Emulsion formation and breaking during in situ combustion.
ilustraciones, diagramas
- Autores:
-
Álvarez Martínez, Felipe
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/80553
- Palabra clave:
- 660 - Ingeniería química
Nanoparticles
Secondary recovery of oil
Recobro del petróleo
Recobro mejorado térmico
Emulsión
Nanopartículas
Viscosidad
Análisis termogravimétrico
Tamaño de gota
Thermal enhanced oil recovery (TEOR)
Emulsions
Nanoparticles
Viscosity
Droplet size
Thermogravimetric behavior
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_7fb9e898af894a1428b50fc7689b7ade |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/80553 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Emulsion formation and breaking during in situ combustion. |
dc.title.translated.spa.fl_str_mv |
Formación y rompimiento de emulsiones en combustión in situ. |
title |
Emulsion formation and breaking during in situ combustion. |
spellingShingle |
Emulsion formation and breaking during in situ combustion. 660 - Ingeniería química Nanoparticles Secondary recovery of oil Recobro del petróleo Recobro mejorado térmico Emulsión Nanopartículas Viscosidad Análisis termogravimétrico Tamaño de gota Thermal enhanced oil recovery (TEOR) Emulsions Nanoparticles Viscosity Droplet size Thermogravimetric behavior |
title_short |
Emulsion formation and breaking during in situ combustion. |
title_full |
Emulsion formation and breaking during in situ combustion. |
title_fullStr |
Emulsion formation and breaking during in situ combustion. |
title_full_unstemmed |
Emulsion formation and breaking during in situ combustion. |
title_sort |
Emulsion formation and breaking during in situ combustion. |
dc.creator.fl_str_mv |
Álvarez Martínez, Felipe |
dc.contributor.advisor.none.fl_str_mv |
Molina Ochoa, Alejandro |
dc.contributor.author.none.fl_str_mv |
Álvarez Martínez, Felipe |
dc.contributor.researchgroup.spa.fl_str_mv |
Bioprocesos y Flujos Reactivos |
dc.subject.ddc.spa.fl_str_mv |
660 - Ingeniería química |
topic |
660 - Ingeniería química Nanoparticles Secondary recovery of oil Recobro del petróleo Recobro mejorado térmico Emulsión Nanopartículas Viscosidad Análisis termogravimétrico Tamaño de gota Thermal enhanced oil recovery (TEOR) Emulsions Nanoparticles Viscosity Droplet size Thermogravimetric behavior |
dc.subject.lemb.eng.fl_str_mv |
Nanoparticles Secondary recovery of oil |
dc.subject.lemb.spa.fl_str_mv |
Recobro del petróleo |
dc.subject.proposal.spa.fl_str_mv |
Recobro mejorado térmico Emulsión Nanopartículas Viscosidad Análisis termogravimétrico Tamaño de gota |
dc.subject.proposal.eng.fl_str_mv |
Thermal enhanced oil recovery (TEOR) Emulsions Nanoparticles Viscosity Droplet size Thermogravimetric behavior |
description |
ilustraciones, diagramas |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-10-14T18:15:04Z |
dc.date.available.none.fl_str_mv |
2021-10-14T18:15:04Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/80553 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/80553 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] R. G. Santos, W. Loh, A. C. Bannwart, y O. V. Trevisan, «An overview of heavy oil properties and its recovery and transportation methods», Brazilian Journal of Chemical Engineering, vol. 31, n.o 3, Art. n.o 3, 2014, doi: 10.1590/0104-6632.20140313s00001853. [2] T. Al-Wahaibi, Y. Al-Wahaibi, A. A. R. Al-Hashmi, F. S. Mjalli, y S. Al-Hatmi, «Experimental investigation of the effects of various parameters on viscosity reduction of heavy crude by oil–water emulsion», Petroleum Science, vol. 12, n.o 1, Art. n.o 1, 2015, doi: 10.1007/s12182-014-0009-2. [3] R. F. Meyer, E. D. Attanasi, y P. A. Freeman, «Heavy oil and natural bitumen resources in geological basins of the world», U.S. Geological Survey, vol. Open File-, p. 36, 2007, doi: 10.1007/BF01944169. [4] Z. Khansari, P. Kapadia, I. Gates, y N. Mahinpey, «Kinetic Models for Low Temperature Oxidation Subranges based on Reaction Products», SPE Heavy Oil Conference - Canada, 2013, n.o June, Art. n.o June, 2013, doi: 10.2118/165527-MS. [5] L. M. Castanier y W. E. Brigham, «Upgrading of crude oil via in situ combustion», Journal of Petroleum Science and Engineering, vol. 39, n.o 1-2, Art. n.o 1-2, ago. 2003, doi: 10.1016/S0920-4105(03)00044-5. [6] M. Latil, C. Bordan, Burger, J. Burger, Sourieau, y P. Sourieau, Enhanced Oil Recovery.pdf. 1980. [7] J. N. Breston, «Oil Recovery by Heat From In Situ Combustion», Journal of petroleum technology, 1958. [8] C. Shen, «Limitations and Potentials of In-Situ Combustion Processes for Heavy Oil Reservoirs», n.o 1, Art. n.o 1, 2002. [9] S. F. Wong, J. S. Lim, y S. S. Dol, «Crude oil emulsion: A review on formation, classification and stability of water-in-oil emulsions», Journal of Petroleum Science and Engineering, vol. 135, pp. 498-504, nov. 2015, doi: 10.1016/j.petrol.2015.10.006. [10] S. Llanos, S. Acevedo, F. Cortés, y C. Franco, «Effect of the Asphaltene Oxidation Process on the Formation of Emulsions of Water in Oil (W/O) Model Solutions», Energies, vol. 11, n.o 4, p. 722, mar. 2018, doi: 10.3390/en11040722. [11] M. Fingas, «Water ‐ in ‐ Oil Emulsions : Formation and Prediction», vol. 3, n.o 1, Art. n.o 1, 2014, doi: 10.14355/jpsr.2014.0301.04. [12] M. Fingas, J. I. Gersten, y F. W. Smith, «The physics and chemistry of emulsions», pp. xxix, 826 p., 1993. [13] S. Kokal, «Quantification of Various Factors Affecting Emulsion Stability: Watercut, Temperature, Shear, Asphaltene Content, Demulsifier Dosage and Mixing Different Crudes», p. 9. [14] C. E. Perles, V. C. B. Guersoni, y A. C. Bannwart, «Rheological study of crude oil/water interface – The effect of temperature and brine on interfacial film», Journal of Petroleum Science and Engineering, vol. 162, pp. 835-843, mar. 2018, doi: 10.1016/j.petrol.2017.11.010. [15] M. Fingas, «Water-in-oil emulsion formation: A review of physics and mathematical modelling», Spill Science & Technology Bulletin, vol. 2, n.o 1, Art. n.o 1, mar. 1995, doi: 10.1016/1353-2561(95)94483-Z. [16] M. Fingas y B. Fieldhouse, «Studies on water-in-oil products from crude oils and petroleum products», Marine Pollution Bulletin, vol. 64, n.o 2, pp. 272-283, feb. 2012, doi: 10.1016/j.marpolbul.2011.11.019. [17] M. Rondón, P. Bouriat, J. Lachaise, y J. L. Salager, «Breaking of water-in-crude oil emulsions. 1. Physicochemical phenomenology of demulsifier action», Energy and Fuels, vol. 20, n.o 4, Art. n.o 4, 2006, doi: 10.1021/ef060017o. [18] M. Rondón, J. C. Pereira, P. Bouriat, A. Graciaa, J. Lachaise, y J. L. Salager, «Breaking of water-in-crude-oil emulsions. 2. Influence of asphaltene concentration and diluent nature on demulsifier action», Energy and Fuels, vol. 22, n.o 2, Art. n.o 2, 2008, doi: 10.1021/ef7003877. [19] B. M. Aguilera, J. G. Delgado, y A. L. Cárdenas, «Water-in-oil emulsions stabilized by asphaltenes obtained from venezuelan crude oils», Journal of Dispersion Science and Technology, vol. 31, n.o 3, Art. n.o 3, 2010, doi: 10.1080/01932690903196144. [20] M. Fingas y B. Fieldhouse, «Studies on crude oil and petroleum product emulsions: Water resolution and rheology», Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 333, n.o 1-3, Art. n.o 1-3, 2009, doi: 10.1016/j.colsurfa.2008.09.029. [21] C. Negin, S. Ali, y Q. Xie, «Application of nanotechnology for enhancing oil recovery – A review», Petroleum, vol. 2, n.o 4, Art. n.o 4, 2016, doi: 10.1016/j.petlm.2016.10.002. [22] G. Cheraghian y L. Hendraningrat, «A review on applications of nanotechnology in the enhanced oil recovery part B: effects of nanoparticles on flooding», International Nano Letters, vol. 6, n.o 1, Art. n.o 1, 2016, doi: 10.1007/s40089-015-0170-7. [23] B. Engeset, «The Potential of Hydrophilic Silica Nanoparticles for EOR Purposes», Norwegian Universitry of Science and technology, n.o May, Art. n.o May, 2012. [24] A. H. Alagorni, Z. B. Yaacob, y A. H. Nour, «An Overview of Oil Production Stages : Enhanced Oil Recovery Techniques and Nitrogen Injection», vol. 6, n.o 9, Art. n.o 9, 2015, doi: 10.7763/IJESD.2015.V6.682. [25] J. Salager, «Recuperación mejorada del petróleo», Universidad de los Andes, 2005. [26] S. Thomas, «Enhanced Oil Recovery – An Overview», Oil & Gas Science and Technology – Rev. IFP, vol. 63, n.o 1, Art. n.o 1, 2008, doi: 10.2516/ogst. [27] G. J. Stosur, J. R. Hite, N. F. Carnahan, y K. Miller, «The Alphabet Soup of IOR, EOR and AOR: Effective Communication Requires a Definition of Terms», p. 3. [28] C. A. Espinosa y K. J. Torres, «Técnicas de recobro y recobro mejorado en yacimientos con crudos livianos , pesados y extra-». [29] P. S. Sarathi, In-Situ Combustion Handbook - Principles and Practices. 1999. [30] M. G. Ursenbach, R. G. Moore, y S. A. Mehta, «Air Injection in Heavy Oil Reservoirs - A Process Whose Time Has Come (Again)», Journal of Canadian Petroleum Technology, vol. 49, n.o 01, Art. n.o 01, ene. 2010, doi: 10.2118/132487-PA. [31] D. K. Banerjee, K. J. Laidler, y B. N. Nandi, «Kinetic studies of coke formation in hydrocarbon fractions of heavy crudes», Fuel, vol. 65, mar. 12, 1985. [32] J. D. M. Belgrave y R. G. Moore, «A comprehensive approach to in-situ combustion modeling», SPE Advanced, 1993. [33] A. Eguono, «Numerical Simulation of Chemical Reaction of In-Situ Combustion Using SARA Fraction», Delft University of Technology, ago. 2010. [34] N. P. Freitag y B. Verkoczy, «Low-temperature oxidation of oils in terms of SARA fractions: Why simple reaction models don’t work», Journal of Canadian Petroleum Technology, vol. 44, n.o 3, Art. n.o 3, 2005, doi: 10.2118/05-03-05. [35] K. O. Adegbesan, J. K. Donnelly, R. G. Moore, y D. W. Bennion, «Low-Temperature Oxidation Kinetic Parameters for In-Situ Combustion Numerical Simulation», SPE Reservoir Engineering, vol. 2, n.o 4, Art. n.o 4, 1987, doi: 10.2118/12004-PA. [36] B. Gui, Q. Y. Yang, H. J. Wu, X. Zhang, y Y. Lu, «Study of the effects of low-temperature oxidation on the chemical composition of a light crude oil», Energy and Fuels, vol. 24, n.o 2, Art. n.o 2, 2010, doi: 10.1021/ef901056s. [37] M. R. Fassihi, K. O. Meyers, y P. F. Baslie, «Low-Temperature Oxidation of Viscous Crude Oils», SPE Reservoir Engineering, vol. 5, n.o 04, Art. n.o 04, nov. 1990, doi: 10.2118/15648-PA. [38] R. G. Moore, «Combustion/Oxidation Behavior of Athabasca Oil Sands Bitumen», SPE Reservoir Eval, 1999. [39] D. Langevin, S. Poteau, I. Hénaut, y J. F. Argillier, «Crude Oil Emulsion Properties and their Application to Heavy Oil Transportation», Oil & Gas Science and Technology – Rev. IFP, vol. 59, n.o 5, Art. n.o 5, 2004, doi: 10.2516/ogst:2004036. [40] S. Kokal y S. Aramco, «Crude-Oil Emulsions : A State-Of-The-Art Review», n.o December 2004, Art. n.o December 2004, 2005. [41] M. M. Abdulredha, H. Siti Aslina, y C. A. Luqman, «Overview on petroleum emulsions, formation, influence and demulsification treatment techniques», Arabian Journal of Chemistry, p. S1878535218302442, nov. 2018, doi: 10.1016/j.arabjc.2018.11.014. [42] P. V. Hemmingsen, A. Silset, A. Hannisdal, y J. Sjöblom, «Emulsions of Heavy Crude Oils. I: Influence of Viscosity, Temperature, and Dilution», Journal of Dispersion Science and Technology, vol. 26, n.o 5, Art. n.o 5, sep. 2005, doi: 10.1081/DIS-200057671. [43] M. Bagheri, M. Paydayesh, y S. Al-Ballam, «Monitoring of Steam Injection in a Heavy Oil Reservoir by Integration of Production and 4D Seismic Data», presentado en 80th EAGE Conference and Exhibition, 2018. [44] U. Sinha, B. Dindoruk, y M. Y. Soliman, «Development of a new correlation to determine relative viscosity of heavy oils with varying asphaltene content and temperature», Journal of Petroleum Science and Engineering, oct. 2018. [45] A. Silset, A. Hannisdal, P. V. Hemmingsen, y J. Sjöblom, «Emulsions of Heavy Crude Oils. II. Viscous Responses and Their Influence on Emulsion Stability Measurements», Journal of Dispersion Science and Technology, vol. 31, n.o 10, Art. n.o 10, sep. 2010, doi: 10.1080/01932690903210341. [46] T. J. Jones, E. L. Neustadter, y K. P. Whittingham, «Water-In-Crude Oil Emulsion Stability And Emulsion Destabilization By Chemical Demulsifiers», Journal of Canadian Petroleum Technology, vol. 17, n.o 02, Art. n.o 02, abr. 1978, doi: 10.2118/78-02-08. [47] M. Orea, J. Bruzual, A. Diaz, T. Árraga, N. Benítez, y J. Castillo, «Formation of stable emulsions under in-situ combustion conditions: An assessment of the injected gas−crude oil−water−rock interplay in Quifa oilfield, Los Llanos Basin, Colombia», Journal of Petroleum Science and Engineering, vol. 159, nov. 2017. [48] H. Salazar, «Evaluación De La Formación De Emulsiones En Procesos De Combustion In-Situ Bajo Condiciones De Exceso De Oxigeno», Msc Thesis, Universidad Nacional de Colombia, 2016. [49] M. F. Fakoya y S. N. Shah, «Emergence of nanotechnology in the oil and gas industry: Emphasis on the application of silica nanoparticles», Petroleum, vol. 3, n.o 4, Art. n.o 4, dic. 2017, doi: 10.1016/j.petlm.2017.03.001. [50] M. Nur Agista, K. Guo, y Z. Yu, «A State-of-the-Art Review of Nanoparticles Application in Petroleum with a Focus on Enhanced Oil Recovery», Applied science, may 2018. [51] Md. Amanullah y A. M. Al-Tahini, «Nano-Technology - Its Significance in Smart Fluid Development for Oil and Gas Field Application», presentado en SPE Saudi Arabia Section Technical Symposium, Al-Khobar, Saudi Arabia, 2009. doi: 10.2118/126102-MS. [52] T. Zhang, A. Davidson, S. L. Bryant, y C. Huh, «Nanoparticle-Stabilized Emulsions for Applications in Enhanced Oil Recovery», p. 18. [53] N. A. Ogolo, O. A. Olafuyi, y M. O. Onyekonwu, «Enhanced Oil Recovery Using Nanoparticles», presentado en SPE Saudi Arabia Section Technical Symposium and Exhibition, Al-Khobar, Saudi Arabia, 2012. doi: 10.2118/160847-MS. [54] S. Li, M. Genys, K. Wang, y O. Torsæter, «Experimental Study of Wettability Alteration during Nanofluid Enhanced Oil Recovery Process and Its Effect on Oil Recovery», presentado en SPE Reservoir Characterisation and Simulation Conference and Exhibition, Abu Dhabi, UAE, 2015. doi: 10.2118/175610-MS. [55] A. Roustaei y H. Bagherzadeh, «Experimental investigation of SiO2 nanoparticles on enhanced oil recovery of carbonate reservoirs», J Petrol Explor Prod Technol, vol. 5, n.o 1, Art. n.o 1, mar. 2015, doi: 10.1007/s13202-014-0120-3. [56] N. N. Nassar, M. E. Al-Jabari, y M. M. Husein, «Removal of asphaltenes from heavy oil by nickel nano and micro particle adsorbents», p. 6. [57] R. Kumar, E. Dao, y K. Mohanty, «Heavy-Oil Recovery by In-Situ Emulsion Formation», SPE Journal, vol. 17, n.o 02, Art. n.o 02, jun. 2012, doi: 10.2118/129914-PA. [58] B. P. Binks y J. A. Rodrigues, «Enhanced Stabilization of Emulsions Due to Surfactant-Induced Nanoparticle Flocculation», Langmuir, vol. 23, n.o 14, Art. n.o 14, jul. 2007, doi: 10.1021/la700597k. [59] B. K. Pilapil, H. Jahandideh, S. L. Bryant, y M. Trifkovic, «Stabilization of Oil-in-Water Emulsions with Noninterfacially Adsorbed Particles», Langmuir, vol. 32, n.o 28, Art. n.o 28, jul. 2016, doi: 10.1021/acs.langmuir.6b00873. [60] S. Riaza, F. B. Cortés, y J. Otalvaro, «Emulsions with heavy crude oil in presence of nanoparticles», Boletín de Ciencias de la Tierra, n.o 36, Art. n.o 36, 2015, doi: 10.15446/rbct.n36.46282. [61] D. Arab, A. Kantzas, y S. L. Bryant, «Nanoparticle stabilized oil in water emulsions: A critical review», Journal of Petroleum Science and Engineering, vol. 163, pp. 217-242, abr. 2018, doi: 10.1016/j.petrol.2017.12.091. [62] P. Pillai, R. Kumar Saw, R. Singh, E. Padmanabhan, y A. Mandala, «Effect of synthesized lysine-grafted silica nanoparticle on surfactant stabilized O/W emulsion stability: Application in enhanced oil recovery», Journal of Petroleum Science and Engineering, vol. 177, pp. 861-871, jun. 2019. [63] S. Llanos y M. D. Vásquez, «Evaluación de la aplicación de nanopartículas para el rompimiento de emulsiones de agua en crudos pesados», Universidad Surcolombiana, Neiva, Colombia, 2016. [64] A. Perino, C. Noïk, y C. Dalmazzone, «Effect of Fumed Silica Particles on Water-in-Crude Oil Emulsion: Emulsion Stability, Interfacial Properties, and Contribution of Crude Oil Fractions», Energy Fuels, vol. 27, n.o 5, Art. n.o 5, may 2013, doi: 10.1021/ef301627e. [65] D. Montes, F. B. Cortés, y C. A. Franco, «Reduction of heavy oil viscosity through ultrasound cavitation assisted by NiO nanocrystals-functionalized SiO 2 nanoparticles • Reducción de la viscosidad de crudos pesados mediante cavitación por ultrasonido asistida por nanopartículas de SiO 2 funciona», vol. 85, n.o 207, pp. 153-160, 2018. [66] I. E, «IP 469: Determination of saturated, aromatic and polar compounds in petroleum products by thin layer chromatography and flame ionization detection». 2006. [67] F. Civan, Porous media transport phenomena, vol. 1. Wiley, 2011. [68] S. Chopra, L. R. Lines, D. R. Schmitt, y M. L. Batzle, Eds., Heavy Oils Reservoir: Characterization and Production Monitoring. Society of Exploration Geophysicists, 2010. doi: 10.1190/1.9781560802235. [69] M. F. Quijada y R. R. Stewart, «Petrophysical and seismic signature of a heavy oil sand reservoir: Manitou Lake, Saskatchewan», vol. 20, p. 17, 2008. [70] E. A. Taborda, V. Alvarado, C. A. Franco, y F. B. Cortés, «Rheological demonstration of alteration in the heavy crude oil fluid structure upon addition of nanoparticles», Fuel, vol. 189, pp. 322-333, 2017, doi: 10.1016/j.fuel.2016.10.110. [71] J. E. Aristizábal-Fontal, F. B. Cortés, y C. A. Franco, «Viscosity reduction of extra heavy crude oil by magnetite nanoparticle-based ferrofluids», Adsorption Science & Technology, vol. 36, n.o 1-2, Art. n.o 1-2, feb. 2018, doi: 10.1177/0263617417704309. [72] J. Schindelin et al., «Fiji: an open-source platform for biological-image analysis», Nat Methods, vol. 9, n.o 7, pp. 676-682, jul. 2012, doi: 10.1038/nmeth.2019. [73] H. Yao, Q. Dai, y Z. You, «Fourier Transform Infrared Spectroscopy characterization of aging-related properties of original and nano-modified asphalt binders», Construction and Building Materials, vol. 101, pp. 1078-1087, dic. 2015, doi: 10.1016/j.conbuildmat.2015.10.085. [74] D. A. Long, «Infrared and Raman characteristic group frequencies. Tables and chartsGeorge Socrates John Wiley and Sons, Ltd, Chichester, Third Edition, 2001. Price £135», J. Raman Spectrosc., vol. 35, n.o 10, pp. 905-905, oct. 2004, doi: 10.1002/jrs.1238. [75] C. A. Franco, T. Montoya, N. N. Nassar, P. Pereira-Almao, y F. B. Cortés, «Adsorption and subsequent oxidation of colombian asphaltenes onto nickel and/or palladium oxide supported on fumed silica nanoparticles», Energy and Fuels, vol. 27, n.o 12, Art. n.o 12, 2013, doi: 10.1021/ef4018543. [76] J. D. Guzmán, S. Betancur, F. Carrasco-Marín, C. A. Franco, N. N. Nassar, y F. B. Cortés, «Importance of the Adsorption Method Used for Obtaining the Nanoparticle Dosage for Asphaltene-Related Treatments», Energy Fuels, vol. 30, n.o 3, pp. 2052-2059, mar. 2016, doi: 10.1021/acs.energyfuels.5b02841. [77] D. Montes, J. Henao, E. A. Taborda, J. Gallego, F. B. Cortés, y C. A. Franco, «Effect of Textural Properties and Surface Chemical Nature of Silica Nanoparticles from Different Silicon Sources on the Viscosity Reduction of Heavy Crude Oil», ACS Omega, vol. 5, n.o 10, pp. 5085-5097, mar. 2020, doi: 10.1021/acsomega.9b04041. [78] D. Montes, W. Orozco, E. Taborda, C. Franco, y F. Cortés, «Development of Nanofluids for Perdurability in Viscosity Reduction of Extra-Heavy Oils», Energies, vol. 12, n.o 6, p. 1068, mar. 2019, doi: 10.3390/en12061068. [79] N. N. Nassar, «Asphaltene Adsorption onto Alumina Nanoparticles: Kinetics and Thermodynamic Studies», Energy Fuels, p. 7, 2010. [80] T. Zhang, M. Roberts, S. L. Bryant, y C. Huh, «Foams and Emulsions Stabilized With Nanoparticles for Potential Conformance Control Applications», presentado en SPE International Symposium on Oilfield Chemistry, The Woodlands. Texas, 2009. doi: 10.2118/121744-MS. [81] C. Franco, «Kinetic and thermodynamic equilibrium of asphaltenes sorption onto nanoparticles of nickel oxide supported on nanoparticulated alumina», p. 7, 2013. [82] F. H. Wang, L. B. Shen, H. Zhu, y K. F. Han, «The Preparation of a Polyether Demulsifier Modified by Nano-SiO2 and the Effect on Asphaltenes and Resins», null, vol. 29, n.o 24, pp. 2521-2529, oct. 2011, doi: 10.1080/10916460903393997. [83] E. A. Taborda, C. A. Franco, S. H. Lopera, V. Alvarado, y F. B. Cortés, «Effect of nanoparticles/nanofluids on the rheology of heavy crude oil and its mobility on porous media at reservoir conditions», Fuel, vol. 184, pp. 222-232, 2016, doi: 10.1016/j.fuel.2016.07.013. [84] J. D. McLean y P. K. Kilpatrick, «Effects of Asphaltene Solvency on Stability of Water-in-Crude-Oil Emulsions», Journal of Colloid and Interface Science, vol. 189, n.o 2, pp. 242-253, may 1997, doi: 10.1006/jcis.1997.4807. [85] M. Fingas y B. Fieldhouse, «Studies on crude oil and petroleum product emulsions: Water resolution and rheology», Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 333, n.o 1-3, pp. 67-81, 2009, doi: 10.1016/j.colsurfa.2008.09.029. [86] D. S. Kolotova, Y. A. Kuchina, L. A. Petrova, N. G. Voron’ko, y S. R. Derkach, «Rheology of Water-in-Crude Oil Emulsions: Influence of Concentration and Temperature», Colloids and Interfaces, vol. 2, n.o 4, p. 64, nov. 2018, doi: 10.3390/colloids2040064. [87] A. N. I. Anisa y A. H. Nour, «Affect of Viscosity and Droplet Diameter on water-in-oil (w/o) Emulsions: An Experimental Study», vol. 4, n.o 2, p. 4, 2010. [88] Y. Tu, J. Kung, T. McCracken, L. Kotlyar, D. Kingston, y B. Sparks, «Effect of Clay Particle Size on the Adsorption of a Pentane Insoluble Bitumen Fraction», Clay science 12(Supplement2) (2006) 194-198, n.o Clay science 12(Supplement2) (2006) 194-198. [89] K. Y. Jung y S. B. Park, «Enhanced photoactivity of silica-embedded titania particles prepared by sol–gel process for the decomposition of trichloroethylene», Applied Catalysis B: Environmental, vol. 25, n.o 4, pp. 249-256, mar. 2000, doi: 10.1016/S0926-3373(99)00134-4. [90] R. Al-Oweini y H. El-Rassy, «Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R′′Si(OR′)3 precursors», Journal of Molecular Structure, vol. 919, n.o 1-3, Art. n.o 1-3, 2009. [91] C. J. Brinke y G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, 1st Edition. Academic Press, 2013. [92] Y. Hurtado, C. A. Franco, M. Riazi, y F. B. Cortés, «Improving the stability of nitrogen foams using silica nanoparticles coated with polyethylene glycol», Journal of Molecular Liquids, vol. 300, p. 112256, feb. 2020, doi: 10.1016/j.molliq.2019.112256. [93] C. A. Franco, F. B. Cortés, y N. N. Nassar, «Adsorptive removal of oil spill from oil-in-fresh water emulsions by hydrophobic alumina nanoparticles functionalized with petroleum vacuum residue», Journal of Colloid and Interface Science, vol. 425, pp. 168-177, jul. 2014, doi: 10.1016/j.jcis.2014.03.051. [94] D. E. Tambe y M. M. SHAFtMA, «THE EFFECT OF COLLOIDAL PARTICLES ON FLUID-FLiJID INTERFACIAL PROPERTIES AND EMULSION STABILITY», p. 63. [95] S. Acevedo et al., «Isolation and Characterization of Low and High Molecular Weight Acidic Compounds from Cerro Negro Extraheavy Crude Oil. Role of These Acids in the Interfacial Properties of the Crude Oil Emulsions», Energy Fuels, vol. 13, n.o 2, pp. 333-335, mar. 1999, doi: 10.1021/ef980180m. [96] S. Acevedo, M. Ranaudo, G. Escobar, y X. Gutiérrez, «Dynamic interfacial tension measurement of heavy crude oil-alkaline systems. The role of the counterion in the aqueous phase», Fuel and Energy Abstracts, vol. 40, n.o 5, p. 318, sep. 1999, doi: 10.1016/S0140-6701(99)90954-2. [97] A. Zahabi, M. R. Gray, y T. Dabros, «Kinetics and Properties of Asphaltene Adsorption on Surfaces», Energy Fuels, vol. 26, n.o 2, pp. 1009-1018, feb. 2012, doi: 10.1021/ef2014698. [98] A. Hannisdal, M.-H. Ese, P. V. Hemmingsen, y J. Sjöblom, «Particle-stabilized emulsions: Effect of heavy crude oil components pre-adsorbed onto stabilizing solids», Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 276, n.o 1-3, pp. 45-58, mar. 2006, doi: 10.1016/j.colsurfa.2005.10.011. [99] U. Farooq, J. Sjöblom, y G. Øye, «Desorption of Asphaltenes from Silica-Coated Quartz Crystal Surfaces in Low Saline Aqueous Solutions», Journal of Dispersion Science and Technology, vol. 32, n.o 10, pp. 1388-1395, oct. 2011, doi: 10.1080/01932691.2010.505118. [100] N. N. Nassar, A. Hassan, y P. Pereira-Almao, «Metal Oxide Nanoparticles for Asphaltene Adsorption and Oxidation», Energy Fuels, vol. 25, n.o 3, pp. 1017-1023, mar. 2011, doi: 10.1021/ef101230g. [101] N. N. Nassar, A. Hassan, L. Carbognani, F. Lopez-Linares, y P. Pereira-Almao, «Iron oxide nanoparticles for rapid adsorption and enhanced catalytic oxidation of thermally cracked asphaltenes», Fuel, vol. 95, pp. 257-262, may 2012, doi: 10.1016/j.fuel.2011.09.022. [102] K. Xie y K. Karan, «Kinetics and Thermodynamics of Asphaltene Adsorption on Metal Surfaces: A Preliminary Study», Energy Fuels, vol. 19, n.o 4, pp. 1252-1260, jul. 2005, doi: 10.1021/ef049689+. [103] M. Thommes et al., «Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)», Pure and Applied Chemistry, vol. 87, n.o 9-10, pp. 1051-1069, oct. 2015, doi: 10.1515/pac-2014-1117. [104] N. N. Nassar, A. Hassan, y P. Pereira-Almao, «Effect of the Particle Size on Asphaltene Adsorption and Catalytic Oxidation onto Alumina Particles», Energy Fuels, vol. 25, n.o 9, pp. 3961-3965, sep. 2011, doi: 10.1021/ef2008387. [105] F. B. Cortés, J. M. Mejía, M. A. Ruiz, P. Benjumea, y D. B. Riffel, «Sorption of Asphaltenes onto Nanoparticles of Nickel Oxide Supported on Nanoparticulated Silica Gel», Energy Fuels, vol. 26, n.o 3, pp. 1725-1730, mar. 2012, doi: 10.1021/ef201658c. [106] F. B. Cortés, T. Montoya, S. Acevedo, N. Nassar, y C. A. Franco, «Adsorption-desorption of n–C7 asphaltenes over micro- and nanoparticles of silica and its impact on wettability alteration», CT&F Cienc. Tecnol. Futuro, vol. 6, n.o 4, pp. 89-106, dic. 2016, doi: 10.29047/01225383.06. [107] H. Rezvani, Y. Kazemzadeh, M. Sharifi, M. Riazi, y S. Shojaei, «A new insight into Fe3O4-based nanocomposites for adsorption of asphaltene at the oil/water interface: An experimental interfacial study», Journal of Petroleum Science and Engineering, vol. 177, pp. 786-797, jun. 2019, doi: 10.1016/j.petrol.2019.02.077. [108] C. A. Franco, M. M. Lozano, S. Acevedo, N. N. Nassar, y F. B. Cortés, «Effects of Resin I on Asphaltene Adsorption onto Nanoparticles: A Novel Method for Obtaining Asphaltenes/Resin Isotherms», Energy Fuels, vol. 30, n.o 1, pp. 264-272, ene. 2016, doi: 10.1021/acs.energyfuels.5b02504. [109] Y. Cui et al., «Investigating the dynamical stability of heavy crude oil-water systems using stirred tank», Journal of Petroleum Science and Engineering, vol. 183, p. 106386, dic. 2019, doi: 10.1016/j.petrol.2019.106386. [110] A. Stockwell, A. S. Taylor, y D. G. Thompson, «The Rheological Properties of Water-in-Crude-Oil Emulsions», en Surfactants in Solution, K. L. Mittal y P. Bothorel, Eds. Boston, MA: Springer US, 1986, pp. 1617-1632. doi: 10.1007/978-1-4613-1833-0_39. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xv, 52 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Maestría en Ingeniería - Ingeniería Química |
dc.publisher.department.spa.fl_str_mv |
Departamento de Procesos y Energía |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/80553/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/80553/2/Tesis%20MSc%20Felipe%20%c3%81lvarez%20M.pdf https://repositorio.unal.edu.co/bitstream/unal/80553/3/Tesis%20MSc%20Felipe%20%c3%81lvarez%20M.pdf.jpg |
bitstream.checksum.fl_str_mv |
cccfe52f796b7c63423298c2d3365fc6 19048c5347daaadb1cf05632a9252ef3 1ba04d9621d60699a9516ebc8358e517 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089188204609536 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Molina Ochoa, Alejandro0e008ac7580858f9b01ff8266aa127b3600Álvarez Martínez, Felipec8e496c7227f88aa69c9245c0f3a4157Bioprocesos y Flujos Reactivos2021-10-14T18:15:04Z2021-10-14T18:15:04Z2021https://repositorio.unal.edu.co/handle/unal/80553Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasThe behavior of water-in-oil (W/O) emulsions during in situ combustion was studied for three different crude oils. The variables studied were shear rate, water content, level of oxidation, and the addition of silica nanoparticles. The emulsions were characterized on its thermogravimetric behavior, droplet size distribution, rheology, and viscosity. The formation of highly stable W/O emulsions is a common and undesirable consequence of thermal enhanced oil recovery (TEOR) operations. The properties of the crude oil, the amount of energy transferred to the phases, the level of oxidation, and the water content are important factors that affect the formation and breaking of this kind of emulsions. The emulsions were formed in a sealed, continuous, stirred tank with temperature and stirring rate control and at two stirring levels to represent shear rates that were comparable to those present in the pore and close to the wellbore. Oxidation was carried out in a custom-designed setup that aimed to prevent evaporation, while air flowed through the crude. The results indicate that the presence of emulsions reduces the rate of water evaporation as the temperature range at which water evaporates increases by up to 50 K depending on the crude oil. A further increase in the temperature at which the water in the emulsion evaporates is observed in oxidation oil samples. The typical droplet size of the emulsions formed is of the order of 2 m. Interestingly, while the presence of emulsions increases the viscosity of two crude samples (Q and S) it decreases the viscosity for a third sample (C) as the stability of the emulsion for crude C is compromised at the shear rates obtained in the viscosity measurements. The inclusion of 1000 mg/L of silica nanoparticles has a positive, although minor, effect on the emulsion formation process as it increases the rate of evaporation of the emulsified water, reduces the viscosity of the emulsion, and increases the mean droplet size.El comportamiento de emulsiones de agua en aceite (W/O) durante la combustión in situ fue estudiada para tres diferentes crudos. Las variables estudiadas fueron tasa de corte, contenido de agua, nivel de oxidación, y la adición de nanopartículas de sílica. Las emulsiones fueron caracterizadas mediante su comportamiento termogravimétrico, distribución de tamaño de gota, reología y viscosidad. La formación de emulsiones W/O altamente estables es una consecuencia común e indeseable de operaciones de recobro mejorado térmico (TEOR por sus siglas en inglés). Las propiedades del crudo, la cantidad de energía entregada a las fases, el nivel de oxidación, y el contenido de agua son factores importantes que afectan la formación que afectan la formación y rompimiento de este tipo de emulsiones. Las emulsiones fueron formadas en un tanque agitado sellado y continuo que cuenta con control de temperatura y tasa de corte y a dos niveles de agitación para así representar las tasas de corte que pudieran ser comparables con aquellas presentes en el poro y cerca de la cara de pozo. La oxidación se llevó a cabo en un montaje personalizado que buscaba prevenir la evaporación, mientras aire fluía a través del crudo. Los resultados indican que la presencia de emulsiones reduce la tasa de evaporación de agua mientras que el rango de temperatura en el que el agua se evapora incrementa hasta 50 K dependiendo del crudo. Un incremento adicional en la temperatura a la cual el agua presente en la emulsión se evapora se observa en las muestras de crudo oxidado. El tamaño de gota común en las emulsiones formadas es del orden de 2 m. De manera interesante, mientras la presencia de emulsiones incrementa la viscosidad para dos muestras de crudo (Q y S), esta disminuye la viscosidad para la tercera muestra (crudo C) ya que la estabilidad de las emulsiones con curdo C es comprometida a las tasas de corte que se presentan durante las mediciones de viscosidad. La inclusión de 1000 mg/L de nanopartículas de sílica tiene un impacto positivo, aunque bajo, en el proceso de formación de emulsiones ya que la tasa de evaporación del agua en emulsión aumenta, reduce la viscosidad de la emulsión y además aumenta el tamaño medio de las gotas. (Texto tomado de la fuente)MaestríaMagíster en Ingeniería - Ingeniería QuímicaFlujos reactivosxv, 52 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Ingeniería QuímicaDepartamento de Procesos y EnergíaFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín660 - Ingeniería químicaNanoparticlesSecondary recovery of oilRecobro del petróleoRecobro mejorado térmicoEmulsiónNanopartículasViscosidadAnálisis termogravimétricoTamaño de gotaThermal enhanced oil recovery (TEOR)EmulsionsNanoparticlesViscosityDroplet sizeThermogravimetric behaviorEmulsion formation and breaking during in situ combustion.Formación y rompimiento de emulsiones en combustión in situ.Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM[1] R. G. Santos, W. Loh, A. C. Bannwart, y O. V. Trevisan, «An overview of heavy oil properties and its recovery and transportation methods», Brazilian Journal of Chemical Engineering, vol. 31, n.o 3, Art. n.o 3, 2014, doi: 10.1590/0104-6632.20140313s00001853.[2] T. Al-Wahaibi, Y. Al-Wahaibi, A. A. R. Al-Hashmi, F. S. Mjalli, y S. Al-Hatmi, «Experimental investigation of the effects of various parameters on viscosity reduction of heavy crude by oil–water emulsion», Petroleum Science, vol. 12, n.o 1, Art. n.o 1, 2015, doi: 10.1007/s12182-014-0009-2.[3] R. F. Meyer, E. D. Attanasi, y P. A. Freeman, «Heavy oil and natural bitumen resources in geological basins of the world», U.S. Geological Survey, vol. Open File-, p. 36, 2007, doi: 10.1007/BF01944169.[4] Z. Khansari, P. Kapadia, I. Gates, y N. Mahinpey, «Kinetic Models for Low Temperature Oxidation Subranges based on Reaction Products», SPE Heavy Oil Conference - Canada, 2013, n.o June, Art. n.o June, 2013, doi: 10.2118/165527-MS.[5] L. M. Castanier y W. E. Brigham, «Upgrading of crude oil via in situ combustion», Journal of Petroleum Science and Engineering, vol. 39, n.o 1-2, Art. n.o 1-2, ago. 2003, doi: 10.1016/S0920-4105(03)00044-5.[6] M. Latil, C. Bordan, Burger, J. Burger, Sourieau, y P. Sourieau, Enhanced Oil Recovery.pdf. 1980.[7] J. N. Breston, «Oil Recovery by Heat From In Situ Combustion», Journal of petroleum technology, 1958.[8] C. Shen, «Limitations and Potentials of In-Situ Combustion Processes for Heavy Oil Reservoirs», n.o 1, Art. n.o 1, 2002.[9] S. F. Wong, J. S. Lim, y S. S. Dol, «Crude oil emulsion: A review on formation, classification and stability of water-in-oil emulsions», Journal of Petroleum Science and Engineering, vol. 135, pp. 498-504, nov. 2015, doi: 10.1016/j.petrol.2015.10.006.[10] S. Llanos, S. Acevedo, F. Cortés, y C. Franco, «Effect of the Asphaltene Oxidation Process on the Formation of Emulsions of Water in Oil (W/O) Model Solutions», Energies, vol. 11, n.o 4, p. 722, mar. 2018, doi: 10.3390/en11040722.[11] M. Fingas, «Water ‐ in ‐ Oil Emulsions : Formation and Prediction», vol. 3, n.o 1, Art. n.o 1, 2014, doi: 10.14355/jpsr.2014.0301.04.[12] M. Fingas, J. I. Gersten, y F. W. Smith, «The physics and chemistry of emulsions», pp. xxix, 826 p., 1993.[13] S. Kokal, «Quantification of Various Factors Affecting Emulsion Stability: Watercut, Temperature, Shear, Asphaltene Content, Demulsifier Dosage and Mixing Different Crudes», p. 9.[14] C. E. Perles, V. C. B. Guersoni, y A. C. Bannwart, «Rheological study of crude oil/water interface – The effect of temperature and brine on interfacial film», Journal of Petroleum Science and Engineering, vol. 162, pp. 835-843, mar. 2018, doi: 10.1016/j.petrol.2017.11.010.[15] M. Fingas, «Water-in-oil emulsion formation: A review of physics and mathematical modelling», Spill Science & Technology Bulletin, vol. 2, n.o 1, Art. n.o 1, mar. 1995, doi: 10.1016/1353-2561(95)94483-Z.[16] M. Fingas y B. Fieldhouse, «Studies on water-in-oil products from crude oils and petroleum products», Marine Pollution Bulletin, vol. 64, n.o 2, pp. 272-283, feb. 2012, doi: 10.1016/j.marpolbul.2011.11.019.[17] M. Rondón, P. Bouriat, J. Lachaise, y J. L. Salager, «Breaking of water-in-crude oil emulsions. 1. Physicochemical phenomenology of demulsifier action», Energy and Fuels, vol. 20, n.o 4, Art. n.o 4, 2006, doi: 10.1021/ef060017o.[18] M. Rondón, J. C. Pereira, P. Bouriat, A. Graciaa, J. Lachaise, y J. L. Salager, «Breaking of water-in-crude-oil emulsions. 2. Influence of asphaltene concentration and diluent nature on demulsifier action», Energy and Fuels, vol. 22, n.o 2, Art. n.o 2, 2008, doi: 10.1021/ef7003877.[19] B. M. Aguilera, J. G. Delgado, y A. L. Cárdenas, «Water-in-oil emulsions stabilized by asphaltenes obtained from venezuelan crude oils», Journal of Dispersion Science and Technology, vol. 31, n.o 3, Art. n.o 3, 2010, doi: 10.1080/01932690903196144.[20] M. Fingas y B. Fieldhouse, «Studies on crude oil and petroleum product emulsions: Water resolution and rheology», Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 333, n.o 1-3, Art. n.o 1-3, 2009, doi: 10.1016/j.colsurfa.2008.09.029.[21] C. Negin, S. Ali, y Q. Xie, «Application of nanotechnology for enhancing oil recovery – A review», Petroleum, vol. 2, n.o 4, Art. n.o 4, 2016, doi: 10.1016/j.petlm.2016.10.002.[22] G. Cheraghian y L. Hendraningrat, «A review on applications of nanotechnology in the enhanced oil recovery part B: effects of nanoparticles on flooding», International Nano Letters, vol. 6, n.o 1, Art. n.o 1, 2016, doi: 10.1007/s40089-015-0170-7.[23] B. Engeset, «The Potential of Hydrophilic Silica Nanoparticles for EOR Purposes», Norwegian Universitry of Science and technology, n.o May, Art. n.o May, 2012.[24] A. H. Alagorni, Z. B. Yaacob, y A. H. Nour, «An Overview of Oil Production Stages : Enhanced Oil Recovery Techniques and Nitrogen Injection», vol. 6, n.o 9, Art. n.o 9, 2015, doi: 10.7763/IJESD.2015.V6.682.[25] J. Salager, «Recuperación mejorada del petróleo», Universidad de los Andes, 2005.[26] S. Thomas, «Enhanced Oil Recovery – An Overview», Oil & Gas Science and Technology – Rev. IFP, vol. 63, n.o 1, Art. n.o 1, 2008, doi: 10.2516/ogst.[27] G. J. Stosur, J. R. Hite, N. F. Carnahan, y K. Miller, «The Alphabet Soup of IOR, EOR and AOR: Effective Communication Requires a Definition of Terms», p. 3.[28] C. A. Espinosa y K. J. Torres, «Técnicas de recobro y recobro mejorado en yacimientos con crudos livianos , pesados y extra-».[29] P. S. Sarathi, In-Situ Combustion Handbook - Principles and Practices. 1999.[30] M. G. Ursenbach, R. G. Moore, y S. A. Mehta, «Air Injection in Heavy Oil Reservoirs - A Process Whose Time Has Come (Again)», Journal of Canadian Petroleum Technology, vol. 49, n.o 01, Art. n.o 01, ene. 2010, doi: 10.2118/132487-PA.[31] D. K. Banerjee, K. J. Laidler, y B. N. Nandi, «Kinetic studies of coke formation in hydrocarbon fractions of heavy crudes», Fuel, vol. 65, mar. 12, 1985.[32] J. D. M. Belgrave y R. G. Moore, «A comprehensive approach to in-situ combustion modeling», SPE Advanced, 1993.[33] A. Eguono, «Numerical Simulation of Chemical Reaction of In-Situ Combustion Using SARA Fraction», Delft University of Technology, ago. 2010.[34] N. P. Freitag y B. Verkoczy, «Low-temperature oxidation of oils in terms of SARA fractions: Why simple reaction models don’t work», Journal of Canadian Petroleum Technology, vol. 44, n.o 3, Art. n.o 3, 2005, doi: 10.2118/05-03-05.[35] K. O. Adegbesan, J. K. Donnelly, R. G. Moore, y D. W. Bennion, «Low-Temperature Oxidation Kinetic Parameters for In-Situ Combustion Numerical Simulation», SPE Reservoir Engineering, vol. 2, n.o 4, Art. n.o 4, 1987, doi: 10.2118/12004-PA.[36] B. Gui, Q. Y. Yang, H. J. Wu, X. Zhang, y Y. Lu, «Study of the effects of low-temperature oxidation on the chemical composition of a light crude oil», Energy and Fuels, vol. 24, n.o 2, Art. n.o 2, 2010, doi: 10.1021/ef901056s.[37] M. R. Fassihi, K. O. Meyers, y P. F. Baslie, «Low-Temperature Oxidation of Viscous Crude Oils», SPE Reservoir Engineering, vol. 5, n.o 04, Art. n.o 04, nov. 1990, doi: 10.2118/15648-PA.[38] R. G. Moore, «Combustion/Oxidation Behavior of Athabasca Oil Sands Bitumen», SPE Reservoir Eval, 1999.[39] D. Langevin, S. Poteau, I. Hénaut, y J. F. Argillier, «Crude Oil Emulsion Properties and their Application to Heavy Oil Transportation», Oil & Gas Science and Technology – Rev. IFP, vol. 59, n.o 5, Art. n.o 5, 2004, doi: 10.2516/ogst:2004036.[40] S. Kokal y S. Aramco, «Crude-Oil Emulsions : A State-Of-The-Art Review», n.o December 2004, Art. n.o December 2004, 2005.[41] M. M. Abdulredha, H. Siti Aslina, y C. A. Luqman, «Overview on petroleum emulsions, formation, influence and demulsification treatment techniques», Arabian Journal of Chemistry, p. S1878535218302442, nov. 2018, doi: 10.1016/j.arabjc.2018.11.014.[42] P. V. Hemmingsen, A. Silset, A. Hannisdal, y J. Sjöblom, «Emulsions of Heavy Crude Oils. I: Influence of Viscosity, Temperature, and Dilution», Journal of Dispersion Science and Technology, vol. 26, n.o 5, Art. n.o 5, sep. 2005, doi: 10.1081/DIS-200057671.[43] M. Bagheri, M. Paydayesh, y S. Al-Ballam, «Monitoring of Steam Injection in a Heavy Oil Reservoir by Integration of Production and 4D Seismic Data», presentado en 80th EAGE Conference and Exhibition, 2018.[44] U. Sinha, B. Dindoruk, y M. Y. Soliman, «Development of a new correlation to determine relative viscosity of heavy oils with varying asphaltene content and temperature», Journal of Petroleum Science and Engineering, oct. 2018.[45] A. Silset, A. Hannisdal, P. V. Hemmingsen, y J. Sjöblom, «Emulsions of Heavy Crude Oils. II. Viscous Responses and Their Influence on Emulsion Stability Measurements», Journal of Dispersion Science and Technology, vol. 31, n.o 10, Art. n.o 10, sep. 2010, doi: 10.1080/01932690903210341.[46] T. J. Jones, E. L. Neustadter, y K. P. Whittingham, «Water-In-Crude Oil Emulsion Stability And Emulsion Destabilization By Chemical Demulsifiers», Journal of Canadian Petroleum Technology, vol. 17, n.o 02, Art. n.o 02, abr. 1978, doi: 10.2118/78-02-08.[47] M. Orea, J. Bruzual, A. Diaz, T. Árraga, N. Benítez, y J. Castillo, «Formation of stable emulsions under in-situ combustion conditions: An assessment of the injected gas−crude oil−water−rock interplay in Quifa oilfield, Los Llanos Basin, Colombia», Journal of Petroleum Science and Engineering, vol. 159, nov. 2017.[48] H. Salazar, «Evaluación De La Formación De Emulsiones En Procesos De Combustion In-Situ Bajo Condiciones De Exceso De Oxigeno», Msc Thesis, Universidad Nacional de Colombia, 2016.[49] M. F. Fakoya y S. N. Shah, «Emergence of nanotechnology in the oil and gas industry: Emphasis on the application of silica nanoparticles», Petroleum, vol. 3, n.o 4, Art. n.o 4, dic. 2017, doi: 10.1016/j.petlm.2017.03.001.[50] M. Nur Agista, K. Guo, y Z. Yu, «A State-of-the-Art Review of Nanoparticles Application in Petroleum with a Focus on Enhanced Oil Recovery», Applied science, may 2018.[51] Md. Amanullah y A. M. Al-Tahini, «Nano-Technology - Its Significance in Smart Fluid Development for Oil and Gas Field Application», presentado en SPE Saudi Arabia Section Technical Symposium, Al-Khobar, Saudi Arabia, 2009. doi: 10.2118/126102-MS.[52] T. Zhang, A. Davidson, S. L. Bryant, y C. Huh, «Nanoparticle-Stabilized Emulsions for Applications in Enhanced Oil Recovery», p. 18.[53] N. A. Ogolo, O. A. Olafuyi, y M. O. Onyekonwu, «Enhanced Oil Recovery Using Nanoparticles», presentado en SPE Saudi Arabia Section Technical Symposium and Exhibition, Al-Khobar, Saudi Arabia, 2012. doi: 10.2118/160847-MS.[54] S. Li, M. Genys, K. Wang, y O. Torsæter, «Experimental Study of Wettability Alteration during Nanofluid Enhanced Oil Recovery Process and Its Effect on Oil Recovery», presentado en SPE Reservoir Characterisation and Simulation Conference and Exhibition, Abu Dhabi, UAE, 2015. doi: 10.2118/175610-MS.[55] A. Roustaei y H. Bagherzadeh, «Experimental investigation of SiO2 nanoparticles on enhanced oil recovery of carbonate reservoirs», J Petrol Explor Prod Technol, vol. 5, n.o 1, Art. n.o 1, mar. 2015, doi: 10.1007/s13202-014-0120-3.[56] N. N. Nassar, M. E. Al-Jabari, y M. M. Husein, «Removal of asphaltenes from heavy oil by nickel nano and micro particle adsorbents», p. 6.[57] R. Kumar, E. Dao, y K. Mohanty, «Heavy-Oil Recovery by In-Situ Emulsion Formation», SPE Journal, vol. 17, n.o 02, Art. n.o 02, jun. 2012, doi: 10.2118/129914-PA.[58] B. P. Binks y J. A. Rodrigues, «Enhanced Stabilization of Emulsions Due to Surfactant-Induced Nanoparticle Flocculation», Langmuir, vol. 23, n.o 14, Art. n.o 14, jul. 2007, doi: 10.1021/la700597k.[59] B. K. Pilapil, H. Jahandideh, S. L. Bryant, y M. Trifkovic, «Stabilization of Oil-in-Water Emulsions with Noninterfacially Adsorbed Particles», Langmuir, vol. 32, n.o 28, Art. n.o 28, jul. 2016, doi: 10.1021/acs.langmuir.6b00873.[60] S. Riaza, F. B. Cortés, y J. Otalvaro, «Emulsions with heavy crude oil in presence of nanoparticles», Boletín de Ciencias de la Tierra, n.o 36, Art. n.o 36, 2015, doi: 10.15446/rbct.n36.46282.[61] D. Arab, A. Kantzas, y S. L. Bryant, «Nanoparticle stabilized oil in water emulsions: A critical review», Journal of Petroleum Science and Engineering, vol. 163, pp. 217-242, abr. 2018, doi: 10.1016/j.petrol.2017.12.091.[62] P. Pillai, R. Kumar Saw, R. Singh, E. Padmanabhan, y A. Mandala, «Effect of synthesized lysine-grafted silica nanoparticle on surfactant stabilized O/W emulsion stability: Application in enhanced oil recovery», Journal of Petroleum Science and Engineering, vol. 177, pp. 861-871, jun. 2019.[63] S. Llanos y M. D. Vásquez, «Evaluación de la aplicación de nanopartículas para el rompimiento de emulsiones de agua en crudos pesados», Universidad Surcolombiana, Neiva, Colombia, 2016.[64] A. Perino, C. Noïk, y C. Dalmazzone, «Effect of Fumed Silica Particles on Water-in-Crude Oil Emulsion: Emulsion Stability, Interfacial Properties, and Contribution of Crude Oil Fractions», Energy Fuels, vol. 27, n.o 5, Art. n.o 5, may 2013, doi: 10.1021/ef301627e.[65] D. Montes, F. B. Cortés, y C. A. Franco, «Reduction of heavy oil viscosity through ultrasound cavitation assisted by NiO nanocrystals-functionalized SiO 2 nanoparticles • Reducción de la viscosidad de crudos pesados mediante cavitación por ultrasonido asistida por nanopartículas de SiO 2 funciona», vol. 85, n.o 207, pp. 153-160, 2018.[66] I. E, «IP 469: Determination of saturated, aromatic and polar compounds in petroleum products by thin layer chromatography and flame ionization detection». 2006.[67] F. Civan, Porous media transport phenomena, vol. 1. Wiley, 2011.[68] S. Chopra, L. R. Lines, D. R. Schmitt, y M. L. Batzle, Eds., Heavy Oils Reservoir: Characterization and Production Monitoring. Society of Exploration Geophysicists, 2010. doi: 10.1190/1.9781560802235.[69] M. F. Quijada y R. R. Stewart, «Petrophysical and seismic signature of a heavy oil sand reservoir: Manitou Lake, Saskatchewan», vol. 20, p. 17, 2008.[70] E. A. Taborda, V. Alvarado, C. A. Franco, y F. B. Cortés, «Rheological demonstration of alteration in the heavy crude oil fluid structure upon addition of nanoparticles», Fuel, vol. 189, pp. 322-333, 2017, doi: 10.1016/j.fuel.2016.10.110.[71] J. E. Aristizábal-Fontal, F. B. Cortés, y C. A. Franco, «Viscosity reduction of extra heavy crude oil by magnetite nanoparticle-based ferrofluids», Adsorption Science & Technology, vol. 36, n.o 1-2, Art. n.o 1-2, feb. 2018, doi: 10.1177/0263617417704309.[72] J. Schindelin et al., «Fiji: an open-source platform for biological-image analysis», Nat Methods, vol. 9, n.o 7, pp. 676-682, jul. 2012, doi: 10.1038/nmeth.2019.[73] H. Yao, Q. Dai, y Z. You, «Fourier Transform Infrared Spectroscopy characterization of aging-related properties of original and nano-modified asphalt binders», Construction and Building Materials, vol. 101, pp. 1078-1087, dic. 2015, doi: 10.1016/j.conbuildmat.2015.10.085.[74] D. A. Long, «Infrared and Raman characteristic group frequencies. Tables and chartsGeorge Socrates John Wiley and Sons, Ltd, Chichester, Third Edition, 2001. Price £135», J. Raman Spectrosc., vol. 35, n.o 10, pp. 905-905, oct. 2004, doi: 10.1002/jrs.1238.[75] C. A. Franco, T. Montoya, N. N. Nassar, P. Pereira-Almao, y F. B. Cortés, «Adsorption and subsequent oxidation of colombian asphaltenes onto nickel and/or palladium oxide supported on fumed silica nanoparticles», Energy and Fuels, vol. 27, n.o 12, Art. n.o 12, 2013, doi: 10.1021/ef4018543.[76] J. D. Guzmán, S. Betancur, F. Carrasco-Marín, C. A. Franco, N. N. Nassar, y F. B. Cortés, «Importance of the Adsorption Method Used for Obtaining the Nanoparticle Dosage for Asphaltene-Related Treatments», Energy Fuels, vol. 30, n.o 3, pp. 2052-2059, mar. 2016, doi: 10.1021/acs.energyfuels.5b02841.[77] D. Montes, J. Henao, E. A. Taborda, J. Gallego, F. B. Cortés, y C. A. Franco, «Effect of Textural Properties and Surface Chemical Nature of Silica Nanoparticles from Different Silicon Sources on the Viscosity Reduction of Heavy Crude Oil», ACS Omega, vol. 5, n.o 10, pp. 5085-5097, mar. 2020, doi: 10.1021/acsomega.9b04041.[78] D. Montes, W. Orozco, E. Taborda, C. Franco, y F. Cortés, «Development of Nanofluids for Perdurability in Viscosity Reduction of Extra-Heavy Oils», Energies, vol. 12, n.o 6, p. 1068, mar. 2019, doi: 10.3390/en12061068.[79] N. N. Nassar, «Asphaltene Adsorption onto Alumina Nanoparticles: Kinetics and Thermodynamic Studies», Energy Fuels, p. 7, 2010.[80] T. Zhang, M. Roberts, S. L. Bryant, y C. Huh, «Foams and Emulsions Stabilized With Nanoparticles for Potential Conformance Control Applications», presentado en SPE International Symposium on Oilfield Chemistry, The Woodlands. Texas, 2009. doi: 10.2118/121744-MS.[81] C. Franco, «Kinetic and thermodynamic equilibrium of asphaltenes sorption onto nanoparticles of nickel oxide supported on nanoparticulated alumina», p. 7, 2013.[82] F. H. Wang, L. B. Shen, H. Zhu, y K. F. Han, «The Preparation of a Polyether Demulsifier Modified by Nano-SiO2 and the Effect on Asphaltenes and Resins», null, vol. 29, n.o 24, pp. 2521-2529, oct. 2011, doi: 10.1080/10916460903393997.[83] E. A. Taborda, C. A. Franco, S. H. Lopera, V. Alvarado, y F. B. Cortés, «Effect of nanoparticles/nanofluids on the rheology of heavy crude oil and its mobility on porous media at reservoir conditions», Fuel, vol. 184, pp. 222-232, 2016, doi: 10.1016/j.fuel.2016.07.013.[84] J. D. McLean y P. K. Kilpatrick, «Effects of Asphaltene Solvency on Stability of Water-in-Crude-Oil Emulsions», Journal of Colloid and Interface Science, vol. 189, n.o 2, pp. 242-253, may 1997, doi: 10.1006/jcis.1997.4807.[85] M. Fingas y B. Fieldhouse, «Studies on crude oil and petroleum product emulsions: Water resolution and rheology», Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 333, n.o 1-3, pp. 67-81, 2009, doi: 10.1016/j.colsurfa.2008.09.029.[86] D. S. Kolotova, Y. A. Kuchina, L. A. Petrova, N. G. Voron’ko, y S. R. Derkach, «Rheology of Water-in-Crude Oil Emulsions: Influence of Concentration and Temperature», Colloids and Interfaces, vol. 2, n.o 4, p. 64, nov. 2018, doi: 10.3390/colloids2040064.[87] A. N. I. Anisa y A. H. Nour, «Affect of Viscosity and Droplet Diameter on water-in-oil (w/o) Emulsions: An Experimental Study», vol. 4, n.o 2, p. 4, 2010.[88] Y. Tu, J. Kung, T. McCracken, L. Kotlyar, D. Kingston, y B. Sparks, «Effect of Clay Particle Size on the Adsorption of a Pentane Insoluble Bitumen Fraction», Clay science 12(Supplement2) (2006) 194-198, n.o Clay science 12(Supplement2) (2006) 194-198.[89] K. Y. Jung y S. B. Park, «Enhanced photoactivity of silica-embedded titania particles prepared by sol–gel process for the decomposition of trichloroethylene», Applied Catalysis B: Environmental, vol. 25, n.o 4, pp. 249-256, mar. 2000, doi: 10.1016/S0926-3373(99)00134-4.[90] R. Al-Oweini y H. El-Rassy, «Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R′′Si(OR′)3 precursors», Journal of Molecular Structure, vol. 919, n.o 1-3, Art. n.o 1-3, 2009.[91] C. J. Brinke y G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, 1st Edition. Academic Press, 2013.[92] Y. Hurtado, C. A. Franco, M. Riazi, y F. B. Cortés, «Improving the stability of nitrogen foams using silica nanoparticles coated with polyethylene glycol», Journal of Molecular Liquids, vol. 300, p. 112256, feb. 2020, doi: 10.1016/j.molliq.2019.112256.[93] C. A. Franco, F. B. Cortés, y N. N. Nassar, «Adsorptive removal of oil spill from oil-in-fresh water emulsions by hydrophobic alumina nanoparticles functionalized with petroleum vacuum residue», Journal of Colloid and Interface Science, vol. 425, pp. 168-177, jul. 2014, doi: 10.1016/j.jcis.2014.03.051.[94] D. E. Tambe y M. M. SHAFtMA, «THE EFFECT OF COLLOIDAL PARTICLES ON FLUID-FLiJID INTERFACIAL PROPERTIES AND EMULSION STABILITY», p. 63.[95] S. Acevedo et al., «Isolation and Characterization of Low and High Molecular Weight Acidic Compounds from Cerro Negro Extraheavy Crude Oil. Role of These Acids in the Interfacial Properties of the Crude Oil Emulsions», Energy Fuels, vol. 13, n.o 2, pp. 333-335, mar. 1999, doi: 10.1021/ef980180m.[96] S. Acevedo, M. Ranaudo, G. Escobar, y X. Gutiérrez, «Dynamic interfacial tension measurement of heavy crude oil-alkaline systems. The role of the counterion in the aqueous phase», Fuel and Energy Abstracts, vol. 40, n.o 5, p. 318, sep. 1999, doi: 10.1016/S0140-6701(99)90954-2.[97] A. Zahabi, M. R. Gray, y T. Dabros, «Kinetics and Properties of Asphaltene Adsorption on Surfaces», Energy Fuels, vol. 26, n.o 2, pp. 1009-1018, feb. 2012, doi: 10.1021/ef2014698.[98] A. Hannisdal, M.-H. Ese, P. V. Hemmingsen, y J. Sjöblom, «Particle-stabilized emulsions: Effect of heavy crude oil components pre-adsorbed onto stabilizing solids», Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 276, n.o 1-3, pp. 45-58, mar. 2006, doi: 10.1016/j.colsurfa.2005.10.011.[99] U. Farooq, J. Sjöblom, y G. Øye, «Desorption of Asphaltenes from Silica-Coated Quartz Crystal Surfaces in Low Saline Aqueous Solutions», Journal of Dispersion Science and Technology, vol. 32, n.o 10, pp. 1388-1395, oct. 2011, doi: 10.1080/01932691.2010.505118.[100] N. N. Nassar, A. Hassan, y P. Pereira-Almao, «Metal Oxide Nanoparticles for Asphaltene Adsorption and Oxidation», Energy Fuels, vol. 25, n.o 3, pp. 1017-1023, mar. 2011, doi: 10.1021/ef101230g.[101] N. N. Nassar, A. Hassan, L. Carbognani, F. Lopez-Linares, y P. Pereira-Almao, «Iron oxide nanoparticles for rapid adsorption and enhanced catalytic oxidation of thermally cracked asphaltenes», Fuel, vol. 95, pp. 257-262, may 2012, doi: 10.1016/j.fuel.2011.09.022.[102] K. Xie y K. Karan, «Kinetics and Thermodynamics of Asphaltene Adsorption on Metal Surfaces: A Preliminary Study», Energy Fuels, vol. 19, n.o 4, pp. 1252-1260, jul. 2005, doi: 10.1021/ef049689+.[103] M. Thommes et al., «Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)», Pure and Applied Chemistry, vol. 87, n.o 9-10, pp. 1051-1069, oct. 2015, doi: 10.1515/pac-2014-1117.[104] N. N. Nassar, A. Hassan, y P. Pereira-Almao, «Effect of the Particle Size on Asphaltene Adsorption and Catalytic Oxidation onto Alumina Particles», Energy Fuels, vol. 25, n.o 9, pp. 3961-3965, sep. 2011, doi: 10.1021/ef2008387.[105] F. B. Cortés, J. M. Mejía, M. A. Ruiz, P. Benjumea, y D. B. Riffel, «Sorption of Asphaltenes onto Nanoparticles of Nickel Oxide Supported on Nanoparticulated Silica Gel», Energy Fuels, vol. 26, n.o 3, pp. 1725-1730, mar. 2012, doi: 10.1021/ef201658c.[106] F. B. Cortés, T. Montoya, S. Acevedo, N. Nassar, y C. A. Franco, «Adsorption-desorption of n–C7 asphaltenes over micro- and nanoparticles of silica and its impact on wettability alteration», CT&F Cienc. Tecnol. Futuro, vol. 6, n.o 4, pp. 89-106, dic. 2016, doi: 10.29047/01225383.06.[107] H. Rezvani, Y. Kazemzadeh, M. Sharifi, M. Riazi, y S. Shojaei, «A new insight into Fe3O4-based nanocomposites for adsorption of asphaltene at the oil/water interface: An experimental interfacial study», Journal of Petroleum Science and Engineering, vol. 177, pp. 786-797, jun. 2019, doi: 10.1016/j.petrol.2019.02.077.[108] C. A. Franco, M. M. Lozano, S. Acevedo, N. N. Nassar, y F. B. Cortés, «Effects of Resin I on Asphaltene Adsorption onto Nanoparticles: A Novel Method for Obtaining Asphaltenes/Resin Isotherms», Energy Fuels, vol. 30, n.o 1, pp. 264-272, ene. 2016, doi: 10.1021/acs.energyfuels.5b02504.[109] Y. Cui et al., «Investigating the dynamical stability of heavy crude oil-water systems using stirred tank», Journal of Petroleum Science and Engineering, vol. 183, p. 106386, dic. 2019, doi: 10.1016/j.petrol.2019.106386.[110] A. Stockwell, A. S. Taylor, y D. G. Thompson, «The Rheological Properties of Water-in-Crude-Oil Emulsions», en Surfactants in Solution, K. L. Mittal y P. Bothorel, Eds. Boston, MA: Springer US, 1986, pp. 1617-1632. doi: 10.1007/978-1-4613-1833-0_39.InvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80553/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINALTesis MSc Felipe Álvarez M.pdfTesis MSc Felipe Álvarez M.pdfTesis de Maestría en Ingeniería – Ingeniería Químicaapplication/pdf2671835https://repositorio.unal.edu.co/bitstream/unal/80553/2/Tesis%20MSc%20Felipe%20%c3%81lvarez%20M.pdf19048c5347daaadb1cf05632a9252ef3MD52THUMBNAILTesis MSc Felipe Álvarez M.pdf.jpgTesis MSc Felipe Álvarez M.pdf.jpgGenerated Thumbnailimage/jpeg4482https://repositorio.unal.edu.co/bitstream/unal/80553/3/Tesis%20MSc%20Felipe%20%c3%81lvarez%20M.pdf.jpg1ba04d9621d60699a9516ebc8358e517MD53unal/80553oai:repositorio.unal.edu.co:unal/805532023-10-13 13:30:17.899Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |