Limbeek, K. Postema, and J. H. Geertzen, “Use of the Delphi Technique for developing national clinical guidelines for prescription of lower-limb prostheses,” Journal of Rehabilitation Research and Development, vol. 42, no. 5, pp. 693–704, 2005.J. D. Collins, E. S. Arch, J. R. Crenshaw, and K. A. Bernhardt, “Net ankle quasi-stiffness is in fluenced by walking speed but not age for older adult women,” Gait & Posture, vol. 62, no. January 2017, pp. 311–316, 2018.A. R. Akl, A. Baca, J. Richards, and F. Conceição, “Leg and lower limb dynamic joint stiffness during different walking speeds in healthy adults,” Gait and Posture, vol. 82, no. October 2019, pp. 294–300, 2020.H. Argunsah Bayram and M. B. Bayram, “Dynamic Functional Stiffness Index of the Ankle Joint During Daily Living,” The Journal of Foot and Ankle Surgery, vol. 57, pp. 668–674, jul 2018.D. W. Powell, D. S. B. Williams, B. Windsor, R. J. Butler, and S. Zhang, “Ankle work and dynamic joint stiffness in high- compared to low-arched athletes during a barefoot running task,” Human Movement Science, vol. 34, no. 1, pp. 147–156, 2014.P. Aleixo, J. Vaz Patto, I. Roupa, H. Moreira, and J. Abrantes, “Dynamic joint stiffness of the ankle in healthy and rheumatoid arthritis postmenopausal women,” Gait & Posture, vol. 60, no. October 2017, pp. 225–234, 2015.R. C. Gabriel, J. Abrantes, K. Granata, J. Bulas-Cruz, P. Melo-Pinto, and V. Filipe, “Dynamic joint stiffness of the ankle during walking: gender-related differences.,” Physical therapy in sport: official journal of the Association of Chartered Physiotherapists in Sports Medicine, vol. 9, pp. 16–24, feb 2008.R. Holgate, T. Sugar, A. Nash, J. Kianpour, C. T. Johnson, and E. Santos, “A Passive Ankle-Foot Prosthesis With Energy Return to Mimic Able-Bodied Gait,” in Volume 5A: 41st Mechanisms and Robotics Conference, p. V05AT08A056, ASME, aug 2017.L. Jin and M. E. Hahn, “Modulation of lower extremity joint stiffness, work and power at different walking and running speeds,” Human Movement Science, vol. 58, no. January, pp. 1–9, 2018.R. Ferber, S. T. Osis, J. L. Hicks, and S. L. Delp, “Gait biomechanics in the era of data science,” Journal of Biomechanics, vol. 49, no. 16, pp. 3759–3761, 2016.Winter DA, The biomechanics and motor control of human gait. 1987.W. McKinney et al., “Data structures for statistical computing in python,” in Proceedings of the 9th Python in Science Conference, vol. 445, pp. 51–56, Austin, TX, 2010.F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,” Nature Methods, vol. 17, pp. 261–272, 2020.S. Seabold and J. Perktold, “statsmodels: Econometric and statistical modeling with python,” in 9th Python in Science Conference, 2010.S. Gillies et al., “Shapely: manipulation and analysis of geometric objects,” 2007.T. E. Oliphant, A guide to NumPy, vol. 1. Trelgol Publishing USA, 2006.J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007.B. W. Stansfield, S. J. Hillman, M. E. Hazlewood, and J. E. Robb, “Regression analysis of gait parameters with speed in normal children walking at self-selected speeds,” Gait and Posture, vol. 23, no. 3, pp. 288–294, 2006.M. H. Schwartz, A. Rozumalski, and J. P. Trost, “The effect of walking speed on the gait of typically developing children,” Gait and Posture, vol. 41, no. 3, pp. 351–357, 2008.G. Bovi, M. Rabuffetti, P. Mazzoleni, and M. Ferrarin, “A multiple-task gait analysis approach: Kinematic, kinetic and EMG reference data for healthy young and adult subjects,” Gait and Posture, vol. 33, no. 1, pp. 6–13, 2011.C. A. Fukuchi, R. K. Fukuchi, and M. Duarte, “A public dataset of overground and treadmill walking kinematics and kinetics in healthy individuals,” PeerJ, vol. 2018, no. 4, pp. 1–17, 2018.J. K. Moore, S. K. Hnat, and A. J. van den Bogert, “An elaborate data set on human gait and the effect of mechanical perturbations,” PeerJ, vol. 3, no. April, p. e918, 2015.F. Horst, A. Eekhoff, K. M. Newell, and W. I. Schöllhorn, “Intra-individual gait patterns across different time-scales as revealed by means of a supervised learning model using kernel-based discriminant regression,” PLoS ONE, vol. 12, no. 6, 2017.F. Horst, M. Mildner, and W. I. Schöllhorn, “One-year persistence of individual gait patterns identified in a follow-up study â C“ A call for individualised diagnose and therapy,” Gait and Posture, vol. 58, no. August, pp. 476–480, 2017.F. Horst, S. Lapuschkin, W. Samek, K. R. Müller, and W. I. Schöllhorn, “Explaining the unique nature of individual gait patterns with deep learning,” Scientific Reports, vol. 9, no. 1, pp. 1–13, 2019.T. Lencioni, I. Carpinella, M. Rabuffetti, A. Marzegan, and M. Ferrarin, “Human kinematic, kinetic and EMG data during different walking and stair ascending and descending tasks,” Scientific Data, vol. 6, no. 1, 2019.S. Hood, M. K. Ishmael, A. Gunnell, K. B. Foreman, and tommaso Lenzi, “A kinematic and kinetic dataset of 18 above-knee amputees walking at various speeds.,” 2020.A. L. Hof, “Scaling gait data to body size,” Gait & Posture, vol. 4, no. 3, pp. 222 – 223, 1996.A. E. Ferris, J. D. Smith, G. D. Heise, R. N. Hinrichs, and P. E. Martin, “A general model for estimating lower extremity inertial properties of individuals with transtibial amputation,” Journal of Biomechanics, vol. 54, no. January, pp. 44–48, 2017.A. Sawers and M. Hahn, “The potential for error with use of inverse dynamic calculations in gait analysis of individuals with lower limb loss: A review of model selection and assumptions,” JPO: Journal of Prosthetics and Orthotics, vol. 22, pp. 56–61, 01 2010.L. O. Tedeschi, “Assessment of the adequacy of mathematical models,” Agricultural Systems, vol. 89, no. 2-3, pp. 225–247, 2006.J. R. Jeffers and A. M. Grabowski, “Individual Leg and Joint Work during Sloped Walking for People with a Transtibial Amputation Using Passive and Powered Prostheses,” Frontiers in Robotics and AI, vol. 4, no. December, pp. 1–10, 2017.N. P. Fey, G. K. Klute, and R. R. Neptune, “The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees,” Clinical Biomechanics, vol. 26, pp. 1025–1032, dec 2011.C. E. Shell, A. D. Segal, G. K. Klute, and R. R. Neptune, “The effects of prosthetic foot stiffness on transtibial amputee walking mechanics and balance control during turning,” Clinical Biomechanics, vol. 49, no. November 2016, pp. 56–63, 2017.K. A. Ingraham, H. Choi, E. S. Gardinier, C. D. Remy, and D. H. Gates, “Choosing appropriate prosthetic ankle work to reduce the metabolic cost of individuals with transtibial amputation,” Scientific Reports, vol. 8, no. 1, p. 15303, 2018.K. M. Olesnavage and A. G. Winter, “Passive Prosthetic Foot Shape and Size Optimization Using Lower Leg Trajectory Error,” Volume 5A: 41st Mechanisms and Robotics Conference, vol. 140, no. October 2018, p. V05AT08A011, 2017.K. M. Olesnavage and A. G. Winter, “A Novel Framework for Quantitatively Connecting the Mechanical Design of Passive Prosthetic Feet to Lower Leg Trajectory,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 26, no. 8, pp. 1544–1555, 2018.L. Jin, P. G. Adamczyk, M. Roland, and M. E. Hahn, “The effect of high- and low-damping prosthetic foot structures on knee loading in the uninvolved limb across different walking speeds,” Journal of Applied Biomechanics, vol. 32, no. 3, pp. 233–240, 2016.S. Portnoy, A. Kristal, A. Gefen, and I. Siev-Ner, “Outdoor dynamic subject-specific evaluation of internal stresses in the residual limb: Hydraulic energy-stored prosthetic foot compared to conventional energy-stored prosthetic feet,” Gait and Posture, vol. 35, no. 1, pp. 121–125, 2012.Z. Safaeepour, A. Eshraghi, and M. Geil, “The effect of damping in prosthetic ankle and knee joints on the biomechanical outcomes: A literature review,” Prosthetics and Orthotics International, vol. 41, no. 4, pp. 336–344, 2017.B. I. S. O. Store, “International Standard ISO 22675,” 2007.H. Tryggvason, F. Starker, C. Lecomte, and F. Jonsdottir, “Use of dynamic FEA for design modification and energy analysis of a variable stiffness prosthetic foot,” Applied Sciences (Switzerland), vol. 10, no. 2, 2020.C. Geuzaine and J.-F. Remacle, “Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities,” International Journal for Numerical Methods in Engineering, vol. 79, pp. 1309 – 1331, 2009.O. R. Bingol and A. Krishnamurthy, “NURBS-Python: An open-source object-oriented NURBS modeling framework in Python,” SoftwareX, vol. 9, pp. 85–94, 2019.F. Orban, “Damping of materials and members in structures,” Journal of Physics: Conference Series, vol. 268, no. 1, 2011.E. Costamilan, A. M. Löw, M. D. F. Awruch, J. Humberto, and S. A. Jr, “Damping ratio in carbon fiber reinforced epoxy filament-wound composites using Hilbert transform,” Preprints, no. January, 2018.LS-DYNA, “Damping âC” Welcome to the LS-DYNA support site.”I. Szabó, Barna; Babuska, “Introduction to Finite Element Analysis: Formulation, Verification and Validation,” in Wiley, vol. 9, pp. 251–267, 2011.B. Iooss and P. Lemaître, “A review on Global Sensitivity Analysis Methods,” Operations Research/ Computer Science Interfaces Series, vol. 59, pp. 101–122, 2015.F. Antonio, C. Viana, V. Steffen, G. Venter, and V. Balabanov, “On how to implement an affordable optimal latin hypercube,” Mechanical Engineering, no. 1979, pp. 1–15, 2007.J. C. Helton and F. J. Davis, “Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems,” Reliability Engineering and System Safety, vol. 81, no. 1, pp. 23–69, 2003.G. Manache and C. S. Melching, “Sensitivity of Latin Hypercube Sampling to Sample Size and Distributional Assumptions-Uncertainty and Sensitivity Analysis,” no. July 2007, 2015.C. Lecomte, F. Starker, E. Ã. Guðnadóttir, S. Rafnsdóttir, K. Guðmundsson, K. Briem, and S. Brynjolfsson, “Functional joint center of prosthetic feet during level ground and incline walking,” Medical Engineering & Physics, may 2020.M. Waskom and the seaborn development team, “mwaskom/seaborn,” Sept. 2020.M. A. Bouhlel, J. T. Hwang, N. Bartoli, R. Lafage, J. Morlier, and J. R. R. A. Martins, “A python surrogate modeling framework with derivatives,” Advances in Engineering Software, p. 102662, 2019.C. Diez, “qd“ Build your own LS-DYNA ® Tools Quickly in Python,” pp. 1–9.J. Herman and W. Usher, “SALib: An open-source python library for sensitivity analysis,” The Journal of Open Source Software, vol. 2, jan 2017.P. S. Palar and K. Shimoyama, “On efficient global optimization via universal Kriging surrogate models,” Structural and Multidisciplinary Optimization, vol. 57, no. 6, pp. 2377–2397, 2018.G. G. Wang and S. Shan, “Review of Metamodeling Techniques in Support of Engineering Design Optimization,” Journal of Mechanical Design, vol. 129, no. 4, p. 370, 2007.A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, and S. Tarantola, Global Sensitivity Analysis. The Primer. Chichester, UK: John Wiley & Sons, Ltd, dec 2007.T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning. Springer Series in Statistics, New York, NY: Springer New York, 2009.A. I. J. Forrester, A. Sóbester, and A. J. Keane, Engineering Design via surrogate optimization. 2008.L. Breiman, “Random forests,” Random Forests, pp. 1–122, 2001.B. Sudret, “Global sensitivity analysis using polynomial chaos expansions,” Reliability Engineering and System Safety, vol. 93, no. 7, pp. 964–979, 2008.S. Touzani and D. Busby, “Smoothing spline analysis of variance approach for global sensitivity analysis of computer codes,” Reliability Engineering and System Safety, vol. 112, pp. 67–81, 2013.H. Valladares, A. Jones, and A. Tovar, “Surrogate-Based Global Optimization of Composite Material Parts under Dynamic Loading,” SAE Technical Papers, vol. 2018-April, pp. 1–12, 2018.P. Probst, M. N. Wright, and A. L. Boulesteix, “Hyperparameters and tuning strategies for random forest,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 9, no. 3, pp. 1–19, 2019.M. A. Bouhlel, N. Bartoli, A. Otsmane, and J. Morlier, “Improving kriging surrogates of high-dimensional design models by Partial Least Squares dimension reduction,” Structural and Multidisciplinary Optimization, vol. 53, no. 5, pp. 935–952, 2016.B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas, “Taking the Human Out of the Loop: A Review of Bayesian Optimization,”R. Martinez-Cantin, “BayesOpt: A Bayesian optimization library for nonlinear optimization, experimental design and bandits,” Journal of Machine Learning Research, vol. 15, pp. 3735–3739, 2015.E. Brochu, V. M. Cora, and N. de Freitas, “A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning,” 2010.T. G. authors, “Gpyopt: A bayesian optimization framework in python.” http://github.com/SheffieldML/GPyOpt, 2016.“BiOM® Changes Name to BionX| Business Wire.”R. K. Fukuchi, C. A. Fukuchi, and M. Duarte, “A public dataset of running biomechanics and the effects of running speed on lower extremity kinematics and kinetics,” PeerJ, vol. 2017, no. 5, p. 3298, 2017.A. Seth, M. Sherman, J. a. Reinbolt, and S. L. Delp, “OpenSim: A musculoskeletal modeling and simulation framework for in silico investigations and exchange,” Procedia IUTAM, vol. 2, pp. 212–232, 2011.S. L. Delp, F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman, and D. G. Thelen, “OpenSim: Open-source software to create and analyze dynamic simulations of movement,” IEEE Transactions on Biomedical Engineering, vol. 54, no. 11, pp. 1940–1950, 2007.Ossur Corp., “PROPRIO FOOT OSSUR,” 2014.D. Paluska and H. Herr, “Series elasticity and actuator power output,” Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., no. May, pp. 1830–1833, 2006.M. a. Holgate, J. K. Hitt, R. D. Bellman, T. G. Sugar, and K. W. Hollander, “The SPARKy (spring ankle with regenerative kinetics) project: Choosing a DC motor based actuation method,” Proceedings of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2008, pp. 163–168, 2008.R. D. Bellman, M. a. Holgate, and T. G. Sugar, “SPARKy 3: Design of an active robotic ankle prosthesis with two actuated degrees of freedom using regenerative kinetics,” Proceedings of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2008, pp. 511–516, 2008.F. Sup, H. A. Varol, J. Mitchell, T. Withrow, and M. Goldfarb, “Design and Control of an Active Electrical Knee and Ankle Prosthesis.,” Proceedings of the ... IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, vol. 2008, pp. 523–528, Oct. 2008.F. Sup, H. A. Varol, J. Mitchell, T. J. Withrow, and M. Goldfarb, “Preliminary evaluations of a self-contained anthropomorphic transfemoral prosthesis,” IEEE/ASME Transactions on Mechatronics, vol. 14, no. 6, pp. 667–676, 2009.K. H. Ha, H. A. Varol, and M. Goldfarb, “Volitional control of a prosthetic knee using surface electromyography.,” IEEE transactions on bio-medical engineering, vol. 58, pp. 144–51, Jan. 2011E. J. Rouse, L. M. Mooney, E. C. Martinez-Villalpando, and H. M. Herr, “Clutchable series-elastic actuator: Design of a robotic knee prosthesis for minimum energy consumption,” IEEE International Conference on Rehabilitation Robotics, no. 1122374, 2013.L. Mooney and H. Herr, “Continuously-variable series-elastic actuator.,” IEEE ... International Conference on Rehabilitation Robotics : [proceedings], vol. 2013, p. 6650402, June 2013.Z. Han, C. Barnhart, D. Garlow, A. Bolger, H. Herr, G. Girzon, R. Casler, and J. McCarthy, “Controlling powered human augmentation devices,” Oct. 11 2012.T. Wahl and K. Berns, Modeling, Simulation and Optimization of Bipedal Walking, vol. 18. 2013.P. Cherelle, K. Junius, V. Grosu, H. Cuypers, B. Vanderborght, and D. Lefeber, “The AMP-Foot 2.1 : actuator design, control and experiments with an amputee.,” Robotica, no. September 2014, pp. 1–15, 2014.P. Cherelle, V. Grosu, A. Matthys, B. Vanderborght, and D. Lefeber, “Design and validation of the ankle mimicking prosthetic (AMP) Foot 2.0,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 22, no. 1, pp. 138–148, 2014.J. Geeroms, L. Flynn, R. Jimenez-Fabian, B. Vanderborght, and D. Lefeber, “Ankle-Knee prosthesis with powered ankle and energy transfer for CYBERLEGs α-prototype,” IEEE International Conference on Rehabilitation Robotics, 2013.COLFUTUROUniversidad Nacional de ColombiaMinisterio de Ciencia, Tecnología e InnovaciónEstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/82662/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52ORIGINALPhDThesis.pdfPhDThesis.pdfTesis de Doctorado en Ingenieríaapplication/pdf10612384https://repositorio.unal.edu.co/bitstream/unal/82662/3/PhDThesis.pdfe1d730f62e12d660575e9ab6fa9a43d7MD53THUMBNAILPhDThesis.pdf.jpgPhDThesis.pdf.jpgGenerated Thumbnailimage/jpeg4366https://repositorio.unal.edu.co/bitstream/unal/82662/4/PhDThesis.pdf.jpg94e02d253c03a2d0ca791ab20d5aa7e4MD54unal/82662oai:repositorio.unal.edu.co:unal/826622023-08-02 23:03:53.339Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK