Improvement of digital lensless holographic microscopy for the visualization of biosamples
Digital Lensless Holographic Microscopy (DLHM) is an imaging technique that has been used to visualize micrometer-sized samples. The simplicity of the required hardware, the adaptability of digital processing, and its label-free attribute have positioned it as an attractive, portable, and cost-effec...
- Autores:
-
Zapata Valencia, Samuel Ignacio
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86021
- Palabra clave:
- 620 - Ingeniería y operaciones afines::621 - Física aplicada
530 - Física
microscopía holográfica digital sin lentes
limitaciones de DLHM
apertura numérica
campo de visión
artefactos en la iluminación
oclusiones
digital lensless holographic microscopy
DLHM limitations
numerical aperture
field of view
illumination artifacts
occlusions
Microscopia óptica
Lentes
Holograma
- Rights
- openAccess
- License
- Atribución-NoComercial-CompartirIgual 4.0 Internacional
id |
UNACIONAL2_81a7d044e67b69f309283bafc2def612 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86021 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Improvement of digital lensless holographic microscopy for the visualization of biosamples |
dc.title.translated.spa.fl_str_mv |
Mejoramiento en la visualización de muestras biológicas en microscopía holográfica digital sin lentes |
title |
Improvement of digital lensless holographic microscopy for the visualization of biosamples |
spellingShingle |
Improvement of digital lensless holographic microscopy for the visualization of biosamples 620 - Ingeniería y operaciones afines::621 - Física aplicada 530 - Física microscopía holográfica digital sin lentes limitaciones de DLHM apertura numérica campo de visión artefactos en la iluminación oclusiones digital lensless holographic microscopy DLHM limitations numerical aperture field of view illumination artifacts occlusions Microscopia óptica Lentes Holograma |
title_short |
Improvement of digital lensless holographic microscopy for the visualization of biosamples |
title_full |
Improvement of digital lensless holographic microscopy for the visualization of biosamples |
title_fullStr |
Improvement of digital lensless holographic microscopy for the visualization of biosamples |
title_full_unstemmed |
Improvement of digital lensless holographic microscopy for the visualization of biosamples |
title_sort |
Improvement of digital lensless holographic microscopy for the visualization of biosamples |
dc.creator.fl_str_mv |
Zapata Valencia, Samuel Ignacio |
dc.contributor.advisor.none.fl_str_mv |
Garcia Sucerquia, Jorge Iván |
dc.contributor.author.none.fl_str_mv |
Zapata Valencia, Samuel Ignacio |
dc.contributor.researchgroup.spa.fl_str_mv |
Optica y Procesamiento Opto-Digital |
dc.contributor.orcid.spa.fl_str_mv |
https://orcid.org/0000-0002-0924-3776 Zapata-Valencia, Samuel I. [:0000-0002-0924-3776] |
dc.contributor.researchgate.spa.fl_str_mv |
https://www.researchgate.net/profile/Samuel-Zapata-Valencia |
dc.contributor.googlescholar.spa.fl_str_mv |
https://scholar.google.com/citations?user=om9YndgAAAAJ&hl=en |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::621 - Física aplicada 530 - Física |
topic |
620 - Ingeniería y operaciones afines::621 - Física aplicada 530 - Física microscopía holográfica digital sin lentes limitaciones de DLHM apertura numérica campo de visión artefactos en la iluminación oclusiones digital lensless holographic microscopy DLHM limitations numerical aperture field of view illumination artifacts occlusions Microscopia óptica Lentes Holograma |
dc.subject.proposal.spa.fl_str_mv |
microscopía holográfica digital sin lentes limitaciones de DLHM apertura numérica campo de visión artefactos en la iluminación oclusiones |
dc.subject.proposal.eng.fl_str_mv |
digital lensless holographic microscopy DLHM limitations numerical aperture field of view illumination artifacts occlusions |
dc.subject.wikidata.none.fl_str_mv |
Microscopia óptica Lentes Holograma |
description |
Digital Lensless Holographic Microscopy (DLHM) is an imaging technique that has been used to visualize micrometer-sized samples. The simplicity of the required hardware, the adaptability of digital processing, and its label-free attribute have positioned it as an attractive, portable, and cost-effective alternative for observing microscopic biological samples. Despite the simplicity of its implementation, the hardware used to record the digital holograms has limitations that directly affect the visualization of biological samples. In this master’s thesis in Engineering Physics, the identified limitations of the DLHM hardware and their impact on the visualization of micrometer-sized objects are studied. An improvement of those limitations is proposed by implementing opto-numerical methods, which are tested by visualizing biosamples. Given the importance of the Numerical Aperture (NA) for the performance of DLHM, a method for characterizing and validating the NA of propagating beam illuminations is developed. A method for expanding the field of view of the visualized samples is presented. Finally, a multiview method for correcting DLHM in-line holograms is proposed to eliminate illumination artifacts inherited from the illumination source, and also to recover the information of occluded structured samples visualized in DLHM. The results were reported on two manuscripts already published in indexed journals of international circulations and five proceedings or submitted abstracts of presentations at international conferences. |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-05-03T13:26:18Z |
dc.date.available.none.fl_str_mv |
2024-05-03T13:26:18Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86021 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86021 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, "Digital in-line holographic microscopy," Appl. Opt. 45, 836 (2006). H. Tobon-Maya, S. I. Zapata-Valencia, E. Zora-Guzmán, C. Buitrago-Duque, and J. Garcia-Sucerquia, "Open-source, cost-effective, portable, 3D-printed digital lensless holographic microscope," Appl. Opt. 60, A205 (2021). C. Trujillo, P. Piedrahita-Quintero, and J. Garcia-Sucerquia, "Digital lensless holographic microscopy: numerical simulation and reconstruction with ImageJ," Appl. Opt. 59, 5788 (2020). J. F. Restrepo and J. Garcia-Sucerquia, "Magnified reconstruction of digitally recorded holograms by Fresnel-Bluestein transform," Appl. Opt. 49, 6430–6435 (2010). C. Buitrago-Duque and J. Garcia-Sucerquia, "Non-approximated Rayleigh–Sommerfeld diffraction integral: advantages and disadvantages in the propagation of complex wave fields," Appl. Opt. 58, G11 (2019). P. Ferraro, A. Wax, and Z. Zalevsky, eds., Coherent Light Microscopy, Springer Series in Surface Sciences (Springer Berlin Heidelberg, 2011), Vol. 46. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital in-line holography for biological applications," Proc. Natl. Acad. Sci. 98, 11301–11305 (2002). B. Ghosh and K. Agarwal, "Viewing life without labels under optical microscopes," Commun. Biol. 6, (2023). J. A. Picazo-Bueno, K. Trindade, M. Sanz, and V. Micó, "Design, Calibration, and Application of a Robust, Cost-Effective, and High-Resolution Lensless Holographic Microscope," Sensors 22, 553 (2022). M. Sanz, J. A. Picazo-Bueno, J. García, and V. Micó, "Improved quantitative phase imaging in lensless microscopy by single-shot multi-wavelength illumination using a fast convergence algorithm," Opt. Express (2015). H. Tobón-Maya, A. Gómez-Ramírez, C. Buitrago-Duque, and J. Garcia-Sucerquia, "Adapting a Blu-ray optical pickup unit as a point source for digital lensless holographic microscopy," Appl. Opt. 62, D39 (2023). C. Buitrago-Duque, B. Patiño-Jurado, and J. Garcia-Sucerquia, "Robust and compact digital Lensless Holographic microscope for Label-Free blood smear imaging," HardwareX 13, e00408 (2023). B. Patiño-Jurado, J. F. Botero-Cadavid, and J. Garcia-Sucerquia, "Cone-shaped optical fiber tip for cost-effective digital lensless holographic microscopy," Appl. Opt. 59, 2969 (2020). B. Patiño-Jurado, J. F. Botero-Cadavid, and J. Garcia-Sucerquia, "Step-Index Optical Fibers with 0.88 Numerical Aperture," J. Light. Technol. 37, 3734–3739 (2019). M. J. Lopera and C. Trujillo, "Holographic point source for digital lensless holographic microscopy," Opt. Lett. 47, 2862 (2022). A. A. Adeyemi and T. E. Darcie, "Expansion of field of view in digital in-line holography with a programmable point source," Appl. Opt. 48, 3291–3301 (2009). H. Tobon-Maya, C. Trujillo, and J. Garcia-Sucerquia, "Preprocessing in digital lensless holographic microscopy for intensity reconstructions with enhanced contrast," Appl. Opt. 60, A215 (2021). W. Xu, M. H. Jericho, H. J. Kreuzer, and I. A. Meinertzhagen, "Tracking particles in four dimensions with in-line holographic microscopy," Opt. Lett. 28, 164 (2003). A. Buades, B. Coll, and J.-M. Morel, "A Non-Local Algorithm for Image Denoising," in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) (IEEE, n.d.), pp. 60–65. K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, Image Denoising with Block-Matching and 3D Filtering (2006). J. J. Barton, "Photoelectron holography = holography + photoelectron diffraction," J. Electron Spectros. Relat. Phenomena 51, 37–53 (1990). S. K. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. H. Jericho, and H. J. J. Kreuzer, "Submersible digital in-line holographic microscope," Rev. Sci. Instrum. 77, 43706–43710 (2006). S. K. Jericho, P. Klages, J. Nadeau, E. M. Dumas, M. H. Jericho, and H. J. Kreuzer, "In-line digital holographic microscopy for terrestrial and exobiological research," Planet. Space Sci. 58, 701–705 (2010). J. S. Underkoffler, "Occlusion Processing and Smooth Surface Shading for Fully Computed Synthetic Holography," Pract. Hologr. XI Hologr. Mater. III 3011, 19–30 (1997). S. I. Zapata-Valencia, H. Tobon-Maya, and J. García-Sucerquia, "Automatic method to measure the numerical aperture of a propagating Gaussian light beam," Opt. Pura y Apl. 55, 1–8 (2022). S. I. Zapata-Valencia, H. Tobon-Maya, and J. Garcia-Sucerquia, "Image enhancement and field of view enlargement in digital lensless holographic microscopy by multi-shot imaging," J. Opt. Soc. Am. A 40, C150 (2023). S. I. Zapata-Valencia, H. Tobon-Maya, and J. Garcia-Sucerquia, Método Automático Para La Medición de La Apertura Numérica de Haces de Luz Gaussianos. (2021). S. I. Zapata-Valencia, H. Tobon-Maya, C. Buitrago-Duque, and J. Garcia-Sucerquia, "Cost-effective digital lensless holographic microscope," in OSA Imaging and Applied Optics Congress 2021 (3D, COSI, DH, ISA, PcAOP) (Optica Publishing Group, 2021), Vol. 60, p. DW4C.3. S. I. Zapata-Valencia and J. Garcia-Sucerquia, "Improvement of the image reconstruction in digital lensless holographic microscopy by scanning of the sample plane," in Latin America Optics and Photonics (LAOP) Conference 2022 (Optica Publishing Group, 2022), p. W1D.2. S. I. Zapata-Valencia, H. Tobon-Maya, and J. Garcia-Sucerquia, Removal of Perturbations from Optical-Pickup-Unit-Based Illumination for Digital Lensless Holographic Microscopy (2023). S. I. Zapata-Valencia, H. Tobon-Maya, and J. Garcia-Sucerquia, Recovery of Occluded Objects in Digital Lensless Holographic (2023). D. Gabor, "A new microscopic principle," Nature 161, 777–778 (1948). J. F. Restrepo and J. Garcia-Sucerquia, "Diffraction-based modeling of high-numerical-aperture in-line lensless holograms," Appl. Opt. 50, 1745 (2011). U. Schnars and W. P. O. Jueptner, "Digital recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, 85–101 (2002). L. Repetto, F. Pellistri, E. Piano, and C. Pontiggia, "Gabor’s hologram in a modern perspective," Am. J. Phys. 72, 964–967 (2004). J. W. Goodman, Introduction to Fourier Optics, 3rd Editio (Roberst & Company Publishers, 2005). M. J. Lopera and C. Trujillo, "Linear diattenuation imaging of biological samples with digital lensless holographic microscopy," Appl. Opt. 61, B77 (2022). J. Garcia-Sucerquia, "Color lensless digital holographic microscopy with micrometer resolution," Opt. Lett. 37, 1724 (2012). E. Serabyn, K. Liewer, C. Lindensmith, K. Wallace, and J. Nadeau, "Compact, lensless digital holographic microscope for remote microbiology," Opt. Express 24, 28540–28548 (2016). M. Sanz, M. Trusiak, J. García, and V. Micó, "Variable zoom digital in-line holographic microscopy," Opt. Lasers Eng. 127, (2020). N. I. Lewis, X. Wenbo, S. K. Jericho, H. J. Kreuzer, M. H. Jericho, and A. D. Cembella, "Swimming speed of three species of Alexandrium (Dinophyceae) as determined by digital in-line holography," Phycologia 45, 61–70 (2006). E. Hecht, Optics, 4th ed. (Addison Wesley Publishing Company, 2002). J. W. Goodman, Statistical Optics, 1st ed. (Wiley, 2000). S. Grare, "Compact, low-cost Blu-Ray pickup-based digital holographic microscope," Opt. Lasers Eng. 160, 107272 (2023). V. Bianco, P. Memmolo, P. Carcagnì, F. Merola, M. Paturzo, C. Distante, and P. Ferraro, "Microplastic Identification via Holographic Imaging and Machine Learning," Adv. Intell. Syst. 2, 1900153 (2020). J. Maycock, C. P. McElhinney, B. M. Hennelly, T. J. Naughton, J. B. McDonald, and B. Javidi, "Reconstruction of partially occluded objects encoded in three-dimensional scenes by using digital holograms," Appl. Opt. 45, 2975–2985 (2006). B. Javidi, R. Ponce-Díaz, and S.-H. Hong, "Three-dimensional recognition of occluded objects by using computational integral imaging," Opt. Lett. 31, 1106 (2006). P. Hariharan, Optical Holography: Principles, Techniques, and Applications, 2nd ed. (Cambridge University Press, 1996). J. P. Lewis, "Fast Template Matching," in Vision Interface 95 (Canadian Image Processing and Pattern Recognition Society, Quebec City, Canada, May 15-19, 1995), pp. 120–123. J. Garcia-Sucerquia, D. Alvarez-Palacio, and J. Kreuzer, "Digital In-line Holographic Microscopy of Colloidal Systems of Microspheres," in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings, OSA, ed. (OSA, 2007). A. E. Siegman, Lasers, 1st ed. (University Science Books, 1986). K. Levenberg, "A method for the solution of certain non-linear problems in least squares," Q. Appl. Math. 2, 164–168 (1944). D. Gabor, "Microscopy by reconstructed wave-fronts," in Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences (1949), pp. 454–487. R. A. Frazor and W. S. Geisler, "Local luminance and contrast in natural images," Vision Res. 46, 1585–1598 (2006). |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
75 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Ciencias - Maestría en Ingeniería Física |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Medellín |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86021/5/license.txt https://repositorio.unal.edu.co/bitstream/unal/86021/6/1128463401.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/86021/7/1128463401.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 6a8b2e0000e466f1b6fea112b05e118e 0a8df56fc44ef228820a9b31868a28d0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089993937747968 |
spelling |
Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Garcia Sucerquia, Jorge Iván9abcfec4c472c35538dbd2e015e2e0cbZapata Valencia, Samuel Ignaciob3d25ddb2a226fd0d02aa6a321d3782bOptica y Procesamiento Opto-Digitalhttps://orcid.org/0000-0002-0924-3776Zapata-Valencia, Samuel I. [:0000-0002-0924-3776]https://www.researchgate.net/profile/Samuel-Zapata-Valenciahttps://scholar.google.com/citations?user=om9YndgAAAAJ&hl=en2024-05-03T13:26:18Z2024-05-03T13:26:18Z2023https://repositorio.unal.edu.co/handle/unal/86021Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Digital Lensless Holographic Microscopy (DLHM) is an imaging technique that has been used to visualize micrometer-sized samples. The simplicity of the required hardware, the adaptability of digital processing, and its label-free attribute have positioned it as an attractive, portable, and cost-effective alternative for observing microscopic biological samples. Despite the simplicity of its implementation, the hardware used to record the digital holograms has limitations that directly affect the visualization of biological samples. In this master’s thesis in Engineering Physics, the identified limitations of the DLHM hardware and their impact on the visualization of micrometer-sized objects are studied. An improvement of those limitations is proposed by implementing opto-numerical methods, which are tested by visualizing biosamples. Given the importance of the Numerical Aperture (NA) for the performance of DLHM, a method for characterizing and validating the NA of propagating beam illuminations is developed. A method for expanding the field of view of the visualized samples is presented. Finally, a multiview method for correcting DLHM in-line holograms is proposed to eliminate illumination artifacts inherited from the illumination source, and also to recover the information of occluded structured samples visualized in DLHM. The results were reported on two manuscripts already published in indexed journals of international circulations and five proceedings or submitted abstracts of presentations at international conferences.La Microscopía Holográfica Digital sin Lentes (DLHM) es una técnica de imagen que ha sido utilizada para la visualización de muestras de tamaño micrométrico. La simplicidad en el hardware requerido, la adaptabilidad en el procesamiento digital y la no necesidad de marcadores la han posicionado como una alternativa atractiva, portable y eficiente en términos de costos para la visualización de muestras biológicas micrométricas. A pesar de la simplicidad en su implementación, los componentes de hardware utilizados para capturar los hologramas digitales tienen limitaciones que afectan directamente la correcta visualización de muestras. En la presente tesis de maestría en Ingeniería Física, se estudian las limitaciones en el hardware de DLHM y su impacto para la visualización de objetos microscópicos. A su vez, se proponen mejoras a estas limitaciones por medio de la implementación de métodos opto-numéricos los cuales son validados por la visualización de muestras biológicas. Dada la importancia de la apertura numérica (NA) para el rendimiento en DLHM, se presenta un método para la caracterización y validación de la NA en haces de luz. Se propone además un método para la expansión del campo de visión de los objetos observados. Finalmente, se propone un método para corregir los hologramas en línea de DLHM con el fin de eliminar artefactos inherentes a la fuente de iluminación y también para recuperar la información de objetos con estructura visualizados en DLHM. Además de esto, adjuntos con esta tesis se encuentran dos manuscritos publicados en revistas indexadas de circulación internacional y 5 resúmenes aprobados o actas de congresos internacionales, donde los resultados de esta tesis fueron presentados. (tomado de la fuente)MaestríaMágister en Ingeniería FísicaÁrea Curricular en Física75 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Ciencias - Maestría en Ingeniería FísicaFacultad de CienciasMedellínUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::621 - Física aplicada530 - Físicamicroscopía holográfica digital sin lenteslimitaciones de DLHMapertura numéricacampo de visiónartefactos en la iluminaciónoclusionesdigital lensless holographic microscopyDLHM limitationsnumerical aperturefield of viewillumination artifactsocclusionsMicroscopia ópticaLentesHologramaImprovement of digital lensless holographic microscopy for the visualization of biosamplesMejoramiento en la visualización de muestras biológicas en microscopía holográfica digital sin lentesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMJ. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, "Digital in-line holographic microscopy," Appl. Opt. 45, 836 (2006).H. Tobon-Maya, S. I. Zapata-Valencia, E. Zora-Guzmán, C. Buitrago-Duque, and J. Garcia-Sucerquia, "Open-source, cost-effective, portable, 3D-printed digital lensless holographic microscope," Appl. Opt. 60, A205 (2021).C. Trujillo, P. Piedrahita-Quintero, and J. Garcia-Sucerquia, "Digital lensless holographic microscopy: numerical simulation and reconstruction with ImageJ," Appl. Opt. 59, 5788 (2020).J. F. Restrepo and J. Garcia-Sucerquia, "Magnified reconstruction of digitally recorded holograms by Fresnel-Bluestein transform," Appl. Opt. 49, 6430–6435 (2010).C. Buitrago-Duque and J. Garcia-Sucerquia, "Non-approximated Rayleigh–Sommerfeld diffraction integral: advantages and disadvantages in the propagation of complex wave fields," Appl. Opt. 58, G11 (2019).P. Ferraro, A. Wax, and Z. Zalevsky, eds., Coherent Light Microscopy, Springer Series in Surface Sciences (Springer Berlin Heidelberg, 2011), Vol. 46.W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital in-line holography for biological applications," Proc. Natl. Acad. Sci. 98, 11301–11305 (2002).B. Ghosh and K. Agarwal, "Viewing life without labels under optical microscopes," Commun. Biol. 6, (2023).J. A. Picazo-Bueno, K. Trindade, M. Sanz, and V. Micó, "Design, Calibration, and Application of a Robust, Cost-Effective, and High-Resolution Lensless Holographic Microscope," Sensors 22, 553 (2022).M. Sanz, J. A. Picazo-Bueno, J. García, and V. Micó, "Improved quantitative phase imaging in lensless microscopy by single-shot multi-wavelength illumination using a fast convergence algorithm," Opt. Express (2015).H. Tobón-Maya, A. Gómez-Ramírez, C. Buitrago-Duque, and J. Garcia-Sucerquia, "Adapting a Blu-ray optical pickup unit as a point source for digital lensless holographic microscopy," Appl. Opt. 62, D39 (2023).C. Buitrago-Duque, B. Patiño-Jurado, and J. Garcia-Sucerquia, "Robust and compact digital Lensless Holographic microscope for Label-Free blood smear imaging," HardwareX 13, e00408 (2023).B. Patiño-Jurado, J. F. Botero-Cadavid, and J. Garcia-Sucerquia, "Cone-shaped optical fiber tip for cost-effective digital lensless holographic microscopy," Appl. Opt. 59, 2969 (2020).B. Patiño-Jurado, J. F. Botero-Cadavid, and J. Garcia-Sucerquia, "Step-Index Optical Fibers with 0.88 Numerical Aperture," J. Light. Technol. 37, 3734–3739 (2019).M. J. Lopera and C. Trujillo, "Holographic point source for digital lensless holographic microscopy," Opt. Lett. 47, 2862 (2022).A. A. Adeyemi and T. E. Darcie, "Expansion of field of view in digital in-line holography with a programmable point source," Appl. Opt. 48, 3291–3301 (2009).H. Tobon-Maya, C. Trujillo, and J. Garcia-Sucerquia, "Preprocessing in digital lensless holographic microscopy for intensity reconstructions with enhanced contrast," Appl. Opt. 60, A215 (2021).W. Xu, M. H. Jericho, H. J. Kreuzer, and I. A. Meinertzhagen, "Tracking particles in four dimensions with in-line holographic microscopy," Opt. Lett. 28, 164 (2003).A. Buades, B. Coll, and J.-M. Morel, "A Non-Local Algorithm for Image Denoising," in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) (IEEE, n.d.), pp. 60–65.K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, Image Denoising with Block-Matching and 3D Filtering (2006).J. J. Barton, "Photoelectron holography = holography + photoelectron diffraction," J. Electron Spectros. Relat. Phenomena 51, 37–53 (1990).S. K. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. H. Jericho, and H. J. J. Kreuzer, "Submersible digital in-line holographic microscope," Rev. Sci. Instrum. 77, 43706–43710 (2006).S. K. Jericho, P. Klages, J. Nadeau, E. M. Dumas, M. H. Jericho, and H. J. Kreuzer, "In-line digital holographic microscopy for terrestrial and exobiological research," Planet. Space Sci. 58, 701–705 (2010).J. S. Underkoffler, "Occlusion Processing and Smooth Surface Shading for Fully Computed Synthetic Holography," Pract. Hologr. XI Hologr. Mater. III 3011, 19–30 (1997).S. I. Zapata-Valencia, H. Tobon-Maya, and J. García-Sucerquia, "Automatic method to measure the numerical aperture of a propagating Gaussian light beam," Opt. Pura y Apl. 55, 1–8 (2022).S. I. Zapata-Valencia, H. Tobon-Maya, and J. Garcia-Sucerquia, "Image enhancement and field of view enlargement in digital lensless holographic microscopy by multi-shot imaging," J. Opt. Soc. Am. A 40, C150 (2023).S. I. Zapata-Valencia, H. Tobon-Maya, and J. Garcia-Sucerquia, Método Automático Para La Medición de La Apertura Numérica de Haces de Luz Gaussianos. (2021).S. I. Zapata-Valencia, H. Tobon-Maya, C. Buitrago-Duque, and J. Garcia-Sucerquia, "Cost-effective digital lensless holographic microscope," in OSA Imaging and Applied Optics Congress 2021 (3D, COSI, DH, ISA, PcAOP) (Optica Publishing Group, 2021), Vol. 60, p. DW4C.3.S. I. Zapata-Valencia and J. Garcia-Sucerquia, "Improvement of the image reconstruction in digital lensless holographic microscopy by scanning of the sample plane," in Latin America Optics and Photonics (LAOP) Conference 2022 (Optica Publishing Group, 2022), p. W1D.2.S. I. Zapata-Valencia, H. Tobon-Maya, and J. Garcia-Sucerquia, Removal of Perturbations from Optical-Pickup-Unit-Based Illumination for Digital Lensless Holographic Microscopy (2023).S. I. Zapata-Valencia, H. Tobon-Maya, and J. Garcia-Sucerquia, Recovery of Occluded Objects in Digital Lensless Holographic (2023).D. Gabor, "A new microscopic principle," Nature 161, 777–778 (1948).J. F. Restrepo and J. Garcia-Sucerquia, "Diffraction-based modeling of high-numerical-aperture in-line lensless holograms," Appl. Opt. 50, 1745 (2011).U. Schnars and W. P. O. Jueptner, "Digital recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, 85–101 (2002).L. Repetto, F. Pellistri, E. Piano, and C. Pontiggia, "Gabor’s hologram in a modern perspective," Am. J. Phys. 72, 964–967 (2004).J. W. Goodman, Introduction to Fourier Optics, 3rd Editio (Roberst & Company Publishers, 2005).M. J. Lopera and C. Trujillo, "Linear diattenuation imaging of biological samples with digital lensless holographic microscopy," Appl. Opt. 61, B77 (2022).J. Garcia-Sucerquia, "Color lensless digital holographic microscopy with micrometer resolution," Opt. Lett. 37, 1724 (2012).E. Serabyn, K. Liewer, C. Lindensmith, K. Wallace, and J. Nadeau, "Compact, lensless digital holographic microscope for remote microbiology," Opt. Express 24, 28540–28548 (2016).M. Sanz, M. Trusiak, J. García, and V. Micó, "Variable zoom digital in-line holographic microscopy," Opt. Lasers Eng. 127, (2020).N. I. Lewis, X. Wenbo, S. K. Jericho, H. J. Kreuzer, M. H. Jericho, and A. D. Cembella, "Swimming speed of three species of Alexandrium (Dinophyceae) as determined by digital in-line holography," Phycologia 45, 61–70 (2006).E. Hecht, Optics, 4th ed. (Addison Wesley Publishing Company, 2002).J. W. Goodman, Statistical Optics, 1st ed. (Wiley, 2000).S. Grare, "Compact, low-cost Blu-Ray pickup-based digital holographic microscope," Opt. Lasers Eng. 160, 107272 (2023).V. Bianco, P. Memmolo, P. Carcagnì, F. Merola, M. Paturzo, C. Distante, and P. Ferraro, "Microplastic Identification via Holographic Imaging and Machine Learning," Adv. Intell. Syst. 2, 1900153 (2020).J. Maycock, C. P. McElhinney, B. M. Hennelly, T. J. Naughton, J. B. McDonald, and B. Javidi, "Reconstruction of partially occluded objects encoded in three-dimensional scenes by using digital holograms," Appl. Opt. 45, 2975–2985 (2006).B. Javidi, R. Ponce-Díaz, and S.-H. Hong, "Three-dimensional recognition of occluded objects by using computational integral imaging," Opt. Lett. 31, 1106 (2006).P. Hariharan, Optical Holography: Principles, Techniques, and Applications, 2nd ed. (Cambridge University Press, 1996).J. P. Lewis, "Fast Template Matching," in Vision Interface 95 (Canadian Image Processing and Pattern Recognition Society, Quebec City, Canada, May 15-19, 1995), pp. 120–123.J. Garcia-Sucerquia, D. Alvarez-Palacio, and J. Kreuzer, "Digital In-line Holographic Microscopy of Colloidal Systems of Microspheres," in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings, OSA, ed. (OSA, 2007).A. E. Siegman, Lasers, 1st ed. (University Science Books, 1986).K. Levenberg, "A method for the solution of certain non-linear problems in least squares," Q. Appl. Math. 2, 164–168 (1944).D. Gabor, "Microscopy by reconstructed wave-fronts," in Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences (1949), pp. 454–487.R. A. Frazor and W. S. Geisler, "Local luminance and contrast in natural images," Vision Res. 46, 1585–1598 (2006).202010034333-NANOSCOPIA INTERFEROMÉTRICA SHEARING PARA LA DETECCIÓN DE BACTERIAS.Universidad Nacional de ColombiaInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86021/5/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD55ORIGINAL1128463401.2023.pdf1128463401.2023.pdfTesis de Maestría en Ingeniería Físicaapplication/pdf2989733https://repositorio.unal.edu.co/bitstream/unal/86021/6/1128463401.2023.pdf6a8b2e0000e466f1b6fea112b05e118eMD56THUMBNAIL1128463401.2023.pdf.jpg1128463401.2023.pdf.jpgGenerated Thumbnailimage/jpeg4976https://repositorio.unal.edu.co/bitstream/unal/86021/7/1128463401.2023.pdf.jpg0a8df56fc44ef228820a9b31868a28d0MD57unal/86021oai:repositorio.unal.edu.co:unal/860212024-05-04 23:51:45.275Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |