Evaluación de integración de recursos energéticos distribuidos basados en restricciones de la red de distribución. Caso estudio para San Andrés Isla
ilustraciones, diagramas
- Autores:
-
Newball Archbold, Keyla Gaia
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86216
- Palabra clave:
- 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Hosting capacity
DER
Energías renovables
Hosting capacity
DER
Renewable energies
Abastecimiento de energía
Modelo de simulación
Energy supply
Simulation models
Energías renovables en Colombia
red de distribución de energía eléctrica
renewable energy in Colombia
electric power distribution
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_8041d402ba490050e04ebdc48adca3a3 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86216 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluación de integración de recursos energéticos distribuidos basados en restricciones de la red de distribución. Caso estudio para San Andrés Isla |
dc.title.translated.eng.fl_str_mv |
Evaluation of the integration of distributed energy resources based on distribution network constraints. Study case for San Andres Island |
title |
Evaluación de integración de recursos energéticos distribuidos basados en restricciones de la red de distribución. Caso estudio para San Andrés Isla |
spellingShingle |
Evaluación de integración de recursos energéticos distribuidos basados en restricciones de la red de distribución. Caso estudio para San Andrés Isla 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Hosting capacity DER Energías renovables Hosting capacity DER Renewable energies Abastecimiento de energía Modelo de simulación Energy supply Simulation models Energías renovables en Colombia red de distribución de energía eléctrica renewable energy in Colombia electric power distribution |
title_short |
Evaluación de integración de recursos energéticos distribuidos basados en restricciones de la red de distribución. Caso estudio para San Andrés Isla |
title_full |
Evaluación de integración de recursos energéticos distribuidos basados en restricciones de la red de distribución. Caso estudio para San Andrés Isla |
title_fullStr |
Evaluación de integración de recursos energéticos distribuidos basados en restricciones de la red de distribución. Caso estudio para San Andrés Isla |
title_full_unstemmed |
Evaluación de integración de recursos energéticos distribuidos basados en restricciones de la red de distribución. Caso estudio para San Andrés Isla |
title_sort |
Evaluación de integración de recursos energéticos distribuidos basados en restricciones de la red de distribución. Caso estudio para San Andrés Isla |
dc.creator.fl_str_mv |
Newball Archbold, Keyla Gaia |
dc.contributor.advisor.spa.fl_str_mv |
Rosero Garcia, Javier Alveiro |
dc.contributor.author.spa.fl_str_mv |
Newball Archbold, Keyla Gaia |
dc.contributor.researchgroup.spa.fl_str_mv |
Electrical Machines & Drives, Em&D |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería |
topic |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Hosting capacity DER Energías renovables Hosting capacity DER Renewable energies Abastecimiento de energía Modelo de simulación Energy supply Simulation models Energías renovables en Colombia red de distribución de energía eléctrica renewable energy in Colombia electric power distribution |
dc.subject.proposal.spa.fl_str_mv |
Hosting capacity DER Energías renovables |
dc.subject.proposal.eng.fl_str_mv |
Hosting capacity DER Renewable energies |
dc.subject.unesco.spa.fl_str_mv |
Abastecimiento de energía Modelo de simulación |
dc.subject.unesco.eng.fl_str_mv |
Energy supply Simulation models |
dc.subject.wikidata.spa.fl_str_mv |
Energías renovables en Colombia red de distribución de energía eléctrica |
dc.subject.wikidata.eng.fl_str_mv |
renewable energy in Colombia electric power distribution |
description |
ilustraciones, diagramas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-06-07T19:47:33Z |
dc.date.available.none.fl_str_mv |
2024-06-07T19:47:33Z |
dc.date.issued.none.fl_str_mv |
2024-05-12 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86216 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86216 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
[TH7, 2015] (2015). Integración de las energías renovables no convencionales en colombia. [Abdel-mawgoud et al., 2022] Abdel-mawgoud, H., Kamel, S., Yu, J., and Jurado, F. (2022). Hybrid salp swarm algorithm for integrating renewable distributed energy resources in distribution systems considering annual load growth. Journal of King Saud University - Computer and Information Sciences, 34:1381–1393. [Abideen et al., ] Abideen, M. Z. U., Ellabban, O., and Al-Fagih, L. A review of the tools and methods for distribution networks’ hosting capacity calculation. [Abud et al., 2023] Abud, T. P., Augusto, A. A., Fortes, M. Z., Maciel, R. S., and Borba, B. S. (2023). State of the art monte carlo method applied to power system analysis with distributed generation. [Abud et al., 2022] Abud, T. P., Cataldo, E., Maciel, R. S., and Borba, B. S. (2022). A modified bass model to calculate pvdg hosting capacity in lv networks. Electric Power Systems Research, 209:107966. [Al-Saadi et al., 2017] Al-Saadi, H., Zivanovic, R., and Al-Sarawi, S. F. (2017). Probabilistic hosting capacity for active distribution networks. IEEE Transactions on Industrial Informatics, 13(5):2519–2532. [Arias-Guzman et al., ] Arias-Guzman, S., Ustariz-Farfan, A. J., Cano-Plata, E. A., RojasMontano, C. D., Orozco-Clavijo, J. D., Guerrero-Guerrero, A. F., and Ruiz-Guzman, O. A. Hundimientos de tensión: diseño y construcción de un prototipo virtual para su medición. Voltage sags: design and construction of a virtual prototype for his measurement. [Babu and Khatod, 2024] Babu, K. R. and Khatod, D. K. (2024). Electric power systems research analytical voltage sensitivity-based distributed volt/var control for mitigating voltage-violations in low-voltage distribution networks. Electric Power Systems Research, 228:110015. [Bansal, 2017] Bansal, R. (2017). Handbook of distributed generation: Electric power technologies, economics and environmental impacts. Handbook of Distributed Generation: Electric Power Technologies, Economics and Environmental Impacts, pages 1–819. [Beltrán et al., 2020] Beltrán, J. C., Aristizábal, A. J., López, A., Castaneda, M., Zapata, S., and Ivanova, Y. (2020). Comparative analysis of deterministic and probabilistic methods for the integration of distributed generation in power systems. Energy Reports, 6:88–104. [Bollen and Hassan, ] Bollen, M. H. J. and Hassan, F. Integration of distributed generation in the power system. [CELSIA, 2021] CELSIA (2021). Documento sistema interconectado nacional. [Chihota et al., 2022] Chihota, M. J., Bekker, B., and Gaunt, T. (2022). A stochastic analytic-probabilistic approach to distributed generation hosting capacity evaluation of active feeders. International Journal of Electrical Power & Energy Systems, 136:107598. [Congreso de la República, 2014] Congreso de la República (2014). Ley 1715 de 2014. [Congreso de la República, 2021] Congreso de la República (2021). Ley 2099 de 2021. Technical report. [CREG, 2005] CREG (2005). Resolución no. 024 de 2005. [CREG, 2015] CREG (2015). Resolución no. 011 de 2015. [CREG, 2018a] CREG (2018a). Resolución 015 de 2018. [CREG, 2018b] CREG (2018b). Resolución 030 de 2018. [CREG, 2018c] CREG (2018c). Resolución no. 038 de 2018. [CREG, 2021] CREG (2021). Resolución 002 de 2021. [Dabbaghjamanesh et al., 2020] Dabbaghjamanesh, M., Kavousi-Fard, A., Mehraeen, S., Zhang, J., and Dong, Z. Y. (2020). Sensitivity analysis of renewable energy integration on stochastic energy management of automated reconfigurable hybrid ac-dc microgrid considering dlr security constraint. IEEE Transactions on Industrial Informatics, 16:120–131. [de Lima and de Freitas, 2022] de Lima, E. J. and de Freitas, L. C. G. (2022). Hosting capacity calculation deploying a hybrid methodology: A case study concerning the intermittent nature of photovoltaic distributed generation and the variable nature of energy consumption in a medium voltage distribution network. Energies, 15(3). Cited by: 1; All Open Access, Gold Open Access. [de Oliveira et al., 2019] de Oliveira, T. E. C., Bollen, M., Ribeiro, P. F., de Carvalho, P. M., Zambroni, A. C., and Bonatto, B. D. (2019). The concept of dynamic hosting capacity for distributed energy resources: Analytics and practical considerations. Energies, 12(13). Cited by: 21; All Open Access, Gold Open Access, Green Open Access. [Deleito, 1984] Deleito, J. (1984). La energía eólica: tecnología e historia. Energía, Clima, Diseño. Hermann Blume. [Du et al., 2021] Du, N., Tang, F., Liao, Q., Wang, C., Gao, X., Xie, J., Zhang, J., and Lu, R. (2021). Hosting capacity assessment in distribution networks considering wind–photovoltaic–load temporal characteristics. Frontiers in Energy Research, 9:693. [Esau et al., 2023] Esau, Z., Ryoichi, H., and Hiroyuki, K. (2023). A flexible stochastic pv hosting capacity framework considering network over-voltage tolerance. Energy Reports, 9:529–538. 2022 9th International Conference on Power and Energy Systems Engineering. [Ezzeddine, ] Ezzeddine, K. An estimation method for pv hosting capacity of distribution grids kassem ezzeddine masterprogram i f¨ornybar elgenerering master programme in renewable electricity production. [Habib et al., 2022] Habib, H. U. R., Waqar, A., Hussien, M. G., Junejo, A. K., Jahangiri, M., Imran, R. M., Kim, Y. S., and Kim, J. H. (2022). Analysis of microgrid’s operation integrated to renewable energy and electric vehicles in view of multiple demand response programs. IEEE Access, 10:7598–7638. [Harsh and Das, 2022] Harsh, P. and Das, D. (2022). Optimal coordination strategy of demand response and electric vehicle aggregators for the energy management of reconfigured grid-connected microgrid. Renewable and Sustainable Energy Reviews, 160:112251. [Hes et al., 2019] Hes, S., Kula, J., and Svec, J. (2019). Increasing der hosting capacity in lv grids in the czech republic in terms of european project interflex. Proceedings of 2019 IEEE PES Innovative Smart Grid Technologies Europe, ISGT-Europe 2019. [Holdmann et al., 2019] Holdmann, G. P., Wies, R. W., and Vandermeer, J. B. (2019). Renewable energy integration in alaska’s remote islanded microgrids: Economic drivers, technical strategies, technological niche development, and policy implications. Proceedings of the IEEE, 107(9):1820–1837. [IEEE, 2016] IEEE (2016). IEEE Guide for the Benefit Evaluation of Electric Power Grid Customer Demand Response. IEEE Std 2030.6-2016, pages 1–42. [IEEE, 2018] IEEE (2018). Ieee standard for interconnection and interoperability of distributed energy resources with associated electric power systems interfaces. IEEE Std 1547-2018 (Revision of IEEE Std 1547-2003), pages 1–138. [IPSE, 2023] IPSE (2023). Informe mensual de telemetría boletín mensual de operación de localidades con telemetría cnm-ipse. [IRENA, 2023] IRENA (2023). Renewable capacity highlights. [(IRENA), 2021] (IRENA), I. R. E. A. (2021). Country rankings. [Koirala et al., 2022] Koirala, A., Acker, T. V., D’hulst, R., and Hertem, D. V. (2022). Hosting capacity of photovoltaic systems in low voltage distribution systems: A benchmark of deterministic and stochastic approaches. Renewable and Sustainable Energy Reviews, 155:111899. [Kolahan et al., 2021] Kolahan, A., Maadi, S. R., Teymouri, Z., and Schenone, C. (2021). Blockchain-based solution for energy demand-side management of residential buildings. Sustainable Cities and Society, 75:103316. [Lee and Won, 2021] Lee, J. and Won, D. (2021). Optimal operation strategy of virtual power plant considering real-time dispatch uncertainty of distributed energy resource aggregation. IEEE Access, 9:56965–56983. [Longatt et al., ] Longatt, F. M. G., Luis, J., and Editors, R. Power systems powerfactory applications for power system analysis. [Ministerio de Minas y Energía, 2020] Ministerio de Minas y Energía (2020). Colombia sumará más energía limpia a su matriz energética gracias a nueva subasta de renovables. [Ministerio de Minas y Energía, 2023a] Ministerio de Minas y Energía (2023a). Decreto 2236 de 2023. [Ministerio de Minas y Energía, 2023b] Ministerio de Minas y Energía (2023b). Resolución número 00746 de 2023. [Ministerio de Minas y Energía, 2023c] Ministerio de Minas y Energía (2023c). Resolución número 01062 de 2023. [Mohamed et al., 2022] Mohamed, M. M., Zoghby, H. M. E., Sharaf, S. M., and Mosa, M. A. (2022). Optimal virtual synchronous generator control of battery/supercapacitor hybrid energy storage system for frequency response enhancement of photovoltaic/diesel microgrid. Journal of Energy Storage, 51:104317. [Molina, 2017] Molina, V. M. Q. (2017). Aplicación del concepto de capacidad de atención (hosting capacity) a la valoración del efecto de inclusión de fuentes renovables en la confiabilidad de sistemas de distribución. [Moloi et al., 2021] Moloi, K., Jordaan, J. A., and Hamam, Y. (2021). Optimal power grid integration with distributed generation using genetic algorithm. In 2021 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA), pages 1–5. [Mulenga et al., 2021] Mulenga, E., Bollen, M. H., and Etherden, N. (2021). Solar pv stochastic hosting capacity in distribution networks considering aleatory and epistemic uncertainties. International Journal of Electrical Power & Energy Systems, 130:106928. [Márquez et al., ] Márquez, I. D., Puyo, D. M., and de Minas y Energía, M. Transición energética: un legado para el presente y el futuro de Colombia. [(NREL), 2021] (NREL), N. R. E. L. (2021). turbine-models/offshore /nrel5mw126rwt.csv. [Payne et al., 2018] Payne, E. K., Shulin, L., Wang, Q., and Wu, L. (2018). Appraisal of constraints impeding the integration of distributed energy resources network. In 2018 IEEE International Conference on Smart Energy Grid Engineering (SEGE), pages 31–35. [Rajabi et al., 2022] Rajabi, A., Elphick, S., David, J., Pors, A., and Robinson, D. (2022). Innovative approaches for assessing and enhancing the hosting capacity of pv-rich distribution networks: An australian perspective. [Rawa et al., 2020] Rawa, M., Abusorrah, A., Al-Turki, Y., Mekhilef, S., Mostafa, M. H., Ali, Z. M., and Aleem, S. H. E. A. (2020). Optimal allocation and economic analysis of battery energy storage systems: Self-consumption rate and hosting capacity enhancement for microgrids with high renewable penetration. 12. [Richardson et al., 2010] Richardson, I., Thomson, M., Infield, D., and Clifford, C. (2010). Domestic electricity use: A high-resolution energy demand model. Energy and Buildings, 42:1878–1887. [Rossi et al., 2017] Rossi, M., Vigano, G., Moneta, D., and Clerici, D. (2017). Stochastic evaluation of distribution network hosting capacity: Evaluation of the benefits introduced by smart grid technology. 2017 AEIT International Annual Conference: Infrastructures for Energy and ICT: Opportunities for Fostering Innovation, AEIT 2017, 2017-January:1–6. [Schw and Tao, ] Schw, C. and Tao, L. Microgrid: Architectures and control. [SOPESA S.A. E.S.P, 2022] SOPESA S.A. E.S.P (2022). Cifras de interés. [Torquato et al., 2018] Torquato, R., Salles, D., Pereira, C. O., Meira, P. C. M., and Freitas, W. (2018). A comprehensive assessment of pv hosting capacity on low-voltage distribution systems. IEEE Transactions on Power Delivery, 33:1002–1012. [UPME, 2023] UPME (2023). Informe de avance proyectos de generación. [Wang et al., 2022] Wang, W., Keen, J., Giraldez, J., Baranko, K., Lunghino, B., Morris, D., Bell, F., Shumavon, A., Levine, K., Ward, T., Dave, A., and Bank, J. (2022). Supervised learning for distribution secondary systems modeling: Improving solar interconnection processes. IEEE Transactions on Sustainable Energy, 13:948–956. [Xiang et al., 2019] Xiang, Y., Cai, H., Gu, C., and Shen, X. (2019). Cost-benefit analysis of integrated energy system planning considering demand response. [Yang et al., 2022] Yang, Y., Ji, Y., Geng, G., and Jiang, Q. (2022). Probabilistic revenue analysis of microgrid considering source-load and forecast uncertainties. IEEE Access, 10:2469–2479. [Zobaa et al., 2020] Zobaa, A. F., Aleem, S. H. A., Ismael, S. M., and Ribeiro, P. F. (2020). Hosting capacity for smart power grids. Springer International Publishing. [Angel, ] ´ Angel, V. G. D. C´odigo de red: Calidad de la potencia (parte 3: Desbalance) - radthink s.a. de c.v. [Znidarec et al., 2017] Znidarec, M., Sljivac, D., and Topi´c, D. (2017). Influence of distributed generation from renewable energy sources on distribution network hosting capacity. 2017 6th International Youth Conference on Energy, IYCE 2017. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xvi, 55 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.country.spa.fl_str_mv |
Colombia |
dc.coverage.region.spa.fl_str_mv |
Archipiélago de San Andrés San Andrés Isla |
dc.coverage.tgn.none.fl_str_mv |
http://vocab.getty.edu/page/tgn/1008948 |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Eléctrica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86216/4/1123631423.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/86216/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/86216/5/1123631423.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
ee08ac33d633baf7073e8e38b1469878 eb34b1cf90b7e1103fc9dfd26be24b4a 92f9263f61064af01ace9655cc49123c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089674969317376 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rosero Garcia, Javier Alveiro275208baaebbfda7d303f6baf775f000600Newball Archbold, Keyla Gaiad1b73c1277032b49a9822bfe173416b7Electrical Machines & Drives, Em&D2024-06-07T19:47:33Z2024-06-07T19:47:33Z2024-05-12https://repositorio.unal.edu.co/handle/unal/86216Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEl incremento de las Fuentes No Convencionales de Energía Renovable (FNCER) a pequeña y gran escala cambia la dinámica de planeación y operación de las redes de energía eléctrica cobrando importancia para los Operadores de Red (OR) establecer mecanismos de evaluación del impacto de integración y la capacidad máxima soportada bajo parámetros de operación y confiabilidad. Esta tesis aplica el concepto de Hosting Capacity (HC) en el caso de estudio de la red de San Andrés Isla para evaluar indicadores de desempeño empleando métodos estocásticos y de simulación sistemática con DigSilent PowerFactory en integración con python. Se evalúan 25 niveles de penetración y para cada uno se realizan 1.000 simulaciones considerando la naturaleza variable de la generación, con un total de 25.000 iteraciones. El factor que más limita la integración de FNCER en la red de San Andrés Isla es la cargabilidad de los transformadores. Sin embargo, el límite es superior al porcentaje de penetración establecido en la regulación para las Zonas No Interconectadas (ZNI). Por lo cual, se concluye que es segura la integración de FNCER bajo los límites de regulación. (Texto tomado de la fuente).The increase in Non-Conventional Sources of Renewable Energy on a small and large scale changes the planning and operation dynamics of electrical grids, gaining importance for Network Operators to establish mechanisms for evaluating the impact of integration and the maximum capacity supported under operating and reliability parameters. This thesis applies the Hosting Capacity concept in the study case of the grid of San Andres Island evaluating performance indexes through stochastic methods and systematic simulation with DigSilent PowerFactory in integration with Python. 25 penetration levels are evaluated and for each one, 1.000 simulations are carried out considering the uncertain nature of the generation, having a total of 25.000 iterations. The factor that most limits the integration of Non-Conventional Sources of Renewable Energy in the grid of San Andres Island is the loadability of transformers. However, this limit is higher than the penetration percentage established in the regulation for Non-Interconnected Zones. Therefore, it is concluded that integrating Sources of Renewable Energy under regulatory limits is safe.MaestríaMagíster en Ingeniería - Ingeniería EléctricaDistribuciónEnergías renovablesxvi, 55 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería EléctricaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaHosting capacityDEREnergías renovablesHosting capacityDERRenewable energiesAbastecimiento de energíaModelo de simulaciónEnergy supplySimulation modelsEnergías renovables en Colombiared de distribución de energía eléctricarenewable energy in Colombiaelectric power distributionEvaluación de integración de recursos energéticos distribuidos basados en restricciones de la red de distribución. Caso estudio para San Andrés IslaEvaluation of the integration of distributed energy resources based on distribution network constraints. Study case for San Andres IslandTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMColombiaArchipiélago de San AndrésSan Andrés Islahttp://vocab.getty.edu/page/tgn/1008948[TH7, 2015] (2015). Integración de las energías renovables no convencionales en colombia.[Abdel-mawgoud et al., 2022] Abdel-mawgoud, H., Kamel, S., Yu, J., and Jurado, F. (2022). Hybrid salp swarm algorithm for integrating renewable distributed energy resources in distribution systems considering annual load growth. Journal of King Saud University - Computer and Information Sciences, 34:1381–1393.[Abideen et al., ] Abideen, M. Z. U., Ellabban, O., and Al-Fagih, L. A review of the tools and methods for distribution networks’ hosting capacity calculation.[Abud et al., 2023] Abud, T. P., Augusto, A. A., Fortes, M. Z., Maciel, R. S., and Borba, B. S. (2023). State of the art monte carlo method applied to power system analysis with distributed generation.[Abud et al., 2022] Abud, T. P., Cataldo, E., Maciel, R. S., and Borba, B. S. (2022). A modified bass model to calculate pvdg hosting capacity in lv networks. Electric Power Systems Research, 209:107966.[Al-Saadi et al., 2017] Al-Saadi, H., Zivanovic, R., and Al-Sarawi, S. F. (2017). Probabilistic hosting capacity for active distribution networks. IEEE Transactions on Industrial Informatics, 13(5):2519–2532.[Arias-Guzman et al., ] Arias-Guzman, S., Ustariz-Farfan, A. J., Cano-Plata, E. A., RojasMontano, C. D., Orozco-Clavijo, J. D., Guerrero-Guerrero, A. F., and Ruiz-Guzman, O. A. Hundimientos de tensión: diseño y construcción de un prototipo virtual para su medición. Voltage sags: design and construction of a virtual prototype for his measurement.[Babu and Khatod, 2024] Babu, K. R. and Khatod, D. K. (2024). Electric power systems research analytical voltage sensitivity-based distributed volt/var control for mitigating voltage-violations in low-voltage distribution networks. Electric Power Systems Research, 228:110015.[Bansal, 2017] Bansal, R. (2017). Handbook of distributed generation: Electric power technologies, economics and environmental impacts. Handbook of Distributed Generation: Electric Power Technologies, Economics and Environmental Impacts, pages 1–819.[Beltrán et al., 2020] Beltrán, J. C., Aristizábal, A. J., López, A., Castaneda, M., Zapata, S., and Ivanova, Y. (2020). Comparative analysis of deterministic and probabilistic methods for the integration of distributed generation in power systems. Energy Reports, 6:88–104.[Bollen and Hassan, ] Bollen, M. H. J. and Hassan, F. Integration of distributed generation in the power system.[CELSIA, 2021] CELSIA (2021). Documento sistema interconectado nacional.[Chihota et al., 2022] Chihota, M. J., Bekker, B., and Gaunt, T. (2022). A stochastic analytic-probabilistic approach to distributed generation hosting capacity evaluation of active feeders. International Journal of Electrical Power & Energy Systems, 136:107598.[Congreso de la República, 2014] Congreso de la República (2014). Ley 1715 de 2014.[Congreso de la República, 2021] Congreso de la República (2021). Ley 2099 de 2021. Technical report.[CREG, 2005] CREG (2005). Resolución no. 024 de 2005.[CREG, 2015] CREG (2015). Resolución no. 011 de 2015.[CREG, 2018a] CREG (2018a). Resolución 015 de 2018.[CREG, 2018b] CREG (2018b). Resolución 030 de 2018.[CREG, 2018c] CREG (2018c). Resolución no. 038 de 2018.[CREG, 2021] CREG (2021). Resolución 002 de 2021.[Dabbaghjamanesh et al., 2020] Dabbaghjamanesh, M., Kavousi-Fard, A., Mehraeen, S., Zhang, J., and Dong, Z. Y. (2020). Sensitivity analysis of renewable energy integration on stochastic energy management of automated reconfigurable hybrid ac-dc microgrid considering dlr security constraint. IEEE Transactions on Industrial Informatics, 16:120–131.[de Lima and de Freitas, 2022] de Lima, E. J. and de Freitas, L. C. G. (2022). Hosting capacity calculation deploying a hybrid methodology: A case study concerning the intermittent nature of photovoltaic distributed generation and the variable nature of energy consumption in a medium voltage distribution network. Energies, 15(3). Cited by: 1; All Open Access, Gold Open Access.[de Oliveira et al., 2019] de Oliveira, T. E. C., Bollen, M., Ribeiro, P. F., de Carvalho, P. M., Zambroni, A. C., and Bonatto, B. D. (2019). The concept of dynamic hosting capacity for distributed energy resources: Analytics and practical considerations. Energies, 12(13). Cited by: 21; All Open Access, Gold Open Access, Green Open Access.[Deleito, 1984] Deleito, J. (1984). La energía eólica: tecnología e historia. Energía, Clima, Diseño. Hermann Blume.[Du et al., 2021] Du, N., Tang, F., Liao, Q., Wang, C., Gao, X., Xie, J., Zhang, J., and Lu, R. (2021). Hosting capacity assessment in distribution networks considering wind–photovoltaic–load temporal characteristics. Frontiers in Energy Research, 9:693.[Esau et al., 2023] Esau, Z., Ryoichi, H., and Hiroyuki, K. (2023). A flexible stochastic pv hosting capacity framework considering network over-voltage tolerance. Energy Reports, 9:529–538. 2022 9th International Conference on Power and Energy Systems Engineering.[Ezzeddine, ] Ezzeddine, K. An estimation method for pv hosting capacity of distribution grids kassem ezzeddine masterprogram i f¨ornybar elgenerering master programme in renewable electricity production.[Habib et al., 2022] Habib, H. U. R., Waqar, A., Hussien, M. G., Junejo, A. K., Jahangiri, M., Imran, R. M., Kim, Y. S., and Kim, J. H. (2022). Analysis of microgrid’s operation integrated to renewable energy and electric vehicles in view of multiple demand response programs. IEEE Access, 10:7598–7638.[Harsh and Das, 2022] Harsh, P. and Das, D. (2022). Optimal coordination strategy of demand response and electric vehicle aggregators for the energy management of reconfigured grid-connected microgrid. Renewable and Sustainable Energy Reviews, 160:112251.[Hes et al., 2019] Hes, S., Kula, J., and Svec, J. (2019). Increasing der hosting capacity in lv grids in the czech republic in terms of european project interflex. Proceedings of 2019 IEEE PES Innovative Smart Grid Technologies Europe, ISGT-Europe 2019.[Holdmann et al., 2019] Holdmann, G. P., Wies, R. W., and Vandermeer, J. B. (2019). Renewable energy integration in alaska’s remote islanded microgrids: Economic drivers, technical strategies, technological niche development, and policy implications. Proceedings of the IEEE, 107(9):1820–1837.[IEEE, 2016] IEEE (2016). IEEE Guide for the Benefit Evaluation of Electric Power Grid Customer Demand Response. IEEE Std 2030.6-2016, pages 1–42.[IEEE, 2018] IEEE (2018). Ieee standard for interconnection and interoperability of distributed energy resources with associated electric power systems interfaces. IEEE Std 1547-2018 (Revision of IEEE Std 1547-2003), pages 1–138.[IPSE, 2023] IPSE (2023). Informe mensual de telemetría boletín mensual de operación de localidades con telemetría cnm-ipse.[IRENA, 2023] IRENA (2023). Renewable capacity highlights.[(IRENA), 2021] (IRENA), I. R. E. A. (2021). Country rankings.[Koirala et al., 2022] Koirala, A., Acker, T. V., D’hulst, R., and Hertem, D. V. (2022). Hosting capacity of photovoltaic systems in low voltage distribution systems: A benchmark of deterministic and stochastic approaches. Renewable and Sustainable Energy Reviews, 155:111899.[Kolahan et al., 2021] Kolahan, A., Maadi, S. R., Teymouri, Z., and Schenone, C. (2021). Blockchain-based solution for energy demand-side management of residential buildings. Sustainable Cities and Society, 75:103316.[Lee and Won, 2021] Lee, J. and Won, D. (2021). Optimal operation strategy of virtual power plant considering real-time dispatch uncertainty of distributed energy resource aggregation. IEEE Access, 9:56965–56983.[Longatt et al., ] Longatt, F. M. G., Luis, J., and Editors, R. Power systems powerfactory applications for power system analysis.[Ministerio de Minas y Energía, 2020] Ministerio de Minas y Energía (2020). Colombia sumará más energía limpia a su matriz energética gracias a nueva subasta de renovables.[Ministerio de Minas y Energía, 2023a] Ministerio de Minas y Energía (2023a). Decreto 2236 de 2023.[Ministerio de Minas y Energía, 2023b] Ministerio de Minas y Energía (2023b). Resolución número 00746 de 2023.[Ministerio de Minas y Energía, 2023c] Ministerio de Minas y Energía (2023c). Resolución número 01062 de 2023.[Mohamed et al., 2022] Mohamed, M. M., Zoghby, H. M. E., Sharaf, S. M., and Mosa, M. A. (2022). Optimal virtual synchronous generator control of battery/supercapacitor hybrid energy storage system for frequency response enhancement of photovoltaic/diesel microgrid. Journal of Energy Storage, 51:104317.[Molina, 2017] Molina, V. M. Q. (2017). Aplicación del concepto de capacidad de atención (hosting capacity) a la valoración del efecto de inclusión de fuentes renovables en la confiabilidad de sistemas de distribución.[Moloi et al., 2021] Moloi, K., Jordaan, J. A., and Hamam, Y. (2021). Optimal power grid integration with distributed generation using genetic algorithm. In 2021 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA), pages 1–5.[Mulenga et al., 2021] Mulenga, E., Bollen, M. H., and Etherden, N. (2021). Solar pv stochastic hosting capacity in distribution networks considering aleatory and epistemic uncertainties. International Journal of Electrical Power & Energy Systems, 130:106928.[Márquez et al., ] Márquez, I. D., Puyo, D. M., and de Minas y Energía, M. Transición energética: un legado para el presente y el futuro de Colombia.[(NREL), 2021] (NREL), N. R. E. L. (2021). turbine-models/offshore /nrel5mw126rwt.csv.[Payne et al., 2018] Payne, E. K., Shulin, L., Wang, Q., and Wu, L. (2018). Appraisal of constraints impeding the integration of distributed energy resources network. In 2018 IEEE International Conference on Smart Energy Grid Engineering (SEGE), pages 31–35.[Rajabi et al., 2022] Rajabi, A., Elphick, S., David, J., Pors, A., and Robinson, D. (2022). Innovative approaches for assessing and enhancing the hosting capacity of pv-rich distribution networks: An australian perspective.[Rawa et al., 2020] Rawa, M., Abusorrah, A., Al-Turki, Y., Mekhilef, S., Mostafa, M. H., Ali, Z. M., and Aleem, S. H. E. A. (2020). Optimal allocation and economic analysis of battery energy storage systems: Self-consumption rate and hosting capacity enhancement for microgrids with high renewable penetration. 12.[Richardson et al., 2010] Richardson, I., Thomson, M., Infield, D., and Clifford, C. (2010). Domestic electricity use: A high-resolution energy demand model. Energy and Buildings, 42:1878–1887.[Rossi et al., 2017] Rossi, M., Vigano, G., Moneta, D., and Clerici, D. (2017). Stochastic evaluation of distribution network hosting capacity: Evaluation of the benefits introduced by smart grid technology. 2017 AEIT International Annual Conference: Infrastructures for Energy and ICT: Opportunities for Fostering Innovation, AEIT 2017, 2017-January:1–6.[Schw and Tao, ] Schw, C. and Tao, L. Microgrid: Architectures and control.[SOPESA S.A. E.S.P, 2022] SOPESA S.A. E.S.P (2022). Cifras de interés.[Torquato et al., 2018] Torquato, R., Salles, D., Pereira, C. O., Meira, P. C. M., and Freitas, W. (2018). A comprehensive assessment of pv hosting capacity on low-voltage distribution systems. IEEE Transactions on Power Delivery, 33:1002–1012.[UPME, 2023] UPME (2023). Informe de avance proyectos de generación.[Wang et al., 2022] Wang, W., Keen, J., Giraldez, J., Baranko, K., Lunghino, B., Morris, D., Bell, F., Shumavon, A., Levine, K., Ward, T., Dave, A., and Bank, J. (2022). Supervised learning for distribution secondary systems modeling: Improving solar interconnection processes. IEEE Transactions on Sustainable Energy, 13:948–956.[Xiang et al., 2019] Xiang, Y., Cai, H., Gu, C., and Shen, X. (2019). Cost-benefit analysis of integrated energy system planning considering demand response.[Yang et al., 2022] Yang, Y., Ji, Y., Geng, G., and Jiang, Q. (2022). Probabilistic revenue analysis of microgrid considering source-load and forecast uncertainties. IEEE Access, 10:2469–2479.[Zobaa et al., 2020] Zobaa, A. F., Aleem, S. H. A., Ismael, S. M., and Ribeiro, P. F. (2020). Hosting capacity for smart power grids. Springer International Publishing.[Angel, ] ´ Angel, V. G. D. C´odigo de red: Calidad de la potencia (parte 3: Desbalance) - radthink s.a. de c.v.[Znidarec et al., 2017] Znidarec, M., Sljivac, D., and Topi´c, D. (2017). Influence of distributed generation from renewable energy sources on distribution network hosting capacity. 2017 6th International Youth Conference on Energy, IYCE 2017.Grupo de Investigación Electrical Machines and Drives (EM&D), Universidad Nacional de ColombiaRed de cooperación de soluciones energéticas para comunidades, code: 59384Proyecto Think Green de la isla de San Andres [BPIN: 2016000100002 EEDAS ESP]EstudiantesInvestigadoresPúblico generalORIGINAL1123631423.2024.pdf1123631423.2024.pdfTesis de Maestría en Ingeniería - Ingeniería Eléctricaapplication/pdf2190222https://repositorio.unal.edu.co/bitstream/unal/86216/4/1123631423.2024.pdfee08ac33d633baf7073e8e38b1469878MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86216/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53THUMBNAIL1123631423.2024.pdf.jpg1123631423.2024.pdf.jpgGenerated Thumbnailimage/jpeg4632https://repositorio.unal.edu.co/bitstream/unal/86216/5/1123631423.2024.pdf.jpg92f9263f61064af01ace9655cc49123cMD55unal/86216oai:repositorio.unal.edu.co:unal/862162024-08-24 23:13:59.445Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |