Evaluación agroindustrial de bloques nutricionales para alimentación de precisión bovina con potencial de mitigación de gas metano
Ilustraciones, fotografías, tablas
- Autores:
-
Mazabel Parra, Lady Johanna
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86912
- Palabra clave:
- 630 - Agricultura y tecnologías relacionadas
Industria alimentaria
Food industry
Bloque de pienso
Feed blocks
Suplemento de piensos
Feed supplements
Piensos para el ganado
Emisiones de gases de efecto invernadero
Greenhouse gas emissions
Emisiones de metano
Methane emission
Mitigación del cambio climático
Climate change mitigation
Enterolobium cyclocarpum
Tithonia diversifolia
Leucaena leucocephala
Alimento para ganado
Fermentación
Degradabilidad
Emisiones de gas
Livestock feed
Fermentation
Degradability
Livestock
Gas emissions
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_81fc5f51e59f0e2ce74186cbe02ac51b |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86912 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluación agroindustrial de bloques nutricionales para alimentación de precisión bovina con potencial de mitigación de gas metano |
dc.title.translated.eng.fl_str_mv |
Agro-industrial evaluation of nutrient blocks for precision cattle feeding with methane gas mitigation potential |
title |
Evaluación agroindustrial de bloques nutricionales para alimentación de precisión bovina con potencial de mitigación de gas metano |
spellingShingle |
Evaluación agroindustrial de bloques nutricionales para alimentación de precisión bovina con potencial de mitigación de gas metano 630 - Agricultura y tecnologías relacionadas Industria alimentaria Food industry Bloque de pienso Feed blocks Suplemento de piensos Feed supplements Piensos para el ganado Emisiones de gases de efecto invernadero Greenhouse gas emissions Emisiones de metano Methane emission Mitigación del cambio climático Climate change mitigation Enterolobium cyclocarpum Tithonia diversifolia Leucaena leucocephala Alimento para ganado Fermentación Degradabilidad Emisiones de gas Livestock feed Fermentation Degradability Livestock Gas emissions |
title_short |
Evaluación agroindustrial de bloques nutricionales para alimentación de precisión bovina con potencial de mitigación de gas metano |
title_full |
Evaluación agroindustrial de bloques nutricionales para alimentación de precisión bovina con potencial de mitigación de gas metano |
title_fullStr |
Evaluación agroindustrial de bloques nutricionales para alimentación de precisión bovina con potencial de mitigación de gas metano |
title_full_unstemmed |
Evaluación agroindustrial de bloques nutricionales para alimentación de precisión bovina con potencial de mitigación de gas metano |
title_sort |
Evaluación agroindustrial de bloques nutricionales para alimentación de precisión bovina con potencial de mitigación de gas metano |
dc.creator.fl_str_mv |
Mazabel Parra, Lady Johanna |
dc.contributor.advisor.none.fl_str_mv |
Hleap Zapata, José Igor Arango Mejía, Jacobo |
dc.contributor.author.none.fl_str_mv |
Mazabel Parra, Lady Johanna |
dc.contributor.orcid.spa.fl_str_mv |
0000-0002-7494-4608 |
dc.subject.ddc.spa.fl_str_mv |
630 - Agricultura y tecnologías relacionadas |
topic |
630 - Agricultura y tecnologías relacionadas Industria alimentaria Food industry Bloque de pienso Feed blocks Suplemento de piensos Feed supplements Piensos para el ganado Emisiones de gases de efecto invernadero Greenhouse gas emissions Emisiones de metano Methane emission Mitigación del cambio climático Climate change mitigation Enterolobium cyclocarpum Tithonia diversifolia Leucaena leucocephala Alimento para ganado Fermentación Degradabilidad Emisiones de gas Livestock feed Fermentation Degradability Livestock Gas emissions |
dc.subject.agrovoc.none.fl_str_mv |
Industria alimentaria Food industry Bloque de pienso Feed blocks Suplemento de piensos Feed supplements Piensos para el ganado Emisiones de gases de efecto invernadero Greenhouse gas emissions Emisiones de metano Methane emission Mitigación del cambio climático Climate change mitigation Enterolobium cyclocarpum Tithonia diversifolia Leucaena leucocephala |
dc.subject.proposal.spa.fl_str_mv |
Alimento para ganado Fermentación Degradabilidad Emisiones de gas |
dc.subject.proposal.eng.fl_str_mv |
Livestock feed Fermentation Degradability Livestock Gas emissions |
description |
Ilustraciones, fotografías, tablas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-10-08T15:21:43Z |
dc.date.available.none.fl_str_mv |
2024-10-08T15:21:43Z |
dc.date.issued.none.fl_str_mv |
2024-06-21 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86912 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86912 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Aboagye, I. A., Oba, M., Castillo, A. R., Koenig, K. M., Iwaasa, A. D., & Beauchemin, K. A. (2018). Effects of hydrolyzable tannin with or without condensed tannin on methane emissions, nitrogen use and performance of beef cattle fed a high-forage diet. Journal of Animal Science, 96(12), 5276-5286. https://doi.org/10.1093/jas/sky352 Adejoro, F. A., Hassen, A., Akanmu, A. M., & Morgavi, D. P. (2020). Replacing urea with nitrate as a non-protein nitrogen source increases lambs’ growth and reduces methane production, whereas acacia tannin has no effect. Animal Feed Science and Technology, 259, 114360. https://doi.org/10.1016/j.anifeedsci.2019.114360 Adi, D., Oduro, I. N., & Tortoe, C. (2019). Physicochemical changes in plantain during normal storage ripening. Scientific African, 6, e00164. https://doi.org/10.1016/j.sciaf.2019.e00164 Arias, L. C., Soriano, R., Losada, H., Rivera., & Cortés, J. (2005). Multi nutrient blocks with fresh fruit of Pitaya (Stenocereus griseus) replacing sugar cane molasses. Livestock Research for Rural Development.,17(4), 37. [Online}: http://www.lrrd.org/lrrd17/4/aria17037.htm Arreaza, L. C. (2004). Utilizacion Del Sistema CNCPS Como Herramienta De Soporte Para La Investigación En Forrajes Tropicales. Primera Reunión de la Red Temática de Recuersos Forrajeros. Coorpoica. Bogota, Colombia. [Online]: http://tiesmexico.cals.cornell.edu/courses/shortcourse2/minisite/herramienta.htm ANDI. (2022). Balance 2022 Y Perspectivas 2023. Asociación Nacional de Industriales - ANDI. 1–124. [Online]: https://www.andi.com.co/Home/Camara/17-industria-de-alimentos-balanceados AOAC. (1989). Association of Official Analytical Chemists. Official Methods of Analysis. Microbiological methods. Method 966.23-1989: Microbiological methods. Washington DC. AOAC International AOAC. (2005). Association of Official Analytical Chemists . Official Methods of Analysis. Method 2001.11-2005: Protein (crude) in animal feed,Forage (plant tissue),Grain,and oilseeds. Block digestion method using copper catalyst and steam distillation into boric acid. Gaithersburg. MD . AOAC International Balehegn, M., Duncan, A., Tolera, A., Ayantunde, A. A., Issa, S., Karimou, M., . . . Adesogan, A. T. (2020). Improving adoption of technologies and interventions for increasing supply of quality livestock feed in low- and middle-income countries. Global Food Security, 26, 100372. https://doi.org/10.1016/j.gfs.2020.100372 Barrientos, L., Vargas-Radillo, J. J., Segura-Nieto, M., Manríquez-González, R., & López-Dellamary Toral, F. A. (2015). Nutritional evaluation of mature seeds of Enterolobium cyclocarpum (parota) from diverse ecological zones in western Mexico. Bosque (Valdivia) , 36(1), 95–104. https://doi.org/10.4067/S0717-92002015000100010 Beauchemin, K. A., Ungerfeld, E. M., Abdalla, A. L., Alvarez, C., Arndt, C., Becquet, P., . . Kebreab, E. (2022). Invited review: Current enteric methane mitigation options. Journal of Dairy Science, 105(12), 9297–9326. https://doi.org/10.3168/jds.2022-22091 Berça, A. S., Tedeschi, L. O., Da silva, C. A., & Andrade, A. (2023). Meta-analysis of the relationship between dietary condensed tannins and methane emissions by cattle. Animal Feed Science and Technology, 298(1), 115564 https://doi.org/https://doi.org/10.1016/j.anifeedsci.2022.115564 Bhatta, R., Uyeno, Y., Tajima, K., Takenaka, A., Yabumoto, Y., Nonaka, I., . . . Kurihara, M. (2009). Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. Journal of Dairy Science, 92(11), 5512–5522. https://doi.org/10.3168/jds.2008-1441 Boval, M., & Dixon, R. M. (2012). The importance of grasslands for animal production and other functions: A review on management and methodological progress in the tropics. Animal, 6(5), 748–762. https://doi.org/10.1017/S1751731112000304 Calle Díaz, Z., & Murgueitio, E. (2020). Árboles nativos para predios ganaderos: especies focales del Proyecto Ganadería Colombiana Sostenible. Árboles nativos para predios ganaderos: especies focales del Proyecto Ganadería Colombiana Sostenible. [Online]: https://bit.ly/3W5cF5C Cardoso-Gutierrez, E., Aranda-Aguirre, E., Robles-Jimenez, L. E., Castelán-Ortega, O. A., Chay-Canul, A. J., Foggi, G., . . . González-Ronquillo, M. (2021). Effect of tannins from tropical plants on methane production from ruminants: A systematic review. Veterinary and Animal Science, 14(1), 100214. https://doi.org/10.1016/j.vas.2021.100214 Carrillo, M. L. C., & Munguía, A. (2007). Vida útil de los alimentos. Revista Iberoamericana de Las Ciencias Biológicas y Agropecuarias, 2(3), e2007-9990. https://doi.org/10.23913/ciba.v2i3.20 Castro-Montoya, J., De Campeneere, S., Van Ranst, G., & Fievez, V. (2012). Interactions between methane mitigation additives and basal substrates on in vitro methane and VFA production. Animal Feed Science and Technology, 176, 47–60. https://doi.org/10.1016/j.anifeedsci.2012.07.007 Chará, J., Rivera, J., Barahona, R., Murgueitio R, E., Deblitz, C., Reyes, E., . . . Zuluaga, A. (2017). Intensive silvopastoral systems: economics and contribution to climate change mitigation and public policies. Integrating landscapes: Agroforestry for biodiversity conservation and food sovereignty. Advances in Agroforestry, 12, 395-416. Springer, Cham. https://doi.org/10.1007/978-3-319-69371-2_16 Cook, B. G., Pengelly, B. C., Schultze-Kraft, R., Taylor, M., Burkart, S., Cardoso, J., . . . Peters, M. (2020). Tropical Forages: an interactive selection tool. 2nd and revised Edn. [Online]: http://www.tropicalforages.info/ Corporación autónoma regional del Valle del Cauca, y Instituto Geográfico Agustín Codazzi. 2021. Geoportal CVC. [Online]: https://geo.cvc.gov.co/visores/suelos/16/ Dayioğlu, M. A., & Türker, U. (2021). Digital transformation for sustainable future-agriculture 4.0: A review. Journal of Agricultural Sciences, 27(4), 373–399. https://doi.org/10.15832/ankutbd.986431 Dickinson, R. A., Morton, J. M., Beggs, D. S., Anderson, G. A., Pyman, M. F., . . . Blackwood, C. B. (2013). An automated walk-over weighing system as a tool for measuring liveweight change in lactating dairy cows. Journal of Dairy Science, 96(7), 4477–4486. https://doi.org/10.3168/jds.2012-6522 Dogan Comert, E., Burçe Ataç., & Mogol, V. G. (2020). Current Research in Food Science Relationship between color and antioxidant capacity of fruits and vegetables . Current Research in Food Science, 2, 1–10. https://doi.org/10.1016/j.crfs.2019.11.001 Durango, S. G. D., Rosales, R. B., Vergara, D. M. B., Chirinda, N., & Arango, J. (2021). Feeding strategies to increase nitrogen retention and improve rumen fermentation and rumen microbial population in beef steers fed with tropical forages. Sustainability, 13(18), 10312. https://doi.org/10.3390/su131810312 Egan, A. R. (2017). Animal Nutrition and Feed Science. Engineering, 3(5), 586–587. https://doi.org/10.1016/J.ENG.2017.05.025 Enciso, K., Sotelo, M., Peters, M., & Burkart, S. (2019). The inclusion of Leucaena diversifolia in a Colombian beef cattle production system: An economic perspective. Tropical Grasslands, 7(4), 359–369. https://doi.org/10.17138/TGFT(7)359-369 England, P. H. (2017). Determination of water activity in foods. National Infection Service Food, Water and Environmental Microbiology Standard Method Ed. 2 London , UK : PHE publications EPA. (2019). Global Non-CO2 Greenhouse Gas Emission Projections & Mitigation: 2015 -2050. U.S. Environmental Protection Agency, EPA 430-R-19-010. [Online]: https://www.epa.gov/global-mitigation-non-co2-greenhouse-gases/global-non-co2-greenhouse-gas-emission-projections EPA (2023) Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2021. U.S. Environmental Protection Agency, EPA 430-R-23-002. [Online]: https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-andsinks-1990-2021. Espitia, L. M. (2016). Evaluación de la calidad composicional de la leche influenciada por el periodo de transición en vacas doble porpósito en el tropico bajo colombiano. [ Tesis , Universidad de la Salle]. [Online]: https://ciencia.lasalle.edu.co/cgi/viewcontent.cgi?article=1280&context=medicina_veterinaria Evangelista, C., Basiricò, L., & Bernabucci, U. (2021). An overview on the use of near infrared spectroscopy (nirs) on farms for the management of dairy cows. Agriculture, 11(4), 296. https://doi.org/10.3390/agriculture11040296 FAO .2009. Global agriculture towards 2050 The challenge. Roma, Italia. [Online]:https://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdf FAO. 2023. Methane emissions in livestock and rice systems. Roma, Italia. [Online]: https://doi.org/10.4060/cc7607en Fernández, A.., Izquierdo, P., Valero, K., Allara,M., Pinero, M., & Gsrcía, (2006). A Efecto del Tiempo y Temperatura de Almacenamiento Sobre la Calidad Microbiológica de Carne de Hamburguesa. Revista Cientifica, 16(4), 315–324. [Online]: http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0798-22592006000400013&lng=es&nrm=iso France, J., Dhanoa, M. S., Theodorou, M. K., Lister, S. J., Davies, D. R., & Isac, D. (1993). A model to interpret gas accumulation profiles associated with in vitro degradation of ruminant feeds. Journal of Theoretical Biology, 163(1), 99–111. https://doi.org/10.1006/jtbi.1993.1109 Furtado, D. A., Castro, T. B. D. S., Neto, J. P. L., Constantino, R. A., Cunha, M. G. G., & Nascimento, J. W. B. (2018). P Physical-mechanical properties of multinutrient blocks with different binders for goats and sheep intake. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(8), 558–563. https://doi.org/10.1590/1807-1929/agriambi.v22n8p558-563 Gaviria-Uribe, X., Bolivar, D. M., Rosenstock, T. S., Molina-Botero, I. C., Chirinda, N., Barahona, R.,& Arango, J. (2020). Nutritional Quality, Voluntary Intake and Enteric Methane Emissions of Diets Based on Novel Cayman Grass and Its Associations With Two Leucaena Shrub Legumes. Frontiers in Veterinary Science, 7, 1–12. https://doi.org/10.3389/fvets.2020.579189 Godoy, D., Gonzales, J., Roque, R., Fernández, M., Gamarra, S., Hidalgo, V., & Gómez, C. (2021). Use of unconventional agro-industrial by-products for supplementation of grazing dairy cattle in the Peruvian Amazon region. Tropical Animal Health and Production, 53(2), 294. https://doi.org/10.1007/s11250-021-02718-y González Garcia, U. A., Corona Gochi, L., Flores, J. G. E., Amesquita, D. K. A., & González Ronquillo, M. (2017). Digestión Ruminal e Intestinal del Maíz (Zea Mays) y Sorgo (Sorghum Bicolor L. Moench) utilizando diferentes técnicas de digestibilidad (In Vivo, In Vitro e In Sacco). Tropical and Subtropical Agroecosystems, 20(2), 183–194. [Online]: https://www.redalyc.org/articulo.oa?id=93952506003 González, L. A., Kyriazakis, I., & Tedeschi, L. O. (2018). Review: Precision nutrition of ruminants: Approaches, challenges and potential gains. Animal, 12(s2), s246–S261. https://doi.org/10.1017/S1751731118002288 Hernández, C., Carias, L., Gómez, N.M., Panameno, J.F., Guillén, E.E., & Barrientos, L,V. (2017). Evaluación de bloques multinutricionales en la alimentación de ganado de doble propósito en ordeno. Agrociencia, 1, 32–43. [Online]: https://api.semanticscholar.org/CorpusID:109862112 Hidalgo, V., & Valerio C., H. (2020). Digestibilidad y energía digestible y metabolizable del gluten de maíz, hominy feed y subproducto de trigo en cuyes (Cavia porcellus). Revista de Investigaciones Veterinarias del Perú, 31(2), e17816. https://doi.org/10.15381/rivep.v31i2.17816 Holguín, V. A., Cuchillo-Hilario, M., Mazabel, J., Quintero, S., & Mora-Delgado, J. (2020). Effect of a Pennisetum purpureum and Tithonia diversifolia silage mixture on in vitro ruminal fermentation and methane emission in a RUSITEC system. Revista Mexicana De Ciencias Pecuarias, 11(1), 19–37. https://doi.org/10.22319/RMCP.V11I1.4740 ICONTEC. (2000). Instituto Colombiano de Normas Técnicas y Certificación. Microbiologia de alimentos y alimentos para animales. Metodo horizontal para el recuento de clostridium sulfito reductores e identificacion de clostridium perfringens - tecnicas de recuento de colonias. NTC 4834. Bogotá DC, Colombia. pp 20 ICONTEC. (2022). Instituto Colombiano de Normas Técnicas y Certificación. Suplementos alimenticios y alimentos complementarios para rumiantes productores de leche.. NTC 2030. Bogotá DC, Colombia. pp 12 Intergovernmental Panel on Climate Change (IPCC) 2023: Sections In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 35-115, doi: 10.59327/IPCC/AR6-9789291691647 International Standardization Organization. (1998). ISO 9831:1998: Animal Feeding Stuffs Animal Products, and Faeces or Urine - Determination of Gross Calorific Value - Bomb Calorimeter Method. [Online]: https://www.iso.org/standard/17702.html International Standard Organization. (2017). ISO 18787:2017. Foodstuffs - Determination of water activity. [Online]: https://www.iso.org/obp/ui/en/#iso:std:iso:18787:ed-1:v1:en International Standard Organization. (2017). ISO 6579-1:2017. Microbiology of the food chain. Horizontal method for the detection, enumeration and serotyping of Salmonella. Part 1: Detection of Salmonella spp. [Online]: https://www.iso.org/standard/56712.html International Standard Organization. (2022). ISO 5984:2022. Animal feeding stuffs. Determination of crude ash. [Online]: https://www.iso.org/standard/77807.html Jaurena, G., Cantet, J. M., Arroquy, J. I., Palladino, R. A., Wawrzkiewicz, M., & Colombatto, D. (2015). Prediction of the Ym factor for livestock from on-farm accessible data. Livestock Science, 177(1871-1413), 52–62. https://doi.org/10.1016/j.livsci.2015.04.009 Jin, Q., & Kirk, M. F. (2018). pH as a Primary Control in Environmental Microbiology : 1 . Thermodynamic Perspective. Froniers in Environmental Sciense, 6, 2296- 665x.. https://doi.org/10.3389/fenvs.2018.00021 Ku-Vera, J. C., Ayala-Burgos, A. J., Solorio-Sánchez, F. J., Briceño-Poot, E. G., Ruiz-González, A., Piñeiro-Vázquez, A. T., . . . Ramírez-Avilés, L. (2013). Nutritional Strategies of Animal Feed Additives . New York, E.E.UU. Nova Science Publishers. [Online]:https://www.researchgate.net/publication/267626768_Tropical_tree_foliage_and_shrubs_as_feed_additives_in_ruminant_rations#fullTextFileContent Ku-Vera, J. C., Jiménez-Ocampo, R., Valencia-Salazar, S. S., Montoya-Flores, M. D., Molina-Botero, I. C., Arango, J., . . . Solorio-Sánchez, F. J. (2020). Role of Secondary Plant Metabolites on Enteric Methane Mitigation in Ruminants. Frontiers in Veterinary Science, 7. https://doi.org/10.3389/fvets.2020.00584 Lavrenčič, A., Stefanon, B., & Susmel, P. (1997). An evaluation of the Gompertz model in degradability studies of forage chemical components. Animal Science, 64(3), 423–431. https://doi.org/10.1017/S1357729800016027 Lee, M. A. (2018). A global comparison of the nutritive values of forage plants grown in contrasting environments. Journal of Plant Research, 131(4), 641–654. https://doi.org/10.1007/s10265-018-1024-y Longo, C., Hummel, J., Liebich, J., Bueno, I. C. S., Burauel, P., Ambrosano, E. J., . . . Südekum, K. H. (2012). Chemical characterization and in vitro biological activity of four tropical legumes, Styzolobium aterrimum L., Styzolobium deeringianum, Leucaena leucocephala, and Mimosa caesalpiniaefolia, as compared with a tropical grass, Cynodon spp. for the use in rumiant diets. Czech Journal of Animal Science, 57(6), 255–264. https://doi.org/10.17221/5960-cjas Macdougall, D. B. (2010). Colour measurement of food: principles and practice. Advances and industrial application, 13, 312–342. https://doi.org/10.1533/9780857090195.2.312 Makkar, P. S. H., Sánchez, M., & Speedy, W. A. (2007). Feed supplementation blocks. Urea-molasses multi-nutrient blocks: simple and effective feed supplement technology for ruminant agriculture. Roma, Italia: . FAO Publisher. Malik, A., Gunawan, A., Erlina, S., Widaningsih, N., Elvania, R., Zuraidah,A., . . . , Suyanto, M. (2020). Effect Addition of Urea Molasses Multi-nutrient Moringa Block (UM3B) on the Ovarian Follicular Dynamics in Crossbred Cows. Adances in Animal Veterinary Sciences, 8(5), 458–462. http://doi.org/10.17582/journal.aavs/2020/8.5.458.462 Maskan, M. (2001). Kinetics of colour change of kiwifruits during hot air and microwave drying. Journal of Food Engineering, 48(2), 169–175. https://doi.org/10.1016/S0260-8774(00)00154-0 McGrath, J., Duval, S. M., Tamassia, L. F. M., Kindermann, M., Stemmler, R. T., de Gouvea, V. N., . . . Celi, P. (2018). Nutritional strategies in ruminants: A lifetime approach. Research in Veterinary Science, 116, 28–39. https://doi.org/10.1016/j.rvsc.2017.09.011 Mejías, R., Díaz, J. A., Hechemendía, M., Jordán, H., & Rodríguez, R. G. J. (2007). Evaluación de propiedades físicas de bloques multinutricionales que incluyen zeolita y harina de caña: compactación y consumo en carneros estabulados. Revista Cubana de Ciencia Agrícola, 41(1), 35–38. [Online]:https://www.redalyc.org/pdf/1930/193017666006.pdf Min, B. R., Solaiman, S., Waldrip, H. M., Parker, D., Todd, R. W., & Brauer, D. (2020). Dietary mitigation of enteric methane emissions from ruminants: A review of plant tannin mitigation options. Animal Nutrition, 6(3), 231–246. https://doi.org/10.1016/j.aninu.2020.05.002 Mladenović, D., Djukić-Vuković, A., Stanković, M., Milašinović-Šeremešić, M., Radosavljević, M., Pejin, J., & Mojović, L. (2019). Bioprocessing of agro-industrial residues into lactic acid and probiotic enriched livestock feed. Journal of the Science of Food and Agriculture, 99(12), 5293–5302. https://doi.org/10.1002/jsfa.9759 Molina, I. C., Arroyave , J., Valencia. S., Barahona , R., Olivera-Castillo, L., Barahona-Rosales, R., . . . Ku-Vera,J. (2019). Effects of tannins and saponins contained in foliage of Gliricidia sepium and pods of Enterolobium cyclocarpum on fermentation, methane emissions and rumen microbial population in crossbred heifers. Animal Feed Science and Technolog, 251(1), 1–11. https://doi.org/10.1016/j.anifeedsci.2019.01.011 Molina-Botero, I. C., Mazabel, J., Arceo-Castillo, J., Urrea-Benítez, J. L., Olivera-Castillo, L., Barahona-Rosales, R., . . . Arango, J. (2020). Effect of the addition of Enterolobium cyclocarpum pods and Gliricidia sepium forage to Brachiaria brizantha on dry matter degradation, volatile fatty acid concentration, and in vitro methane production. Tropical Animal Health and Production, 52(6), 2787–2798. https://doi.org/10.1007/s11250-020-02324-4 Morey, L., Bach, A., Sabrià, D., Riau, V., Fernández, B., & Terré, M. (2023). Effectiveness of precision feeding in reducing N excretion in dairy cattle. Animal Feed Science and Technology, 304, 115722. https://doi.org/10.1016/j.anifeedsci.2023.115722 Mota, M., Rodríguez, R., Solanas, E., & Fondevila, M. (2005). Evaluation of four tropical browse legumes as nitrogen sources: Comparison of in vitro gas production with other methods to determine N degradability. Animal Feed Science and Technology, 124(1) , 341-350. https://doi.org/10.1016/j.anifeedsci.2005.04.018. Navarro, C., de Evan, T., Jiménez, C., & Carro, M. D. (2022). Potential of Agroindustrial By-Products to Modulate Ruminal Fermentation and Reduce Methane Production: In Vitro Studies. Animals, 12(24), 3540. https://doi.org/10.3390/ani12243540 Ordóñez-Santos, L. E., Velasco-Arango, V.A., & Hleap-Zapata, J. I. (2022). Ultrasound-assisted extraction of total carotenoids in papaya epicarp and its application in Frankfurt sausage. Ciência e Agrotecnologia, 46, e006722. https://doi.org/10.1590/1413-7054202246006722 Pathare, P. B., Opara, U. L., & Al-said, F. A. (2012). Colour Measurement and Analysis in Fresh and Processed Foods : A Review. Food and Bioprocess Technology, 6(1), 36-60. https://doi.org/10.1007/s11947-012-0867-9 Peters, M., Franco, L., Schmidt, A., & Hincapié, B. (2011). Especies forrajeras multipropósito. Opciones para productores del trópico americano. Bundesministerium für …. Cali, Colombia : CIAT Publications. Pomar, C., & Remus, A. (2023). Review: Fundamentals, limitations and pitfalls on the development and application of precision nutrition techniques for precision livestock farming. Animal, 17, 100763. https://doi.org/10.1016/j.animal.2023.100763 Pujaningsih, R., Widiyanto., & Tampoebolon, B. (2019). Effect of Organic Basic Multrinutrient Block Supplementation on Total Mixed Ratio of Kacang Goat in Feedlot System. IOP Conference Series: Earth and Environmental Science, 372(1), 012062. https://doi.org/10.1088/1755-1315/372/1/012062 Quintero-Anzueta, S., Molina-Botero, I. C., Ramirez-Navas, J. S., Rao, I., Chirinda, N., Barahona-Rosales, R., . . . Arango, J. (2021). Nutritional Evaluation of Tropical Forage Grass Alone and Grass-Legume Diets to Reduce in vitro Methane Production. Frontiers in Sustainable Food Systems, 5. 2571-581x. . https://doi.org/10.3389/fsufs.2021.663003 Quintino, A. da C., de Abreu, J. G., de Almeida, R. G., Macedo, M. C. M., Cabral, L. da S., & Galati, R. L. (2013). P roduction and nutrition rates of piatã grass and hybrid sorghum at different cutting ages. Acta Scientiarum Animal Sciences, 35(3), 243–249. https://doi.org/10.4025/actascianimsci.v35i3.18016 Rahmawati, N., Lisnanti, E., Rudiono, D., Mukmin, A., Muladno, M., & Atabany, A. (2022). Comparative study several feed formulation based on agro-industrial by-product on production performance and in vivo digestibility of beef cattle. IOP Conference Series: Earth and Environmental Science, 977(1). https://doi.org/10.1088/1755-1315/977/1/012125 Rivera-Herrera, J. E., Molina-Botero, I., Chará-Orozco, J., Murgueitio-Restrepo, E., & Barahona-Rosales, R. (2017). Intensive silvopastoral systems with Leucaena leucocephala (Lam.) de Wit: productive alternative in the tropic in view of the climate change . Pastos y Forrajes, 40(3), 171–183. [Online]: https://www.redalyc.org/journal/2691/269158175001/html/ Rivero, T., Carrascal, S. E., & Gómez Ayala, W. (2013). Elaboración de bloques multinutricionales (BMN) para la alimentación de rumiantes de la Región Caribe. Bogotá, Colombia. CORPOICA. [Online]: https://repository.agrosavia.co/bitstream/handle/20.500.12324/1905/64209_64874.pdf?sequence=1&isAllowed=y Rodríguez C. E.,& Pulido, N. J. (2018). Determinación del valor nutricional de bloques nutricionales con diferentes porcentajes de Sambucus peruviana y Zea mays. Ciencia y Agricultura, 15 (1), 93–100. https://doi.org/10.19053/01228420.v15.n1.2018.7760 Romero Huelva, M. (2012). Utilization of multinutrient blocks including tomato and cucumber waste fruits as an alternative to the concentrate in goat diets . [Tesis doctoral, Universidad de Córdoba, Campus Rabanales]. [Online]: https://helvia.uco.es/bitstream/handle/10396/7673/595.pdf?sequence=1&isAllowed=y Salami, S. A., Luciano, G., O’Grady, M. N., Biondi, L., Newbold, C. J., Kerry, J. P., & Priolo, A. (2019). Sustainability of feeding plant by-products: A review of the implications for ruminant meat production. Animal Feed Science and Technology, 251, 37–55. https://doi.org/10.1016/j.anifeedsci.2019.02.006 Stewart, L. (2017). Mineral supplements for beef cattle. Mineral Supplements for Beef Cattle- Bulletin 895. UGA Cooperative Extension. [Online]:https://secure.caes.uga.edu/extension/publications/files/pdf/B 895_4.PDF Stifkens, A., Matthews, E. M., McSweeney, C. S., & Charmley, E. (2022). Increasing the proportion of Leucaena leucocephala in hay-fed beef steers reduces methane yield. Animal Production Science, 62(7), 622-632. https://doi.org/10.1071/AN21576 Suarez, H., Borrás-Sandoval, L., & Rodríguez-Molano, C. (2021). Characterization Of Multi-Nutritional Bovine Blocks Enriched With A Preparation Based On Lactic Acid Bacteria. Revista de Investigación Agraria y Ambiental, 12(2), 115–126. https://doi.org/10.22490/214 56453.3914 Suharyono, Sutanto, H., Purwanti, Y., Martanti, Agus, A., & Utomo, R. (2014). The effect of urea molasses multi-nutrient and medicated block for beef cattle, beef and dairy cow. Atom Indonesia, 40(2), 77–87. https://doi.org/10.17146/aij.2014.274 Sun, X.; Pacheco, D. . T., G.; Janssen, P.H., & Swainson, N. M. (2022). Evaluation of Feed Near-Infrared Reflectance Spectra as Predictors of Methane Emissions from Ruminants. Animals, 12(18), 2478. https://doi.org/https:// doi.org/10.3390/ani12182478 Surender, S., Pathak, A. K., Khan, M., & Sharma, R. K. (2015). Multi-Nutrient Blocks with and without Tanniferous Leaf Meal Mixture: Formulation and Preparation under Sub-Tropical Environment of Jammu. Journal of Animal Research, 5(1), 7-14. https://doi.org/10.5958/2277-940X.2015.00002.9 Syamaladevi, R. M., Tang, J., Villa-rojas, R., Sablani, S., Carter, B., & Campbell, G. (2016). Influence of Water Activity on Thermal Resistance of Microorganisms in Low-Moisture Foods : A Review. Comprehensive Reviews In Food Science And Food Safety, 15(3), 353–370. https://doi.org/10.1111/1541-4337.12190 Szczesniak, A. S. (2002). Texture is a sensory property. Food Quality and Preference, 13 (4) , 215–225. https://doi.org/10.1016/S0950-3293(01)00039-8 Takawale, P. S., Jade, S. S., & Ghorpade, S. D. (2016). Leguminous blocks: Nutritional values and economics. Agricultural Science Digest, 36(2), 149-151. https://doi.org/ 10.18805/asd.v0iof.9623 Tendonkeng, F., Fogang Zogang, B., Sawa, C., Boukila, B., & Pamo, E. T. (2014). Inclusion of Tithonia diversifolia in multinutrient blocks for WestAfrican dwarf goats fed Brachiaria straw.. Tropical Animal Health and Production, 46(6), 981–986. https://doi.org/10.1007/s11250-014-0597-2 Theodorou, M. K., Williams, B. A., Dhanoa, M. S., McAllan, A. B., & France, J. (1994). A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology, 48, 185–197. https://doi.org/10.1016/0377-8401(94)90171-6 Tilley, J. M. A., & Terry, R. A. (1963). a Two‐Stage Technique for the in Vitro Digestion of Forage Crops. Grass and Forage Science, 18(2), 104–111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x Tobía, C., & Vargas González, E. (1999). Fabricación artesanaly semi-artesanal de bloques nutricionales. Nutrición Animal Tropical, 5(1), 51–65. [Online]: https://www.academia.edu/17482942/Fabricacion_artesanal_y_semi_industrial_de_bloques_nutricionales Torres, J., González, M, K., & Acevedo, , D. (2015). Análisis del Perfil de Textura en Frutas, Productos Cárnicos y Quesos. Review. ReCiTeIA, 14(2), 63–75. [Online]:https://www.researchgate.net/publication/283352303_Analisis_del_Perfil_de_Textura_en_Frutas_Productos_Carnicos_y_Quesos Tylutki, T. P., Fox, D. G., Durbal, V. M., Tedeschi, L. O., Russell, J. B., Van Amburgh, M. E., . . . Pell, A. N. (2008). Cornell Net Carbohydrate and Protein System: A model for precision feeding of dairy cattle. Animal Feed Science and Technology, 143, 174–202. https://doi.org/10.1016/j.anifeedsci.2007.05.010 Uyeh, D. D., Pamulapati, T., Mallipeddi, R., Park, T., Asem-Hiablie, S., Woo, S., . . . Ha, Y. (2019). Precision animal feed formulation: An evolutionary multi-objective approach. Animal Feed Science and Technology, 256(0377-8401) , 114211. https://doi.org/10.1016/j.anifeedsci.2019.114211 Van Amburgh, M. E., Collao-Saenz, E. A., Higgs, R. J., Ross, D. A., Recktenwald, E. B., Raffrenato, E., . . . Foskolos, A. (2015). The Cornell Net Carbohydrate and Protein System: Updates to the model and evaluation of version 6.5. Journal of Dairy Science, 98(9), 6361–6380. https://doi.org/10.3168/jds.2015-9378 Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science, 74(10), 3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2 Vazquez, E., Teutscherova, N., Lojka, B., Arango, J., & Pulleman, M. (2020). Pasture diversification affects soil macrofauna and soil biophysical properties in tropical (silvo)pastoral systems. Agriculture, Ecosystems and Environment, 302(1), 107083. https://doi.org/10.1016/j.agee.2020.107083 Zhao, X., Degen, A., Hao, L., & Liu, S. (2022). Ruminant Lick Blocks, Particularly in China: A Review. Sustainability , 14(13), 7620. https://doi.org/10.3390/su14137620 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xvi, 68 páginas + anexos |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Palmira - Ingeniería y Administración - Maestría en Ingeniería Agroindustrial |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería y Administración |
dc.publisher.place.spa.fl_str_mv |
Palmira, Valle del Cauca, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Palmira |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86912/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/86912/2/29677033.20224.pdf https://repositorio.unal.edu.co/bitstream/unal/86912/3/29677033.20224.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 4ee8cf153d7963b87fbd54ec96d683eb 827eee27f66f5a712446717d5af2dd80 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089989936381952 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Hleap Zapata, José Igor6f9f7030db27f1db044e0f300c6d8717Arango Mejía, Jacobo5d3d7ae595530b1b9ec0e8803fdb60bcMazabel Parra, Lady Johannae153b27f9047e0df50001b2489d23ecb0000-0002-7494-46082024-10-08T15:21:43Z2024-10-08T15:21:43Z2024-06-21https://repositorio.unal.edu.co/handle/unal/86912Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, fotografías, tablasLa agroindustria alimentaria produce bloques nutricionales para el sector ganadero bovino, como una opción para mejorar la calidad de la dieta animal, su salud y rendimientos productivos. Sin embargo, en concordancia con la demanda de reducciones de emisiones de gases efecto invernadero (GEI) por parte de la ganadería, principalmente de gas metano (CH4), se hace necesario que los productos, brinden sus beneficios nutritivos en proporciones equilibradas para una alimentación de precisión, y que también aporten en la mitigación del cambio climático. Este estudio, fue llevado a cabo en el campus del Centro Internacional de agricultura Tropical (CIAT), Palmira, Valle del Cauca. Su objetivo fue la evaluación de bloques nutricionales para bovinos en etapa de levante. Para la elaboración de los bloques se usaron: frutos de Enterolobium cyclocarpum (EC), hojas de Tithonia diversifolia (TD), vainas (LP) y hojas de Leucaena leucophela CIAT20561 (LL). Un Bloque comercial (BC) fue empleado para control. Durante el estudio, se llevaron a cabo mediciones durante un periodo de 60 días, realizando tomas de datos cada 15 días. Los parámetros evaluados fueron: composición química, análisis textural, análisis de color, pH, actividad de agua y presencia de microorganismos. Adicionalmente, una prueba in vitro de producción de gas, simulando condiciones ruminales, permitió evaluar la concentración de gas metano producido cuando un bloque nutricional es incubado con Urochloa brizantha cultivar Toledo, como dieta basal. Los resultados obtenidos revelan productos finales (BLL, BLP y BMix) con altos contenidos nutricionales para los bovinos, beneficios significativos (p≤0.05) en la producción de CH4 entérico y una alternativa de uso para aprovechar frutos de leguminosas con potencial de mitigación. (Texto tomado de la fuente).Food agro industrial produces nutritional blocks for the bovine livestock sector, as an option to improve the quality of the animal diet, its health and productive performance. However, in accordance with the demand for reductions in greenhouse gas (GHG) emissions by livestock farming, mainly methane gas (CH4), it is necessary for products to provide their nutritional benefits in balanced proportions for a healthy diet of precision, and that also contribute to the mitigation of climate change. This study was carried out at campus of International Center for Tropical Agriculture (CIAT), Palmira, Valle del Cauca. Its Objective was evaluation of nutritional blocks for cattle in the rearing stage. To prepare the blocks, the following were used: fruits of Enterolobium cyclocarpum (EC), leaves of Tithonia diversifolia (TD), pods (LP) and leaves of Leucaena leucophela CIAT20561 (LL). A Commercial Block (BC) was used like control. During the study, measurements were carried out over a period of 60 days, taking data every 15 days. The parameters evaluated were chemical composition, textural analysis, color analysis, pH, water activity and presence of microorganisms. Additionally, in vitro gas production test run, simulating ruminal conditions. Evaluated methane concentration produced when a nutritional block is incubated with Urochloa brizantha cultivar Toledo, as basal diet. The results obtained showed final products (BLL, BLP and BMix) with high nutritional contents for cattle, significant benefits (p≤0.05) in the production of enteric CH4 and an alternative use like advantage of legume fruits with mitigation potential.MaestríaMagíster en Ingeniería AgroindustrialEste estudio, fue llevado a cabo en el campus del Centro Internacional de agricultura Tropical (CIAT), Palmira, Valle del Cauca Su objetivo fue la evaluación de bloques nutricionales para bovinos en etapa de levante. Para la elaboración de los bloques se usaron: frutos de Enterolobium cyclocarpum (EC), hojas de Tithonia diversifolia (TD), vainas (LP) y hojas de Leucaena leucophela CIAT20561 (LL). Un Bloque comercial (BC) fue empleado para control. Durante el estudio, se llevaron a cabo mediciones durante un periodo de 60 días, realizando tomas de datos cada 15 días. Los parámetros evaluados fueron: composición química, análisis textural, análisis de color, pH, actividad de agua y presencia de microorganismos. Adicionalmente, una prueba in vitro de producción de gas, simulando condiciones ruminales, permitió evaluar la concentración de gas metano producido cuando un bloque nutricional es incubado con Urochloa brizantha cultivar Toledo, como dieta basal.Agroindustria de Productos AlimentariosIngeniería.Sede Palmiraxvi, 68 páginas + anexosapplication/pdfspaUniversidad Nacional de ColombiaPalmira - Ingeniería y Administración - Maestría en Ingeniería AgroindustrialFacultad de Ingeniería y AdministraciónPalmira, Valle del Cauca, ColombiaUniversidad Nacional de Colombia - Sede Palmira630 - Agricultura y tecnologías relacionadasIndustria alimentariaFood industryBloque de piensoFeed blocksSuplemento de piensosFeed supplementsPiensos para el ganadoEmisiones de gases de efecto invernaderoGreenhouse gas emissionsEmisiones de metanoMethane emissionMitigación del cambio climáticoClimate change mitigationEnterolobium cyclocarpumTithonia diversifoliaLeucaena leucocephalaAlimento para ganadoFermentaciónDegradabilidadEmisiones de gasLivestock feedFermentationDegradabilityLivestockGas emissionsEvaluación agroindustrial de bloques nutricionales para alimentación de precisión bovina con potencial de mitigación de gas metanoAgro-industrial evaluation of nutrient blocks for precision cattle feeding with methane gas mitigation potentialTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAboagye, I. A., Oba, M., Castillo, A. R., Koenig, K. M., Iwaasa, A. D., & Beauchemin, K. A. (2018). Effects of hydrolyzable tannin with or without condensed tannin on methane emissions, nitrogen use and performance of beef cattle fed a high-forage diet. Journal of Animal Science, 96(12), 5276-5286. https://doi.org/10.1093/jas/sky352Adejoro, F. A., Hassen, A., Akanmu, A. M., & Morgavi, D. P. (2020). Replacing urea with nitrate as a non-protein nitrogen source increases lambs’ growth and reduces methane production, whereas acacia tannin has no effect. Animal Feed Science and Technology, 259, 114360. https://doi.org/10.1016/j.anifeedsci.2019.114360Adi, D., Oduro, I. N., & Tortoe, C. (2019). Physicochemical changes in plantain during normal storage ripening. Scientific African, 6, e00164. https://doi.org/10.1016/j.sciaf.2019.e00164Arias, L. C., Soriano, R., Losada, H., Rivera., & Cortés, J. (2005). Multi nutrient blocks with fresh fruit of Pitaya (Stenocereus griseus) replacing sugar cane molasses. Livestock Research for Rural Development.,17(4), 37. [Online}: http://www.lrrd.org/lrrd17/4/aria17037.htmArreaza, L. C. (2004). Utilizacion Del Sistema CNCPS Como Herramienta De Soporte Para La Investigación En Forrajes Tropicales. Primera Reunión de la Red Temática de Recuersos Forrajeros. Coorpoica. Bogota, Colombia. [Online]: http://tiesmexico.cals.cornell.edu/courses/shortcourse2/minisite/herramienta.htmANDI. (2022). Balance 2022 Y Perspectivas 2023. Asociación Nacional de Industriales - ANDI. 1–124. [Online]: https://www.andi.com.co/Home/Camara/17-industria-de-alimentos-balanceadosAOAC. (1989). Association of Official Analytical Chemists. Official Methods of Analysis. Microbiological methods. Method 966.23-1989: Microbiological methods. Washington DC. AOAC InternationalAOAC. (2005). Association of Official Analytical Chemists . Official Methods of Analysis. Method 2001.11-2005: Protein (crude) in animal feed,Forage (plant tissue),Grain,and oilseeds. Block digestion method using copper catalyst and steam distillation into boric acid. Gaithersburg. MD . AOAC InternationalBalehegn, M., Duncan, A., Tolera, A., Ayantunde, A. A., Issa, S., Karimou, M., . . . Adesogan, A. T. (2020). Improving adoption of technologies and interventions for increasing supply of quality livestock feed in low- and middle-income countries. Global Food Security, 26, 100372. https://doi.org/10.1016/j.gfs.2020.100372Barrientos, L., Vargas-Radillo, J. J., Segura-Nieto, M., Manríquez-González, R., & López-Dellamary Toral, F. A. (2015). Nutritional evaluation of mature seeds of Enterolobium cyclocarpum (parota) from diverse ecological zones in western Mexico. Bosque (Valdivia) , 36(1), 95–104. https://doi.org/10.4067/S0717-92002015000100010Beauchemin, K. A., Ungerfeld, E. M., Abdalla, A. L., Alvarez, C., Arndt, C., Becquet, P., . . Kebreab, E. (2022). Invited review: Current enteric methane mitigation options. Journal of Dairy Science, 105(12), 9297–9326. https://doi.org/10.3168/jds.2022-22091Berça, A. S., Tedeschi, L. O., Da silva, C. A., & Andrade, A. (2023). Meta-analysis of the relationship between dietary condensed tannins and methane emissions by cattle. Animal Feed Science and Technology, 298(1), 115564 https://doi.org/https://doi.org/10.1016/j.anifeedsci.2022.115564Bhatta, R., Uyeno, Y., Tajima, K., Takenaka, A., Yabumoto, Y., Nonaka, I., . . . Kurihara, M. (2009). Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. Journal of Dairy Science, 92(11), 5512–5522. https://doi.org/10.3168/jds.2008-1441Boval, M., & Dixon, R. M. (2012). The importance of grasslands for animal production and other functions: A review on management and methodological progress in the tropics. Animal, 6(5), 748–762. https://doi.org/10.1017/S1751731112000304Calle Díaz, Z., & Murgueitio, E. (2020). Árboles nativos para predios ganaderos: especies focales del Proyecto Ganadería Colombiana Sostenible. Árboles nativos para predios ganaderos: especies focales del Proyecto Ganadería Colombiana Sostenible. [Online]: https://bit.ly/3W5cF5CCardoso-Gutierrez, E., Aranda-Aguirre, E., Robles-Jimenez, L. E., Castelán-Ortega, O. A., Chay-Canul, A. J., Foggi, G., . . . González-Ronquillo, M. (2021). Effect of tannins from tropical plants on methane production from ruminants: A systematic review. Veterinary and Animal Science, 14(1), 100214. https://doi.org/10.1016/j.vas.2021.100214Carrillo, M. L. C., & Munguía, A. (2007). Vida útil de los alimentos. Revista Iberoamericana de Las Ciencias Biológicas y Agropecuarias, 2(3), e2007-9990. https://doi.org/10.23913/ciba.v2i3.20Castro-Montoya, J., De Campeneere, S., Van Ranst, G., & Fievez, V. (2012). Interactions between methane mitigation additives and basal substrates on in vitro methane and VFA production. Animal Feed Science and Technology, 176, 47–60. https://doi.org/10.1016/j.anifeedsci.2012.07.007Chará, J., Rivera, J., Barahona, R., Murgueitio R, E., Deblitz, C., Reyes, E., . . . Zuluaga, A. (2017). Intensive silvopastoral systems: economics and contribution to climate change mitigation and public policies. Integrating landscapes: Agroforestry for biodiversity conservation and food sovereignty. Advances in Agroforestry, 12, 395-416. Springer, Cham. https://doi.org/10.1007/978-3-319-69371-2_16Cook, B. G., Pengelly, B. C., Schultze-Kraft, R., Taylor, M., Burkart, S., Cardoso, J., . . . Peters, M. (2020). Tropical Forages: an interactive selection tool. 2nd and revised Edn. [Online]: http://www.tropicalforages.info/Corporación autónoma regional del Valle del Cauca, y Instituto Geográfico Agustín Codazzi. 2021. Geoportal CVC. [Online]: https://geo.cvc.gov.co/visores/suelos/16/Dayioğlu, M. A., & Türker, U. (2021). Digital transformation for sustainable future-agriculture 4.0: A review. Journal of Agricultural Sciences, 27(4), 373–399. https://doi.org/10.15832/ankutbd.986431Dickinson, R. A., Morton, J. M., Beggs, D. S., Anderson, G. A., Pyman, M. F., . . . Blackwood, C. B. (2013). An automated walk-over weighing system as a tool for measuring liveweight change in lactating dairy cows. Journal of Dairy Science, 96(7), 4477–4486. https://doi.org/10.3168/jds.2012-6522Dogan Comert, E., Burçe Ataç., & Mogol, V. G. (2020). Current Research in Food Science Relationship between color and antioxidant capacity of fruits and vegetables . Current Research in Food Science, 2, 1–10. https://doi.org/10.1016/j.crfs.2019.11.001Durango, S. G. D., Rosales, R. B., Vergara, D. M. B., Chirinda, N., & Arango, J. (2021). Feeding strategies to increase nitrogen retention and improve rumen fermentation and rumen microbial population in beef steers fed with tropical forages. Sustainability, 13(18), 10312. https://doi.org/10.3390/su131810312Egan, A. R. (2017). Animal Nutrition and Feed Science. Engineering, 3(5), 586–587. https://doi.org/10.1016/J.ENG.2017.05.025Enciso, K., Sotelo, M., Peters, M., & Burkart, S. (2019). The inclusion of Leucaena diversifolia in a Colombian beef cattle production system: An economic perspective. Tropical Grasslands, 7(4), 359–369. https://doi.org/10.17138/TGFT(7)359-369England, P. H. (2017). Determination of water activity in foods. National Infection Service Food, Water and Environmental Microbiology Standard Method Ed. 2 London , UK : PHE publicationsEPA. (2019). Global Non-CO2 Greenhouse Gas Emission Projections & Mitigation: 2015 -2050. U.S. Environmental Protection Agency, EPA 430-R-19-010. [Online]: https://www.epa.gov/global-mitigation-non-co2-greenhouse-gases/global-non-co2-greenhouse-gas-emission-projectionsEPA (2023) Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2021. U.S. Environmental Protection Agency, EPA 430-R-23-002. [Online]: https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-andsinks-1990-2021.Espitia, L. M. (2016). Evaluación de la calidad composicional de la leche influenciada por el periodo de transición en vacas doble porpósito en el tropico bajo colombiano. [ Tesis , Universidad de la Salle]. [Online]: https://ciencia.lasalle.edu.co/cgi/viewcontent.cgi?article=1280&context=medicina_veterinariaEvangelista, C., Basiricò, L., & Bernabucci, U. (2021). An overview on the use of near infrared spectroscopy (nirs) on farms for the management of dairy cows. Agriculture, 11(4), 296. https://doi.org/10.3390/agriculture11040296FAO .2009. Global agriculture towards 2050 The challenge. Roma, Italia. [Online]:https://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdfFAO. 2023. Methane emissions in livestock and rice systems. Roma, Italia. [Online]: https://doi.org/10.4060/cc7607enFernández, A.., Izquierdo, P., Valero, K., Allara,M., Pinero, M., & Gsrcía, (2006). A Efecto del Tiempo y Temperatura de Almacenamiento Sobre la Calidad Microbiológica de Carne de Hamburguesa. Revista Cientifica, 16(4), 315–324. [Online]: http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0798-22592006000400013&lng=es&nrm=isoFrance, J., Dhanoa, M. S., Theodorou, M. K., Lister, S. J., Davies, D. R., & Isac, D. (1993). A model to interpret gas accumulation profiles associated with in vitro degradation of ruminant feeds. Journal of Theoretical Biology, 163(1), 99–111. https://doi.org/10.1006/jtbi.1993.1109Furtado, D. A., Castro, T. B. D. S., Neto, J. P. L., Constantino, R. A., Cunha, M. G. G., & Nascimento, J. W. B. (2018). P Physical-mechanical properties of multinutrient blocks with different binders for goats and sheep intake. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(8), 558–563. https://doi.org/10.1590/1807-1929/agriambi.v22n8p558-563Gaviria-Uribe, X., Bolivar, D. M., Rosenstock, T. S., Molina-Botero, I. C., Chirinda, N., Barahona, R.,& Arango, J. (2020). Nutritional Quality, Voluntary Intake and Enteric Methane Emissions of Diets Based on Novel Cayman Grass and Its Associations With Two Leucaena Shrub Legumes. Frontiers in Veterinary Science, 7, 1–12. https://doi.org/10.3389/fvets.2020.579189Godoy, D., Gonzales, J., Roque, R., Fernández, M., Gamarra, S., Hidalgo, V., & Gómez, C. (2021). Use of unconventional agro-industrial by-products for supplementation of grazing dairy cattle in the Peruvian Amazon region. Tropical Animal Health and Production, 53(2), 294. https://doi.org/10.1007/s11250-021-02718-yGonzález Garcia, U. A., Corona Gochi, L., Flores, J. G. E., Amesquita, D. K. A., & González Ronquillo, M. (2017). Digestión Ruminal e Intestinal del Maíz (Zea Mays) y Sorgo (Sorghum Bicolor L. Moench) utilizando diferentes técnicas de digestibilidad (In Vivo, In Vitro e In Sacco). Tropical and Subtropical Agroecosystems, 20(2), 183–194. [Online]: https://www.redalyc.org/articulo.oa?id=93952506003González, L. A., Kyriazakis, I., & Tedeschi, L. O. (2018). Review: Precision nutrition of ruminants: Approaches, challenges and potential gains. Animal, 12(s2), s246–S261. https://doi.org/10.1017/S1751731118002288Hernández, C., Carias, L., Gómez, N.M., Panameno, J.F., Guillén, E.E., & Barrientos, L,V. (2017). Evaluación de bloques multinutricionales en la alimentación de ganado de doble propósito en ordeno. Agrociencia, 1, 32–43. [Online]: https://api.semanticscholar.org/CorpusID:109862112Hidalgo, V., & Valerio C., H. (2020). Digestibilidad y energía digestible y metabolizable del gluten de maíz, hominy feed y subproducto de trigo en cuyes (Cavia porcellus). Revista de Investigaciones Veterinarias del Perú, 31(2), e17816. https://doi.org/10.15381/rivep.v31i2.17816Holguín, V. A., Cuchillo-Hilario, M., Mazabel, J., Quintero, S., & Mora-Delgado, J. (2020). Effect of a Pennisetum purpureum and Tithonia diversifolia silage mixture on in vitro ruminal fermentation and methane emission in a RUSITEC system. Revista Mexicana De Ciencias Pecuarias, 11(1), 19–37. https://doi.org/10.22319/RMCP.V11I1.4740ICONTEC. (2000). Instituto Colombiano de Normas Técnicas y Certificación. Microbiologia de alimentos y alimentos para animales. Metodo horizontal para el recuento de clostridium sulfito reductores e identificacion de clostridium perfringens - tecnicas de recuento de colonias. NTC 4834. Bogotá DC, Colombia. pp 20ICONTEC. (2022). Instituto Colombiano de Normas Técnicas y Certificación. Suplementos alimenticios y alimentos complementarios para rumiantes productores de leche.. NTC 2030. Bogotá DC, Colombia. pp 12Intergovernmental Panel on Climate Change (IPCC) 2023: Sections In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 35-115, doi: 10.59327/IPCC/AR6-9789291691647International Standardization Organization. (1998). ISO 9831:1998: Animal Feeding Stuffs Animal Products, and Faeces or Urine - Determination of Gross Calorific Value - Bomb Calorimeter Method. [Online]: https://www.iso.org/standard/17702.htmlInternational Standard Organization. (2017). ISO 18787:2017. Foodstuffs - Determination of water activity. [Online]: https://www.iso.org/obp/ui/en/#iso:std:iso:18787:ed-1:v1:enInternational Standard Organization. (2017). ISO 6579-1:2017. Microbiology of the food chain. Horizontal method for the detection, enumeration and serotyping of Salmonella. Part 1: Detection of Salmonella spp. [Online]: https://www.iso.org/standard/56712.htmlInternational Standard Organization. (2022). ISO 5984:2022. Animal feeding stuffs. Determination of crude ash. [Online]: https://www.iso.org/standard/77807.htmlJaurena, G., Cantet, J. M., Arroquy, J. I., Palladino, R. A., Wawrzkiewicz, M., & Colombatto, D. (2015). Prediction of the Ym factor for livestock from on-farm accessible data. Livestock Science, 177(1871-1413), 52–62. https://doi.org/10.1016/j.livsci.2015.04.009Jin, Q., & Kirk, M. F. (2018). pH as a Primary Control in Environmental Microbiology : 1 . Thermodynamic Perspective. Froniers in Environmental Sciense, 6, 2296- 665x.. https://doi.org/10.3389/fenvs.2018.00021Ku-Vera, J. C., Ayala-Burgos, A. J., Solorio-Sánchez, F. J., Briceño-Poot, E. G., Ruiz-González, A., Piñeiro-Vázquez, A. T., . . . Ramírez-Avilés, L. (2013). Nutritional Strategies of Animal Feed Additives . New York, E.E.UU. Nova Science Publishers. [Online]:https://www.researchgate.net/publication/267626768_Tropical_tree_foliage_and_shrubs_as_feed_additives_in_ruminant_rations#fullTextFileContentKu-Vera, J. C., Jiménez-Ocampo, R., Valencia-Salazar, S. S., Montoya-Flores, M. D., Molina-Botero, I. C., Arango, J., . . . Solorio-Sánchez, F. J. (2020). Role of Secondary Plant Metabolites on Enteric Methane Mitigation in Ruminants. Frontiers in Veterinary Science, 7. https://doi.org/10.3389/fvets.2020.00584Lavrenčič, A., Stefanon, B., & Susmel, P. (1997). An evaluation of the Gompertz model in degradability studies of forage chemical components. Animal Science, 64(3), 423–431. https://doi.org/10.1017/S1357729800016027Lee, M. A. (2018). A global comparison of the nutritive values of forage plants grown in contrasting environments. Journal of Plant Research, 131(4), 641–654. https://doi.org/10.1007/s10265-018-1024-yLongo, C., Hummel, J., Liebich, J., Bueno, I. C. S., Burauel, P., Ambrosano, E. J., . . . Südekum, K. H. (2012). Chemical characterization and in vitro biological activity of four tropical legumes, Styzolobium aterrimum L., Styzolobium deeringianum, Leucaena leucocephala, and Mimosa caesalpiniaefolia, as compared with a tropical grass, Cynodon spp. for the use in rumiant diets. Czech Journal of Animal Science, 57(6), 255–264. https://doi.org/10.17221/5960-cjasMacdougall, D. B. (2010). Colour measurement of food: principles and practice. Advances and industrial application, 13, 312–342. https://doi.org/10.1533/9780857090195.2.312Makkar, P. S. H., Sánchez, M., & Speedy, W. A. (2007). Feed supplementation blocks. Urea-molasses multi-nutrient blocks: simple and effective feed supplement technology for ruminant agriculture. Roma, Italia: . FAO Publisher.Malik, A., Gunawan, A., Erlina, S., Widaningsih, N., Elvania, R., Zuraidah,A., . . . , Suyanto, M. (2020). Effect Addition of Urea Molasses Multi-nutrient Moringa Block (UM3B) on the Ovarian Follicular Dynamics in Crossbred Cows. Adances in Animal Veterinary Sciences, 8(5), 458–462. http://doi.org/10.17582/journal.aavs/2020/8.5.458.462Maskan, M. (2001). Kinetics of colour change of kiwifruits during hot air and microwave drying. Journal of Food Engineering, 48(2), 169–175. https://doi.org/10.1016/S0260-8774(00)00154-0McGrath, J., Duval, S. M., Tamassia, L. F. M., Kindermann, M., Stemmler, R. T., de Gouvea, V. N., . . . Celi, P. (2018). Nutritional strategies in ruminants: A lifetime approach. Research in Veterinary Science, 116, 28–39. https://doi.org/10.1016/j.rvsc.2017.09.011Mejías, R., Díaz, J. A., Hechemendía, M., Jordán, H., & Rodríguez, R. G. J. (2007). Evaluación de propiedades físicas de bloques multinutricionales que incluyen zeolita y harina de caña: compactación y consumo en carneros estabulados. Revista Cubana de Ciencia Agrícola, 41(1), 35–38. [Online]:https://www.redalyc.org/pdf/1930/193017666006.pdfMin, B. R., Solaiman, S., Waldrip, H. M., Parker, D., Todd, R. W., & Brauer, D. (2020). Dietary mitigation of enteric methane emissions from ruminants: A review of plant tannin mitigation options. Animal Nutrition, 6(3), 231–246. https://doi.org/10.1016/j.aninu.2020.05.002Mladenović, D., Djukić-Vuković, A., Stanković, M., Milašinović-Šeremešić, M., Radosavljević, M., Pejin, J., & Mojović, L. (2019). Bioprocessing of agro-industrial residues into lactic acid and probiotic enriched livestock feed. Journal of the Science of Food and Agriculture, 99(12), 5293–5302. https://doi.org/10.1002/jsfa.9759Molina, I. C., Arroyave , J., Valencia. S., Barahona , R., Olivera-Castillo, L., Barahona-Rosales, R., . . . Ku-Vera,J. (2019). Effects of tannins and saponins contained in foliage of Gliricidia sepium and pods of Enterolobium cyclocarpum on fermentation, methane emissions and rumen microbial population in crossbred heifers. Animal Feed Science and Technolog, 251(1), 1–11. https://doi.org/10.1016/j.anifeedsci.2019.01.011Molina-Botero, I. C., Mazabel, J., Arceo-Castillo, J., Urrea-Benítez, J. L., Olivera-Castillo, L., Barahona-Rosales, R., . . . Arango, J. (2020). Effect of the addition of Enterolobium cyclocarpum pods and Gliricidia sepium forage to Brachiaria brizantha on dry matter degradation, volatile fatty acid concentration, and in vitro methane production. Tropical Animal Health and Production, 52(6), 2787–2798. https://doi.org/10.1007/s11250-020-02324-4Morey, L., Bach, A., Sabrià, D., Riau, V., Fernández, B., & Terré, M. (2023). Effectiveness of precision feeding in reducing N excretion in dairy cattle. Animal Feed Science and Technology, 304, 115722. https://doi.org/10.1016/j.anifeedsci.2023.115722Mota, M., Rodríguez, R., Solanas, E., & Fondevila, M. (2005). Evaluation of four tropical browse legumes as nitrogen sources: Comparison of in vitro gas production with other methods to determine N degradability. Animal Feed Science and Technology, 124(1) , 341-350. https://doi.org/10.1016/j.anifeedsci.2005.04.018.Navarro, C., de Evan, T., Jiménez, C., & Carro, M. D. (2022). Potential of Agroindustrial By-Products to Modulate Ruminal Fermentation and Reduce Methane Production: In Vitro Studies. Animals, 12(24), 3540. https://doi.org/10.3390/ani12243540Ordóñez-Santos, L. E., Velasco-Arango, V.A., & Hleap-Zapata, J. I. (2022). Ultrasound-assisted extraction of total carotenoids in papaya epicarp and its application in Frankfurt sausage. Ciência e Agrotecnologia, 46, e006722. https://doi.org/10.1590/1413-7054202246006722Pathare, P. B., Opara, U. L., & Al-said, F. A. (2012). Colour Measurement and Analysis in Fresh and Processed Foods : A Review. Food and Bioprocess Technology, 6(1), 36-60. https://doi.org/10.1007/s11947-012-0867-9Peters, M., Franco, L., Schmidt, A., & Hincapié, B. (2011). Especies forrajeras multipropósito. Opciones para productores del trópico americano. Bundesministerium für …. Cali, Colombia : CIAT Publications.Pomar, C., & Remus, A. (2023). Review: Fundamentals, limitations and pitfalls on the development and application of precision nutrition techniques for precision livestock farming. Animal, 17, 100763. https://doi.org/10.1016/j.animal.2023.100763Pujaningsih, R., Widiyanto., & Tampoebolon, B. (2019). Effect of Organic Basic Multrinutrient Block Supplementation on Total Mixed Ratio of Kacang Goat in Feedlot System. IOP Conference Series: Earth and Environmental Science, 372(1), 012062. https://doi.org/10.1088/1755-1315/372/1/012062Quintero-Anzueta, S., Molina-Botero, I. C., Ramirez-Navas, J. S., Rao, I., Chirinda, N., Barahona-Rosales, R., . . . Arango, J. (2021). Nutritional Evaluation of Tropical Forage Grass Alone and Grass-Legume Diets to Reduce in vitro Methane Production. Frontiers in Sustainable Food Systems, 5. 2571-581x. . https://doi.org/10.3389/fsufs.2021.663003Quintino, A. da C., de Abreu, J. G., de Almeida, R. G., Macedo, M. C. M., Cabral, L. da S., & Galati, R. L. (2013). P roduction and nutrition rates of piatã grass and hybrid sorghum at different cutting ages. Acta Scientiarum Animal Sciences, 35(3), 243–249. https://doi.org/10.4025/actascianimsci.v35i3.18016Rahmawati, N., Lisnanti, E., Rudiono, D., Mukmin, A., Muladno, M., & Atabany, A. (2022). Comparative study several feed formulation based on agro-industrial by-product on production performance and in vivo digestibility of beef cattle. IOP Conference Series: Earth and Environmental Science, 977(1). https://doi.org/10.1088/1755-1315/977/1/012125Rivera-Herrera, J. E., Molina-Botero, I., Chará-Orozco, J., Murgueitio-Restrepo, E., & Barahona-Rosales, R. (2017). Intensive silvopastoral systems with Leucaena leucocephala (Lam.) de Wit: productive alternative in the tropic in view of the climate change . Pastos y Forrajes, 40(3), 171–183. [Online]: https://www.redalyc.org/journal/2691/269158175001/html/Rivero, T., Carrascal, S. E., & Gómez Ayala, W. (2013). Elaboración de bloques multinutricionales (BMN) para la alimentación de rumiantes de la Región Caribe. Bogotá, Colombia. CORPOICA. [Online]: https://repository.agrosavia.co/bitstream/handle/20.500.12324/1905/64209_64874.pdf?sequence=1&isAllowed=yRodríguez C. E.,& Pulido, N. J. (2018). Determinación del valor nutricional de bloques nutricionales con diferentes porcentajes de Sambucus peruviana y Zea mays. Ciencia y Agricultura, 15 (1), 93–100. https://doi.org/10.19053/01228420.v15.n1.2018.7760Romero Huelva, M. (2012). Utilization of multinutrient blocks including tomato and cucumber waste fruits as an alternative to the concentrate in goat diets . [Tesis doctoral, Universidad de Córdoba, Campus Rabanales]. [Online]: https://helvia.uco.es/bitstream/handle/10396/7673/595.pdf?sequence=1&isAllowed=ySalami, S. A., Luciano, G., O’Grady, M. N., Biondi, L., Newbold, C. J., Kerry, J. P., & Priolo, A. (2019). Sustainability of feeding plant by-products: A review of the implications for ruminant meat production. Animal Feed Science and Technology, 251, 37–55. https://doi.org/10.1016/j.anifeedsci.2019.02.006Stewart, L. (2017). Mineral supplements for beef cattle. Mineral Supplements for Beef Cattle- Bulletin 895. UGA Cooperative Extension. [Online]:https://secure.caes.uga.edu/extension/publications/files/pdf/B 895_4.PDFStifkens, A., Matthews, E. M., McSweeney, C. S., & Charmley, E. (2022). Increasing the proportion of Leucaena leucocephala in hay-fed beef steers reduces methane yield. Animal Production Science, 62(7), 622-632. https://doi.org/10.1071/AN21576Suarez, H., Borrás-Sandoval, L., & Rodríguez-Molano, C. (2021). Characterization Of Multi-Nutritional Bovine Blocks Enriched With A Preparation Based On Lactic Acid Bacteria. Revista de Investigación Agraria y Ambiental, 12(2), 115–126. https://doi.org/10.22490/214 56453.3914Suharyono, Sutanto, H., Purwanti, Y., Martanti, Agus, A., & Utomo, R. (2014). The effect of urea molasses multi-nutrient and medicated block for beef cattle, beef and dairy cow. Atom Indonesia, 40(2), 77–87. https://doi.org/10.17146/aij.2014.274Sun, X.; Pacheco, D. . T., G.; Janssen, P.H., & Swainson, N. M. (2022). Evaluation of Feed Near-Infrared Reflectance Spectra as Predictors of Methane Emissions from Ruminants. Animals, 12(18), 2478. https://doi.org/https:// doi.org/10.3390/ani12182478Surender, S., Pathak, A. K., Khan, M., & Sharma, R. K. (2015). Multi-Nutrient Blocks with and without Tanniferous Leaf Meal Mixture: Formulation and Preparation under Sub-Tropical Environment of Jammu. Journal of Animal Research, 5(1), 7-14. https://doi.org/10.5958/2277-940X.2015.00002.9Syamaladevi, R. M., Tang, J., Villa-rojas, R., Sablani, S., Carter, B., & Campbell, G. (2016). Influence of Water Activity on Thermal Resistance of Microorganisms in Low-Moisture Foods : A Review. Comprehensive Reviews In Food Science And Food Safety, 15(3), 353–370. https://doi.org/10.1111/1541-4337.12190Szczesniak, A. S. (2002). Texture is a sensory property. Food Quality and Preference, 13 (4) , 215–225. https://doi.org/10.1016/S0950-3293(01)00039-8Takawale, P. S., Jade, S. S., & Ghorpade, S. D. (2016). Leguminous blocks: Nutritional values and economics. Agricultural Science Digest, 36(2), 149-151. https://doi.org/ 10.18805/asd.v0iof.9623Tendonkeng, F., Fogang Zogang, B., Sawa, C., Boukila, B., & Pamo, E. T. (2014). Inclusion of Tithonia diversifolia in multinutrient blocks for WestAfrican dwarf goats fed Brachiaria straw.. Tropical Animal Health and Production, 46(6), 981–986. https://doi.org/10.1007/s11250-014-0597-2Theodorou, M. K., Williams, B. A., Dhanoa, M. S., McAllan, A. B., & France, J. (1994). A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology, 48, 185–197. https://doi.org/10.1016/0377-8401(94)90171-6Tilley, J. M. A., & Terry, R. A. (1963). a Two‐Stage Technique for the in Vitro Digestion of Forage Crops. Grass and Forage Science, 18(2), 104–111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.xTobía, C., & Vargas González, E. (1999). Fabricación artesanaly semi-artesanal de bloques nutricionales. Nutrición Animal Tropical, 5(1), 51–65. [Online]: https://www.academia.edu/17482942/Fabricacion_artesanal_y_semi_industrial_de_bloques_nutricionalesTorres, J., González, M, K., & Acevedo, , D. (2015). Análisis del Perfil de Textura en Frutas, Productos Cárnicos y Quesos. Review. ReCiTeIA, 14(2), 63–75. [Online]:https://www.researchgate.net/publication/283352303_Analisis_del_Perfil_de_Textura_en_Frutas_Productos_Carnicos_y_QuesosTylutki, T. P., Fox, D. G., Durbal, V. M., Tedeschi, L. O., Russell, J. B., Van Amburgh, M. E., . . . Pell, A. N. (2008). Cornell Net Carbohydrate and Protein System: A model for precision feeding of dairy cattle. Animal Feed Science and Technology, 143, 174–202. https://doi.org/10.1016/j.anifeedsci.2007.05.010Uyeh, D. D., Pamulapati, T., Mallipeddi, R., Park, T., Asem-Hiablie, S., Woo, S., . . . Ha, Y. (2019). Precision animal feed formulation: An evolutionary multi-objective approach. Animal Feed Science and Technology, 256(0377-8401) , 114211. https://doi.org/10.1016/j.anifeedsci.2019.114211Van Amburgh, M. E., Collao-Saenz, E. A., Higgs, R. J., Ross, D. A., Recktenwald, E. B., Raffrenato, E., . . . Foskolos, A. (2015). The Cornell Net Carbohydrate and Protein System: Updates to the model and evaluation of version 6.5. Journal of Dairy Science, 98(9), 6361–6380. https://doi.org/10.3168/jds.2015-9378Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science, 74(10), 3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2Vazquez, E., Teutscherova, N., Lojka, B., Arango, J., & Pulleman, M. (2020). Pasture diversification affects soil macrofauna and soil biophysical properties in tropical (silvo)pastoral systems. Agriculture, Ecosystems and Environment, 302(1), 107083. https://doi.org/10.1016/j.agee.2020.107083Zhao, X., Degen, A., Hao, L., & Liu, S. (2022). Ruminant Lick Blocks, Particularly in China: A Review. Sustainability , 14(13), 7620. https://doi.org/10.3390/su14137620Centro Internacional de agricultura Tropical (CIAT)Grupos comunitariosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86912/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL29677033.20224.pdf29677033.20224.pdfapplication/pdf2400603https://repositorio.unal.edu.co/bitstream/unal/86912/2/29677033.20224.pdf4ee8cf153d7963b87fbd54ec96d683ebMD52THUMBNAIL29677033.20224.pdf.jpg29677033.20224.pdf.jpgGenerated Thumbnailimage/jpeg5183https://repositorio.unal.edu.co/bitstream/unal/86912/3/29677033.20224.pdf.jpg827eee27f66f5a712446717d5af2dd80MD53unal/86912oai:repositorio.unal.edu.co:unal/869122024-10-09 00:07:46.476Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |