Un modelo de riesgos competitivos de tiempo discreto basado en regresión por splines e información longitudinal

ilustraciones, gráficas

Autores:
Salazar García, Adriana Marcela
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80516
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80516
https://repositorio.unal.edu.co/
Palabra clave:
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Análisis de Supervivencia
Survival Analysis
Numerical analysis
Logistic regression analysis
Análisis numérico
Análisis de regresión logística
Modelo Conjunto
Modelo de supervivencia
Modelo Longitudinal
Regresión Logística
Modelo de Cox
Joint model
Survival model
Longitudinal model
Logistic regression
Cox model
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_7fb441ef84533a87739ba203cdc6a4ba
oai_identifier_str oai:repositorio.unal.edu.co:unal/80516
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Un modelo de riesgos competitivos de tiempo discreto basado en regresión por splines e información longitudinal
dc.title.translated.eng.fl_str_mv A model of competitive risks in discrete time based on the spline regression and longitudinal information
title Un modelo de riesgos competitivos de tiempo discreto basado en regresión por splines e información longitudinal
spellingShingle Un modelo de riesgos competitivos de tiempo discreto basado en regresión por splines e información longitudinal
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Análisis de Supervivencia
Survival Analysis
Numerical analysis
Logistic regression analysis
Análisis numérico
Análisis de regresión logística
Modelo Conjunto
Modelo de supervivencia
Modelo Longitudinal
Regresión Logística
Modelo de Cox
Joint model
Survival model
Longitudinal model
Logistic regression
Cox model
title_short Un modelo de riesgos competitivos de tiempo discreto basado en regresión por splines e información longitudinal
title_full Un modelo de riesgos competitivos de tiempo discreto basado en regresión por splines e información longitudinal
title_fullStr Un modelo de riesgos competitivos de tiempo discreto basado en regresión por splines e información longitudinal
title_full_unstemmed Un modelo de riesgos competitivos de tiempo discreto basado en regresión por splines e información longitudinal
title_sort Un modelo de riesgos competitivos de tiempo discreto basado en regresión por splines e información longitudinal
dc.creator.fl_str_mv Salazar García, Adriana Marcela
dc.contributor.advisor.none.fl_str_mv Huertas Campos, Jaime Abel
dc.contributor.author.none.fl_str_mv Salazar García, Adriana Marcela
dc.subject.ddc.spa.fl_str_mv 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
topic 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Análisis de Supervivencia
Survival Analysis
Numerical analysis
Logistic regression analysis
Análisis numérico
Análisis de regresión logística
Modelo Conjunto
Modelo de supervivencia
Modelo Longitudinal
Regresión Logística
Modelo de Cox
Joint model
Survival model
Longitudinal model
Logistic regression
Cox model
dc.subject.decs.spa.fl_str_mv Análisis de Supervivencia
dc.subject.decs.eng.fl_str_mv Survival Analysis
dc.subject.lemb.eng.fl_str_mv Numerical analysis
Logistic regression analysis
dc.subject.lemb.spa.fl_str_mv Análisis numérico
Análisis de regresión logística
dc.subject.proposal.spa.fl_str_mv Modelo Conjunto
Modelo de supervivencia
Modelo Longitudinal
Regresión Logística
Modelo de Cox
dc.subject.proposal.eng.fl_str_mv Joint model
Survival model
Longitudinal model
Logistic regression
Cox model
description ilustraciones, gráficas
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-10-12T17:13:33Z
dc.date.available.none.fl_str_mv 2021-10-12T17:13:33Z
dc.date.issued.none.fl_str_mv 2021-10
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80516
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80516
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Annesi, I., Moreau, T. and Lellouch, J. (1989). Efficiency of the logistic regression and cox proportional hazards models in longitudinal studies. Statistics in Medicine, 8, 1515 - 1521.
Begg, C. B. and Gray, R. (1984). Calculation of polychotomous logistic regression parameters using individualized regressions. Biometrika, 71(1), 11-18.
Bowman, A. W. and Azzalini, A. (1997). Applied Smoothing Techniques for Data Analysis. The Kernel Approach with S-Plus Illustrations. Oxford Statistical Science Series.
Cox, D. R. (1972). Regression Models and Life Tables (with discussion). Journal of the Royal Statistical Society, Series B ; 34, 187-220.
Dobson, A. J. (1945). An introduction to generalized linear models. 2nd ed. Chapman hall/CRC
Elandt-Johnson, R. C. (1980). Time dependent logistic models in follow-up studies and clinical trials, I. Binary data. Institute of Statistics Mimeo Series, University of North Carolina 1310.
Elashoff, R. M., Li, G. and Li, N. (2007). An approach to joint analysis of longitudinal measurements and competing risks failure time data. Statistics in Medicine 26, 2813 - 2835.
Elashoff, R. M., Li, G. and Li, N. (2008). A Joint Model for Longitudinal Measurements and Survival Data in the Presence of Multiple Failure Types. Biometrics 64, 762 - 771.
Green, M. S. and Symon, M. J. (1983). A comparison of the logistic risk function and the proportional hazards model in prospective epidemiologic studies. Journal of Clinical Epidemiology, 36, 715-723.
Guo, X. and Carlin, B. P. (2004). Separate and Joint Modeling of Longitudinal and Event Time Data Using Standard Computer Packages. The American Statistician, 58, 16 - 24.
Henderson, R., Diggle, P. and Dobson, A. (2000). Joint Modelling of Longitudinal Measurements and Event Time Data. Biostatistics, 4, 465 - 480.
Hougaard, P. (2000). Analysis of Multivariate Survival Data. Springer-Verlag New York.
Klein, J. P. and Moeschberger, M. L. (2003). Survival Analysis. Techniques for Censored and Truncated Data. 2nd ed. New York: Springer-Verlag.
Klein, J. P. and Moeschberger, M. L. (2005). Survival Analysis: Techniques for Censored and Truncated Data. 3rd ed. Springer.
Kleinbaum, D. G. and Klein, M. (2002). Logistic Regression. 2nd ed. Springer.
Lawless, J. F. (2003). Statistical Models and Methods for Lifetime Data, 2nd ed. Hobo- ken:Wiley.
Li, N., Elashoff, R.M. and Li, G.(2009). Robust joint modeling of longitudinal measurements and competing risks failure time data, Biometrical Journal, 51, 19-30.
Lin H., McCulloch, C.E. and Mayne, S.T. (2002). Maximum Likelihood Estimation in the Joint Analysis of Time-to-Event and Multiple Longitudinal Variables. Statistics in Medicine, 21, 2369-82.
Liu, L. and Huang, X. (2009). Joint Analysis of Correlated Repeated Measures and Recurrent Events Processes in the Presence of Death, with Application to a Study on Acquired Immune Deficiency Syndrome. Journal of the Royal Statistical Society, 58, 65-81.
Luo, S., Kong, X. and Nie, T. (2016). Spline based survival model for credit risk modeling. European Journal of Operational Research, 253, 257 - 269.
Myers, M. H., Hankey, B. F. and Mantel, N. A. (1973). Logistic-exponential model for use with response time data involving regression variables. Biometrics, 29, 257-296.
SAS Institute. (2005). SAS/STAT 9.1. Cary, North Caroline, US: SAS Institute Inc.
Teixeira, L., Sousa, I., Rodriguez, A. and Mendonca, D. (2019). Joint Modelling of Longitudinal and competing risk data in clinical research. REVSTAT - Statistical Journal, 17, 245 - 264.
Therneau, T. M. and Grambsch, P. M. (2000). Modeling Survival Data: Extending the Cox Model. New York: Springer-Verlag.
Tsiatis, A. A. and Davidian, M. (2004). Joint Modeling of Longitudinal and Timeto- Event Data: An Overview. Statistica Sinica, 14, 809 - 834.
Verbeke, G. and Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data. New York: Springer-Verlag .
Williamson, P. R., Kolamunnage - Dona, R., Philipson, P. and Marson, A. G. (2008). Joint modelling of longitudinal and competing risks data. Statistics in Medicine 27, 6426 - 6438.
Wu, M. and Carroll, R. (1988). Estimation and Comparison of Changes in the Presence of Informative Right Censoring by Modelling the Censoring Process. Biometrics, 44, 175 - 188.
Wulfsohn, M. and Tsiatis, A.A. (1997). A Joint Model for Survival and Longitudinal Data Measured with Error. Biometrics, 53, 330 - 339.
Zeng, D. and Cai, J. (2005). Asymptotic Results for Maximum Likelihood Estimators in Joint Analysis of Repeated Measurements and Survival Time. The Annals of Statistics, 33, 2132{2163.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv iv, 26 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Estadística
dc.publisher.department.spa.fl_str_mv Departamento de Estadística
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80516/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80516/2/10154131232021.pdf
https://repositorio.unal.edu.co/bitstream/unal/80516/3/10154131232021.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
1f66cb4936bf89539bdadba1d5087e51
68038ccc74b0e18aafac4edd46e3c156
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089256562327552
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Huertas Campos, Jaime Abel159cdc035ba0331904a23be7fbdbfed1600Salazar García, Adriana Marcela794b141dc1bc48db0fcd3ba0dc6048282021-10-12T17:13:33Z2021-10-12T17:13:33Z2021-10https://repositorio.unal.edu.co/handle/unal/80516Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficasModelar datos de supervivencia de riesgos en competencia con covariantes basales y longitudinales, no es apropiado hacerlo mediante modelos clásicos de supervivencias. Para este propósito, Begg y Gray (1984) incluyen directamente la información longitudinal dentro de un modelo logístico, y Luo et al. (2016), mejoran la bondad de ajuste de la función de riesgo de dicha propuesta, con la inclusión de un spline dependiente del tiempo al evento. En el presente trabajo se propone una extensión al modelo anterior mediante la modelación conjunta, donde el proceso de supervivencia corrige sesgos en el modelo longitudinal por causa de retiros informativos, y el modelo longitudinal estimado apropiadamente, se incluye en el modelo logístico para servir como marcador al evento de interés. Ilustramos la aplicación de la propuesta con una base crediticia de datos. (Texto tomado de la fuente).Modeling survival data of competing risk with baseline and longitudinal covariates, it is not appropriate to do so using classical survival models. For this purpose, Begg and Gray (1984) directly include longitudinal information within a logistic model, and Luo et al. (2016), improve the goodness of fit of the risk function of such proposal, with the inclusion of a spline dependent on the time to the event. In the present work, an extension to the previous model is proposed through the joint modeling, where the survival process corrects biases in the longitudinal model due to informative dropout, and the appropriately estimated longitudinal model is included in the logistic model to serve as marker to the event of interest. We illustrate the application of the proposal with a data credit base.MaestríaMagíster en Ciencias - EstadísticaModelos de supervivenciaiv, 26 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - EstadísticaDepartamento de EstadísticaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasAnálisis de SupervivenciaSurvival AnalysisNumerical analysisLogistic regression analysisAnálisis numéricoAnálisis de regresión logísticaModelo ConjuntoModelo de supervivenciaModelo LongitudinalRegresión LogísticaModelo de CoxJoint modelSurvival modelLongitudinal modelLogistic regressionCox modelUn modelo de riesgos competitivos de tiempo discreto basado en regresión por splines e información longitudinalA model of competitive risks in discrete time based on the spline regression and longitudinal informationTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAnnesi, I., Moreau, T. and Lellouch, J. (1989). Efficiency of the logistic regression and cox proportional hazards models in longitudinal studies. Statistics in Medicine, 8, 1515 - 1521.Begg, C. B. and Gray, R. (1984). Calculation of polychotomous logistic regression parameters using individualized regressions. Biometrika, 71(1), 11-18.Bowman, A. W. and Azzalini, A. (1997). Applied Smoothing Techniques for Data Analysis. The Kernel Approach with S-Plus Illustrations. Oxford Statistical Science Series.Cox, D. R. (1972). Regression Models and Life Tables (with discussion). Journal of the Royal Statistical Society, Series B ; 34, 187-220.Dobson, A. J. (1945). An introduction to generalized linear models. 2nd ed. Chapman hall/CRCElandt-Johnson, R. C. (1980). Time dependent logistic models in follow-up studies and clinical trials, I. Binary data. Institute of Statistics Mimeo Series, University of North Carolina 1310.Elashoff, R. M., Li, G. and Li, N. (2007). An approach to joint analysis of longitudinal measurements and competing risks failure time data. Statistics in Medicine 26, 2813 - 2835.Elashoff, R. M., Li, G. and Li, N. (2008). A Joint Model for Longitudinal Measurements and Survival Data in the Presence of Multiple Failure Types. Biometrics 64, 762 - 771.Green, M. S. and Symon, M. J. (1983). A comparison of the logistic risk function and the proportional hazards model in prospective epidemiologic studies. Journal of Clinical Epidemiology, 36, 715-723.Guo, X. and Carlin, B. P. (2004). Separate and Joint Modeling of Longitudinal and Event Time Data Using Standard Computer Packages. The American Statistician, 58, 16 - 24.Henderson, R., Diggle, P. and Dobson, A. (2000). Joint Modelling of Longitudinal Measurements and Event Time Data. Biostatistics, 4, 465 - 480.Hougaard, P. (2000). Analysis of Multivariate Survival Data. Springer-Verlag New York.Klein, J. P. and Moeschberger, M. L. (2003). Survival Analysis. Techniques for Censored and Truncated Data. 2nd ed. New York: Springer-Verlag.Klein, J. P. and Moeschberger, M. L. (2005). Survival Analysis: Techniques for Censored and Truncated Data. 3rd ed. Springer.Kleinbaum, D. G. and Klein, M. (2002). Logistic Regression. 2nd ed. Springer.Lawless, J. F. (2003). Statistical Models and Methods for Lifetime Data, 2nd ed. Hobo- ken:Wiley.Li, N., Elashoff, R.M. and Li, G.(2009). Robust joint modeling of longitudinal measurements and competing risks failure time data, Biometrical Journal, 51, 19-30.Lin H., McCulloch, C.E. and Mayne, S.T. (2002). Maximum Likelihood Estimation in the Joint Analysis of Time-to-Event and Multiple Longitudinal Variables. Statistics in Medicine, 21, 2369-82.Liu, L. and Huang, X. (2009). Joint Analysis of Correlated Repeated Measures and Recurrent Events Processes in the Presence of Death, with Application to a Study on Acquired Immune Deficiency Syndrome. Journal of the Royal Statistical Society, 58, 65-81.Luo, S., Kong, X. and Nie, T. (2016). Spline based survival model for credit risk modeling. European Journal of Operational Research, 253, 257 - 269.Myers, M. H., Hankey, B. F. and Mantel, N. A. (1973). Logistic-exponential model for use with response time data involving regression variables. Biometrics, 29, 257-296.SAS Institute. (2005). SAS/STAT 9.1. Cary, North Caroline, US: SAS Institute Inc.Teixeira, L., Sousa, I., Rodriguez, A. and Mendonca, D. (2019). Joint Modelling of Longitudinal and competing risk data in clinical research. REVSTAT - Statistical Journal, 17, 245 - 264.Therneau, T. M. and Grambsch, P. M. (2000). Modeling Survival Data: Extending the Cox Model. New York: Springer-Verlag.Tsiatis, A. A. and Davidian, M. (2004). Joint Modeling of Longitudinal and Timeto- Event Data: An Overview. Statistica Sinica, 14, 809 - 834.Verbeke, G. and Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data. New York: Springer-Verlag .Williamson, P. R., Kolamunnage - Dona, R., Philipson, P. and Marson, A. G. (2008). Joint modelling of longitudinal and competing risks data. Statistics in Medicine 27, 6426 - 6438.Wu, M. and Carroll, R. (1988). Estimation and Comparison of Changes in the Presence of Informative Right Censoring by Modelling the Censoring Process. Biometrics, 44, 175 - 188.Wulfsohn, M. and Tsiatis, A.A. (1997). A Joint Model for Survival and Longitudinal Data Measured with Error. Biometrics, 53, 330 - 339.Zeng, D. and Cai, J. (2005). Asymptotic Results for Maximum Likelihood Estimators in Joint Analysis of Repeated Measurements and Survival Time. The Annals of Statistics, 33, 2132{2163.Público generalLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80516/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL10154131232021.pdf10154131232021.pdfTesis de Maestría en Ciencias - Estadísticaapplication/pdf865075https://repositorio.unal.edu.co/bitstream/unal/80516/2/10154131232021.pdf1f66cb4936bf89539bdadba1d5087e51MD52THUMBNAIL10154131232021.pdf.jpg10154131232021.pdf.jpgGenerated Thumbnailimage/jpeg4854https://repositorio.unal.edu.co/bitstream/unal/80516/3/10154131232021.pdf.jpg68038ccc74b0e18aafac4edd46e3c156MD53unal/80516oai:repositorio.unal.edu.co:unal/805162024-07-31 23:13:22.286Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==