Evaluación de la adición de Bacillus subtillis en un modelo de inflamación aguda intestinal en pollos de engorde
Ilustraciones a color
- Autores:
-
Rodríguez González, Sandra Paola
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/83280
- Palabra clave:
- 590 - Animales
Avicultura
Mucinas
Pollos de engorde
Antibióticos
Disbiosis
Interleuquinas
Mucina
Microbiota intestinal
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_80c2bc82cb5d23fb015639b00ee37493 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/83280 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.none.fl_str_mv |
Evaluación de la adición de Bacillus subtillis en un modelo de inflamación aguda intestinal en pollos de engorde |
dc.title.translated.none.fl_str_mv |
Evaluation of the addition of Bacillus subtillis in a model of acute intestinal inflammation in broilers |
title |
Evaluación de la adición de Bacillus subtillis en un modelo de inflamación aguda intestinal en pollos de engorde |
spellingShingle |
Evaluación de la adición de Bacillus subtillis en un modelo de inflamación aguda intestinal en pollos de engorde 590 - Animales Avicultura Mucinas Pollos de engorde Antibióticos Disbiosis Interleuquinas Mucina Microbiota intestinal |
title_short |
Evaluación de la adición de Bacillus subtillis en un modelo de inflamación aguda intestinal en pollos de engorde |
title_full |
Evaluación de la adición de Bacillus subtillis en un modelo de inflamación aguda intestinal en pollos de engorde |
title_fullStr |
Evaluación de la adición de Bacillus subtillis en un modelo de inflamación aguda intestinal en pollos de engorde |
title_full_unstemmed |
Evaluación de la adición de Bacillus subtillis en un modelo de inflamación aguda intestinal en pollos de engorde |
title_sort |
Evaluación de la adición de Bacillus subtillis en un modelo de inflamación aguda intestinal en pollos de engorde |
dc.creator.fl_str_mv |
Rodríguez González, Sandra Paola |
dc.contributor.advisor.none.fl_str_mv |
Parra Suescún, Jaime Eduardo López Herrera, Albeiro |
dc.contributor.author.none.fl_str_mv |
Rodríguez González, Sandra Paola |
dc.contributor.researchgroup.spa.fl_str_mv |
Biodiversidad y Génetica Molecular "Biogem" |
dc.contributor.orcid.spa.fl_str_mv |
0000-0002-1037-7843 |
dc.contributor.cvlac.spa.fl_str_mv |
RODRÍGUEZ GONZÁLEZ, SANDRA PAOLA |
dc.subject.ddc.spa.fl_str_mv |
590 - Animales |
topic |
590 - Animales Avicultura Mucinas Pollos de engorde Antibióticos Disbiosis Interleuquinas Mucina Microbiota intestinal |
dc.subject.lemb.none.fl_str_mv |
Avicultura Mucinas Pollos de engorde |
dc.subject.proposal.spa.fl_str_mv |
Antibióticos Disbiosis Interleuquinas Mucina Microbiota intestinal |
description |
Ilustraciones a color |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-09-15 |
dc.date.accessioned.none.fl_str_mv |
2023-02-03T15:59:31Z |
dc.date.available.none.fl_str_mv |
2023-02-03T15:59:31Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/83280 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/83280 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
LaReferencia |
dc.relation.references.spa.fl_str_mv |
Abd El-Hack, M. E., El-Saadony, M. T., Elbestawy, A. R., El-Shall, N. A., Saad, A. M., Salem, H. M., … El-Tarabily, K. A. (2022). Necrotic enteritis in broiler chickens: disease characteristics and prevention using organic antibiotic alternatives – a comprehensive review. Poultry Science, 101(2), 101590. https://doi.org/10.1016/j.psj.2021.101590 Abdel-Moneim, A. M. E., Selim, D. A., Basuony, H. A., Sabic, E. M., Saleh, A. A., & Ebeid, T. A. (2020). Effect of dietary supplementation of Bacillus subtilis spores on growth performance, oxidative status, and digestive enzyme activities in Japanese quail birds. Tropical Animal Health and Production, 52(2), 671–680. https://doi.org/10.1007/s11250-019-02055-1 Adhikari, P. A., & Kim, W. K. (2017). Overview of Prebiotics and Probiotics: Focus on Performance, Gut Health and Immunity – A Review. Annals of Animal Science, 17(4), 949–966. https://doi.org/10.1515/aoas-2016-0092 Alizadeh, M., Yitbarek, A., Sharif, S., Crow, G., & Slominski, B. A. (2017). Effect of yeast-derived products on systemic innate immune response of broiler chickens following a lipopolysaccharide challenge, (October), 2266–2273. Allaire, J. M., Crowley, S. M., Law, H. T., Chang, S. Y., Ko, H. J., & Vallance, B. A. (2018). The Intestinal Epithelium: Central Coordinator of Mucosal Immunity. Trends in Immunology, 39(9), 677–696. https://doi.org/10.1016/j.it.2018.04.002 Arenas, N. E., & Melo, V. M. (2018). Producción pecuaria y emergencia de antibiótico resistencia en Colombia : Revisión sistemática, 22(2), 110–119. Arendt, M., Elissa, J., Schmidt, N., Michael, E., Potter, N., Cook, M., & Knoll, L. J. (2019). Investigating the role of interleukin 10 on Eimeria intestinal pathogenesis in broiler chickens. Veterinary Immunology and Immunopathology, 218(January), 109934. https://doi.org/10.1016/j.vetimm.2019.109934 Attia, Y. A., Al-Khalaifah, H., Abd El-Hamid, H. S., Al-Harthi, M. A., & El-shafey, A. A. (2020). Effect of Different Levels of Multienzymes on Immune Response, Blood Hematology and Biochemistry, Antioxidants Status and Organs Histology of Broiler Chicks Fed Standard and Low-Density Diets. Frontiers in Veterinary Science, 6(February), 1–15. https://doi.org/10.3389/fvets.2019.00510 Azimirad, M., Alebouyeh, M., & Naji, T. (2017). Inhibition of Lipopolysaccharide-Induced Interleukin 8 in Human Adenocarcinoma Cell Line HT-29 by Spore Probiotics: B. coagulans and B. subtilis (natto). Probiotics and Antimicrobial Proteins, 9(1), 56–63. https://doi.org/10.1007/s12602-016-9234-x Bai, K., Feng, C., Jiang, L., Zhang, L., Zhang, J., Zhang, L., & Wang, T. (2018). Dietary effects of Bacillus subtilis fmbj on growth performance, small intestinal morphology, and its antioxidant capacity of broilers. Poultry Science, 97(7), 2312–2321. https://doi.org/10.3382/ps/pey116 Bakshani, C. R., Morales-Garcia, A. L., Althaus, M., Wilcox, M. D., Pearson, J. P., Bythell, J. C., & Burgess, J. G. (2018). Evolutionary conservation of the antimicrobial function of mucus: A first defence against infection. Npj Biofilms and Microbiomes. https://doi.org/10.1038/s41522-018-0057-2 Baldwin, S., Hughes, R. J., Van, T. T. H., Moore, R. J., & Stanley, D. (2018a). At-hatch administration of probiotic to chickens can introduce beneficial changes in gut microbiota. PLoS ONE, 13(3), 1–14. https://doi.org/10.1371/journal.pone.0194825 Ballou, A. L., Ali, R. A., Mendoza, M. A., Ellis, J. C., Hassan, H. M., Croom, W. J., & Koci, M. D. (2016). Development of the chick microbiome: How early exposure influences future microbial diversity. Frontiers in Veterinary Science, 3(JAN), 1–12. https://doi.org/10.3389/fvets.2016.00002 Bansil, R., & Turner, B. S. (2017). The biology of mucus: Composition, synthesis and organization. Advanced Drug Delivery Reviews. https://doi.org/10.1016/j.addr.2017.09.023 Barrera, M. H., Rodríguez, S. P., & Torres, G. (2014). Efectos de la adición de ácido cítrico y un probiótico comercial en el agua de bebida, sobre la morfometría del duodeno y parámetros zootécnicos en pollo de engorde. Orinoquia, 18(2). Retrieved from http://www.scielo.org.co/pdf/rori/v18n2/v18n2a05.pdf Beirão, B. C. B., Ingberman, M., Mesa, D., Salles, G. B. C., Muniz, E. C., & Caron, L. F. (2021). Effects of aroA deleted E. coli vaccine on intestinal microbiota and mucosal immunity. Comparative Immunology, Microbiology and Infectious Diseases, 75(January). https://doi.org/10.1016/j.cimid.2021.101612 Bentley-Hewitt, K. L., Narbad, A., Majsak-Newman, G., Philo, M. R., & Lund, E. K. (2017). Lactobacilli survival and adhesion to colonic epithelial cell lines is dependent on long chain fatty acid exposure. European Journal of Lipid Science and Technology, 119(11), 1–10. https://doi.org/10.1002/ejlt.201700062 Berkhout, M. D., Plugge, C. M., & Belzer, C. (2021). How microbial glycosyl hydrolase activity in the gut mucosa initiates microbial cross-feeding, 1–6. Bohorquez, L. C., Delgado-Serrano, L., López, G., Osorio-Forero, C., Klepac-Ceraj, V., Kolter, R., … Zambrano, M. M. (2012). In-depth Characterization via Complementing Culture-Independent Approaches of the Microbial Community in an Acidic Hot Spring of the Colombian Andes. Microbial Ecology, 63(1), 103–115. https://doi.org/10.1007/s00248-011-9943-3 Bonis, V., Rossell, C., & Gehart, H. (2021). The Intestinal Epithelium – Fluid Fate and Rigid Structure From Crypt Bottom to Villus Tip. Frontiers in Cell and Developmental Biology, 9(May), 1–20. https://doi.org/10.3389/fcell.2021.661931 Borda-Molina, D., Seifert, J., & Camarinha-Silva, A. (2018). Current Perspectives of the Chicken Gastrointestinal Tract and Its Microbiome. Computational and Structural Biotechnology Journal, 16, 131–139. https://doi.org/10.1016/j.csbj.2018.03.002 Borey, M., Estellé, J., Caidi, A., Bruneau, N., Coville, J. L., Hennequet-Antier, C., … Calenge, F. (2020). Broilers divergently selected for digestibility differ for their digestive microbial ecosystems. PLoS ONE, 15(5), 1–21. https://doi.org/10.1371/journal.pone.0232418 Bortoluzzi, C., Fernandes, J. I. M., Doranalli, K., & Applegate, T. J. (2020). Effects of dietary amino acids in ameliorating intestinal function during enteric challenges in broiler chickens. Animal Feed Science and Technology, 262(December), 114383. https://doi.org/10.1016/j.anifeedsci.2019.114383 Broom, L. J. (2018). Gut barrier function: Effects of (antibiotic) growth promoters on key barrier components and associations with growth performance. Poultry Science, (February), 1–7. https://doi.org/10.3382/ps/pey021 Broom, L. J. (2019). Host–microbe interactions and gut health in poultry—Focus on innate responses. Microorganisms, 7(5), 1–12. https://doi.org/10.3390/microorganisms7050139 Burbach, K., Seifert, J., Pieper, D. H., & Camarinha-Silva, A. (2016). Evaluation of DNA extraction kits and phylogenetic diversity of the porcine gastrointestinal tract based on Illumina sequencing of two hypervariable regions. MicrobiologyOpen, 5(1), 70–82. https://doi.org/10.1002/mbo3.312 Calik, A., Ceylan, A., Ekim, B., Adabi, S. G., Dilber, F., Bayraktaroglu, A. G., … Sacakli, P. (2017). The effect of intra-amniotic and posthatch dietary synbiotic administration on the performance, intestinal histomorphology, cecal microbial population, and short-chain fatty acid composition of broiler chickens. Poultry Science, 96(1), 169–183. https://doi.org/10.3382/ps/pew218 Cao, Y., Liu, H., Qin, N., Ren, X., Zhu, B., & Xia, X. (2020). Impact of food additives on the composition and function of gut microbiota: A review. Trends in Food Science and Technology, 99(February), 295–310. https://doi.org/10.1016/j.tifs.2020.03.006 Celi, Verlhac, Calvo, Schmeisser, & K. (2019). Biomarkers of gastrointestinal functionality in animal nutrition and health. Animal Feed Science and Technology, 250(July), 9–31. https://doi.org/10.1016/j.anifeedsci.2018.07.012 Celi, P., Verlhac, V., Pérez Calvo, E., Schmeisser, J., & Kluenter, A. M. (2019). Biomarkers of gastrointestinal functionality in animal nutrition and health. Animal Feed Science and Technology, 250(May 2018), 9–31. https://doi.org/10.1016/j.anifeedsci.2018.07.012 Chase, C. C. L. (2018). Enteric Immunity: Happy Gut, Healthy Animal. Veterinary Clinics of North America - Food Animal Practice, 34(1), 1–18. https://doi.org/10.1016/j.cvfa.2017.10.006 Chávez, L., López, A.,& Parra, J. (2015). La inclusión de cepas probióticas mejora los parámetros inmunológicos en pollos de engorde. Revista CES Medicina Veterinaria y Zootecnia, 10(2), 160–169. Retrieved from http://www.scielo.org.co/pdf/cmvz/v10n2/v10n2a08.pdf Chávez, L. A., López, A., & Parra, J. E. (2016). Crecimiento y desarrollo intestinal de aves de engorde alimentadas con cepas probióticas. Archivos de Zootecnia, 65(249), 51–58. https://doi.org/http://dx.doi.org/10.21071/az.v65i249.441 Chen, C., Huang, X., Fang, S., Yang, H., He, M., Zhao, Y., & Huang, L. (2018). Contribution of Host Genetics to the Variation of Microbial Composition of Cecum Lumen and Feces in Pigs. Frontiers in Microbiology, 9(October), 1–13. https://doi.org/10.3389/fmicb.2018.02626 Chen et al . (2022). Cadmium exposure triggers oxidative stress, necroptosis, Th1/Th2 imbalance and promotes inflammation through the TNF-α/NF-κB pathway in swine small intestine. Journal of Hazardous Materials, 421(January 2021), 126704. https://doi.org/10.1016/j.jhazmat.2021.126704 CIOMS. (2012). INTERNATIONAL GUIDING PRINCIPLES FOR BIOMEDICAL RESEARCH INVOLVING ANIMALS. Retrieved from https://grants.nih.gov/grants/olaw/guiding_principles_2012.pdf Ciro, J., López, A., & Parra, J. (2014). LIPOPOLISACÁRIDOS DE E. coli AUMENTA LA EXPRESIÓN MOLECULAR DE PΒD-2 EN YEYUNO DE LECHONES POSDESTETE., 61(2), 142–152. Ciro, J., López, A., & Parra Jaime. (2015). Adding probiotic strains modulates intestinal mucin secretion in growing pigs ileum. Revista CES Medicina Veterinaria y Zootecnia, 10(102), 150–159. Retrieved from http://www.scielo.org.co/pdf/cmvz/v10n2/v10n2a07.pdf Clavijo, V., & Flórez, M. J. V. (2018). The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production : A review, 1006–1021. https://doi.org/10.3382/ps/pex359 Cobb-Vantress Inc. (2009). Guía de Manejo del Pollo de Engorde. Aviagen, 65. Coleman, O. I., Haller, D., & Haller, D. (2018). Bacterial Signaling at the intestinal epithelial interface in inflammation and Cancer, 8(January), 1–11. https://doi.org/10.3389/fimmu.2017.01927 Constant, D. A., Nice, T. J., & Rauch, I. (2021). Innate immune sensing by epithelial barriers. Current Opinion in Immunology, 73, 1–8. https://doi.org/10.1016/j.coi.2021.07.014 Costa, M. C., Bessegatto, J. A., Alfieri, A. A., Weese, J. S., Filho, J. A. B., & Oba, A. (2017). Different antibiotic growth promoters induce specific changes in the cecal microbiota membership of broiler chicken. PLoS ONE, 12(2), 1–13. https://doi.org/10.1371/journal.pone.0171642 Dal Pont, G. C., Belote, B. L., Lee, A., Bortoluzzi, C., Eyng, C., Sevastiyanova, M., … Kogut, M. H. (2021). Novel Models for Chronic Intestinal Inflammation in Chickens: Intestinal Inflammation Pattern and Biomarkers. Frontiers in Immunology, 12(May), 1–15. https://doi.org/10.3389/fimmu.2021.676628 Darwish, N., Shao, J., Schreier, L. L., & Proszkowiec-Weglarz, M. (2021). Choice of 16S ribosomal RNA primers affects the microbiome analysis in chicken ceca. Scientific Reports, 11(1), 1–15. https://doi.org/10.1038/s41598-021-91387-w Dev, K., Mir, N. A., Biswas, A., Kannoujia, J., Begum, J., Kant, R., & Mandal, A. (2020). Dietary synbiotic supplementation improves the growth performance, body antioxidant pool, serum biochemistry, meat quality, and lipid oxidative stability in broiler chickens. Animal Nutrition, 6(3), 325–332. https://doi.org/10.1016/j.aninu.2020.03.002 Ding, S., Wang, Y., Yan, W., Li, A., Jiang, H., & Fang, J. (2019). Correction: Effects of Lactobacillus plantarum 15-1 and fructooligosaccharides on the response of broilers to pathogenic Escherichia coli O78 challenge(PLoS ONE (2019)146 ( e0212079) DOI: 10.1371/journal.pone.0212079). PLoS ONE, 14(9), 1–14. https://doi.org/10.1371/journal.pone.0222877 Dolasia, K., Bisht, M. K., Pradhan, G., Udgata, A., & Mukhopadhyay, S. (2018). TLRs/NLRs: Shaping the landscape of host immunity. International Reviews of Immunology, 37(1), 3–19. https://doi.org/10.1080/08830185.2017.1397656 Duangnumsawang, Y., Zentek, J., & Goodarzi Boroojeni, F. (2021). Development and Functional Properties of Intestinal Mucus Layer in Poultry. Frontiers in Immunology, 12(October), 1–18. https://doi.org/10.3389/fimmu.2021.745849 Elleder, D. (2018). Characterization of Chicken Tumor Necrosis Factor-α, a Long Missed Cytokine in Birds, 9(April), 1–14. https://doi.org/10.3389/fimmu.2018.00605 Elnagar, R., Elkenany, R., & Younis, G. (2021). Interleukin gene expression in broiler chickens infected by different Escherichia coli serotypes. Veterinary World, 14(10), 2727–2734. https://doi.org/10.14202/vetworld.2021.2727-2734 Elnesr, S. S., Alagawany, M., Elwan, H. A. M., Fathi, M. A., & Farag, M. R. (2020). Effect of Sodium Butyrate on Intestinal Health of Poultry-A Review. Annals of Animal Science, 20(1), 29–41. https://doi.org/10.2478/aoas-2019-0077 Emili Vinolya, R., Balakrishnan, U., Yasir, B., & Chandrasekar, S. (2021). Effect of dietary supplementation of acidifiers and essential oils on growth performance and intestinal health of broiler. Journal of Applied Poultry Research, 30(3), 67–80. https://doi.org/10.1016/j.japr.2021.100179 Fan, X., Jiao, H., Zhao, J., Wang, X., & Lin, H. (2018). Lipopolysaccharide impairs mucin secretion and stimulated mucosal immune stress response in respiratory tract of neonatal chicks. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 204(December 2017), 71–78. https://doi.org/10.1016/j.cbpc.2017.11.011 FAO. (2013). Revisión del Desarrollo Avícola. Revisión del desarrollo avícola. Retrieved from http://www.fao.org/docrep/019/i3531s/i3531s.pdf FAO. (2015). Informe de situación sobre la resistencia a los antimicrobianos. (Organización de las Naciones Unidas para la Alimentación y la Agricultura, Ed.). Roma. Retrieved from http://www.fao.org/3/a-mm736s.pdf FAO, O.-. (2021). OCDE-FAO Perspectivas Agrícolas 2021-2030. Retrieved from https://doi.org/10.1787/47a9fa44-es.%0AISBN Fenavi. (2020). No Title. Retrieved from https://fenavi.org/wp-content/uploads/2020/03/Fenaviquin_ed3042020_2.pdf FENAVI. (2020). Información estadística - FENAVI - Federación Nacional de Avicultores de Colombia. Retrieved February 4, 2020, from https://fenavi.org/informacion-estadistica/ Ferreira, R. G., Rodrigues, L. C., Nascimento, D. C., Kanashiro, A., Melo, P. H., Borges, V. F., … Alves-Filho, J. C. (2018). Galectin-3 aggravates experimental polymicrobial sepsis by impairing neutrophil recruitment to the infectious focus. Journal of Infection, 77(5), 391–397. https://doi.org/10.1016/j.jinf.2018.06.010 Fesseha, H., & Aliye, S. (2020). Organic Foods and Public Health Importance: A Review. Veterinary Medicine – Open Journal, 5(1), 1–8. https://doi.org/10.17140/vmoj-5-140 Function, G. C., Fab, E., & Negative, R. (2017). Oral Administration of a Select Mixture of Bacillus Probiotics Affects the Gut. Applied and Environmental Microbiology, 83(3), 1–18. Gadde, U. D., Oh, S., Lee, Y., Davis, E., Zimmerman, N., Rehberger, T., & Lillehoj, H. S. (2017). Dietary Bacillus subtilis-based direct-fed microbials alleviate LPS-induced intestinal immunological stress and improve intestinal barrier gene expression in commercial broiler chickens. Research in Veterinary Science, 114, 236–243. https://doi.org/10.1016/j.rvsc.2017.05.004 Gao, P., Ma, C., Sun, Z., Wang, L., Huang, S., Su, X., … Zhang, H. (2017). Feed-additive probiotics accelerate yet antibiotics delay intestinal microbiota maturation in broiler chicken. Microbiome, 5(1), 91. https://doi.org/10.1186/s40168-017-0315-1 Gao, T., Zhao, M. M., Li, Y. J., Zhang, L., Li, J. L., Yu, L. L., … Zhou, G. H. (2018). Effects of in ovo feeding of L-arginine on the development of digestive organs, intestinal function and post-hatch performance of broiler embryos and hatchlings. Journal of Animal Physiology and Animal Nutrition, 102(1), e166–e175. https://doi.org/10.1111/jpn.12724 Givisiez, P. E. N., Moreira Filho, A. L. B., Santos, M. R. B., Oliveira, H. B., Ferket, P. R., Oliveira, C. J. B., & Malheiros, R. D. (2020). Chicken embryo development: metabolic and morphological basis for in ovo feeding technology. Poultry Science, 99(12), 6774–6782. https://doi.org/10.1016/j.psj.2020.09.074 Gomez, A., Rothman, J. M., Petrzelkova, K., Yeoman, C. J., Vlckova, K., Umaña, J. D., … Leigh, S. R. (2016). Temporal variation selects for diet-microbe co-metabolic traits in the gut of Gorilla spp. ISME Journal, 10(2), 514–526. https://doi.org/10.1038/ismej.2015.146 Grant, A., Gay, C. G., & Lillehoj, H. S. (2018). Bacillus spp. as direct-fed microbial antibiotic alternatives to enhance growth, immunity, and gut health in poultry. Avian Pathology, 47(4), 339–351. https://doi.org/10.1080/03079457.2018.1464117 Grasa, L., Gonzalo, S., A, D. E. M., & Murillo, M. D. (2017). THE LIPOPOLYSACCHARIDE FROM ESCHERICHIA COLI O127 : B8 INDUCES INFLAMMATION AND MOTILITY DISTURBANCES IN RABBIT ILEUM, 4(March 2016), 185–191. https://doi.org/10.4995/wrs.2017.5160 Grond, K., Guilani, H., & Hird, S. M. (2020). Spatial heterogeneity of the shorebird gastrointestinal microbiome. Royal Society Open Science. https://doi.org/10.1098/rsos.191609 Gul, M., Yilmaz, E., Yildirim, B. A., Sezmis, G., Kaya, A., Timurkaan, S., … Tekce, E. (2019). Effects of oregano essential oil (Origanum syriacum l.) on performance, egg quality, intestinal morphology and oxidative stress in laying hens. European Poultry Science, 83(January), 1–15. https://doi.org/10.1399/eps.2019.290 Gungor, E., & Erener, G. (2020). Effect of dietary raw and fermented sour cherry kernel (Prunus cerasus L.) on digestibility, intestinal morphology and caecal microflora in broiler chickens. Poultry Science. https://doi.org/10.3382/ps/pez538 Guo, M., Li, M., Zhang, C., Zhang, X., & Wu, Y. (2020). Dietary Administration of the Bacillus subtilis Enhances Immune Responses and Disease Resistance in Chickens. Frontiers in Microbiology, 11(July), 1–11. https://doi.org/10.3389/fmicb.2020.01768 Gut, P., Gut, H., Composition, M., Colombino, E., Biasato, I., Ferrocino, I., … Capucchio, M. T. (2021a). Effect of Insect Live Larvae as Environmental Enrichment on Poultry Gut Health: Gut Mucin Composition, Microbiota and Local Immune Response Evaluation. Helenice, E., Ronie, E., Christina, A., Lima, W. C., Lorena, I., Patrycky, Y., & Souza, A. (2017). Influência dos óleos essenciais de capim-limão e chá-de-pedestre na saúde intestinal de frangos de corte Influence of the essential oils of lemon grass and pedestrian tea on the intestinal health of broilers O equilíbrio dinâmico existente entre a mucosa , 43–54. Hoang, C. T., Hong, Y., Truong, A. D., Lee, J., Lee, K., & Hong, Y. H. (2017). Molecular cloning of chicken interleukin-17B, which induces proinflammatory cytokines through activation of the NF-κB signaling pathway. Developmental and Comparative Immunology, 74, 40–48. https://doi.org/10.1016/j.dci.2017.04.010 Hu, Y., Wang, L., Shao, D., Wang, Q., Wu, Y., & Han, Y. (2020). Selectived and Reshaped Early Dominant Microbial Community in the Cecum With Similar Proportions and Better Homogenization and Species Diversity Due to Organic Acids as AGP Alternatives Mediate Their Effects on Broilers Growth, 10(January), 1–20. https://doi.org/10.3389/fmicb.2019.02948 Humam, A. M., Loh, T. C., Foo, H. L., & Samsudin, A. A. (2019). animals E ff ects of Feeding Di ff erent Postbiotics Produced by. Ijaz, A., Veldhuizen, E. J. A., Broere, F., & Rutten, V. P. M. G. (2021). The Interplay between Salmonella and Intestinal Innate Immune Cells in Chickens, 1–20. J. H. Park, H. M. Y. & I. H. K. (2018). The effect of dietary Bacillus subtilis supplementation on the growth performance, blood profile, nu _ Enhanced Reader.pdf. Jacquier, V., Nelson, A., Jlali, M., Rhayat, L., Brinch, K. S., & Devillard, E. (2019). Bacillus subtilis 29784 induces a shift in broiler gut microbiome toward butyrate-producing bacteria and improves intestinal histomorphology and animal performance. Poultry Science, 98(6), 2548–2554. https://doi.org/10.3382/ps/pey602 Jayaraman, S., Das, P. P., Saini, P. C., Roy, B., & Chatterjee, P. N. (2017). Use of Bacillus Subtilis PB6 as a potential antibiotic growth promoter replacement in improving performance of broiler birds. Poultry Science, 96(8), 2614–2622. https://doi.org/10.3382/ps/pex079 Jha, R., Das, R., Oak, S., & Mishra, P. (2020). Probiotics (Direct‐fed microbials) in poultry nutrition and their effects on nutrient utilization, growth and laying performance, and gut health: A systematic review. Animals. https://doi.org/10.3390/ani10101863 Jha, R., & Mishra, P. (2021). Dietary fiber in poultry nutrition and their effects on nutrient utilization, performance, gut health, and on the environment: a review. Journal of Animal Science and Biotechnology, 12(1), 1–16. https://doi.org/10.1186/s40104-021-00576-0 Käsdorf, B. T., Weber, F., Petrou, G., Srivastava, V., Crouzier, T., & Lieleg, O. (2017). Mucin-Inspired Lubrication on Hydrophobic Surfaces. Biomacromolecules, 18(8), 2454–2462. https://doi.org/10.1021/acs.biomac.7b00605 Katsanos, K. H., & Papadakis, K. A. (2017). Inflammatory bowel disease: Updates on molecular targets for biologics. Gut and Liver, 11(4), 455–463. https://doi.org/10.5009/gnl16308 Kausar, R., Raza, S., Hussain, M., & Bahadur, S. U. K. (2020). Histometerical and morphological studies of digestive tract and associated glands in domestic pigeon (columba livia) with regard to age. Pakistan Veterinary Journal, 39(4), 573–577. https://doi.org/10.29261/pakvetj/2019.088 Kers, J. G., Velkers, F. C., Fischer, E. A. J., Hermes, G. D. A., Stegeman, J. A., & Smidt, H. (2018). Host and environmental factors affecting the intestinal microbiota in chickens. Frontiers in Microbiology, 9(FEB), 1–14. https://doi.org/10.3389/fmicb.2018.00235 Khan, I., Nawaz, M., Anjum, A. A., Ahmad, M., Mehmood, A., Rabbani, M., … Ali, M. A. (2020). Effect of Indigenous Probiotics on Gut Morphology and Intestinal Absorption Capacity in Broiler Chicken Challenged with Salmonella enteritidis, 1–7. Khan, S., & Chousalkar, K. K. (2021). Functional enrichment of gut microbiome by early supplementation of Bacillus based probiotic in cage free hens: a field study. Animal Microbiome, 3(1). https://doi.org/10.1186/s42523-021-00112-5 Khan, S., Moore, R. J., Stanley, D., & Chousalkar, K. K. (2020). The gut microbiota of laying hens and its manipulation with prebiotics and probiotics to enhance gut health and food safety. Applied and Environmental Microbiology, 86(13). https://doi.org/10.1128/AEM.00600-20 Khokhlova, E. V., Smeianov, V. V., Efimov, B. A., Kafarskaia, L. I., Pavlova, S. I., & Shkoporov, A. N. (2012). Anti-inflammatory properties of intestinal Bifidobacterium strains isolated from healthy infants. Microbiology and Immunology, 56(1), 27–39. https://doi.org/10.1111/j.1348-0421.2011.00398.x Klose, C. S. N., & Artis, D. (2020). Innate lymphoid cells control signaling circuits to regulate tissue-specific immunity. Cell Research. https://doi.org/10.1038/s41422-020-0323-8 Kogut, M. H. (2019). The effect of microbiome modulation on the intestinal health of poultry. Animal Feed Science and Technology, 250(February 2018), 32–40. https://doi.org/10.1016/j.anifeedsci.2018.10.008 Kogut, M. H., Lee, A., & Santin, E. (2020). Microbiome and pathogen interaction with the immune system. Poultry Science, 99(4), 1906–1913. https://doi.org/10.1016/j.psj.2019.12.011 Kollarcikova, M., Kubasova, T., Karasova, D., Crhanova, M., Cejkova, D., Sisak, F., & Rychlik, I. (2018). Use of 16S rRNA gene sequencing for prediction of new opportunistic pathogens in chicken ileal and cecal microbiota Sequence Processing and Classification of the V3 / V4 Region of 16S rRNA Genes. Poultry Science, 98(6), 2347–2353. https://doi.org/10.3382/ps/pey594 Krauze, M., Cendrowska-Pinkosz, M., Matuseviĉius, P., Stępniowska, A., Jurczak, P., & Ognik, K. (2021). The effect of administration of a phytobiotic containing cinnamon oil and citric acid on the metabolism, immunity, and growth performance of broiler chickens. Animals. https://doi.org/10.3390/ani11020399 Krndija, D., Marjou, F. El, Guirao, B., Richon, S., Leroy, O., Bellaiche, Y., … Vignjevic, D. M. (2019). Active cell migration is critical for steady-state epithelial turnover in the gut. Science, 365(6454), 705–710. https://doi.org/10.1126/science.aau3429 Kucharzik, T., Walsh, S. V., Chen, J., Parkos, C. A., & Nusrat, A. (2001). Neutrophil transmigration in inflammatory bowel disease is associated with differential expression of epithelial intercellular junction proteins. American Journal of Pathology, 159(6), 2001–2009. https://doi.org/10.1016/S0002-9440(10)63051-9 Kuczynski, J., Stombaugh, J., Walters, W. A., González, A., Caporaso, J. G., & Knight, R. (2011). Using QIIME to analyze 16S rrna gene sequences from microbial communities. Current Protocols in Bioinformatics, (SUPPL.36), 1–20. https://doi.org/10.1002/0471250953.bi1007s36 Kurokawa, K., Hayakawa, Y., & Koike, K. (2021). Plasticity of intestinal epithelium: Stem cell niches and regulatory signals. International Journal of Molecular Sciences, 22(1), 1–13. https://doi.org/10.3390/ijms22010357 Larsen, H. L., & Jensen, K. B. (2021). Reprogramming cellular identity during intestinal regeneration, 40–47. Latek, U., Chłopecka, M., Karlik, W., & Mendel, M. (2021). Phytogenic Compounds for Enhancing Intestinal Barrier Function in Poultry-A Review. Planta Medica. https://doi.org/10.1055/a-1524-0358 Levkut, M., Karaffová, V., Levkutová, M., Seman, V., Revajová, V., Ševčíková, Z., & Herich, R. (2020). Influence of Lacto-Immuno-Vital on growth performance and gene expression of IgA, MUC-2, and growth factor IGF-2 in the jejunum of broiler chickens. Poultry Science, 99(12), 6569–6575. https://doi.org/10.1016/j.psj.2020.09.054 Li, C., Cai, H., Li, S., Liu, G., & Deng, X. (2022). Comparing the potential of Bacillus amyloliquefaciens CGMCC18230 with antimicrobial growth promoters for growth performance, bone development, expression of phosphorus transporters, and excreta microbiome in broiler chickens. Poultry Science, 102126. https://doi.org/10.1016/j.psj.2022.102126 Li, C. L., Wang, J., Zhang, H. J., Wu, S. G., Hui, Q. R., Yang, C. B., … Qi, G. H. (2019). Intestinal morphologic and microbiota responses to dietary Bacillus spp. in a broiler chicken model. Frontiers in Physiology, 10(JAN), 1–18. https://doi.org/10.3389/fphys.2018.01968 Li, R. X., Li, J., Zhang, S. Y., Mi, Y. L., & Zhang, C. Q. (2018). Attenuating effect of melatonin on lipopolysaccharide-induced chicken small intestine inflammation. Poultry Science, (March). https://doi.org/10.3382/ps/pey084 Li, Xuesong, Hu, D., Tian, Y., Song, Y., Hou, Y., Sun, L., … Jiang, Y. (2020). Protective effects of a novel Lactobacillus rhamnosus strain with probiotic characteristics against lipopolysaccharide-induced intestinal inflammation in vitro and in vivo. Food and Function, 11(7), 5799–5814. https://doi.org/10.1039/d0fo00308e Li, Xueyuan, Wu, S., Li, X., Yan, T., Duan, Y., Yang, X., … Yang, X. (2018). Simultaneous supplementation of bacillus subtilisand antibiotic growth promoters by stages improved intestinal function of pullets by altering gut microbiota. Frontiers in Microbiology, 9(OCT), 1–15. https://doi.org/10.3389/fmicb.2018.02328 Li, Z., Wang, W., Lv, Z., Liu, D., & Guo, Y. (2017). Bacillus subtilis and yeast cell wall improve the intestinal health of broilers challenged by Clostridium perfringens, 1668(August). https://doi.org/10.1080/00071668.2017.1370697 Lieboldt, M. A., Frahm, J., Halle, I., Schrader, L., Weigend, S., & Preisinger, R. (2017). Metabolic and clinical response to Escherichia coli lipopolysaccharide in layer pullets of different genetic backgrounds supplied with graded dietary L-arginine, (October). Lima, D. K. S., Pessoa, M. S., Arhnold, E., Leite, P. R. D. S. D. C., Leonídio, A. R. A., De Lima Santos, R., … Abrão, F. O. (2020). Intestinal and immunological histological parameters of broilers supplemented with commercial probiotic or fungi of the autochthonous microbiota. Revista Brasileira de Medicina Veterinaria. https://doi.org/10.29374/2527-2179.bjvm101220 Lin, T. L., Shu, C. C., Chen, Y. M., Lu, J. J., Wu, T. S., Lai, W. F., … Lu, C. C. (2020). Like Cures Like: Pharmacological Activity of Anti-Inflammatory Lipopolysaccharides From Gut Microbiome. Frontiers in Pharmacology, 11(April), 1–9. https://doi.org/10.3389/fphar.2020.00554 Lindholm, C. (2019). Intermittent fasting in chickens : Physiological mechanisms and welfare implications for broiler breeders. Retrieved from http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1359720&dswid=6490%0Ahttp://dx.doi.org/10.3384/diss.diva-160814 Lu, Z., Thanabalan, A., Leung, H., Akbari Moghaddam Kakhki, R., Patterson, R., & Kiarie, E. G. (2019). The effects of feeding yeast bioactives to broiler breeders and/or their offspring on growth performance, gut development, and immune function in broiler chickens challenged with Eimeria. Poultry Science, 98(12), 6411–6421. https://doi.org/10.3382/ps/pez479 Luise, D., Bertocchi, M., Motta, V., Salvarani, C., Bosi, P., Luppi, A., … Trevisi, P. (2019). Bacillus sp. probiotic supplementation diminish the Escherichia coli F4ac infection in susceptible weaned pigs by influencing the intestinal immune response, intestinal microbiota and blood metabolomics. Journal of Animal Science and Biotechnology, 10(1), 1–16. https://doi.org/10.1186/s40104-019-0380-3 Ma, Y., Wang, W., Zh, H., Wang, J., Zhang, W., & Gao, J. (2018). Supplemental Bacillus subtilis DSM 32315 manipulates intestinal structure and microbial composition in broiler chickens. Scientific Reports, (October), 1–13. https://doi.org/10.1038/s41598-018-33762-8 Mancabelli., et al. (2016). Insights into the biodiversity of the gut microbiota of broiler chickens, 15(32), 4–6. Marmion, M., Ferone, M. T., Whyte, P., & Scannell, A. G. M. (2021). The changing microbiome of poultry meat; from farm to fridge. Food Microbiology, 99(April), 103823. https://doi.org/10.1016/j.fm.2021.103823 Martinez-Guryn, K., Leone, V., & Chang, E. B. (2019). Regional Diversity of the Gastrointestinal Microbiome. Cell Host and Microbe, 26(3), 314–324. https://doi.org/10.1016/j.chom.2019.08.011 Martínez, Y., Almendares, C. I., Hernández, C. J., Avellaneda, M. C., Urquía, A. M., & Valdivié, M. (2021). Effect of acetic acid and sodium bicarbonate supplemented to drinking water on water quality, growth performance, organ weights, cecal traits and hematological parameters of young broilers. Animals, 11(7). https://doi.org/10.3390/ani11071865 Massacci, F. R., Lovito, C., Tofani, S., Tentellini, M., Genovese, D. A., De Leo, A. A. P., … Forte, C. (2019). Dietary Saccharomyces cerevisiae boulardii CNCM I-1079 positively affects performance and intestinal ecosystem in broilers during a campylobacter jejuni infection. Microorganisms. https://doi.org/10.3390/microorganisms7120596 Mastrogiovanni, F., Mukhopadhya, A., Lacetera, N., Ryan, M. T., Romani, A., Bernini, R., & Sweeney, T. (2019). Anti-inflammatory effects of pomegranate peel extracts on in vitro human intestinal caco-2 cells and ex vivo porcine colonic tissue explants. Nutrients, 11(3), 1–15. https://doi.org/10.3390/nu11030548 Maya-Ortega, C.-A., Madrid-Garcés, T.-A., & Parra-Suescún, J.-E. (2021). Efecto de Bacillus subtilis sobre metabolitos sanguíneos y parámetros productivos en pollo de engorde. Biotecnología En El Sector Agropecuario y Agroindustrial, 19(1), 105–116. https://doi.org/10.18684/bsaa(19)105-116 Mazgaeen, L & Prajwal, G. (2020). Recent Advances in LipopolysaccharideRecognition Systems.pdf. McCarville, J. L., Chen, G. Y., Cuevas, V. D., Troha, K., & Ayres, J. S. (2020). Microbiota Metabolites in Health and Disease. Annual Review of Immunology, 38, 147–170. https://doi.org/10.1146/annurev-immunol-071219-125715 Méndez-Durán, A., Méndez-Bueno, J. F., Tapia-Yáñez, T., Muñoz Montes, A., & Aguilar-Sánchez, L. (2017). Diálisis y Trasplante. Dial Traspl, 31(1), 7–11. Muneta, Y., Minagawa, Y., Nakane, T., Shibahara, T., Yoshikawa, T., & Omata, Y. (2011). Interleukin-18 expression in pig salivary glands and salivary content changes during acute immobilization stress. Stress, 14(5), 549–556. https://doi.org/10.3109/10253890.2011.565392 Negroni, A., Cucchiara, S., & Stronati, L. (2015). Apoptosis, necrosis, and necroptosis in the gut and intestinal homeostasis. Mediators of Inflammation, 2015. https://doi.org/10.1155/2015/250762 Nijland, R., Hofland, T., & Van Strijp, J. A. G. (2014). Recognition of LPS by TLR4: Potential for anti-inflammatory therapies. Marine Drugs, 12(7), 4260–4273. https://doi.org/10.3390/md12074260 Oerlemans, M. M. P., Akkerman, R., Ferrari, M., Walvoort, M. T. C., & de Vos, P. (2021). Benefits of bacteria-derived exopolysaccharides on gastrointestinal microbiota, immunity and health. Journal of Functional Foods, 76(June 2020), 104289. https://doi.org/10.1016/j.jff.2020.104289 Oh, H., Liu, S., Yun, W., Lee, J., An, J., Cho, S., & Cho, J. (2019). Effects of mixture of essential oils and organic acid supplementation on growth performance, blood profiles, leg bone length and intestinal morphology in broilers. Journal of Animal Science, 97(Supplement_3), 347–348. https://doi.org/10.1093/jas/skz258.692 Oladokun, S., Koehler, A., MacIsaac, J., Ibeagha-Awemu, E. M., & Adewole, D. I. (2021). Bacillus subtilis delivery route: effect on growth performance, intestinal morphology, cecal short-chain fatty acid concentration, and cecal microbiota in broiler chickens. Poultry Science. https://doi.org/10.1016/j.psj.2020.10.063 Oliveira, N. A., Gonçalves, B. L., Lee, S. H., CAF, O., & Corassin, C. H. (2020). Use of Antibiotics in Animal Production and its Impact on Human Health. Journal of Food Chemistry & Nanotechnology, 06(01), 40–47. https://doi.org/10.17756/jfcn.2020-082 OMS. (2014). ANTIMICROBIAL RESISTANCE Global Report on Surveillance. Fancia. Retrieved from http://apps.who.int/iris/bitstream/10665/112642/1/9789241564748_eng.pdf Park, B. S., & Lee, J. O. (2013). Recognition of lipopolysaccharide pattern by TLR4 complexes. Experimental and Molecular Medicine, 45(12). https://doi.org/10.1038/emm.2013.97 Park, I., Lee, Y., Goo, D., Zimmerman, N. P., Smith, A. H., Rehberger, T., & Lillehoj, H. S. (2020). The effects of dietary Bacillus subtilis supplementation, as an alternative to antibiotics, on growth performance, intestinal immunity, and epithelial barrier integrity in broiler chickens infected with Eimeria maxima. Poultry Science, 99(2), 725–733. https://doi.org/10.1016/j.psj.2019.12.002 Park, I., Zimmerman, N. P., Smith, A. H., Rehberger, T. G., Lillehoj, E. P., & Lillehoj, H. S. (2020). Dietary Supplementation With Bacillus subtilis Direct-Fed Microbials Alters Chicken Intestinal Metabolite Levels. Frontiers in Veterinary Science, 7(March), 1–9. https://doi.org/10.3389/fvets.2020.00123 Parker, B. J., Wearsch, P. A., Veloo, A. C. M., Rodriguez-palacios, A., & Rodriguez-palacios, A. (2020). The Genus Alistipes : Gut Bacteria With Emerging Implications to Inflammation , Cancer , and Mental Health, 11(June), 1–15. https://doi.org/10.3389/fimmu.2020.00906 Pérez, M., Milian, G., Bocourt, R., & Torres, V. (2015). Efecto de endosporas de Bacillus subtilis E-44 con actividad probiótica sobre indicadores fermentativos en órganos digestivos e inmunológicos de pollos de engorde. Revista de La Sociedad Venezolana de Microbiología, 35(2), 89–94. Retrieved from http://www.redalyc.org/pdf/1994/199444210006.pdf Pickard, J. M., Zeng, M. Y., Caruso, R., & Núñez, G. (2017). Gut microbiota : Role in pathogen colonization , immune responses , and inflammatory disease, 70–89. https://doi.org/10.1111/imr.12567 Pineda, M., Kogut, M., Genovese, K., Farnell, Y. Z., Zhao, D., Wang, X., … Farnell, M. (2021). Competitive exclusion of intra-genus salmonella in neonatal broilers. Microorganisms, 9(2), 1–17. https://doi.org/10.3390/microorganisms9020446 Pluske, J. R., Turpin, D. L., & Kim, J.-C. (2018a). Gastrointestinal tract (gut) health in the young pig. Animal Nutrition, 4. https://doi.org/10.1016/j.aninu.2017.12.004 Pluske, J. R., Turpin, D. L., & Kim, J. C. (2018b). Gastrointestinal tract (gut) health in the young pig. Animal Nutrition, 4(2), 187–196. https://doi.org/10.1016/j.aninu.2017.12.004 Proszkowiec-Weglarz, M., Schreier, L. L., Kahl, S., Miska, K. B., Russell, B., & Elsasser, T. H. (2020). Effect of delayed feeding post-hatch on expression of tight junction– and gut barrier–related genes in the small intestine of broiler chickens during neonatal development. Poultry Science, 99(10), 4714–4729. https://doi.org/10.1016/j.psj.2020.06.023 Pu, J., Chen, D., Tian, G., He, J., Zheng, P., Mao, X., … Yu, B. (2020). Effects of benzoic acid, Bacillus coagulans and oregano oil combined supplementation on growth performance, immune status and intestinal barrier integrity of weaned piglets. Animal Nutrition. https://doi.org/10.1016/j.aninu.2020.02.004 Rajput, I. R., Li, W. F., Li, Y. L., Jian, L., & Wang, M. Q. (2013). Application of probiotic (bacillus subtilis) to enhance immunity, antioxidation, digestive enzymes activity and hematological profile of shaoxing duck. Pakistan Veterinary Journal, 33(1), 69–72. Ramlucken, U., Ramchuran, S. O., Moonsamy, G., Lalloo, R., Thantsha, M. S., & Rensburg, C. J. Van. (2019). A novel Bacillus based multi-strain probiotic improves growth performance and intestinal properties of Clostridium perfringens challenged broilers. Poultry_Science, 99(1), 331–341. https://doi.org/10.3382/ps/pez496 Rathinam, y A.K. Zhao Y & Shao F, 2019. (2016). Innate immunity to intracellular LPS. Physiology & Behavior, 176(1), 100–106. https://doi.org/10.1038/s41590-019-0368-3.Innate Regea, G. (2018). Pharmacology & Clinical Research Review on Antibiotics Resistance and its Economic Impacts. Researchgate.Net, (December). https://doi.org/10.19080/JPCR.2018.05.55567 Reisinger, N., Emsenhuber, C., Doupovec, B., Mayer, E., Schatzmayr, G., Nagl, V., & Grenier, B. (2020). Endotoxin translocation and gut inflammation are increased in broiler chickens receiving an oral lipopolysaccharide (LPS) bolus during heat stress. Toxins. https://doi.org/10.3390/toxins12100622 Reynolds, K. L., Cloft, S. E., & Wong, E. A. (2020). Changes with age in density of goblet cells in the small intestine of broiler chicks. Poultry Science, 99(5), 2342–2348. https://doi.org/10.1016/j.psj.2019.12.052 Rhayat, L., Maresca, M., Nicoletti, C., Perrier, J., Brinch, K. S., Christian, S., … Eckhardt, E. (2019). Effect of Bacillus subtilis Strains on Intestinal Barrier Function and Inflammatory Response. Frontiers in Immunology, 10(MAR). https://doi.org/10.3389/fimmu.2019.00564 Ribeiro, M. R. S., Oliveira, D. R., Caliari, M. V., Cara Machado, D. C., Andrade, M. E. R., Cardoso, V. N., … Gomes, M. A. (2021). Saccharomyces boulardii as therapeutic alternative in experimental giardiasis. Journal of Applied Microbiology, 131(1), 460–469. https://doi.org/10.1111/jam.14941 Richards, P., Fothergill, J., Bernardeau, M., & Wigley, P. (2019). Development of the caecal microbiota in three broiler breeds. Frontiers in Veterinary Science, 6(JUN), 1–19. https://doi.org/10.3389/fvets.2019.00201 Rios-arce, N. D., Collins, F. L., Schepper, J. D., Steury, M. D., Raehtz, S., Mallin, H., … Mccabe, L. R. (2017a). Epithelial Barrier Function in Gut-Bone Signaling (Vol. 1033). https://doi.org/10.1007/978-3-319-66653-2 Rios-arce, N. D., Collins, F. L., Schepper, J. D., Steury, M. D., Raehtz, S., Mallin, H., … Mccabe, L. R. (2017b). Epithelial Barrier Function in Gut-Bone Signaling (Vol. 1033). https://doi.org/10.1007/978-3-319-66653-2 Rivera-chávez, F., Lopez, C. A., & Bäumler, A. J. (2016). Oxygen as a driver of gut dysbiosis. Free Radical Biology and Medicine. https://doi.org/10.1016/j.freeradbiomed.2016.09.022 Rivera-Pérez, W., Barquero-Calvo, E., & Chaves, A. J. (2021a). Effect of the use of probiotic Bacillus subtilis (QST 713) as a growth promoter in broilers: an alternative to bacitracin methylene disalicylate. Poultry Science. https://doi.org/10.1016/j.psj.2021.101372 Rocha-Ramírez, L. M., Hernández-Ochoa, B., Gómez-Manzo, S., Marcial-Quino, J., Cárdenas-Rodríguez, N., Centeno-Leija, S., & García-Garibay, M. (2020). Evaluation of immunomodulatory activities of the heat-killed probiotic strain Lactobacillus casei IMAU60214 on macrophages in vitro. Microorganisms, 8(1). https://doi.org/10.3390/microorganisms8010079 Rocha, P. M. C., Barros, M. E. G., & Evêncio-Neto, J. (2016). Análise morfométrica da parede intestinal e dinâmica de mucinas secretadas no jejuno de frangos suplementados com probiótico bacillus subtilis cepa C3102. Pesquisa Veterinaria Brasileira, 36(4), 312–316. https://doi.org/10.1590/S0100-736X2016000400010 Romero, S., Carlos, H., & Iregui, A. (2010). El Lipopolisacárido 1. Revista de Medicina Veterinaria, 19, 37–45. https://doi.org/10.19052/mv.783 Rostagno, H. S., Albino, L. F. T., Hannas, M. I., Donzele, J. L., Sakomura, N. K., Perazzo, F. G., … Brito, C. de O. (2017). Tablas Brasileñas para Aves y Cerdos (2017). Universidad Federal de Viçosa (Vol. 4). https://doi.org/doc101021405 Roth, N., Käsbohrer, A., Mayrhofer, S., Zitz, U., Hofacre, C., & Domig, K. J. (2019). The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: A global overview. Poultry Science, 98(4), 1791–1804. https://doi.org/10.3382/ps/pey539 Rouissi, A., Alfonso-Avila, A. R., Guay, F., Boulianne, M., & Létourneau-Montminy, M. P. (2021a). Effects of Bacillus subtilis, butyrate, mannan-oligosaccharide, and naked oat (ß-glucans) on growth performance, serum parameters, and gut health of broiler chickens. Poultry Science, 100(12), 101506. https://doi.org/10.1016/j.psj.2021.101506 Rubio, L. A. (2019a). Possibilities of early life programming in broiler chickens via intestinal microbiota modulation. Poultry Science, 98(2), 695–706. https://doi.org/10.3382/ps/pey416 Rychlik, I. (2020). Composition and function of chicken gut microbiota. Animals, 10(1). https://doi.org/10.3390/ani10010103 Saki, A. A., Ali, S., Siyar, H., & Ashoori, A. (2017). Modulation of Lipopolysaccharide Induced Interleukin-17F and Cyclooxygenase-2 Gene Expression by Echinacea purpurea in Broiler Chickens, 11(11), 778–781. Sato, D. T., Campos, F. G., Kotze, P. G., Santos, R. L., Kanno, D. T., Pereira, J. A., … Martinez, R. (2021). Sucralfate enemas reduce the oxidative tissue damage and preserves the contents of E-cadherin and β -catenin in colonic mucosa without fecal stream, 36(55 11). Šefcová, M. A., Larrea-álvarez, M., Larrea-álvarez, C. M., Karaffová, V., Ortega-Paredes, D., Vinueza-Burgos, C., … Revajová, V. (2021). The probiotic lactobacillus fermentum biocenol CCM 7514 moderates campylobacter jejuni-induced body weight impairment by improving gut morphometry and regulating cecal cytokine abundance in broiler chickens. Animals, 11(1), 1–16. https://doi.org/10.3390/ani11010235 Seifi, K., Karimi-Torshizi, M. A., & Deldar, H. (2017). Probiotics intake from proximal or distal gastrointestinal tract: The investigation on intestinal morphology and performance of Japanese quail. Journal of Animal Physiology and Animal Nutrition. https://doi.org/10.1111/jpn.12781 Settanni, G., Zhou, J., Suo, T., Schöttler, S., Landfester, K., Schmid, F., & Mailänder, V. (2016). Protein corona composition of PEGylated nanoparticles correlates strongly with amino acid composition of protein surface. https://doi.org/10.1039/x0xx00000x Shang, Q. H., Ma, X. K., Li, M., Zhang, L. H., Hu, J. X., & Piao, X. S. (2018). Effects of α-galactosidase supplementation on nutrient digestibility, growth performance, intestinal morphology and digestive enzyme activities in weaned piglets. Animal Feed Science and Technology, 236(September 2017), 48–56. https://doi.org/10.1016/j.anifeedsci.2017.11.008 Shanmugasundaram, R., Applegate, T. J., & Selvaraj, R. K. (2020). Effect of Bacillus subtilis and Bacillus licheniformis probiotic supplementation on cecal Salmonella load in broilers challenged with salmonella. Journal of Applied Poultry Research, 29(4), 808–816. https://doi.org/10.1016/j.japr.2020.07.003 Shi, S., Liu, J., Dong, J., Hu, J., Liu, Y., Feng, J., & Zhou, D. (2021). Research progress on the regulation mechanism ofprobiotics on the microecological flora of infectedintestines in livestock and poultry.pdf. Shin, N., Whon, T. W., & Bae, J. (2015). Proteobacteria : microbial signature of dysbiosis in gut microbiota. Trends in Biotechnology, 1–8. https://doi.org/10.1016/j.tibtech.2015.06.011 Siddiqui, S. H., Kang, D., Park, J., Khan, M., & Shim, K. (2020). Chronic heat stress regulates the relation between heat shock protein and immunity in broiler small intestine. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-75885-x Śliżewska, K., Markowiak-Kopeć, P., Żbikowski, A., & Szeleszczuk, P. (2020). The effect of synbiotic preparations on the intestinal microbiota and her metabolism in broiler chickens. Scientific Reports. https://doi.org/10.1038/s41598-020-61256-z Song, B., Tang, D., Yan, S., Fan, H., Li, G., Shahid, M. S., … Guo, Y. (2021). Effects of age on immune function in broiler chickens. Journal of Animal Science and Biotechnology, 12(1), 1–12. https://doi.org/10.1186/s40104-021-00559-1 Stolzer, I., Ruder, B., Neurath, M. F., & Günther, C. (2021). Interferons at the crossroad of cell death pathways during gastrointestinal inflammation and infection. International Journal of Medical Microbiology, 311(3), 151491. https://doi.org/10.1016/j.ijmm.2021.151491 Suresh, G., Das, R. K., Kaur Brar, S., Rouissi, T., Avalos Ramirez, A., Chorfi, Y., & Godbout, S. (2018). Alternatives to antibiotics in poultry feed: molecular perspectives. Critical Reviews in Microbiology, 44(3), 318–335. https://doi.org/10.1080/1040841X.2017.1373062 Swaggerty, C. L., Callaway, T. R., Kogut, M. H., Piva, A., & Grilli, E. (2019). Modulation of the immune response to improve health and reduce foodborne pathogens in poultry. Microorganisms, 7(3), 1–10. https://doi.org/10.3390/microorganisms7030065 Tadesse, S., Corner, G., Dhima, E., Houston, M., Guha, C., Augenlicht, L., & Velcich, A. (2017). MUC2 mucin deficiency alters inflammatory and metabolic pathways in the mouse intestinal mucosa. Oncotarget, 8(42), 71456–71470. https://doi.org/10.18632/oncotarget.16886 Tang, L. P., Li, W. H., Liu, Y. L., Lun, J. C., & He, Y. M. (2021). Heat stress aggravates intestinal inflammation through TLR4-NF-κB signaling pathway in Ma chickens infected with Escherichia coli O157:H7. Poultry Science. https://doi.org/10.1016/j.psj.2021.101030 Tarradas, J., Tous, N., Esteve-garcia, E., & Brufau, J. (2020). The control of intestinal inflammation: A major objective in the research of probiotic strains as alternatives to antibiotic growth promoters in poultry. Microorganisms, 8(2). https://doi.org/10.3390/microorganisms8020148 Teng, P. Y., & Kim, W. K. (2018). Review: Roles of prebiotics in intestinal ecosystem of broilers. Frontiers in Veterinary Science, 5(OCT), 1–18. https://doi.org/10.3389/fvets.2018.00245 Terada, T., Nii, T., Isobe, N., & Yoshimura, Y. (2020). Effects of Probiotics Lactobacillus reuteri and clostridium butyricum on the expression of toll-like receptors, pro- and anti-inflammatory cytokines, and antimicrobial peptides in broiler chick intestine. Journal of Poultry Science, 57(4), 310–318. https://doi.org/10.2141/jpsa.0190098 Ting, H.-A., & von Moltke, J. (2019). The Immune Function of Tuft Cells at Gut Mucosal Surfaces and Beyond. The Journal of Immunology, 202(5), 1321–1329. https://doi.org/10.4049/jimmunol.1801069 Toro-alzate, L. F., & Toro-alzate, L. F. (2020). Antimicrobial Resistance in Colombia under the scope of One Health approach . Tras, C., Firma, L. A., Andrea, P., Valencia, R., Prieto, A. V., & Magdalena, U. (2019). Desafíos Del Sector Agropecuario Colombiano Tras La Firma Del Acuerdo De Promoción Comercial Entre Estados Unidos Y Colombia. Investigación y Desarrollo, 27(1), 6–49. Trevisi, P., Latorre, R., Priori, D., Luise, D., Archetti, I., Mazzoni, M., … Bosi, P. (2017). Effect of feed supplementation with live yeast on the intestinal transcriptome profile of weaning pigs orally challenged with Escherichia coli F4. Animal, 11(1), 33–44. https://doi.org/10.1017/S1751731116001178 Umar, Z., Qureshi, A. S., Shahid, R. U., & Deeba, F. (2021). Macroscopic, microscopic and histomorphometric analysis of intestine, liver and pancreas of ostrich (Struthio camelus) with advancement of age and sex. Pakistan Veterinary Journal, 41(3), 313–320. https://doi.org/10.29261/pakvetj/2021.029 Usuda, H., Okamoto, T., & Wada, K. (2021). Leaky gut: Effect of dietary fiber and fats on microbiome and intestinal barrier. International Journal of Molecular Sciences, 22(14). https://doi.org/10.3390/ijms22147613 Vaca, D. J., Thibau, A., Schütz, M., Kraiczy, P., Happonen, L., Malmström, J., & Kempf, V. A. J. (2020). Interaction with the host: the role of fibronectin and extracellular matrix proteins in the adhesion of Gram-negative bacteria. Medical Microbiology and Immunology. https://doi.org/10.1007/s00430-019-00644-3 Wang, F., Men, X., Zhang, G., Liang, K., Xin, Y., Wang, J., … Wu, L. (2018). Assessment of 16S rRNA gene primers for studying bacterial community structure and function of aging flue-cured tobaccos. AMB Express, 8(1), 1–9. https://doi.org/10.1186/s13568-018-0713-1 Wang, J. S., Hu, H. J., Xu, Y. B., Wang, D. C., Jiang, L., Li, K. X., … Zhan, X. A. (2020). Effects of posthatch feed deprivation on residual yolk absorption, macronutrients synthesis, and organ development in broiler chicks. Poultry Science, 99(11), 5587–5597. https://doi.org/10.1016/j.psj.2020.08.032 Wang, Jianping, Wan, C., Shuju, Z., Yang, Z., Celi, P., Ding, X., & Al, W. E. T. (2019). Differential analysis of gut microbiota and the effect of dietary Enterococcus faecium supplementation in broiler breeders with high or low laying performance. Poultry Science, 100(2), 1109–1119. https://doi.org/10.1016/j.psj.2020.10.024 Wang, Jianping, Wan, C., Shuju, Z., Yang, Z., Celi, P., Ding, X., … Li, M. (2021). Differential analysis of gut microbiota and the effect of dietary Enterococcus faecium supplementation in broiler breeders with high or low laying performance. Poultry Science, 100(2), 1109–1119. https://doi.org/10.1016/j.psj.2020.10.024 Wang, Jing, Ji, H., Wang, S., Liu, H., Zhang, W., Zhang, D., & Wang, Y. (2018). Probiotic Lactobacillus plantarum promotes intestinal barrier function by strengthening the epithelium and modulating gut microbiota. Frontiers in Microbiology, 9(AUG), 1–14. https://doi.org/10.3389/fmicb.2018.01953 Wang, L., Fang, M., Hu, Y., Yang, Y., Yang, M., & Chen, Y. (2014). Characterization of the most abundant Lactobacillus species in chicken gastrointestinal tract and potential use as probiotics for genetic engineering, (May), 612–619. https://doi.org/10.1093/abbs/gmu037.Advance Wang, W. C., Yan, F. F., Hu, J. Y., Amen, O. A., & Cheng, H. W. (2018). Supplementation of Bacillus subtilis-based probiotic reduces heat stress-related behaviors and inflammatory response in broiler chickens. Journal of Animal Science, 96(5), 1654–1666. https://doi.org/10.1093/jas/sky092 Wen, C., Yan, W., Mai, C., Duan, Z., Zheng, J., Sun, C., & Yang, N. (2021). Joint contributions of the gut microbiota and host genetics to feed efficiency in chickens. Microbiome, 9(1), 1–23. https://doi.org/10.1186/s40168-021-01040-x Wen, C., Yan, W., Sun, C., Ji, C., Zhou, Q., Zhang, D., … Yang, N. (2019). The gut microbiota is largely independent of host genetics in regulating fat deposition in chickens. ISME Journal, 13(6), 1422–1436. https://doi.org/10.1038/s41396-019-0367-2 Wickramasuriya, S. S., Park, I., Lee, K., Lee, Y., Kim, W. H., Nam, H., & Lillehoj, H. S. (2022). Role of Physiology, Immunity, Microbiota, and Infectious Diseases in the Gut Health of Poultry. Vaccines, 10(2). https://doi.org/10.3390/vaccines10020172 Wu, Z., Yang, K., Zhang, A., Chang, W., Zheng, A., Chen, Z., … Liu, G. (2021). Effects of Lactobacillus acidophilus on the growth performance, immune response, and intestinal barrier function of broiler chickens challenged with Escherichia coli O157. Poultry Science, 100(9), 101323. https://doi.org/10.1016/j.psj.2021.101323 Xiao, S. S., Mi, J. D., Mei, L., Liang, J., Feng, K. X., Wu, Y. B., … Wang, Y. (2021). Article microbial diversity and community variation in the intestines of layer chickens. Animals, 11(3), 1–17. https://doi.org/10.3390/ani11030840 Xiao, Y., Xiang, Y., Zhou, W., Chen, J., Li, K., & Yang, H. (2017). Microbial community mapping in intestinal tract of broiler chicken. Poultry Science, 96(5), 1387–1393. https://doi.org/10.3382/ps/pew372 Xie, S., Zhang, H., Matjeke, R. S., Zhao, J., & Yu, Q. (2021). Bacillus coagulans protect against Salmonella enteritidis -induced intestinal mucosal damage in young chickens by inducing the differentiation of goblet cells Assay of the Antimicrobial Activity, 1–8. Xu, L., Sun, X., Wan, X., Li, K., Jian, F., Li, W., … Wang, Y. (2021). Dietary supplementation with Clostridium butyricum improves growth performance of broilers by regulating intestinal microbiota and mucosal epithelial cells. Animal Nutrition, 7(4), 1105–1114. https://doi.org/10.1016/j.aninu.2021.01.009 Xu, Y., Yu, Y., Shen, Y., Li, Q., Lan, J., Wu, Y., … Yang, C. (2021). Effects of Bacillus subtilis and Bacillus licheniformis on growth performance, immunity, short chain fatty acid production, antioxidant capacity, and cecal microflora in broilers. Poultry Science. https://doi.org/10.1016/j.psj.2021.101358 Yadav, S., & Jha, R. (2019). Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. Journal of Animal Science and Biotechnology, 10(1), 1–11. https://doi.org/10.1186/s40104-018-0310-9 Yan, W., Sun, C., Zheng, J., Wen, C., & Ji, C. (2019). Efficacy of Fecal Sampling as a Gut Proxy in the Study of Chicken Gut Microbiota, 10(September), 1–11. https://doi.org/10.3389/fmicb.2019.02126 Yaqoob, M. U., El-hack, M. E. A., Hassan, F., El-saadony, M. T., Khafaga, A. F., Batiha, G. E., … Wang, M. (2021). The potential mechanistic insights and future implications for the effect of prebiotics on poultry performance , gut microbiome , and intestinal morphology. Poultry Science, 100(7), 101143. https://doi.org/10.1016/j.psj.2021.101143 Ye, S., Chen, Z. T., Zheng, R., Diao, S., Teng, J., Yuan, X., … Zhang, Z. (2020). New Insights From Imputed Whole-Genome Sequence-Based Genome-Wide Association Analysis and Transcriptome Analysis: The Genetic Mechanisms Underlying Residual Feed Intake in Chickens. Frontiers in Genetics, 11(April), 1–12. https://doi.org/10.3389/fgene.2020.00243 Yu, M., Li, Z., Chen, W., Wang, G., & Cui, Y. (2019). Dietary Supplementation With Citrus Extract Altered the Intestinal Microbiota and Microbial Metabolite Profiles and Enhanced the Mucosal Immune Homeostasis in Yellow-Feathered Broilers, 10(November), 1–14. https://doi.org/10.3389/fmicb.2019.02662 Zaghari, M., Sarani, P., & Hajati, H. (2020). Comparison of two probiotic preparations on growth performance, intestinal microbiota, nutrient digestibility and cytokine gene expression in broiler chickens. Journal of Applied Animal Research, 48(1), 166–175. https://doi.org/10.1080/09712119.2020.1754218 Zbo, A. D., Ognik, K., Zaworska, A., Ferenc, K., & Jankowski, J. (2018). The effect of raw and fermented rapeseed cake on the metabolic parameters, immune status, and intestinal morphology of turkeys. Poultry Science. https://doi.org/10.3382/ps/pey250 Zhang, B., Zhang, H., Yu, Y., Zhang, R., Wu, Y., Yue, M., & Yang, C. (2021a). Effects of Bacillus Coagulans on growth performance, antioxidant capacity, immunity function, and gut health in broilers. Poultry Science, 100(6), 101168. https://doi.org/10.1016/j.psj.2021.101168 Zhang, B., Zhang, H., Yu, Y., Zhang, R., Wu, Y., Yue, M., & Yang, C. (2021b). Effects of Bacillus Coagulans on growth performance, antioxidant capacity, immunity function, and gut health in broilers. Poultry Science. https://doi.org/10.1016/j.psj.2021.101168 Zhang, L., Said, L. Ben, Hervé, N., Zirah, S., Diarra, M. S., & Fliss, I. (2022). Effects of drinking water supplementation with Lactobacillus reuteri , and a mixture of reuterin and microcin J25 on the growth performance , caecal microbiota and selected metabolites of broiler chickens, 6, 1–13. Zhang, S., Zhong, G., Shao, D., Wang, Q., Hu, Y., Wu, T., … Shi, S. (2021). Dietary supplementation with Bacillus subtilis promotes growth performance of broilers by altering the dominant microbial community. Poultry Science, 100(3), 100935. https://doi.org/10.1016/j.psj.2020.12.032 Zhen, W., Shao, Y., Gong, X., Wu, Y., Geng, Y., Wang, Z., & Guo, Y. (2018). Effect of dietary Bacillus coagulans supplementation on growth performance and immune responses of broiler chickens challenged by Salmonella enteritidis. Poultry Science, 97(8), 2654–2666. https://doi.org/10.3382/ps/pey119 Zou, Y., Wang, J., Wang, Y., Peng, B., Liu, J., Zhang, B., … Wang, S. (2020). O157 Colonization through Enhancing Gut Barrier. Abdel-Moneim, A. M. E., Selim, D. A., Basuony, H. A., Sabic, E. M., Saleh, A. A., & Ebeid, T. A. (2020). Effect of dietary supplementation of Bacillus subtilis spores on growth performance, oxidative status, and digestive enzyme activities in Japanese quail birds. Tropical Animal Health and Production, 52(2), 671–680. https://doi.org/10.1007/s11250-019-02055-1 Ballou, A. L., Ali, R. A., Mendoza, M. A., Ellis, J. C., Hassan, H. M., Croom, W. J., & Koci, M. D. (2016). Development of the chick microbiome: How early exposure influences future microbial diversity. Frontiers in Veterinary Science, 3(JAN), 1–12. https://doi.org/10.3389/fvets.2016.00002 Bohorquez, L. C., Delgado-Serrano, L., López, G., Osorio-Forero, C., Klepac-Ceraj, V., Kolter, R., … Zambrano, M. M. (2012). In-depth Characterization via Complementing Culture-Independent Approaches of the Microbial Community in an Acidic Hot Spring of the Colombian Andes. Microbial Ecology, 63(1), 103–115. https://doi.org/10.1007/s00248-011-9943-3 Borey, M., Estellé, J., Caidi, A., Bruneau, N., Coville, J. L., Hennequet-Antier, C., … Calenge, F. (2020). Broilers divergently selected for digestibility differ for their digestive microbial ecosystems. PLoS ONE, 15(5), 1–21. https://doi.org/10.1371/journal.pone.0232418 Burbach, K., Seifert, J., Pieper, D. H., & Camarinha-Silva, A. (2016). Evaluation of DNA extraction kits and phylogenetic diversity of the porcine gastrointestinal tract based on Illumina sequencing of two hypervariable regions. MicrobiologyOpen, 5(1), 70–82. https://doi.org/10.1002/mbo3.312 Cao, S., Zhang, Q., Wang, C., & Wu, H. (2018). LPS challenge increased intestinal permeability , disrupted mitochondrial function and triggered mitophagy of piglets, (866). https://doi.org/10.1177/1753425918769372 Chen, C., Huang, X., Fang, S., Yang, H., He, M., Zhao, Y., & Huang, L. (2018). Contribution of Host Genetics to the Variation of Microbial Composition of Cecum Lumen and Feces in Pigs. Frontiers in Microbiology, 9(October), 1–13. https://doi.org/10.3389/fmicb.2018.02626 Chen, J. Y., & Yu, Y. H. (2021). Bacillus subtilis–fermented products ameliorate the growth performance and alter cecal microbiota community in broilers under lipopolysaccharide challenge. Poultry Science, 100(2), 875–886. https://doi.org/10.1016/j.psj.2020.10.070 Chen, X., Chen, W., Ci, W., Zheng, Y., Han, X., Huang, J., & Zhu, J. (2022). Effects of Dietary Supplementation with Lactobacillus acidophilus and Bacillus subtilis on Mucosal Immunity and Intestinal Barrier Are Associated with Its Modulation of Gut Metabolites and Microbiota in Late ‑ Phase Laying Hens. Probiotics and Antimicrobial Proteins, (0123456789). https://doi.org/10.1007/s12602-022-09923-7 Clavijo, V., & Flórez, M. J. V. (2018). The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production A review, 1006–1021. https://doi.org/10.3382/ps/pex359 Costa, M. C., Bessegatto, J. A., Alfieri, A. A., Weese, J. S., Filho, J. A. B., & Oba, A. (2017). Different antibiotic growth promoters induce specific changes in the cecal microbiota membership of broiler chicken. PLoS ONE, 12(2), 1–13. https://doi.org/10.1371/journal.pone.0171642 Dong, R., Li, F., Qin, S., & Wang, Y. (2016). Data in Brief Dataset on in fl ammatory proteins expressions and sialic acid levels in apolipoprotein E-de fi cient mice with administration of N-acetylneuraminic acid and / or quercetin. Data in Brief, 8, 613–617. https://doi.org/10.1016/j.dib.2016.06.020 Gao, P., Ma, C., Sun, Z., Wang, L., Huang, S., Su, X., … Zhang, H. (2017). Feed-additive probiotics accelerate yet antibiotics delay intestinal microbiota maturation in broiler chicken. Microbiome, 5(1), 91. https://doi.org/10.1186/s40168-017-0315-1 Gomez, A., Rothman, J. M., Petrzelkova, K., Yeoman, C. J., Vlckova, K., Umaña, J. D., … Leigh, S. R. (2016). Temporal variation selects for diet-microbe co-metabolic traits in the gut of Gorilla spp. ISME Journal, 10(2), 514–526. https://doi.org/10.1038/ismej.2015.146 Grond, K., Guilani, H., & Hird, S. M. (2020). Spatial heterogeneity of the shorebird gastrointestinal microbiome. Royal Society Open Science. https://doi.org/10.1098/rsos.191609Grond, K., Guilani, H., & Hird, S. M. (2020). Spatial heterogeneity of the shorebird gastrointestinal microbiome. Royal Society Open Science. https://doi.org/10.1098/rsos.191609 Guo, M., Li, M., Zhang, C., Zhang, X., & Wu, Y. (2020). Dietary Administration of the Bacillus subtilis Enhances Immune Responses and Disease Resistance in Chickens. Frontiers in Microbiology, 11(July), 1–11. https://doi.org/10.3389/fmicb.2020.01768 Gut, P., Gut, H., Composition, M., Colombino, E., Biasato, I., Ferrocino, I., … Capucchio, M. T. (2021). Local Immune Response Evaluation. Hu, R., Lin, H., Wang, M., Zhao, Y., Liu, H., Min, Y., … Gao, Y. (2021). Lactobacillus reuteri -derived extracellular vesicles maintain intestinal immune homeostasis against lipopolysaccharide- induced inflammatory responses in broilers, 4, 1–18. Hu, Y., Wang, L., Shao, D., Wang, Q., Wu, Y., & Han, Y. (2020). Selectived and Reshaped Early Dominant Microbial Community in the Cecum With Similar Proportions and Better Homogenization and Species Diversity Due to Organic Acids as AGP Alternatives Mediate Their Effects on Broilers Growth, 10(January), 1–20. https://doi.org/10.3389/fmicb.2019.02948 Hui, Y., Tamez-hidalgo, P., Cieplak, T., Satessa, G. D., Kot, W., Kjærulff, S., … Krych, L. (2021). Supplementation of a lacto-fermented rapeseed-seaweed blend promotes gut microbial- and gut immune-modulation in weaner piglets, 2, 1–14. Jacquier, V., Nelson, A., Jlali, M., Rhayat, L., Brinch, K. S., & Devillard, E. (2019). Bacillus subtilis 29784 induces a shift in broiler gut microbiome toward butyrate-producing bacteria and improves intestinal histomorphology and animal performance. Poultry Science, 98(6), 2548–2554. https://doi.org/10.3382/ps/pey602 Khan, S., & Chousalkar, K. K. (2021). Functional enrichment of gut microbiome by early supplementation of Bacillus based probiotic in cage free hens: a field study. Animal Microbiome, 3(1). https://doi.org/10.1186/s42523-021-00112-5 Kollarcikova, M., Kubasova, T., Karasova, D., Crhanova, M., Cejkova, D., Sisak, F., & Rychlik, I. (2018). Use of 16S rRNA gene sequencing for prediction of new opportunistic pathogens in chicken ileal and cecal microbiota Sequence Processing and Classification of the V3 / V4 Region of 16S rRNA Genes. Poultry Science, 98(6), 2347–2353. https://doi.org/10.3382/ps/pey594 Kuczynski, J., Stombaugh, J., Walters, W. A., González, A., Caporaso, J. G., & Knight, R. (2011). Using QIIME to analyze 16S rrna gene sequences from microbial communities. Current Protocols in Bioinformatics, (SUPPL.36), 1–20. https://doi.org/10.1002/0471250953.bi1007s36 Mancabelli., et al. (2016). Insights into the biodiversity of the gut microbiota of broiler chickens, 15(32), 4–6. Marmion, M., Ferone, M. T., Whyte, P., & Scannell, A. G. M. (2021). The changing microbiome of poultry meat; from farm to fridge. Food Microbiology, 99(April), 103823. https://doi.org/10.1016/j.fm.2021.103823 Martinez-Guryn, K., Leone, V., & Chang, E. B. (2019). Regional Diversity of the Gastrointestinal Microbiome. Cell Host and Microbe, 26(3), 314–324. https://doi.org/10.1016/j.chom.2019.08.011 Milici, M., Tomasch, J., Wos-Oxley, M. L., Wang, H., Jáuregui, R., Camarinha-Silva, A., … Wagner-Döbler, I. (2016). Low diversity of planktonic bacteria in the tropical ocean. Scientific Reports, 6(January), 19054. https://doi.org/10.1038/srep19054 Miller, B. M., Liou, M. J., Zhang, L. F., Tiffany, C. R., Butler, B. P., Andreas, J. B., … Schorr, E. (2020). Short Article Anaerobic Respiration of NOX1-Derived Hydrogen Peroxide Licenses Bacterial Growth at the Colonic ll Short Article Anaerobic Respiration of NOX1-Derived Hydrogen Peroxide Licenses Bacterial Growth at the Colonic Surface, 789–797. https://doi.org/10.1016/j.chom.2020.10.009 Moita, V. H. C., Duarte, M. E., & Kim, S. W. (2021). Supplemental Effects of Phytase on Modulation of Mucosa- Associated Microbiota in the Jejunum and the Impacts on Nutrient Digestibility , Intestinal Morphology , and Bone Parameters in Broiler Chickens. Mu, Q., Tavella, V. J., & Luo, X. M. (2018). Role of Lactobacillus reuteri in Human Health and Diseases, 9(April), 1–17. https://doi.org/10.3389/fmicb.2018.00757 Ocejo, M., Oporto, B., & Hurtado, A. (2019). 16S rRNA amplicon sequencing characterization of caecal microbiome composition of broilers and free-range slow- growing chickens throughout their productive lifespan, (October 2018), 1–14. https://doi.org/10.1038/s41598-019-39323- Parker, B. J., Wearsch, P. A., Veloo, A. C. M., Rodriguez-palacios, A., & Rodriguez-palacios, A. (2020). The Genus Alistipes : Gut Bacteria With Emerging Implications to Inflammation , Cancer , and Mental Health, 11(June), 1–15. https://doi.org/10.3389/fimmu.2020.00906 Pickard, J. M., Zeng, M. Y., Caruso, R., & Núñez, G. (2017). Gut microbiota : Role in pathogen colonization , immune responses , and inflammatory disease, 70–89. https://doi.org/10.1111/imr.12567 Rashid, Z., Zubair, M., Syed, Y., Hussain, M., Sitwat, G., & Ashaq, Z. (2021). Comparative analysis of chicken cecal microbial diversity and taxonomic composition in response to dietary variation using 16S rRNA amplicon sequencing. Molecular Biology Reports, 48(11), 7203–7214. https://doi.org/10.1007/s11033-021-06712-3 Reisinger, N., Emsenhuber, C., Doupovec, B., Mayer, E., Schatzmayr, G., Nagl, V., & Grenier, B. (2020). Endotoxin translocation and gut inflammation are increased in broiler chickens receiving an oral lipopolysaccharide (LPS) bolus during heat stress. Toxins. https://doi.org/10.3390/toxins12100622 Rivera-chávez, F., Lopez, C. A., & Bäumler, A. J. (2016). Oxygen as a driver of gut dysbiosis. Free Radical Biology and Medicine. https://doi.org/10.1016/j.freeradbiomed.2016.09.022 Rouissi, A., Alfonso-Avila, A. R., Guay, F., Boulianne, M., & Létourneau-Montminy, M. P. (2021). Effects of Bacillus subtilis, butyrate, mannan-oligosaccharide, and naked oat (ß-glucans) on growth performance, serum parameters, and gut health of broiler chickens. Poultry Science, 100(12), 101506. https://doi.org/10.1016/j.psj.2021.101506 Rubio, L. A. (2019). Possibilities of early life programming in broiler chickens via intestinal microbiota modulation. Poultry Science. https://doi.org/10.3382/ps/pey416 Shi, S., Liu, J., Dong, J., Hu, J., Liu, Y., Feng, J., & Zhou, D. (2021). Research progress on the regulation mechanism ofprobiotics on the microecological flora of infectedintestines in livestock and poultry.pdf. Shin, N., Whon, T. W., & Bae, J. (2015). Proteobacteria microbial signature of dysbiosis in gut microbiota. Trends in Biotechnology, 1–8. https://doi.org/10.1016/j.tibtech.2015.06.011 Wang, F., Men, X., Zhang, G., Liang, K., Xin, Y., Wang, J., … Wu, L. (2018). Assessment of 16S rRNA gene primers for studying bacterial community structure and function of aging flue-cured tobaccos. AMB Express, 8(1), 1–9. https://doi.org/10.1186/s13568-018-0713-1 Wang, J., Wan, C., Shuju, Z., Yang, Z., Celi, P., Ding, X., & Al, W. E. T. (2019). Differential analysis of gut microbiota and the effect of dietary Enterococcus faecium supplementation in broiler breeders with high or low laying performance. Poultry Science, 100(2), 1109–1119. https://doi.org/10.1016/j.psj.2020.10.024 Wang, S., Ahmadi, S., Nagpal, R., Jain, S., & Mishra, S. P. (2020). Lipoteichoic acid from the cell wall of a heat killed Lactobacillus paracasei D3-5 ameliorates aging-related leaky gut , inflammation and improves physical and cognitive functions : from C . elegans to mice, 333–352. Wen, C., Yan, W., Mai, C., Duan, Z., Zheng, J., Sun, C., & Yang, N. (2021). Joint contributions of the gut microbiota and host genetics to feed efficiency in chickens. Microbiome, 9(1), 1–23. https://doi.org/10.1186/s40168-021-01040-x Wen, C., Yan, W., Sun, C., Ji, C., Zhou, Q., Zhang, D., … Yang, N. (2019). The gut microbiota is largely independent of host genetics in regulating fat deposition in chickens. ISME Journal, 13(6), 1422–1436. https://doi.org/10.1038/s41396-019-0367-2 Xiao, S. S., Mi, J. D., Mei, L., Liang, J., Feng, K. X., Wu, Y. B., … Wang, Y. (2021). Microbial diversity and community variation in the intestines of layer chickens. Animals, 11(3), 1–17. https://doi.org/10.3390/ani11030840 Ye, S., Chen, Z. T., Zheng, R., Diao, S., Teng, J., Yuan, X., … Zhang, Z. (2020). New Insights From Imputed Whole-Genome Sequence-Based Genome-Wide Association Analysis and Transcriptome Analysis: The Genetic Mechanisms Underlying Residual Feed Intake in Chickens. Frontiers in Genetics, 11(April), 1–12. https://doi.org/10.3389/fgene.2020.00243 Yu, M., Li, Z., Chen, W., Wang, G., & Cui, Y. (2019). Dietary Supplementation With Citrus Extract Altered the Intestinal Microbiota and Microbial Metabolite Profiles and Enhanced the Mucosal Immune Homeostasis in Yellow-Feathered Broilers, 10(November), 1–14. https://doi.org/10.3389/fmicb.2019.02662 Zhang, L., Said, L. Ben, Hervé, N., Zirah, S., Diarra, M. S., & Fliss, I. (2022). Effects of drinking water supplementation with Lactobacillus reuteri , and a mixture of reuterin and microcin J25 on the growth performance , caecal microbiota and selected metabolites of broiler chickens, 6, 1–13. Zhang, S., Zhong, G., Shao, D., Wang, Q., Hu, Y., Wu, T., … Shi, S. (2021). Dietary supplementation with Bacillus subtilis promotes growth performance of broilers by altering the dominant microbial community. Poultry Science, 100(3), 100935. https://doi.org/10.1016/j.psj.2020.12.032 Zou, X. Y., Zhang, M., Tu, W. J., Zhang, Q., Jin, M. L., Fang, R. D., & Jiang, S. (2022). Bacillus subtilis inhibits intestinal inflammation and oxidative stress by regulating gut flora and related metabolites in laying hens, 16. https://doi.org/10.1016/j.animal.2022.100474 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xvii, 182 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Ciencias Agrarias - Doctorado en Ciencias Agrarias |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Agrarias |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/83280/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/83280/2/40043535.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/83280/3/40043535.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 22a21c481b05ad0cb179942cf3188167 59bb3cdad967d3cfc6252ab73013fb88 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089975998709760 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Parra Suescún, Jaime Eduardocab0d57f56ba12bfa3f0e75ea778fcf8600López Herrera, Albeiro9b77ca9307c68dda3ffafbf09cfd2294600Rodríguez González, Sandra Paola23151ec60a294e6e4553864b8b4520b1Biodiversidad y Génetica Molecular "Biogem"0000-0002-1037-7843RODRÍGUEZ GONZÁLEZ, SANDRA PAOLA2023-02-03T15:59:31Z2023-02-03T15:59:31Z2022-09-15https://repositorio.unal.edu.co/handle/unal/83280Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones a colorEn los sistemas de producción avícolas, las aves son sometidas a diferentes tipos de estrés, provocando a nivel intestinal desequilibrio de la microbiota, caracterizado principalmente por el aumento en las poblaciones de bacterias patógenas que generan proceso de disbiosis; dentro de las cuales, las bacterias gram-negativas, tienen la capacidad de liberar desde su pared celular compuestos denominados lipopolisacáridos (LPS), los cuales desencadenan procesos inflamatorios a nivel intestinal que ocasionan diarrea y mortalidad de las aves. En varios países los antibióticos han sido utilizados en las producciones avícolas como promotores de crecimiento (APC), ya que reducen las concentraciones de bacterias gram-negativas a nivel intestinal, pero el uso indiscriminado de los mismos ha llevado a generar resistencia de microrganismos a los antibióticos con problemas a nivel de la salud animal y humana. Los microorganismos que se utilizan actualmente, como alternativas naturales para reemplazar de manera parcial a los APC, son variados y numerosos, dentro de ellos se encuentran las bacterias probióticas, como el Bacillus subtilis. El presente trabajo evaluó el efecto de la adición de B. subtilis en las variables productivas, alometría y morfometría intestinal, producción de mucinas, expresión de interleuquinas y microbiota en duodeno de pollos que fueron retados a un LPS de Escherichia coli. Dentro de los resultados que se encontraron, se evidencia una mejora en las variables zootécnicas (ganancia acumulada de peso), alometría y morfometría intestinal (altura y ancho de la vellosidad y profundidad de criptas), células caliciformes y producción de mucinas, expresión molecular de interleuquinas anti y proinflamatorias y modulación positiva de la microbiota del duodeno. El B. subtilis puede ser utilizado de manera parcial ya que se presentó un efecto positivo y comparable con el APC. (texto tomado de la fuente)In poultry production systems, birds are subjected to different types of stress, causing an imbalance of the microbiota at the intestinal level, characterized mainly by the increase in the populations of pathogenic bacteria that generate a process of dysbiosis, within which, the bacteria gram-negative, they have the ability to release compounds called lipopolysaccharides (LPS) from their cell wall, which trigger inflammatory processes at the intestinal level that cause diarrhea and mortality in birds. In several countries, antibiotics have been used in poultry production as growth promoters (APC), since they reduce the concentrations of gram-negative bacteria at the intestinal level, but their indiscriminate use has led to the generation of resistance of microorganisms to antibiotics. Antibiotics with problems at the level of animal and human health. The microorganisms that are currently used as natural alternatives to partially replace APC´s are varied and numerous, among them are probiotic bacteria, such as Bacillus subtilis. The present study evaluated the effect of the addition of B. subtilis on the productive variables, intestinal allometry and morphometry, mucin production, interleukin expression and microbiota in the duodenum of chickens that were challenged with by Escherichia coli. LPS. Among the results found, there is evidence of an improvement in the zootechnical variables (accumulated weight gain), allometry and intestinal morphometry (height and width of the villi and depth of the crypts), goblet cells and mucin production, molecular expression of anti- and pro-inflammatory interleukins and positive modulation of the duodenal microbiota. B. subtilis can be used in a partial way since it presented a positive and comparable effect with APC.COLCIENCIAS y Colfuturo en la convocatoria 733 para el programa de Doctorado Nacional del Departamento de BoyacáDoctoradoDoctor en Ciencias AgrariasProducción AnimalÁrea Curricular en Producción Agraria Sosteniblexvii, 182 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias Agrarias - Doctorado en Ciencias AgrariasFacultad de Ciencias AgrariasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín590 - AnimalesAviculturaMucinasPollos de engordeAntibióticosDisbiosisInterleuquinasMucinaMicrobiota intestinalEvaluación de la adición de Bacillus subtillis en un modelo de inflamación aguda intestinal en pollos de engordeEvaluation of the addition of Bacillus subtillis in a model of acute intestinal inflammation in broilersTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDLaReferenciaAbd El-Hack, M. E., El-Saadony, M. T., Elbestawy, A. R., El-Shall, N. A., Saad, A. M., Salem, H. M., … El-Tarabily, K. A. (2022). Necrotic enteritis in broiler chickens: disease characteristics and prevention using organic antibiotic alternatives – a comprehensive review. Poultry Science, 101(2), 101590. https://doi.org/10.1016/j.psj.2021.101590Abdel-Moneim, A. M. E., Selim, D. A., Basuony, H. A., Sabic, E. M., Saleh, A. A., & Ebeid, T. A. (2020). Effect of dietary supplementation of Bacillus subtilis spores on growth performance, oxidative status, and digestive enzyme activities in Japanese quail birds. Tropical Animal Health and Production, 52(2), 671–680. https://doi.org/10.1007/s11250-019-02055-1Adhikari, P. A., & Kim, W. K. (2017). Overview of Prebiotics and Probiotics: Focus on Performance, Gut Health and Immunity – A Review. Annals of Animal Science, 17(4), 949–966. https://doi.org/10.1515/aoas-2016-0092Alizadeh, M., Yitbarek, A., Sharif, S., Crow, G., & Slominski, B. A. (2017). Effect of yeast-derived products on systemic innate immune response of broiler chickens following a lipopolysaccharide challenge, (October), 2266–2273.Allaire, J. M., Crowley, S. M., Law, H. T., Chang, S. Y., Ko, H. J., & Vallance, B. A. (2018). The Intestinal Epithelium: Central Coordinator of Mucosal Immunity. Trends in Immunology, 39(9), 677–696. https://doi.org/10.1016/j.it.2018.04.002Arenas, N. E., & Melo, V. M. (2018). Producción pecuaria y emergencia de antibiótico resistencia en Colombia : Revisión sistemática, 22(2), 110–119.Arendt, M., Elissa, J., Schmidt, N., Michael, E., Potter, N., Cook, M., & Knoll, L. J. (2019). Investigating the role of interleukin 10 on Eimeria intestinal pathogenesis in broiler chickens. Veterinary Immunology and Immunopathology, 218(January), 109934. https://doi.org/10.1016/j.vetimm.2019.109934Attia, Y. A., Al-Khalaifah, H., Abd El-Hamid, H. S., Al-Harthi, M. A., & El-shafey, A. A. (2020). Effect of Different Levels of Multienzymes on Immune Response, Blood Hematology and Biochemistry, Antioxidants Status and Organs Histology of Broiler Chicks Fed Standard and Low-Density Diets. Frontiers in Veterinary Science, 6(February), 1–15. https://doi.org/10.3389/fvets.2019.00510Azimirad, M., Alebouyeh, M., & Naji, T. (2017). Inhibition of Lipopolysaccharide-Induced Interleukin 8 in Human Adenocarcinoma Cell Line HT-29 by Spore Probiotics: B. coagulans and B. subtilis (natto). Probiotics and Antimicrobial Proteins, 9(1), 56–63. https://doi.org/10.1007/s12602-016-9234-xBai, K., Feng, C., Jiang, L., Zhang, L., Zhang, J., Zhang, L., & Wang, T. (2018). Dietary effects of Bacillus subtilis fmbj on growth performance, small intestinal morphology, and its antioxidant capacity of broilers. Poultry Science, 97(7), 2312–2321. https://doi.org/10.3382/ps/pey116Bakshani, C. R., Morales-Garcia, A. L., Althaus, M., Wilcox, M. D., Pearson, J. P., Bythell, J. C., & Burgess, J. G. (2018). Evolutionary conservation of the antimicrobial function of mucus: A first defence against infection. Npj Biofilms and Microbiomes. https://doi.org/10.1038/s41522-018-0057-2Baldwin, S., Hughes, R. J., Van, T. T. H., Moore, R. J., & Stanley, D. (2018a). At-hatch administration of probiotic to chickens can introduce beneficial changes in gut microbiota. PLoS ONE, 13(3), 1–14. https://doi.org/10.1371/journal.pone.0194825Ballou, A. L., Ali, R. A., Mendoza, M. A., Ellis, J. C., Hassan, H. M., Croom, W. J., & Koci, M. D. (2016). Development of the chick microbiome: How early exposure influences future microbial diversity. Frontiers in Veterinary Science, 3(JAN), 1–12. https://doi.org/10.3389/fvets.2016.00002Bansil, R., & Turner, B. S. (2017). The biology of mucus: Composition, synthesis and organization. Advanced Drug Delivery Reviews. https://doi.org/10.1016/j.addr.2017.09.023Barrera, M. H., Rodríguez, S. P., & Torres, G. (2014). Efectos de la adición de ácido cítrico y un probiótico comercial en el agua de bebida, sobre la morfometría del duodeno y parámetros zootécnicos en pollo de engorde. Orinoquia, 18(2). Retrieved from http://www.scielo.org.co/pdf/rori/v18n2/v18n2a05.pdfBeirão, B. C. B., Ingberman, M., Mesa, D., Salles, G. B. C., Muniz, E. C., & Caron, L. F. (2021). Effects of aroA deleted E. coli vaccine on intestinal microbiota and mucosal immunity. Comparative Immunology, Microbiology and Infectious Diseases, 75(January). https://doi.org/10.1016/j.cimid.2021.101612Bentley-Hewitt, K. L., Narbad, A., Majsak-Newman, G., Philo, M. R., & Lund, E. K. (2017). Lactobacilli survival and adhesion to colonic epithelial cell lines is dependent on long chain fatty acid exposure. European Journal of Lipid Science and Technology, 119(11), 1–10. https://doi.org/10.1002/ejlt.201700062Berkhout, M. D., Plugge, C. M., & Belzer, C. (2021). How microbial glycosyl hydrolase activity in the gut mucosa initiates microbial cross-feeding, 1–6.Bohorquez, L. C., Delgado-Serrano, L., López, G., Osorio-Forero, C., Klepac-Ceraj, V., Kolter, R., … Zambrano, M. M. (2012). In-depth Characterization via Complementing Culture-Independent Approaches of the Microbial Community in an Acidic Hot Spring of the Colombian Andes. Microbial Ecology, 63(1), 103–115. https://doi.org/10.1007/s00248-011-9943-3Bonis, V., Rossell, C., & Gehart, H. (2021). The Intestinal Epithelium – Fluid Fate and Rigid Structure From Crypt Bottom to Villus Tip. Frontiers in Cell and Developmental Biology, 9(May), 1–20. https://doi.org/10.3389/fcell.2021.661931Borda-Molina, D., Seifert, J., & Camarinha-Silva, A. (2018). Current Perspectives of the Chicken Gastrointestinal Tract and Its Microbiome. Computational and Structural Biotechnology Journal, 16, 131–139. https://doi.org/10.1016/j.csbj.2018.03.002Borey, M., Estellé, J., Caidi, A., Bruneau, N., Coville, J. L., Hennequet-Antier, C., … Calenge, F. (2020). Broilers divergently selected for digestibility differ for their digestive microbial ecosystems. PLoS ONE, 15(5), 1–21. https://doi.org/10.1371/journal.pone.0232418Bortoluzzi, C., Fernandes, J. I. M., Doranalli, K., & Applegate, T. J. (2020). Effects of dietary amino acids in ameliorating intestinal function during enteric challenges in broiler chickens. Animal Feed Science and Technology, 262(December), 114383. https://doi.org/10.1016/j.anifeedsci.2019.114383Broom, L. J. (2018). Gut barrier function: Effects of (antibiotic) growth promoters on key barrier components and associations with growth performance. Poultry Science, (February), 1–7. https://doi.org/10.3382/ps/pey021Broom, L. J. (2019). Host–microbe interactions and gut health in poultry—Focus on innate responses. Microorganisms, 7(5), 1–12. https://doi.org/10.3390/microorganisms7050139Burbach, K., Seifert, J., Pieper, D. H., & Camarinha-Silva, A. (2016). Evaluation of DNA extraction kits and phylogenetic diversity of the porcine gastrointestinal tract based on Illumina sequencing of two hypervariable regions. MicrobiologyOpen, 5(1), 70–82. https://doi.org/10.1002/mbo3.312Calik, A., Ceylan, A., Ekim, B., Adabi, S. G., Dilber, F., Bayraktaroglu, A. G., … Sacakli, P. (2017). The effect of intra-amniotic and posthatch dietary synbiotic administration on the performance, intestinal histomorphology, cecal microbial population, and short-chain fatty acid composition of broiler chickens. Poultry Science, 96(1), 169–183. https://doi.org/10.3382/ps/pew218Cao, Y., Liu, H., Qin, N., Ren, X., Zhu, B., & Xia, X. (2020). Impact of food additives on the composition and function of gut microbiota: A review. Trends in Food Science and Technology, 99(February), 295–310. https://doi.org/10.1016/j.tifs.2020.03.006Celi, Verlhac, Calvo, Schmeisser, & K. (2019). Biomarkers of gastrointestinal functionality in animal nutrition and health. Animal Feed Science and Technology, 250(July), 9–31. https://doi.org/10.1016/j.anifeedsci.2018.07.012Celi, P., Verlhac, V., Pérez Calvo, E., Schmeisser, J., & Kluenter, A. M. (2019). Biomarkers of gastrointestinal functionality in animal nutrition and health. Animal Feed Science and Technology, 250(May 2018), 9–31. https://doi.org/10.1016/j.anifeedsci.2018.07.012Chase, C. C. L. (2018). Enteric Immunity: Happy Gut, Healthy Animal. Veterinary Clinics of North America - Food Animal Practice, 34(1), 1–18. https://doi.org/10.1016/j.cvfa.2017.10.006Chávez, L., López, A.,& Parra, J. (2015). La inclusión de cepas probióticas mejora los parámetros inmunológicos en pollos de engorde. Revista CES Medicina Veterinaria y Zootecnia, 10(2), 160–169. Retrieved from http://www.scielo.org.co/pdf/cmvz/v10n2/v10n2a08.pdfChávez, L. A., López, A., & Parra, J. E. (2016). Crecimiento y desarrollo intestinal de aves de engorde alimentadas con cepas probióticas. Archivos de Zootecnia, 65(249), 51–58. https://doi.org/http://dx.doi.org/10.21071/az.v65i249.441Chen, C., Huang, X., Fang, S., Yang, H., He, M., Zhao, Y., & Huang, L. (2018). Contribution of Host Genetics to the Variation of Microbial Composition of Cecum Lumen and Feces in Pigs. Frontiers in Microbiology, 9(October), 1–13. https://doi.org/10.3389/fmicb.2018.02626Chen et al . (2022). Cadmium exposure triggers oxidative stress, necroptosis, Th1/Th2 imbalance and promotes inflammation through the TNF-α/NF-κB pathway in swine small intestine. Journal of Hazardous Materials, 421(January 2021), 126704. https://doi.org/10.1016/j.jhazmat.2021.126704CIOMS. (2012). INTERNATIONAL GUIDING PRINCIPLES FOR BIOMEDICAL RESEARCH INVOLVING ANIMALS. Retrieved from https://grants.nih.gov/grants/olaw/guiding_principles_2012.pdfCiro, J., López, A., & Parra, J. (2014). LIPOPOLISACÁRIDOS DE E. coli AUMENTA LA EXPRESIÓN MOLECULAR DE PΒD-2 EN YEYUNO DE LECHONES POSDESTETE., 61(2), 142–152.Ciro, J., López, A., & Parra Jaime. (2015). Adding probiotic strains modulates intestinal mucin secretion in growing pigs ileum. Revista CES Medicina Veterinaria y Zootecnia, 10(102), 150–159. Retrieved from http://www.scielo.org.co/pdf/cmvz/v10n2/v10n2a07.pdfClavijo, V., & Flórez, M. J. V. (2018). The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production : A review, 1006–1021. https://doi.org/10.3382/ps/pex359Cobb-Vantress Inc. (2009). Guía de Manejo del Pollo de Engorde. Aviagen, 65.Coleman, O. I., Haller, D., & Haller, D. (2018). Bacterial Signaling at the intestinal epithelial interface in inflammation and Cancer, 8(January), 1–11. https://doi.org/10.3389/fimmu.2017.01927Constant, D. A., Nice, T. J., & Rauch, I. (2021). Innate immune sensing by epithelial barriers. Current Opinion in Immunology, 73, 1–8. https://doi.org/10.1016/j.coi.2021.07.014Costa, M. C., Bessegatto, J. A., Alfieri, A. A., Weese, J. S., Filho, J. A. B., & Oba, A. (2017). Different antibiotic growth promoters induce specific changes in the cecal microbiota membership of broiler chicken. PLoS ONE, 12(2), 1–13. https://doi.org/10.1371/journal.pone.0171642Dal Pont, G. C., Belote, B. L., Lee, A., Bortoluzzi, C., Eyng, C., Sevastiyanova, M., … Kogut, M. H. (2021). Novel Models for Chronic Intestinal Inflammation in Chickens: Intestinal Inflammation Pattern and Biomarkers. Frontiers in Immunology, 12(May), 1–15. https://doi.org/10.3389/fimmu.2021.676628Darwish, N., Shao, J., Schreier, L. L., & Proszkowiec-Weglarz, M. (2021). Choice of 16S ribosomal RNA primers affects the microbiome analysis in chicken ceca. Scientific Reports, 11(1), 1–15. https://doi.org/10.1038/s41598-021-91387-wDev, K., Mir, N. A., Biswas, A., Kannoujia, J., Begum, J., Kant, R., & Mandal, A. (2020). Dietary synbiotic supplementation improves the growth performance, body antioxidant pool, serum biochemistry, meat quality, and lipid oxidative stability in broiler chickens. Animal Nutrition, 6(3), 325–332. https://doi.org/10.1016/j.aninu.2020.03.002Ding, S., Wang, Y., Yan, W., Li, A., Jiang, H., & Fang, J. (2019). Correction: Effects of Lactobacillus plantarum 15-1 and fructooligosaccharides on the response of broilers to pathogenic Escherichia coli O78 challenge(PLoS ONE (2019)146 ( e0212079) DOI: 10.1371/journal.pone.0212079). PLoS ONE, 14(9), 1–14. https://doi.org/10.1371/journal.pone.0222877Dolasia, K., Bisht, M. K., Pradhan, G., Udgata, A., & Mukhopadhyay, S. (2018). TLRs/NLRs: Shaping the landscape of host immunity. International Reviews of Immunology, 37(1), 3–19. https://doi.org/10.1080/08830185.2017.1397656Duangnumsawang, Y., Zentek, J., & Goodarzi Boroojeni, F. (2021). Development and Functional Properties of Intestinal Mucus Layer in Poultry. Frontiers in Immunology, 12(October), 1–18. https://doi.org/10.3389/fimmu.2021.745849Elleder, D. (2018). Characterization of Chicken Tumor Necrosis Factor-α, a Long Missed Cytokine in Birds, 9(April), 1–14. https://doi.org/10.3389/fimmu.2018.00605Elnagar, R., Elkenany, R., & Younis, G. (2021). Interleukin gene expression in broiler chickens infected by different Escherichia coli serotypes. Veterinary World, 14(10), 2727–2734. https://doi.org/10.14202/vetworld.2021.2727-2734Elnesr, S. S., Alagawany, M., Elwan, H. A. M., Fathi, M. A., & Farag, M. R. (2020). Effect of Sodium Butyrate on Intestinal Health of Poultry-A Review. Annals of Animal Science, 20(1), 29–41. https://doi.org/10.2478/aoas-2019-0077Emili Vinolya, R., Balakrishnan, U., Yasir, B., & Chandrasekar, S. (2021). Effect of dietary supplementation of acidifiers and essential oils on growth performance and intestinal health of broiler. Journal of Applied Poultry Research, 30(3), 67–80. https://doi.org/10.1016/j.japr.2021.100179Fan, X., Jiao, H., Zhao, J., Wang, X., & Lin, H. (2018). Lipopolysaccharide impairs mucin secretion and stimulated mucosal immune stress response in respiratory tract of neonatal chicks. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 204(December 2017), 71–78. https://doi.org/10.1016/j.cbpc.2017.11.011FAO. (2013). Revisión del Desarrollo Avícola. Revisión del desarrollo avícola. Retrieved from http://www.fao.org/docrep/019/i3531s/i3531s.pdfFAO. (2015). Informe de situación sobre la resistencia a los antimicrobianos. (Organización de las Naciones Unidas para la Alimentación y la Agricultura, Ed.). Roma. Retrieved from http://www.fao.org/3/a-mm736s.pdfFAO, O.-. (2021). OCDE-FAO Perspectivas Agrícolas 2021-2030. Retrieved from https://doi.org/10.1787/47a9fa44-es.%0AISBNFenavi. (2020). No Title. Retrieved from https://fenavi.org/wp-content/uploads/2020/03/Fenaviquin_ed3042020_2.pdfFENAVI. (2020). Información estadística - FENAVI - Federación Nacional de Avicultores de Colombia. Retrieved February 4, 2020, from https://fenavi.org/informacion-estadistica/Ferreira, R. G., Rodrigues, L. C., Nascimento, D. C., Kanashiro, A., Melo, P. H., Borges, V. F., … Alves-Filho, J. C. (2018). Galectin-3 aggravates experimental polymicrobial sepsis by impairing neutrophil recruitment to the infectious focus. Journal of Infection, 77(5), 391–397. https://doi.org/10.1016/j.jinf.2018.06.010Fesseha, H., & Aliye, S. (2020). Organic Foods and Public Health Importance: A Review. Veterinary Medicine – Open Journal, 5(1), 1–8. https://doi.org/10.17140/vmoj-5-140Function, G. C., Fab, E., & Negative, R. (2017). Oral Administration of a Select Mixture of Bacillus Probiotics Affects the Gut. Applied and Environmental Microbiology, 83(3), 1–18.Gadde, U. D., Oh, S., Lee, Y., Davis, E., Zimmerman, N., Rehberger, T., & Lillehoj, H. S. (2017). Dietary Bacillus subtilis-based direct-fed microbials alleviate LPS-induced intestinal immunological stress and improve intestinal barrier gene expression in commercial broiler chickens. Research in Veterinary Science, 114, 236–243. https://doi.org/10.1016/j.rvsc.2017.05.004Gao, P., Ma, C., Sun, Z., Wang, L., Huang, S., Su, X., … Zhang, H. (2017). Feed-additive probiotics accelerate yet antibiotics delay intestinal microbiota maturation in broiler chicken. Microbiome, 5(1), 91. https://doi.org/10.1186/s40168-017-0315-1Gao, T., Zhao, M. M., Li, Y. J., Zhang, L., Li, J. L., Yu, L. L., … Zhou, G. H. (2018). Effects of in ovo feeding of L-arginine on the development of digestive organs, intestinal function and post-hatch performance of broiler embryos and hatchlings. Journal of Animal Physiology and Animal Nutrition, 102(1), e166–e175. https://doi.org/10.1111/jpn.12724Givisiez, P. E. N., Moreira Filho, A. L. B., Santos, M. R. B., Oliveira, H. B., Ferket, P. R., Oliveira, C. J. B., & Malheiros, R. D. (2020). Chicken embryo development: metabolic and morphological basis for in ovo feeding technology. Poultry Science, 99(12), 6774–6782. https://doi.org/10.1016/j.psj.2020.09.074Gomez, A., Rothman, J. M., Petrzelkova, K., Yeoman, C. J., Vlckova, K., Umaña, J. D., … Leigh, S. R. (2016). Temporal variation selects for diet-microbe co-metabolic traits in the gut of Gorilla spp. ISME Journal, 10(2), 514–526. https://doi.org/10.1038/ismej.2015.146Grant, A., Gay, C. G., & Lillehoj, H. S. (2018). Bacillus spp. as direct-fed microbial antibiotic alternatives to enhance growth, immunity, and gut health in poultry. Avian Pathology, 47(4), 339–351. https://doi.org/10.1080/03079457.2018.1464117Grasa, L., Gonzalo, S., A, D. E. M., & Murillo, M. D. (2017). THE LIPOPOLYSACCHARIDE FROM ESCHERICHIA COLI O127 : B8 INDUCES INFLAMMATION AND MOTILITY DISTURBANCES IN RABBIT ILEUM, 4(March 2016), 185–191. https://doi.org/10.4995/wrs.2017.5160Grond, K., Guilani, H., & Hird, S. M. (2020). Spatial heterogeneity of the shorebird gastrointestinal microbiome. Royal Society Open Science. https://doi.org/10.1098/rsos.191609Gul, M., Yilmaz, E., Yildirim, B. A., Sezmis, G., Kaya, A., Timurkaan, S., … Tekce, E. (2019). Effects of oregano essential oil (Origanum syriacum l.) on performance, egg quality, intestinal morphology and oxidative stress in laying hens. European Poultry Science, 83(January), 1–15. https://doi.org/10.1399/eps.2019.290Gungor, E., & Erener, G. (2020). Effect of dietary raw and fermented sour cherry kernel (Prunus cerasus L.) on digestibility, intestinal morphology and caecal microflora in broiler chickens. Poultry Science. https://doi.org/10.3382/ps/pez538Guo, M., Li, M., Zhang, C., Zhang, X., & Wu, Y. (2020). Dietary Administration of the Bacillus subtilis Enhances Immune Responses and Disease Resistance in Chickens. Frontiers in Microbiology, 11(July), 1–11. https://doi.org/10.3389/fmicb.2020.01768Gut, P., Gut, H., Composition, M., Colombino, E., Biasato, I., Ferrocino, I., … Capucchio, M. T. (2021a). Effect of Insect Live Larvae as Environmental Enrichment on Poultry Gut Health: Gut Mucin Composition, Microbiota and Local Immune Response Evaluation.Helenice, E., Ronie, E., Christina, A., Lima, W. C., Lorena, I., Patrycky, Y., & Souza, A. (2017). Influência dos óleos essenciais de capim-limão e chá-de-pedestre na saúde intestinal de frangos de corte Influence of the essential oils of lemon grass and pedestrian tea on the intestinal health of broilers O equilíbrio dinâmico existente entre a mucosa , 43–54.Hoang, C. T., Hong, Y., Truong, A. D., Lee, J., Lee, K., & Hong, Y. H. (2017). Molecular cloning of chicken interleukin-17B, which induces proinflammatory cytokines through activation of the NF-κB signaling pathway. Developmental and Comparative Immunology, 74, 40–48. https://doi.org/10.1016/j.dci.2017.04.010Hu, Y., Wang, L., Shao, D., Wang, Q., Wu, Y., & Han, Y. (2020). Selectived and Reshaped Early Dominant Microbial Community in the Cecum With Similar Proportions and Better Homogenization and Species Diversity Due to Organic Acids as AGP Alternatives Mediate Their Effects on Broilers Growth, 10(January), 1–20. https://doi.org/10.3389/fmicb.2019.02948Humam, A. M., Loh, T. C., Foo, H. L., & Samsudin, A. A. (2019). animals E ff ects of Feeding Di ff erent Postbiotics Produced by.Ijaz, A., Veldhuizen, E. J. A., Broere, F., & Rutten, V. P. M. G. (2021). The Interplay between Salmonella and Intestinal Innate Immune Cells in Chickens, 1–20.J. H. Park, H. M. Y. & I. H. K. (2018). The effect of dietary Bacillus subtilis supplementation on the growth performance, blood profile, nu _ Enhanced Reader.pdf.Jacquier, V., Nelson, A., Jlali, M., Rhayat, L., Brinch, K. S., & Devillard, E. (2019). Bacillus subtilis 29784 induces a shift in broiler gut microbiome toward butyrate-producing bacteria and improves intestinal histomorphology and animal performance. Poultry Science, 98(6), 2548–2554. https://doi.org/10.3382/ps/pey602Jayaraman, S., Das, P. P., Saini, P. C., Roy, B., & Chatterjee, P. N. (2017). Use of Bacillus Subtilis PB6 as a potential antibiotic growth promoter replacement in improving performance of broiler birds. Poultry Science, 96(8), 2614–2622. https://doi.org/10.3382/ps/pex079Jha, R., Das, R., Oak, S., & Mishra, P. (2020). Probiotics (Direct‐fed microbials) in poultry nutrition and their effects on nutrient utilization, growth and laying performance, and gut health: A systematic review. Animals. https://doi.org/10.3390/ani10101863Jha, R., & Mishra, P. (2021). Dietary fiber in poultry nutrition and their effects on nutrient utilization, performance, gut health, and on the environment: a review. Journal of Animal Science and Biotechnology, 12(1), 1–16. https://doi.org/10.1186/s40104-021-00576-0Käsdorf, B. T., Weber, F., Petrou, G., Srivastava, V., Crouzier, T., & Lieleg, O. (2017). Mucin-Inspired Lubrication on Hydrophobic Surfaces. Biomacromolecules, 18(8), 2454–2462. https://doi.org/10.1021/acs.biomac.7b00605Katsanos, K. H., & Papadakis, K. A. (2017). Inflammatory bowel disease: Updates on molecular targets for biologics. Gut and Liver, 11(4), 455–463. https://doi.org/10.5009/gnl16308Kausar, R., Raza, S., Hussain, M., & Bahadur, S. U. K. (2020). Histometerical and morphological studies of digestive tract and associated glands in domestic pigeon (columba livia) with regard to age. Pakistan Veterinary Journal, 39(4), 573–577. https://doi.org/10.29261/pakvetj/2019.088Kers, J. G., Velkers, F. C., Fischer, E. A. J., Hermes, G. D. A., Stegeman, J. A., & Smidt, H. (2018). Host and environmental factors affecting the intestinal microbiota in chickens. Frontiers in Microbiology, 9(FEB), 1–14. https://doi.org/10.3389/fmicb.2018.00235Khan, I., Nawaz, M., Anjum, A. A., Ahmad, M., Mehmood, A., Rabbani, M., … Ali, M. A. (2020). Effect of Indigenous Probiotics on Gut Morphology and Intestinal Absorption Capacity in Broiler Chicken Challenged with Salmonella enteritidis, 1–7.Khan, S., & Chousalkar, K. K. (2021). Functional enrichment of gut microbiome by early supplementation of Bacillus based probiotic in cage free hens: a field study. Animal Microbiome, 3(1). https://doi.org/10.1186/s42523-021-00112-5Khan, S., Moore, R. J., Stanley, D., & Chousalkar, K. K. (2020). The gut microbiota of laying hens and its manipulation with prebiotics and probiotics to enhance gut health and food safety. Applied and Environmental Microbiology, 86(13). https://doi.org/10.1128/AEM.00600-20Khokhlova, E. V., Smeianov, V. V., Efimov, B. A., Kafarskaia, L. I., Pavlova, S. I., & Shkoporov, A. N. (2012). Anti-inflammatory properties of intestinal Bifidobacterium strains isolated from healthy infants. Microbiology and Immunology, 56(1), 27–39. https://doi.org/10.1111/j.1348-0421.2011.00398.xKlose, C. S. N., & Artis, D. (2020). Innate lymphoid cells control signaling circuits to regulate tissue-specific immunity. Cell Research. https://doi.org/10.1038/s41422-020-0323-8Kogut, M. H. (2019). The effect of microbiome modulation on the intestinal health of poultry. Animal Feed Science and Technology, 250(February 2018), 32–40. https://doi.org/10.1016/j.anifeedsci.2018.10.008Kogut, M. H., Lee, A., & Santin, E. (2020). Microbiome and pathogen interaction with the immune system. Poultry Science, 99(4), 1906–1913. https://doi.org/10.1016/j.psj.2019.12.011Kollarcikova, M., Kubasova, T., Karasova, D., Crhanova, M., Cejkova, D., Sisak, F., & Rychlik, I. (2018). Use of 16S rRNA gene sequencing for prediction of new opportunistic pathogens in chicken ileal and cecal microbiota Sequence Processing and Classification of the V3 / V4 Region of 16S rRNA Genes. Poultry Science, 98(6), 2347–2353. https://doi.org/10.3382/ps/pey594Krauze, M., Cendrowska-Pinkosz, M., Matuseviĉius, P., Stępniowska, A., Jurczak, P., & Ognik, K. (2021). The effect of administration of a phytobiotic containing cinnamon oil and citric acid on the metabolism, immunity, and growth performance of broiler chickens. Animals. https://doi.org/10.3390/ani11020399Krndija, D., Marjou, F. El, Guirao, B., Richon, S., Leroy, O., Bellaiche, Y., … Vignjevic, D. M. (2019). Active cell migration is critical for steady-state epithelial turnover in the gut. Science, 365(6454), 705–710. https://doi.org/10.1126/science.aau3429Kucharzik, T., Walsh, S. V., Chen, J., Parkos, C. A., & Nusrat, A. (2001). Neutrophil transmigration in inflammatory bowel disease is associated with differential expression of epithelial intercellular junction proteins. American Journal of Pathology, 159(6), 2001–2009. https://doi.org/10.1016/S0002-9440(10)63051-9Kuczynski, J., Stombaugh, J., Walters, W. A., González, A., Caporaso, J. G., & Knight, R. (2011). Using QIIME to analyze 16S rrna gene sequences from microbial communities. Current Protocols in Bioinformatics, (SUPPL.36), 1–20. https://doi.org/10.1002/0471250953.bi1007s36Kurokawa, K., Hayakawa, Y., & Koike, K. (2021). Plasticity of intestinal epithelium: Stem cell niches and regulatory signals. International Journal of Molecular Sciences, 22(1), 1–13. https://doi.org/10.3390/ijms22010357Larsen, H. L., & Jensen, K. B. (2021). Reprogramming cellular identity during intestinal regeneration, 40–47.Latek, U., Chłopecka, M., Karlik, W., & Mendel, M. (2021). Phytogenic Compounds for Enhancing Intestinal Barrier Function in Poultry-A Review. Planta Medica. https://doi.org/10.1055/a-1524-0358Levkut, M., Karaffová, V., Levkutová, M., Seman, V., Revajová, V., Ševčíková, Z., & Herich, R. (2020). Influence of Lacto-Immuno-Vital on growth performance and gene expression of IgA, MUC-2, and growth factor IGF-2 in the jejunum of broiler chickens. Poultry Science, 99(12), 6569–6575. https://doi.org/10.1016/j.psj.2020.09.054Li, C., Cai, H., Li, S., Liu, G., & Deng, X. (2022). Comparing the potential of Bacillus amyloliquefaciens CGMCC18230 with antimicrobial growth promoters for growth performance, bone development, expression of phosphorus transporters, and excreta microbiome in broiler chickens. Poultry Science, 102126. https://doi.org/10.1016/j.psj.2022.102126Li, C. L., Wang, J., Zhang, H. J., Wu, S. G., Hui, Q. R., Yang, C. B., … Qi, G. H. (2019). Intestinal morphologic and microbiota responses to dietary Bacillus spp. in a broiler chicken model. Frontiers in Physiology, 10(JAN), 1–18. https://doi.org/10.3389/fphys.2018.01968Li, R. X., Li, J., Zhang, S. Y., Mi, Y. L., & Zhang, C. Q. (2018). Attenuating effect of melatonin on lipopolysaccharide-induced chicken small intestine inflammation. Poultry Science, (March). https://doi.org/10.3382/ps/pey084Li, Xuesong, Hu, D., Tian, Y., Song, Y., Hou, Y., Sun, L., … Jiang, Y. (2020). Protective effects of a novel Lactobacillus rhamnosus strain with probiotic characteristics against lipopolysaccharide-induced intestinal inflammation in vitro and in vivo. Food and Function, 11(7), 5799–5814. https://doi.org/10.1039/d0fo00308eLi, Xueyuan, Wu, S., Li, X., Yan, T., Duan, Y., Yang, X., … Yang, X. (2018). Simultaneous supplementation of bacillus subtilisand antibiotic growth promoters by stages improved intestinal function of pullets by altering gut microbiota. Frontiers in Microbiology, 9(OCT), 1–15. https://doi.org/10.3389/fmicb.2018.02328Li, Z., Wang, W., Lv, Z., Liu, D., & Guo, Y. (2017). Bacillus subtilis and yeast cell wall improve the intestinal health of broilers challenged by Clostridium perfringens, 1668(August). https://doi.org/10.1080/00071668.2017.1370697Lieboldt, M. A., Frahm, J., Halle, I., Schrader, L., Weigend, S., & Preisinger, R. (2017). Metabolic and clinical response to Escherichia coli lipopolysaccharide in layer pullets of different genetic backgrounds supplied with graded dietary L-arginine, (October).Lima, D. K. S., Pessoa, M. S., Arhnold, E., Leite, P. R. D. S. D. C., Leonídio, A. R. A., De Lima Santos, R., … Abrão, F. O. (2020). Intestinal and immunological histological parameters of broilers supplemented with commercial probiotic or fungi of the autochthonous microbiota. Revista Brasileira de Medicina Veterinaria. https://doi.org/10.29374/2527-2179.bjvm101220Lin, T. L., Shu, C. C., Chen, Y. M., Lu, J. J., Wu, T. S., Lai, W. F., … Lu, C. C. (2020). Like Cures Like: Pharmacological Activity of Anti-Inflammatory Lipopolysaccharides From Gut Microbiome. Frontiers in Pharmacology, 11(April), 1–9. https://doi.org/10.3389/fphar.2020.00554Lindholm, C. (2019). Intermittent fasting in chickens : Physiological mechanisms and welfare implications for broiler breeders. Retrieved from http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1359720&dswid=6490%0Ahttp://dx.doi.org/10.3384/diss.diva-160814Lu, Z., Thanabalan, A., Leung, H., Akbari Moghaddam Kakhki, R., Patterson, R., & Kiarie, E. G. (2019). The effects of feeding yeast bioactives to broiler breeders and/or their offspring on growth performance, gut development, and immune function in broiler chickens challenged with Eimeria. Poultry Science, 98(12), 6411–6421. https://doi.org/10.3382/ps/pez479Luise, D., Bertocchi, M., Motta, V., Salvarani, C., Bosi, P., Luppi, A., … Trevisi, P. (2019). Bacillus sp. probiotic supplementation diminish the Escherichia coli F4ac infection in susceptible weaned pigs by influencing the intestinal immune response, intestinal microbiota and blood metabolomics. Journal of Animal Science and Biotechnology, 10(1), 1–16. https://doi.org/10.1186/s40104-019-0380-3Ma, Y., Wang, W., Zh, H., Wang, J., Zhang, W., & Gao, J. (2018). Supplemental Bacillus subtilis DSM 32315 manipulates intestinal structure and microbial composition in broiler chickens. Scientific Reports, (October), 1–13. https://doi.org/10.1038/s41598-018-33762-8Mancabelli., et al. (2016). Insights into the biodiversity of the gut microbiota of broiler chickens, 15(32), 4–6.Marmion, M., Ferone, M. T., Whyte, P., & Scannell, A. G. M. (2021). The changing microbiome of poultry meat; from farm to fridge. Food Microbiology, 99(April), 103823. https://doi.org/10.1016/j.fm.2021.103823Martinez-Guryn, K., Leone, V., & Chang, E. B. (2019). Regional Diversity of the Gastrointestinal Microbiome. Cell Host and Microbe, 26(3), 314–324. https://doi.org/10.1016/j.chom.2019.08.011Martínez, Y., Almendares, C. I., Hernández, C. J., Avellaneda, M. C., Urquía, A. M., & Valdivié, M. (2021). Effect of acetic acid and sodium bicarbonate supplemented to drinking water on water quality, growth performance, organ weights, cecal traits and hematological parameters of young broilers. Animals, 11(7). https://doi.org/10.3390/ani11071865Massacci, F. R., Lovito, C., Tofani, S., Tentellini, M., Genovese, D. A., De Leo, A. A. P., … Forte, C. (2019). Dietary Saccharomyces cerevisiae boulardii CNCM I-1079 positively affects performance and intestinal ecosystem in broilers during a campylobacter jejuni infection. Microorganisms. https://doi.org/10.3390/microorganisms7120596Mastrogiovanni, F., Mukhopadhya, A., Lacetera, N., Ryan, M. T., Romani, A., Bernini, R., & Sweeney, T. (2019). Anti-inflammatory effects of pomegranate peel extracts on in vitro human intestinal caco-2 cells and ex vivo porcine colonic tissue explants. Nutrients, 11(3), 1–15. https://doi.org/10.3390/nu11030548Maya-Ortega, C.-A., Madrid-Garcés, T.-A., & Parra-Suescún, J.-E. (2021). Efecto de Bacillus subtilis sobre metabolitos sanguíneos y parámetros productivos en pollo de engorde. Biotecnología En El Sector Agropecuario y Agroindustrial, 19(1), 105–116. https://doi.org/10.18684/bsaa(19)105-116Mazgaeen, L & Prajwal, G. (2020). Recent Advances in LipopolysaccharideRecognition Systems.pdf.McCarville, J. L., Chen, G. Y., Cuevas, V. D., Troha, K., & Ayres, J. S. (2020). Microbiota Metabolites in Health and Disease. Annual Review of Immunology, 38, 147–170. https://doi.org/10.1146/annurev-immunol-071219-125715Méndez-Durán, A., Méndez-Bueno, J. F., Tapia-Yáñez, T., Muñoz Montes, A., & Aguilar-Sánchez, L. (2017). Diálisis y Trasplante. Dial Traspl, 31(1), 7–11.Muneta, Y., Minagawa, Y., Nakane, T., Shibahara, T., Yoshikawa, T., & Omata, Y. (2011). Interleukin-18 expression in pig salivary glands and salivary content changes during acute immobilization stress. Stress, 14(5), 549–556. https://doi.org/10.3109/10253890.2011.565392Negroni, A., Cucchiara, S., & Stronati, L. (2015). Apoptosis, necrosis, and necroptosis in the gut and intestinal homeostasis. Mediators of Inflammation, 2015. https://doi.org/10.1155/2015/250762Nijland, R., Hofland, T., & Van Strijp, J. A. G. (2014). Recognition of LPS by TLR4: Potential for anti-inflammatory therapies. Marine Drugs, 12(7), 4260–4273. https://doi.org/10.3390/md12074260Oerlemans, M. M. P., Akkerman, R., Ferrari, M., Walvoort, M. T. C., & de Vos, P. (2021). Benefits of bacteria-derived exopolysaccharides on gastrointestinal microbiota, immunity and health. Journal of Functional Foods, 76(June 2020), 104289. https://doi.org/10.1016/j.jff.2020.104289Oh, H., Liu, S., Yun, W., Lee, J., An, J., Cho, S., & Cho, J. (2019). Effects of mixture of essential oils and organic acid supplementation on growth performance, blood profiles, leg bone length and intestinal morphology in broilers. Journal of Animal Science, 97(Supplement_3), 347–348. https://doi.org/10.1093/jas/skz258.692Oladokun, S., Koehler, A., MacIsaac, J., Ibeagha-Awemu, E. M., & Adewole, D. I. (2021). Bacillus subtilis delivery route: effect on growth performance, intestinal morphology, cecal short-chain fatty acid concentration, and cecal microbiota in broiler chickens. Poultry Science. https://doi.org/10.1016/j.psj.2020.10.063Oliveira, N. A., Gonçalves, B. L., Lee, S. H., CAF, O., & Corassin, C. H. (2020). Use of Antibiotics in Animal Production and its Impact on Human Health. Journal of Food Chemistry & Nanotechnology, 06(01), 40–47. https://doi.org/10.17756/jfcn.2020-082OMS. (2014). ANTIMICROBIAL RESISTANCE Global Report on Surveillance. Fancia. Retrieved from http://apps.who.int/iris/bitstream/10665/112642/1/9789241564748_eng.pdfPark, B. S., & Lee, J. O. (2013). Recognition of lipopolysaccharide pattern by TLR4 complexes. Experimental and Molecular Medicine, 45(12). https://doi.org/10.1038/emm.2013.97Park, I., Lee, Y., Goo, D., Zimmerman, N. P., Smith, A. H., Rehberger, T., & Lillehoj, H. S. (2020). The effects of dietary Bacillus subtilis supplementation, as an alternative to antibiotics, on growth performance, intestinal immunity, and epithelial barrier integrity in broiler chickens infected with Eimeria maxima. Poultry Science, 99(2), 725–733. https://doi.org/10.1016/j.psj.2019.12.002Park, I., Zimmerman, N. P., Smith, A. H., Rehberger, T. G., Lillehoj, E. P., & Lillehoj, H. S. (2020). Dietary Supplementation With Bacillus subtilis Direct-Fed Microbials Alters Chicken Intestinal Metabolite Levels. Frontiers in Veterinary Science, 7(March), 1–9. https://doi.org/10.3389/fvets.2020.00123Parker, B. J., Wearsch, P. A., Veloo, A. C. M., Rodriguez-palacios, A., & Rodriguez-palacios, A. (2020). The Genus Alistipes : Gut Bacteria With Emerging Implications to Inflammation , Cancer , and Mental Health, 11(June), 1–15. https://doi.org/10.3389/fimmu.2020.00906Pérez, M., Milian, G., Bocourt, R., & Torres, V. (2015). Efecto de endosporas de Bacillus subtilis E-44 con actividad probiótica sobre indicadores fermentativos en órganos digestivos e inmunológicos de pollos de engorde. Revista de La Sociedad Venezolana de Microbiología, 35(2), 89–94. Retrieved from http://www.redalyc.org/pdf/1994/199444210006.pdfPickard, J. M., Zeng, M. Y., Caruso, R., & Núñez, G. (2017). Gut microbiota : Role in pathogen colonization , immune responses , and inflammatory disease, 70–89. https://doi.org/10.1111/imr.12567Pineda, M., Kogut, M., Genovese, K., Farnell, Y. Z., Zhao, D., Wang, X., … Farnell, M. (2021). Competitive exclusion of intra-genus salmonella in neonatal broilers. Microorganisms, 9(2), 1–17. https://doi.org/10.3390/microorganisms9020446Pluske, J. R., Turpin, D. L., & Kim, J.-C. (2018a). Gastrointestinal tract (gut) health in the young pig. Animal Nutrition, 4. https://doi.org/10.1016/j.aninu.2017.12.004Pluske, J. R., Turpin, D. L., & Kim, J. C. (2018b). Gastrointestinal tract (gut) health in the young pig. Animal Nutrition, 4(2), 187–196. https://doi.org/10.1016/j.aninu.2017.12.004Proszkowiec-Weglarz, M., Schreier, L. L., Kahl, S., Miska, K. B., Russell, B., & Elsasser, T. H. (2020). Effect of delayed feeding post-hatch on expression of tight junction– and gut barrier–related genes in the small intestine of broiler chickens during neonatal development. Poultry Science, 99(10), 4714–4729. https://doi.org/10.1016/j.psj.2020.06.023Pu, J., Chen, D., Tian, G., He, J., Zheng, P., Mao, X., … Yu, B. (2020). Effects of benzoic acid, Bacillus coagulans and oregano oil combined supplementation on growth performance, immune status and intestinal barrier integrity of weaned piglets. Animal Nutrition. https://doi.org/10.1016/j.aninu.2020.02.004Rajput, I. R., Li, W. F., Li, Y. L., Jian, L., & Wang, M. Q. (2013). Application of probiotic (bacillus subtilis) to enhance immunity, antioxidation, digestive enzymes activity and hematological profile of shaoxing duck. Pakistan Veterinary Journal, 33(1), 69–72.Ramlucken, U., Ramchuran, S. O., Moonsamy, G., Lalloo, R., Thantsha, M. S., & Rensburg, C. J. Van. (2019). A novel Bacillus based multi-strain probiotic improves growth performance and intestinal properties of Clostridium perfringens challenged broilers. Poultry_Science, 99(1), 331–341. https://doi.org/10.3382/ps/pez496Rathinam, y A.K. Zhao Y & Shao F, 2019. (2016). Innate immunity to intracellular LPS. Physiology & Behavior, 176(1), 100–106. https://doi.org/10.1038/s41590-019-0368-3.InnateRegea, G. (2018). Pharmacology & Clinical Research Review on Antibiotics Resistance and its Economic Impacts. Researchgate.Net, (December). https://doi.org/10.19080/JPCR.2018.05.55567Reisinger, N., Emsenhuber, C., Doupovec, B., Mayer, E., Schatzmayr, G., Nagl, V., & Grenier, B. (2020). Endotoxin translocation and gut inflammation are increased in broiler chickens receiving an oral lipopolysaccharide (LPS) bolus during heat stress. Toxins. https://doi.org/10.3390/toxins12100622Reynolds, K. L., Cloft, S. E., & Wong, E. A. (2020). Changes with age in density of goblet cells in the small intestine of broiler chicks. Poultry Science, 99(5), 2342–2348. https://doi.org/10.1016/j.psj.2019.12.052Rhayat, L., Maresca, M., Nicoletti, C., Perrier, J., Brinch, K. S., Christian, S., … Eckhardt, E. (2019). Effect of Bacillus subtilis Strains on Intestinal Barrier Function and Inflammatory Response. Frontiers in Immunology, 10(MAR). https://doi.org/10.3389/fimmu.2019.00564Ribeiro, M. R. S., Oliveira, D. R., Caliari, M. V., Cara Machado, D. C., Andrade, M. E. R., Cardoso, V. N., … Gomes, M. A. (2021). Saccharomyces boulardii as therapeutic alternative in experimental giardiasis. Journal of Applied Microbiology, 131(1), 460–469. https://doi.org/10.1111/jam.14941Richards, P., Fothergill, J., Bernardeau, M., & Wigley, P. (2019). Development of the caecal microbiota in three broiler breeds. Frontiers in Veterinary Science, 6(JUN), 1–19. https://doi.org/10.3389/fvets.2019.00201Rios-arce, N. D., Collins, F. L., Schepper, J. D., Steury, M. D., Raehtz, S., Mallin, H., … Mccabe, L. R. (2017a). Epithelial Barrier Function in Gut-Bone Signaling (Vol. 1033). https://doi.org/10.1007/978-3-319-66653-2Rios-arce, N. D., Collins, F. L., Schepper, J. D., Steury, M. D., Raehtz, S., Mallin, H., … Mccabe, L. R. (2017b). Epithelial Barrier Function in Gut-Bone Signaling (Vol. 1033). https://doi.org/10.1007/978-3-319-66653-2Rivera-chávez, F., Lopez, C. A., & Bäumler, A. J. (2016). Oxygen as a driver of gut dysbiosis. Free Radical Biology and Medicine. https://doi.org/10.1016/j.freeradbiomed.2016.09.022Rivera-Pérez, W., Barquero-Calvo, E., & Chaves, A. J. (2021a). Effect of the use of probiotic Bacillus subtilis (QST 713) as a growth promoter in broilers: an alternative to bacitracin methylene disalicylate. Poultry Science. https://doi.org/10.1016/j.psj.2021.101372Rocha-Ramírez, L. M., Hernández-Ochoa, B., Gómez-Manzo, S., Marcial-Quino, J., Cárdenas-Rodríguez, N., Centeno-Leija, S., & García-Garibay, M. (2020). Evaluation of immunomodulatory activities of the heat-killed probiotic strain Lactobacillus casei IMAU60214 on macrophages in vitro. Microorganisms, 8(1). https://doi.org/10.3390/microorganisms8010079Rocha, P. M. C., Barros, M. E. G., & Evêncio-Neto, J. (2016). Análise morfométrica da parede intestinal e dinâmica de mucinas secretadas no jejuno de frangos suplementados com probiótico bacillus subtilis cepa C3102. Pesquisa Veterinaria Brasileira, 36(4), 312–316. https://doi.org/10.1590/S0100-736X2016000400010Romero, S., Carlos, H., & Iregui, A. (2010). El Lipopolisacárido 1. Revista de Medicina Veterinaria, 19, 37–45. https://doi.org/10.19052/mv.783Rostagno, H. S., Albino, L. F. T., Hannas, M. I., Donzele, J. L., Sakomura, N. K., Perazzo, F. G., … Brito, C. de O. (2017). Tablas Brasileñas para Aves y Cerdos (2017). Universidad Federal de Viçosa (Vol. 4). https://doi.org/doc101021405Roth, N., Käsbohrer, A., Mayrhofer, S., Zitz, U., Hofacre, C., & Domig, K. J. (2019). The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: A global overview. Poultry Science, 98(4), 1791–1804. https://doi.org/10.3382/ps/pey539Rouissi, A., Alfonso-Avila, A. R., Guay, F., Boulianne, M., & Létourneau-Montminy, M. P. (2021a). Effects of Bacillus subtilis, butyrate, mannan-oligosaccharide, and naked oat (ß-glucans) on growth performance, serum parameters, and gut health of broiler chickens. Poultry Science, 100(12), 101506. https://doi.org/10.1016/j.psj.2021.101506Rubio, L. A. (2019a). Possibilities of early life programming in broiler chickens via intestinal microbiota modulation. Poultry Science, 98(2), 695–706. https://doi.org/10.3382/ps/pey416Rychlik, I. (2020). Composition and function of chicken gut microbiota. Animals, 10(1). https://doi.org/10.3390/ani10010103Saki, A. A., Ali, S., Siyar, H., & Ashoori, A. (2017). Modulation of Lipopolysaccharide Induced Interleukin-17F and Cyclooxygenase-2 Gene Expression by Echinacea purpurea in Broiler Chickens, 11(11), 778–781.Sato, D. T., Campos, F. G., Kotze, P. G., Santos, R. L., Kanno, D. T., Pereira, J. A., … Martinez, R. (2021). Sucralfate enemas reduce the oxidative tissue damage and preserves the contents of E-cadherin and β -catenin in colonic mucosa without fecal stream, 36(55 11).Šefcová, M. A., Larrea-álvarez, M., Larrea-álvarez, C. M., Karaffová, V., Ortega-Paredes, D., Vinueza-Burgos, C., … Revajová, V. (2021). The probiotic lactobacillus fermentum biocenol CCM 7514 moderates campylobacter jejuni-induced body weight impairment by improving gut morphometry and regulating cecal cytokine abundance in broiler chickens. Animals, 11(1), 1–16. https://doi.org/10.3390/ani11010235Seifi, K., Karimi-Torshizi, M. A., & Deldar, H. (2017). Probiotics intake from proximal or distal gastrointestinal tract: The investigation on intestinal morphology and performance of Japanese quail. Journal of Animal Physiology and Animal Nutrition. https://doi.org/10.1111/jpn.12781Settanni, G., Zhou, J., Suo, T., Schöttler, S., Landfester, K., Schmid, F., & Mailänder, V. (2016). Protein corona composition of PEGylated nanoparticles correlates strongly with amino acid composition of protein surface. https://doi.org/10.1039/x0xx00000xShang, Q. H., Ma, X. K., Li, M., Zhang, L. H., Hu, J. X., & Piao, X. S. (2018). Effects of α-galactosidase supplementation on nutrient digestibility, growth performance, intestinal morphology and digestive enzyme activities in weaned piglets. Animal Feed Science and Technology, 236(September 2017), 48–56. https://doi.org/10.1016/j.anifeedsci.2017.11.008Shanmugasundaram, R., Applegate, T. J., & Selvaraj, R. K. (2020). Effect of Bacillus subtilis and Bacillus licheniformis probiotic supplementation on cecal Salmonella load in broilers challenged with salmonella. Journal of Applied Poultry Research, 29(4), 808–816. https://doi.org/10.1016/j.japr.2020.07.003Shi, S., Liu, J., Dong, J., Hu, J., Liu, Y., Feng, J., & Zhou, D. (2021). Research progress on the regulation mechanism ofprobiotics on the microecological flora of infectedintestines in livestock and poultry.pdf.Shin, N., Whon, T. W., & Bae, J. (2015). Proteobacteria : microbial signature of dysbiosis in gut microbiota. Trends in Biotechnology, 1–8. https://doi.org/10.1016/j.tibtech.2015.06.011Siddiqui, S. H., Kang, D., Park, J., Khan, M., & Shim, K. (2020). Chronic heat stress regulates the relation between heat shock protein and immunity in broiler small intestine. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-75885-xŚliżewska, K., Markowiak-Kopeć, P., Żbikowski, A., & Szeleszczuk, P. (2020). The effect of synbiotic preparations on the intestinal microbiota and her metabolism in broiler chickens. Scientific Reports. https://doi.org/10.1038/s41598-020-61256-zSong, B., Tang, D., Yan, S., Fan, H., Li, G., Shahid, M. S., … Guo, Y. (2021). Effects of age on immune function in broiler chickens. Journal of Animal Science and Biotechnology, 12(1), 1–12. https://doi.org/10.1186/s40104-021-00559-1Stolzer, I., Ruder, B., Neurath, M. F., & Günther, C. (2021). Interferons at the crossroad of cell death pathways during gastrointestinal inflammation and infection. International Journal of Medical Microbiology, 311(3), 151491. https://doi.org/10.1016/j.ijmm.2021.151491Suresh, G., Das, R. K., Kaur Brar, S., Rouissi, T., Avalos Ramirez, A., Chorfi, Y., & Godbout, S. (2018). Alternatives to antibiotics in poultry feed: molecular perspectives. Critical Reviews in Microbiology, 44(3), 318–335. https://doi.org/10.1080/1040841X.2017.1373062Swaggerty, C. L., Callaway, T. R., Kogut, M. H., Piva, A., & Grilli, E. (2019). Modulation of the immune response to improve health and reduce foodborne pathogens in poultry. Microorganisms, 7(3), 1–10. https://doi.org/10.3390/microorganisms7030065Tadesse, S., Corner, G., Dhima, E., Houston, M., Guha, C., Augenlicht, L., & Velcich, A. (2017). MUC2 mucin deficiency alters inflammatory and metabolic pathways in the mouse intestinal mucosa. Oncotarget, 8(42), 71456–71470. https://doi.org/10.18632/oncotarget.16886Tang, L. P., Li, W. H., Liu, Y. L., Lun, J. C., & He, Y. M. (2021). Heat stress aggravates intestinal inflammation through TLR4-NF-κB signaling pathway in Ma chickens infected with Escherichia coli O157:H7. Poultry Science. https://doi.org/10.1016/j.psj.2021.101030Tarradas, J., Tous, N., Esteve-garcia, E., & Brufau, J. (2020). The control of intestinal inflammation: A major objective in the research of probiotic strains as alternatives to antibiotic growth promoters in poultry. Microorganisms, 8(2). https://doi.org/10.3390/microorganisms8020148Teng, P. Y., & Kim, W. K. (2018). Review: Roles of prebiotics in intestinal ecosystem of broilers. Frontiers in Veterinary Science, 5(OCT), 1–18. https://doi.org/10.3389/fvets.2018.00245Terada, T., Nii, T., Isobe, N., & Yoshimura, Y. (2020). Effects of Probiotics Lactobacillus reuteri and clostridium butyricum on the expression of toll-like receptors, pro- and anti-inflammatory cytokines, and antimicrobial peptides in broiler chick intestine. Journal of Poultry Science, 57(4), 310–318. https://doi.org/10.2141/jpsa.0190098Ting, H.-A., & von Moltke, J. (2019). The Immune Function of Tuft Cells at Gut Mucosal Surfaces and Beyond. The Journal of Immunology, 202(5), 1321–1329. https://doi.org/10.4049/jimmunol.1801069Toro-alzate, L. F., & Toro-alzate, L. F. (2020). Antimicrobial Resistance in Colombia under the scope of One Health approach .Tras, C., Firma, L. A., Andrea, P., Valencia, R., Prieto, A. V., & Magdalena, U. (2019). Desafíos Del Sector Agropecuario Colombiano Tras La Firma Del Acuerdo De Promoción Comercial Entre Estados Unidos Y Colombia. Investigación y Desarrollo, 27(1), 6–49.Trevisi, P., Latorre, R., Priori, D., Luise, D., Archetti, I., Mazzoni, M., … Bosi, P. (2017). Effect of feed supplementation with live yeast on the intestinal transcriptome profile of weaning pigs orally challenged with Escherichia coli F4. Animal, 11(1), 33–44. https://doi.org/10.1017/S1751731116001178Umar, Z., Qureshi, A. S., Shahid, R. U., & Deeba, F. (2021). Macroscopic, microscopic and histomorphometric analysis of intestine, liver and pancreas of ostrich (Struthio camelus) with advancement of age and sex. Pakistan Veterinary Journal, 41(3), 313–320. https://doi.org/10.29261/pakvetj/2021.029Usuda, H., Okamoto, T., & Wada, K. (2021). Leaky gut: Effect of dietary fiber and fats on microbiome and intestinal barrier. International Journal of Molecular Sciences, 22(14). https://doi.org/10.3390/ijms22147613Vaca, D. J., Thibau, A., Schütz, M., Kraiczy, P., Happonen, L., Malmström, J., & Kempf, V. A. J. (2020). Interaction with the host: the role of fibronectin and extracellular matrix proteins in the adhesion of Gram-negative bacteria. Medical Microbiology and Immunology. https://doi.org/10.1007/s00430-019-00644-3Wang, F., Men, X., Zhang, G., Liang, K., Xin, Y., Wang, J., … Wu, L. (2018). Assessment of 16S rRNA gene primers for studying bacterial community structure and function of aging flue-cured tobaccos. AMB Express, 8(1), 1–9. https://doi.org/10.1186/s13568-018-0713-1Wang, J. S., Hu, H. J., Xu, Y. B., Wang, D. C., Jiang, L., Li, K. X., … Zhan, X. A. (2020). Effects of posthatch feed deprivation on residual yolk absorption, macronutrients synthesis, and organ development in broiler chicks. Poultry Science, 99(11), 5587–5597. https://doi.org/10.1016/j.psj.2020.08.032Wang, Jianping, Wan, C., Shuju, Z., Yang, Z., Celi, P., Ding, X., & Al, W. E. T. (2019). Differential analysis of gut microbiota and the effect of dietary Enterococcus faecium supplementation in broiler breeders with high or low laying performance. Poultry Science, 100(2), 1109–1119. https://doi.org/10.1016/j.psj.2020.10.024Wang, Jianping, Wan, C., Shuju, Z., Yang, Z., Celi, P., Ding, X., … Li, M. (2021). Differential analysis of gut microbiota and the effect of dietary Enterococcus faecium supplementation in broiler breeders with high or low laying performance. Poultry Science, 100(2), 1109–1119. https://doi.org/10.1016/j.psj.2020.10.024Wang, Jing, Ji, H., Wang, S., Liu, H., Zhang, W., Zhang, D., & Wang, Y. (2018). Probiotic Lactobacillus plantarum promotes intestinal barrier function by strengthening the epithelium and modulating gut microbiota. Frontiers in Microbiology, 9(AUG), 1–14. https://doi.org/10.3389/fmicb.2018.01953Wang, L., Fang, M., Hu, Y., Yang, Y., Yang, M., & Chen, Y. (2014). Characterization of the most abundant Lactobacillus species in chicken gastrointestinal tract and potential use as probiotics for genetic engineering, (May), 612–619. https://doi.org/10.1093/abbs/gmu037.AdvanceWang, W. C., Yan, F. F., Hu, J. Y., Amen, O. A., & Cheng, H. W. (2018). Supplementation of Bacillus subtilis-based probiotic reduces heat stress-related behaviors and inflammatory response in broiler chickens. Journal of Animal Science, 96(5), 1654–1666. https://doi.org/10.1093/jas/sky092Wen, C., Yan, W., Mai, C., Duan, Z., Zheng, J., Sun, C., & Yang, N. (2021). Joint contributions of the gut microbiota and host genetics to feed efficiency in chickens. Microbiome, 9(1), 1–23. https://doi.org/10.1186/s40168-021-01040-xWen, C., Yan, W., Sun, C., Ji, C., Zhou, Q., Zhang, D., … Yang, N. (2019). The gut microbiota is largely independent of host genetics in regulating fat deposition in chickens. ISME Journal, 13(6), 1422–1436. https://doi.org/10.1038/s41396-019-0367-2Wickramasuriya, S. S., Park, I., Lee, K., Lee, Y., Kim, W. H., Nam, H., & Lillehoj, H. S. (2022). Role of Physiology, Immunity, Microbiota, and Infectious Diseases in the Gut Health of Poultry. Vaccines, 10(2). https://doi.org/10.3390/vaccines10020172Wu, Z., Yang, K., Zhang, A., Chang, W., Zheng, A., Chen, Z., … Liu, G. (2021). Effects of Lactobacillus acidophilus on the growth performance, immune response, and intestinal barrier function of broiler chickens challenged with Escherichia coli O157. Poultry Science, 100(9), 101323. https://doi.org/10.1016/j.psj.2021.101323Xiao, S. S., Mi, J. D., Mei, L., Liang, J., Feng, K. X., Wu, Y. B., … Wang, Y. (2021). Article microbial diversity and community variation in the intestines of layer chickens. Animals, 11(3), 1–17. https://doi.org/10.3390/ani11030840Xiao, Y., Xiang, Y., Zhou, W., Chen, J., Li, K., & Yang, H. (2017). Microbial community mapping in intestinal tract of broiler chicken. Poultry Science, 96(5), 1387–1393. https://doi.org/10.3382/ps/pew372Xie, S., Zhang, H., Matjeke, R. S., Zhao, J., & Yu, Q. (2021). Bacillus coagulans protect against Salmonella enteritidis -induced intestinal mucosal damage in young chickens by inducing the differentiation of goblet cells Assay of the Antimicrobial Activity, 1–8.Xu, L., Sun, X., Wan, X., Li, K., Jian, F., Li, W., … Wang, Y. (2021). Dietary supplementation with Clostridium butyricum improves growth performance of broilers by regulating intestinal microbiota and mucosal epithelial cells. Animal Nutrition, 7(4), 1105–1114. https://doi.org/10.1016/j.aninu.2021.01.009Xu, Y., Yu, Y., Shen, Y., Li, Q., Lan, J., Wu, Y., … Yang, C. (2021). Effects of Bacillus subtilis and Bacillus licheniformis on growth performance, immunity, short chain fatty acid production, antioxidant capacity, and cecal microflora in broilers. Poultry Science. https://doi.org/10.1016/j.psj.2021.101358Yadav, S., & Jha, R. (2019). Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. Journal of Animal Science and Biotechnology, 10(1), 1–11. https://doi.org/10.1186/s40104-018-0310-9Yan, W., Sun, C., Zheng, J., Wen, C., & Ji, C. (2019). Efficacy of Fecal Sampling as a Gut Proxy in the Study of Chicken Gut Microbiota, 10(September), 1–11. https://doi.org/10.3389/fmicb.2019.02126Yaqoob, M. U., El-hack, M. E. A., Hassan, F., El-saadony, M. T., Khafaga, A. F., Batiha, G. E., … Wang, M. (2021). The potential mechanistic insights and future implications for the effect of prebiotics on poultry performance , gut microbiome , and intestinal morphology. Poultry Science, 100(7), 101143. https://doi.org/10.1016/j.psj.2021.101143Ye, S., Chen, Z. T., Zheng, R., Diao, S., Teng, J., Yuan, X., … Zhang, Z. (2020). New Insights From Imputed Whole-Genome Sequence-Based Genome-Wide Association Analysis and Transcriptome Analysis: The Genetic Mechanisms Underlying Residual Feed Intake in Chickens. Frontiers in Genetics, 11(April), 1–12. https://doi.org/10.3389/fgene.2020.00243Yu, M., Li, Z., Chen, W., Wang, G., & Cui, Y. (2019). Dietary Supplementation With Citrus Extract Altered the Intestinal Microbiota and Microbial Metabolite Profiles and Enhanced the Mucosal Immune Homeostasis in Yellow-Feathered Broilers, 10(November), 1–14. https://doi.org/10.3389/fmicb.2019.02662Zaghari, M., Sarani, P., & Hajati, H. (2020). Comparison of two probiotic preparations on growth performance, intestinal microbiota, nutrient digestibility and cytokine gene expression in broiler chickens. Journal of Applied Animal Research, 48(1), 166–175. https://doi.org/10.1080/09712119.2020.1754218Zbo, A. D., Ognik, K., Zaworska, A., Ferenc, K., & Jankowski, J. (2018). The effect of raw and fermented rapeseed cake on the metabolic parameters, immune status, and intestinal morphology of turkeys. Poultry Science. https://doi.org/10.3382/ps/pey250Zhang, B., Zhang, H., Yu, Y., Zhang, R., Wu, Y., Yue, M., & Yang, C. (2021a). Effects of Bacillus Coagulans on growth performance, antioxidant capacity, immunity function, and gut health in broilers. Poultry Science, 100(6), 101168. https://doi.org/10.1016/j.psj.2021.101168Zhang, B., Zhang, H., Yu, Y., Zhang, R., Wu, Y., Yue, M., & Yang, C. (2021b). Effects of Bacillus Coagulans on growth performance, antioxidant capacity, immunity function, and gut health in broilers. Poultry Science. https://doi.org/10.1016/j.psj.2021.101168Zhang, L., Said, L. Ben, Hervé, N., Zirah, S., Diarra, M. S., & Fliss, I. (2022). Effects of drinking water supplementation with Lactobacillus reuteri , and a mixture of reuterin and microcin J25 on the growth performance , caecal microbiota and selected metabolites of broiler chickens, 6, 1–13.Zhang, S., Zhong, G., Shao, D., Wang, Q., Hu, Y., Wu, T., … Shi, S. (2021). Dietary supplementation with Bacillus subtilis promotes growth performance of broilers by altering the dominant microbial community. Poultry Science, 100(3), 100935. https://doi.org/10.1016/j.psj.2020.12.032Zhen, W., Shao, Y., Gong, X., Wu, Y., Geng, Y., Wang, Z., & Guo, Y. (2018). Effect of dietary Bacillus coagulans supplementation on growth performance and immune responses of broiler chickens challenged by Salmonella enteritidis. Poultry Science, 97(8), 2654–2666. https://doi.org/10.3382/ps/pey119Zou, Y., Wang, J., Wang, Y., Peng, B., Liu, J., Zhang, B., … Wang, S. (2020). O157 Colonization through Enhancing Gut Barrier.Abdel-Moneim, A. M. E., Selim, D. A., Basuony, H. A., Sabic, E. M., Saleh, A. A., & Ebeid, T. A. (2020). Effect of dietary supplementation of Bacillus subtilis spores on growth performance, oxidative status, and digestive enzyme activities in Japanese quail birds. Tropical Animal Health and Production, 52(2), 671–680. https://doi.org/10.1007/s11250-019-02055-1Ballou, A. L., Ali, R. A., Mendoza, M. A., Ellis, J. C., Hassan, H. M., Croom, W. J., & Koci, M. D. (2016). Development of the chick microbiome: How early exposure influences future microbial diversity. Frontiers in Veterinary Science, 3(JAN), 1–12. https://doi.org/10.3389/fvets.2016.00002Bohorquez, L. C., Delgado-Serrano, L., López, G., Osorio-Forero, C., Klepac-Ceraj, V., Kolter, R., … Zambrano, M. M. (2012). In-depth Characterization via Complementing Culture-Independent Approaches of the Microbial Community in an Acidic Hot Spring of the Colombian Andes. Microbial Ecology, 63(1), 103–115. https://doi.org/10.1007/s00248-011-9943-3Borey, M., Estellé, J., Caidi, A., Bruneau, N., Coville, J. L., Hennequet-Antier, C., … Calenge, F. (2020). Broilers divergently selected for digestibility differ for their digestive microbial ecosystems. PLoS ONE, 15(5), 1–21. https://doi.org/10.1371/journal.pone.0232418Burbach, K., Seifert, J., Pieper, D. H., & Camarinha-Silva, A. (2016). Evaluation of DNA extraction kits and phylogenetic diversity of the porcine gastrointestinal tract based on Illumina sequencing of two hypervariable regions. MicrobiologyOpen, 5(1), 70–82. https://doi.org/10.1002/mbo3.312Cao, S., Zhang, Q., Wang, C., & Wu, H. (2018). LPS challenge increased intestinal permeability , disrupted mitochondrial function and triggered mitophagy of piglets, (866). https://doi.org/10.1177/1753425918769372Chen, C., Huang, X., Fang, S., Yang, H., He, M., Zhao, Y., & Huang, L. (2018). Contribution of Host Genetics to the Variation of Microbial Composition of Cecum Lumen and Feces in Pigs. Frontiers in Microbiology, 9(October), 1–13. https://doi.org/10.3389/fmicb.2018.02626Chen, J. Y., & Yu, Y. H. (2021). Bacillus subtilis–fermented products ameliorate the growth performance and alter cecal microbiota community in broilers under lipopolysaccharide challenge. Poultry Science, 100(2), 875–886. https://doi.org/10.1016/j.psj.2020.10.070Chen, X., Chen, W., Ci, W., Zheng, Y., Han, X., Huang, J., & Zhu, J. (2022). Effects of Dietary Supplementation with Lactobacillus acidophilus and Bacillus subtilis on Mucosal Immunity and Intestinal Barrier Are Associated with Its Modulation of Gut Metabolites and Microbiota in Late ‑ Phase Laying Hens. Probiotics and Antimicrobial Proteins, (0123456789). https://doi.org/10.1007/s12602-022-09923-7Clavijo, V., & Flórez, M. J. V. (2018). The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production A review, 1006–1021. https://doi.org/10.3382/ps/pex359Costa, M. C., Bessegatto, J. A., Alfieri, A. A., Weese, J. S., Filho, J. A. B., & Oba, A. (2017). Different antibiotic growth promoters induce specific changes in the cecal microbiota membership of broiler chicken. PLoS ONE, 12(2), 1–13. https://doi.org/10.1371/journal.pone.0171642Dong, R., Li, F., Qin, S., & Wang, Y. (2016). Data in Brief Dataset on in fl ammatory proteins expressions and sialic acid levels in apolipoprotein E-de fi cient mice with administration of N-acetylneuraminic acid and / or quercetin. Data in Brief, 8, 613–617. https://doi.org/10.1016/j.dib.2016.06.020Gao, P., Ma, C., Sun, Z., Wang, L., Huang, S., Su, X., … Zhang, H. (2017). Feed-additive probiotics accelerate yet antibiotics delay intestinal microbiota maturation in broiler chicken. Microbiome, 5(1), 91. https://doi.org/10.1186/s40168-017-0315-1Gomez, A., Rothman, J. M., Petrzelkova, K., Yeoman, C. J., Vlckova, K., Umaña, J. D., … Leigh, S. R. (2016). Temporal variation selects for diet-microbe co-metabolic traits in the gut of Gorilla spp. ISME Journal, 10(2), 514–526. https://doi.org/10.1038/ismej.2015.146Grond, K., Guilani, H., & Hird, S. M. (2020). Spatial heterogeneity of the shorebird gastrointestinal microbiome. Royal Society Open Science. https://doi.org/10.1098/rsos.191609Grond, K., Guilani, H., & Hird, S. M. (2020). Spatial heterogeneity of the shorebird gastrointestinal microbiome. Royal Society Open Science. https://doi.org/10.1098/rsos.191609Guo, M., Li, M., Zhang, C., Zhang, X., & Wu, Y. (2020). Dietary Administration of the Bacillus subtilis Enhances Immune Responses and Disease Resistance in Chickens. Frontiers in Microbiology, 11(July), 1–11. https://doi.org/10.3389/fmicb.2020.01768Gut, P., Gut, H., Composition, M., Colombino, E., Biasato, I., Ferrocino, I., … Capucchio, M. T. (2021). Local Immune Response Evaluation.Hu, R., Lin, H., Wang, M., Zhao, Y., Liu, H., Min, Y., … Gao, Y. (2021). Lactobacillus reuteri -derived extracellular vesicles maintain intestinal immune homeostasis against lipopolysaccharide- induced inflammatory responses in broilers, 4, 1–18.Hu, Y., Wang, L., Shao, D., Wang, Q., Wu, Y., & Han, Y. (2020). Selectived and Reshaped Early Dominant Microbial Community in the Cecum With Similar Proportions and Better Homogenization and Species Diversity Due to Organic Acids as AGP Alternatives Mediate Their Effects on Broilers Growth, 10(January), 1–20. https://doi.org/10.3389/fmicb.2019.02948Hui, Y., Tamez-hidalgo, P., Cieplak, T., Satessa, G. D., Kot, W., Kjærulff, S., … Krych, L. (2021). Supplementation of a lacto-fermented rapeseed-seaweed blend promotes gut microbial- and gut immune-modulation in weaner piglets, 2, 1–14.Jacquier, V., Nelson, A., Jlali, M., Rhayat, L., Brinch, K. S., & Devillard, E. (2019). Bacillus subtilis 29784 induces a shift in broiler gut microbiome toward butyrate-producing bacteria and improves intestinal histomorphology and animal performance. Poultry Science, 98(6), 2548–2554. https://doi.org/10.3382/ps/pey602Khan, S., & Chousalkar, K. K. (2021). Functional enrichment of gut microbiome by early supplementation of Bacillus based probiotic in cage free hens: a field study. Animal Microbiome, 3(1). https://doi.org/10.1186/s42523-021-00112-5Kollarcikova, M., Kubasova, T., Karasova, D., Crhanova, M., Cejkova, D., Sisak, F., & Rychlik, I. (2018). Use of 16S rRNA gene sequencing for prediction of new opportunistic pathogens in chicken ileal and cecal microbiota Sequence Processing and Classification of the V3 / V4 Region of 16S rRNA Genes. Poultry Science, 98(6), 2347–2353. https://doi.org/10.3382/ps/pey594Kuczynski, J., Stombaugh, J., Walters, W. A., González, A., Caporaso, J. G., & Knight, R. (2011). Using QIIME to analyze 16S rrna gene sequences from microbial communities. Current Protocols in Bioinformatics, (SUPPL.36), 1–20. https://doi.org/10.1002/0471250953.bi1007s36Mancabelli., et al. (2016). Insights into the biodiversity of the gut microbiota of broiler chickens, 15(32), 4–6.Marmion, M., Ferone, M. T., Whyte, P., & Scannell, A. G. M. (2021). The changing microbiome of poultry meat; from farm to fridge. Food Microbiology, 99(April), 103823. https://doi.org/10.1016/j.fm.2021.103823Martinez-Guryn, K., Leone, V., & Chang, E. B. (2019). Regional Diversity of the Gastrointestinal Microbiome. Cell Host and Microbe, 26(3), 314–324. https://doi.org/10.1016/j.chom.2019.08.011Milici, M., Tomasch, J., Wos-Oxley, M. L., Wang, H., Jáuregui, R., Camarinha-Silva, A., … Wagner-Döbler, I. (2016). Low diversity of planktonic bacteria in the tropical ocean. Scientific Reports, 6(January), 19054. https://doi.org/10.1038/srep19054Miller, B. M., Liou, M. J., Zhang, L. F., Tiffany, C. R., Butler, B. P., Andreas, J. B., … Schorr, E. (2020). Short Article Anaerobic Respiration of NOX1-Derived Hydrogen Peroxide Licenses Bacterial Growth at the Colonic ll Short Article Anaerobic Respiration of NOX1-Derived Hydrogen Peroxide Licenses Bacterial Growth at the Colonic Surface, 789–797. https://doi.org/10.1016/j.chom.2020.10.009Moita, V. H. C., Duarte, M. E., & Kim, S. W. (2021). Supplemental Effects of Phytase on Modulation of Mucosa- Associated Microbiota in the Jejunum and the Impacts on Nutrient Digestibility , Intestinal Morphology , and Bone Parameters in Broiler Chickens.Mu, Q., Tavella, V. J., & Luo, X. M. (2018). Role of Lactobacillus reuteri in Human Health and Diseases, 9(April), 1–17. https://doi.org/10.3389/fmicb.2018.00757Ocejo, M., Oporto, B., & Hurtado, A. (2019). 16S rRNA amplicon sequencing characterization of caecal microbiome composition of broilers and free-range slow- growing chickens throughout their productive lifespan, (October 2018), 1–14. https://doi.org/10.1038/s41598-019-39323-Parker, B. J., Wearsch, P. A., Veloo, A. C. M., Rodriguez-palacios, A., & Rodriguez-palacios, A. (2020). The Genus Alistipes : Gut Bacteria With Emerging Implications to Inflammation , Cancer , and Mental Health, 11(June), 1–15. https://doi.org/10.3389/fimmu.2020.00906Pickard, J. M., Zeng, M. Y., Caruso, R., & Núñez, G. (2017). Gut microbiota : Role in pathogen colonization , immune responses , and inflammatory disease, 70–89. https://doi.org/10.1111/imr.12567Rashid, Z., Zubair, M., Syed, Y., Hussain, M., Sitwat, G., & Ashaq, Z. (2021). Comparative analysis of chicken cecal microbial diversity and taxonomic composition in response to dietary variation using 16S rRNA amplicon sequencing. Molecular Biology Reports, 48(11), 7203–7214. https://doi.org/10.1007/s11033-021-06712-3Reisinger, N., Emsenhuber, C., Doupovec, B., Mayer, E., Schatzmayr, G., Nagl, V., & Grenier, B. (2020). Endotoxin translocation and gut inflammation are increased in broiler chickens receiving an oral lipopolysaccharide (LPS) bolus during heat stress. Toxins. https://doi.org/10.3390/toxins12100622Rivera-chávez, F., Lopez, C. A., & Bäumler, A. J. (2016). Oxygen as a driver of gut dysbiosis. Free Radical Biology and Medicine. https://doi.org/10.1016/j.freeradbiomed.2016.09.022Rouissi, A., Alfonso-Avila, A. R., Guay, F., Boulianne, M., & Létourneau-Montminy, M. P. (2021). Effects of Bacillus subtilis, butyrate, mannan-oligosaccharide, and naked oat (ß-glucans) on growth performance, serum parameters, and gut health of broiler chickens. Poultry Science, 100(12), 101506. https://doi.org/10.1016/j.psj.2021.101506Rubio, L. A. (2019). Possibilities of early life programming in broiler chickens via intestinal microbiota modulation. Poultry Science. https://doi.org/10.3382/ps/pey416Shi, S., Liu, J., Dong, J., Hu, J., Liu, Y., Feng, J., & Zhou, D. (2021). Research progress on the regulation mechanism ofprobiotics on the microecological flora of infectedintestines in livestock and poultry.pdf.Shin, N., Whon, T. W., & Bae, J. (2015). Proteobacteria microbial signature of dysbiosis in gut microbiota. Trends in Biotechnology, 1–8. https://doi.org/10.1016/j.tibtech.2015.06.011Wang, F., Men, X., Zhang, G., Liang, K., Xin, Y., Wang, J., … Wu, L. (2018). Assessment of 16S rRNA gene primers for studying bacterial community structure and function of aging flue-cured tobaccos. AMB Express, 8(1), 1–9. https://doi.org/10.1186/s13568-018-0713-1Wang, J., Wan, C., Shuju, Z., Yang, Z., Celi, P., Ding, X., & Al, W. E. T. (2019). Differential analysis of gut microbiota and the effect of dietary Enterococcus faecium supplementation in broiler breeders with high or low laying performance. Poultry Science, 100(2), 1109–1119. https://doi.org/10.1016/j.psj.2020.10.024Wang, S., Ahmadi, S., Nagpal, R., Jain, S., & Mishra, S. P. (2020). Lipoteichoic acid from the cell wall of a heat killed Lactobacillus paracasei D3-5 ameliorates aging-related leaky gut , inflammation and improves physical and cognitive functions : from C . elegans to mice, 333–352.Wen, C., Yan, W., Mai, C., Duan, Z., Zheng, J., Sun, C., & Yang, N. (2021). Joint contributions of the gut microbiota and host genetics to feed efficiency in chickens. Microbiome, 9(1), 1–23. https://doi.org/10.1186/s40168-021-01040-xWen, C., Yan, W., Sun, C., Ji, C., Zhou, Q., Zhang, D., … Yang, N. (2019). The gut microbiota is largely independent of host genetics in regulating fat deposition in chickens. ISME Journal, 13(6), 1422–1436. https://doi.org/10.1038/s41396-019-0367-2Xiao, S. S., Mi, J. D., Mei, L., Liang, J., Feng, K. X., Wu, Y. B., … Wang, Y. (2021). Microbial diversity and community variation in the intestines of layer chickens. Animals, 11(3), 1–17. https://doi.org/10.3390/ani11030840Ye, S., Chen, Z. T., Zheng, R., Diao, S., Teng, J., Yuan, X., … Zhang, Z. (2020). New Insights From Imputed Whole-Genome Sequence-Based Genome-Wide Association Analysis and Transcriptome Analysis: The Genetic Mechanisms Underlying Residual Feed Intake in Chickens. Frontiers in Genetics, 11(April), 1–12. https://doi.org/10.3389/fgene.2020.00243Yu, M., Li, Z., Chen, W., Wang, G., & Cui, Y. (2019). Dietary Supplementation With Citrus Extract Altered the Intestinal Microbiota and Microbial Metabolite Profiles and Enhanced the Mucosal Immune Homeostasis in Yellow-Feathered Broilers, 10(November), 1–14. https://doi.org/10.3389/fmicb.2019.02662Zhang, L., Said, L. Ben, Hervé, N., Zirah, S., Diarra, M. S., & Fliss, I. (2022). Effects of drinking water supplementation with Lactobacillus reuteri , and a mixture of reuterin and microcin J25 on the growth performance , caecal microbiota and selected metabolites of broiler chickens, 6, 1–13.Zhang, S., Zhong, G., Shao, D., Wang, Q., Hu, Y., Wu, T., … Shi, S. (2021). Dietary supplementation with Bacillus subtilis promotes growth performance of broilers by altering the dominant microbial community. Poultry Science, 100(3), 100935. https://doi.org/10.1016/j.psj.2020.12.032Zou, X. Y., Zhang, M., Tu, W. J., Zhang, Q., Jin, M. L., Fang, R. D., & Jiang, S. (2022). Bacillus subtilis inhibits intestinal inflammation and oxidative stress by regulating gut flora and related metabolites in laying hens, 16. https://doi.org/10.1016/j.animal.2022.100474COLFUTUROEstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83280/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL40043535.2022.pdf40043535.2022.pdfTesis de Doctorado en Ciencias Agrariasapplication/pdf11453335https://repositorio.unal.edu.co/bitstream/unal/83280/2/40043535.2022.pdf22a21c481b05ad0cb179942cf3188167MD52THUMBNAIL40043535.2022.pdf.jpg40043535.2022.pdf.jpgGenerated Thumbnailimage/jpeg4938https://repositorio.unal.edu.co/bitstream/unal/83280/3/40043535.2022.pdf.jpg59bb3cdad967d3cfc6252ab73013fb88MD53unal/83280oai:repositorio.unal.edu.co:unal/832802023-08-15 23:04:00.001Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |