Construction of the Design Matrix for Generalized Linear Mixed-Effects Models in the Context of Clinical Trials of Treatment Sequences
The problem of constructing a design matrix of full rank for generalized linear mixed-effects models (GLMMs) has not been addressed in statistical literature in the context of clinical trials of treatment sequences. Solving this problem is important because the most popular estimation methods for GL...
- Autores:
-
Diaz, Francisco J.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2018
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/66485
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/66485
http://bdigital.unal.edu.co/67513/
- Palabra clave:
- 51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
Augmented regression
robust fixed-effects estimators
generalized least squares
maximum likelihood
quasi-likelihood
random effects linear models
Cuasi-verosimilitud
diseño cruzado
efectos de arrastre
estimabilidad
estimadores robustos de efectos fijos
identificabilidad
inversas generalizadas
matriz de diseño
máxima verosimilitud
mínimos cuadrados generalizados
modelos lineales de efectos
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_810b618acbc8f14b19b475216b0a9e99 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/66485 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Construction of the Design Matrix for Generalized Linear Mixed-Effects Models in the Context of Clinical Trials of Treatment Sequences |
title |
Construction of the Design Matrix for Generalized Linear Mixed-Effects Models in the Context of Clinical Trials of Treatment Sequences |
spellingShingle |
Construction of the Design Matrix for Generalized Linear Mixed-Effects Models in the Context of Clinical Trials of Treatment Sequences 51 Matemáticas / Mathematics 31 Colecciones de estadística general / Statistics Augmented regression robust fixed-effects estimators generalized least squares maximum likelihood quasi-likelihood random effects linear models Cuasi-verosimilitud diseño cruzado efectos de arrastre estimabilidad estimadores robustos de efectos fijos identificabilidad inversas generalizadas matriz de diseño máxima verosimilitud mínimos cuadrados generalizados modelos lineales de efectos |
title_short |
Construction of the Design Matrix for Generalized Linear Mixed-Effects Models in the Context of Clinical Trials of Treatment Sequences |
title_full |
Construction of the Design Matrix for Generalized Linear Mixed-Effects Models in the Context of Clinical Trials of Treatment Sequences |
title_fullStr |
Construction of the Design Matrix for Generalized Linear Mixed-Effects Models in the Context of Clinical Trials of Treatment Sequences |
title_full_unstemmed |
Construction of the Design Matrix for Generalized Linear Mixed-Effects Models in the Context of Clinical Trials of Treatment Sequences |
title_sort |
Construction of the Design Matrix for Generalized Linear Mixed-Effects Models in the Context of Clinical Trials of Treatment Sequences |
dc.creator.fl_str_mv |
Diaz, Francisco J. |
dc.contributor.author.spa.fl_str_mv |
Diaz, Francisco J. |
dc.subject.ddc.spa.fl_str_mv |
51 Matemáticas / Mathematics 31 Colecciones de estadística general / Statistics |
topic |
51 Matemáticas / Mathematics 31 Colecciones de estadística general / Statistics Augmented regression robust fixed-effects estimators generalized least squares maximum likelihood quasi-likelihood random effects linear models Cuasi-verosimilitud diseño cruzado efectos de arrastre estimabilidad estimadores robustos de efectos fijos identificabilidad inversas generalizadas matriz de diseño máxima verosimilitud mínimos cuadrados generalizados modelos lineales de efectos |
dc.subject.proposal.spa.fl_str_mv |
Augmented regression robust fixed-effects estimators generalized least squares maximum likelihood quasi-likelihood random effects linear models Cuasi-verosimilitud diseño cruzado efectos de arrastre estimabilidad estimadores robustos de efectos fijos identificabilidad inversas generalizadas matriz de diseño máxima verosimilitud mínimos cuadrados generalizados modelos lineales de efectos |
description |
The problem of constructing a design matrix of full rank for generalized linear mixed-effects models (GLMMs) has not been addressed in statistical literature in the context of clinical trials of treatment sequences. Solving this problem is important because the most popular estimation methods for GLMMs assume a design matrix of full rank, and GLMMs are useful tools in statistical practice. We propose new developments in GLMMs that address this problem. We present a new model for the design and analysis of clinical trials of treatment sequences, which utilizes some special sequences called skip sequences. We present a theorem showing that estimators computed through quasi-likelihood, maximum likelihood or generalized least squares, or through robust approaches, exist only if appropriate skip sequences are used. We prove theorems that establish methods for implementing skip sequences in practice. In particular, one of these theorems computes the necessary skip sequences explicitly. Our new approach allows building design matrices of full rank and facilitates the implementation of regression models in the experimental design and data analysis of clinical trials of treatment sequences. We also explain why the standard approach to constructing dummy variables is inappropriate in studies of treatment sequences. The methods are illustrated with a data analysis of the STAR*D study of sequences of treatments for depression. |
publishDate |
2018 |
dc.date.issued.spa.fl_str_mv |
2018-07-01 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-03T02:13:09Z |
dc.date.available.spa.fl_str_mv |
2019-07-03T02:13:09Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
ISSN: 2389-8976 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/66485 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/67513/ |
identifier_str_mv |
ISSN: 2389-8976 |
url |
https://repositorio.unal.edu.co/handle/unal/66485 http://bdigital.unal.edu.co/67513/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
https://revistas.unal.edu.co/index.php/estad/article/view/63332 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Estadística Revista Colombiana de Estadística |
dc.relation.references.spa.fl_str_mv |
Diaz, Francisco J. (2018) Construction of the Design Matrix for Generalized Linear Mixed-Effects Models in the Context of Clinical Trials of Treatment Sequences. Revista Colombiana de Estadística, 41 (2). pp. 191-233. ISSN 2389-8976 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Estadística |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/66485/1/63332-390960-1-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/66485/2/63332-390960-1-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
2980e65b00bf6db26f7598a848645ca0 70105e07a6e718fb92e99342cfd09656 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089895171325952 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Diaz, Francisco J.7f6eb4be-0dd4-4828-9bbd-5fd118f995e73002019-07-03T02:13:09Z2019-07-03T02:13:09Z2018-07-01ISSN: 2389-8976https://repositorio.unal.edu.co/handle/unal/66485http://bdigital.unal.edu.co/67513/The problem of constructing a design matrix of full rank for generalized linear mixed-effects models (GLMMs) has not been addressed in statistical literature in the context of clinical trials of treatment sequences. Solving this problem is important because the most popular estimation methods for GLMMs assume a design matrix of full rank, and GLMMs are useful tools in statistical practice. We propose new developments in GLMMs that address this problem. We present a new model for the design and analysis of clinical trials of treatment sequences, which utilizes some special sequences called skip sequences. We present a theorem showing that estimators computed through quasi-likelihood, maximum likelihood or generalized least squares, or through robust approaches, exist only if appropriate skip sequences are used. We prove theorems that establish methods for implementing skip sequences in practice. In particular, one of these theorems computes the necessary skip sequences explicitly. Our new approach allows building design matrices of full rank and facilitates the implementation of regression models in the experimental design and data analysis of clinical trials of treatment sequences. We also explain why the standard approach to constructing dummy variables is inappropriate in studies of treatment sequences. The methods are illustrated with a data analysis of the STAR*D study of sequences of treatments for depression.La estimación de los efectos de arrastre es un problema difícil en el diseño y análisis de ensayos clínicos de secuencias de tratamientos, incluyendo ensayos cruzados. Excepto por diseños simples, estos efectos son usualmente no identificables y, por lo tanto, no estimables. La imposición de restricciones a los parámetros es a menudo no justificada y produce diferentes estimativos de los efectos de arrastre dependiendo de la restricción impuesta. Las inversas generalizadas o el balance de tratamientos a menudo permiten estimar losefectos principales de tratamiento, pero no resuelven el problema de estimar la contribución de los efectos de arrastre de una secuencia de tratamiento. Además, los períodos de lavado no siempre son factibles o éticos. Los diseños con parámetros no identificables comúnmente tienen matrices de diseño que no son de rango completo. Por lo tanto, proponemos métodos para la construcción de matrices de rango completo, sin imponer restricciones artificiales en los efectos de arrastre. Nuestros métodos son aplicables en un contextode modelos lineales mixtos generalizados. Presentamos un nuevo modelo para el diseño y análisis de ensayos clínicos de secuencias de tratamientos, llamado Sistema Anticrónico, e introducimos secuencias de tratamiento especiales llamadas Secuencias de Salto. Demostramos que los efectos de arrastre son identificables sólo si se usan Secuencias de Salto apropiadas. Explicamos cómo implementar en la práctica estas secuencias, y presentamos un método para calcular las secuencias apropiadas. Presentamos aplicaciones al diseño de un estudio cruzado con 3 tratamientos y 3 períodos, y al análisis del estudio STAR*D de secuencias de tratamientos para la depresión.application/pdfspaUniversidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Estadísticahttps://revistas.unal.edu.co/index.php/estad/article/view/63332Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de EstadísticaRevista Colombiana de EstadísticaDiaz, Francisco J. (2018) Construction of the Design Matrix for Generalized Linear Mixed-Effects Models in the Context of Clinical Trials of Treatment Sequences. Revista Colombiana de Estadística, 41 (2). pp. 191-233. ISSN 2389-897651 Matemáticas / Mathematics31 Colecciones de estadística general / StatisticsAugmented regressionrobust fixed-effects estimatorsgeneralized least squaresmaximum likelihoodquasi-likelihoodrandom effects linear modelsCuasi-verosimilituddiseño cruzadoefectos de arrastreestimabilidadestimadores robustos de efectos fijosidentificabilidadinversas generalizadasmatriz de diseñomáxima verosimilitudmínimos cuadrados generalizadosmodelos lineales de efectosConstruction of the Design Matrix for Generalized Linear Mixed-Effects Models in the Context of Clinical Trials of Treatment SequencesArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL63332-390960-1-PB.pdfapplication/pdf909341https://repositorio.unal.edu.co/bitstream/unal/66485/1/63332-390960-1-PB.pdf2980e65b00bf6db26f7598a848645ca0MD51THUMBNAIL63332-390960-1-PB.pdf.jpg63332-390960-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg6235https://repositorio.unal.edu.co/bitstream/unal/66485/2/63332-390960-1-PB.pdf.jpg70105e07a6e718fb92e99342cfd09656MD52unal/66485oai:repositorio.unal.edu.co:unal/664852023-05-25 23:02:54.063Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |