Uncertainty propagation of meteorological and emission data in modeling pollutant dispersion in the atmosphere

Variability is true heterogeneity existing within a population that cannot be reduced or eliminated by more or better determinations. Uncertainty represents ignorance about poorly characterized phenomena, but it can be reduced by collecting more data. The aim of this paper was to study the impact of...

Full description

Autores:
Diez, Sebastian
Barra, Enrique
Crespo, Flavia
Britch, Javier
Tipo de recurso:
Article of journal
Fecha de publicación:
2014
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/48970
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/48970
http://bdigital.unal.edu.co/42427/
Palabra clave:
Uncertainty
Variability
Monte Carlo
PM10
Incertidumbre
Variabilidad
Monte Carlo.
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_8127d4c90cf031b3162125e7c5fb86ae
oai_identifier_str oai:repositorio.unal.edu.co:unal/48970
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Uncertainty propagation of meteorological and emission data in modeling pollutant dispersion in the atmosphere
title Uncertainty propagation of meteorological and emission data in modeling pollutant dispersion in the atmosphere
spellingShingle Uncertainty propagation of meteorological and emission data in modeling pollutant dispersion in the atmosphere
Uncertainty
Variability
Monte Carlo
PM10
Incertidumbre
Variabilidad
Monte Carlo.
title_short Uncertainty propagation of meteorological and emission data in modeling pollutant dispersion in the atmosphere
title_full Uncertainty propagation of meteorological and emission data in modeling pollutant dispersion in the atmosphere
title_fullStr Uncertainty propagation of meteorological and emission data in modeling pollutant dispersion in the atmosphere
title_full_unstemmed Uncertainty propagation of meteorological and emission data in modeling pollutant dispersion in the atmosphere
title_sort Uncertainty propagation of meteorological and emission data in modeling pollutant dispersion in the atmosphere
dc.creator.fl_str_mv Diez, Sebastian
Barra, Enrique
Crespo, Flavia
Britch, Javier
dc.contributor.author.spa.fl_str_mv Diez, Sebastian
Barra, Enrique
Crespo, Flavia
Britch, Javier
dc.subject.proposal.spa.fl_str_mv Uncertainty
Variability
Monte Carlo
PM10
Incertidumbre
Variabilidad
Monte Carlo.
topic Uncertainty
Variability
Monte Carlo
PM10
Incertidumbre
Variabilidad
Monte Carlo.
description Variability is true heterogeneity existing within a population that cannot be reduced or eliminated by more or better determinations. Uncertainty represents ignorance about poorly characterized phenomena, but it can be reduced by collecting more data. The aim of this paper was to study the impact of the variability and uncertainty of the main variables, i.e., emissions and meteorology, of the PM10 concentration caused by a point source located at Malagueño (Córdoba, Argentina). To perform this analysis, a scheme was developed using the USEPA Industrial Source Complex model algorithms with a Monte Carlo methodology. Using a simulation with one hundred thousand iterations, the concentration distribution was obtained and showed that the uncertainty in wind direction had the greatest impact on the estimates.
publishDate 2014
dc.date.issued.spa.fl_str_mv 2014-07-30
dc.date.accessioned.spa.fl_str_mv 2019-06-29T08:16:18Z
dc.date.available.spa.fl_str_mv 2019-06-29T08:16:18Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/48970
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/42427/
url https://repositorio.unal.edu.co/handle/unal/48970
http://bdigital.unal.edu.co/42427/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv http://revistas.unal.edu.co/index.php/ingeinv/article/view/40596
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Ingeniería e Investigación
Ingeniería e Investigación
dc.relation.ispartofseries.none.fl_str_mv Ingeniería e Investigación; Vol. 34, núm. 2 (2014); 44-48 Ingeniería e Investigación; Vol. 34, núm. 2 (2014); 44-48 2248-8723 0120-5609
dc.relation.references.spa.fl_str_mv Diez, Sebastian and Barra, Enrique and Crespo, Flavia and Britch, Javier (2014) Uncertainty propagation of meteorological and emission data in modeling pollutant dispersion in the atmosphere. Ingeniería e Investigación; Vol. 34, núm. 2 (2014); 44-48 Ingeniería e Investigación; Vol. 34, núm. 2 (2014); 44-48 2248-8723 0120-5609 .
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia - Facultad de Ingeniería
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/48970/1/40596-213674-3-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/48970/2/40596-182987-1-SP.pdf
https://repositorio.unal.edu.co/bitstream/unal/48970/3/40596-182988-1-SP.pdf
https://repositorio.unal.edu.co/bitstream/unal/48970/4/40596-213674-3-PB.pdf.jpg
https://repositorio.unal.edu.co/bitstream/unal/48970/5/40596-182987-1-SP.pdf.jpg
https://repositorio.unal.edu.co/bitstream/unal/48970/6/40596-182988-1-SP.pdf.jpg
bitstream.checksum.fl_str_mv d21c0076f9c637bd21a814291a3447d9
db4e3e05cfc7e46b977abca98c94cfd3
c17491faa725b9a14fcfe63ca137c149
9b2f4424c851f38a57e17362114b0784
117e88f5393d93e34269ab9ce938e282
062796a1881956b2727cc7086e9cd2d0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089257009020928
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Diez, Sebastian5fac54fe-c784-40e2-86be-9d112d165683300Barra, Enrique2bf769cd-1c53-4a8a-b414-ff02370a15be300Crespo, Flavia0a534b4a-4a66-442a-8807-89c7e72112ae300Britch, Javier647966f9-e4c7-423d-ba79-8999ab63e7323002019-06-29T08:16:18Z2019-06-29T08:16:18Z2014-07-30https://repositorio.unal.edu.co/handle/unal/48970http://bdigital.unal.edu.co/42427/Variability is true heterogeneity existing within a population that cannot be reduced or eliminated by more or better determinations. Uncertainty represents ignorance about poorly characterized phenomena, but it can be reduced by collecting more data. The aim of this paper was to study the impact of the variability and uncertainty of the main variables, i.e., emissions and meteorology, of the PM10 concentration caused by a point source located at Malagueño (Córdoba, Argentina). To perform this analysis, a scheme was developed using the USEPA Industrial Source Complex model algorithms with a Monte Carlo methodology. Using a simulation with one hundred thousand iterations, the concentration distribution was obtained and showed that the uncertainty in wind direction had the greatest impact on the estimates.La variabilidad es la heterogeneidad real dentro de una población, que no puede ser reducida ni eliminada por más o mejores determinaciones. La incertidumbre representa la ignorancia acerca de un fenómeno pobremente caracterizado, pero que puede reducirse mediante la recopilación de más datos. El objetivo de este trabajo es estimar la concentración de PM10 provocada por las emisiones de una fuente puntual ubicada en Malagueño (Córdoba, Argentina), considerando la variabilidad y la incertidumbre de la meteorología y las emisiones. Para abordar este análisis fue desarrollado un método que utiliza los algoritmos del modelo Industrial Source Complex de la USEPA junto a la metodología Monte Carlo. Con cien mil iteraciones se obtuvo la distribución de concentraciones, encontrándose que la incertidumbre en la dirección del viento es la de mayor incidencia sobre las estimaciones.application/pdfspaUniversidad Nacional de Colombia - Facultad de Ingenieríahttp://revistas.unal.edu.co/index.php/ingeinv/article/view/40596Universidad Nacional de Colombia Revistas electrónicas UN Ingeniería e InvestigaciónIngeniería e InvestigaciónIngeniería e Investigación; Vol. 34, núm. 2 (2014); 44-48 Ingeniería e Investigación; Vol. 34, núm. 2 (2014); 44-48 2248-8723 0120-5609Diez, Sebastian and Barra, Enrique and Crespo, Flavia and Britch, Javier (2014) Uncertainty propagation of meteorological and emission data in modeling pollutant dispersion in the atmosphere. Ingeniería e Investigación; Vol. 34, núm. 2 (2014); 44-48 Ingeniería e Investigación; Vol. 34, núm. 2 (2014); 44-48 2248-8723 0120-5609 .Uncertainty propagation of meteorological and emission data in modeling pollutant dispersion in the atmosphereArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTUncertaintyVariabilityMonte CarloPM10IncertidumbreVariabilidadMonte Carlo.ORIGINAL40596-213674-3-PB.pdfapplication/pdf515761https://repositorio.unal.edu.co/bitstream/unal/48970/1/40596-213674-3-PB.pdfd21c0076f9c637bd21a814291a3447d9MD5140596-182987-1-SP.pdfapplication/pdf411391https://repositorio.unal.edu.co/bitstream/unal/48970/2/40596-182987-1-SP.pdfdb4e3e05cfc7e46b977abca98c94cfd3MD5240596-182988-1-SP.pdfapplication/pdf368981https://repositorio.unal.edu.co/bitstream/unal/48970/3/40596-182988-1-SP.pdfc17491faa725b9a14fcfe63ca137c149MD53THUMBNAIL40596-213674-3-PB.pdf.jpg40596-213674-3-PB.pdf.jpgGenerated Thumbnailimage/jpeg9027https://repositorio.unal.edu.co/bitstream/unal/48970/4/40596-213674-3-PB.pdf.jpg9b2f4424c851f38a57e17362114b0784MD5440596-182987-1-SP.pdf.jpg40596-182987-1-SP.pdf.jpgGenerated Thumbnailimage/jpeg6671https://repositorio.unal.edu.co/bitstream/unal/48970/5/40596-182987-1-SP.pdf.jpg117e88f5393d93e34269ab9ce938e282MD5540596-182988-1-SP.pdf.jpg40596-182988-1-SP.pdf.jpgGenerated Thumbnailimage/jpeg6220https://repositorio.unal.edu.co/bitstream/unal/48970/6/40596-182988-1-SP.pdf.jpg062796a1881956b2727cc7086e9cd2d0MD56unal/48970oai:repositorio.unal.edu.co:unal/489702023-11-06 23:15:20.152Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co