Materiales nanoestructurados de silicio en el contexto agroindustrial
Ilustraciones a color, diagramas, mapas
- Autores:
-
Preciado Muñoz, Nicolas
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86584
- Palabra clave:
- 540 - Química y ciencias afines
Residuo
Silicio
Nanopartículas
Silicon
Nanoparticles
Nanomateriales de silicio
Silicio en plantas
Nanopartículas de sílice
Residuos agrícolas
Mecanismo de absorción del silicio
Desecho agrícola
Agricultural waste
Materiales nanoestructurados
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_7f5d8066d1f439c07faa51d5acae1e40 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86584 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Materiales nanoestructurados de silicio en el contexto agroindustrial |
dc.title.translated.eng.fl_str_mv |
Nanostructured silicon materials in the agroindustrial context |
title |
Materiales nanoestructurados de silicio en el contexto agroindustrial |
spellingShingle |
Materiales nanoestructurados de silicio en el contexto agroindustrial 540 - Química y ciencias afines Residuo Silicio Nanopartículas Silicon Nanoparticles Nanomateriales de silicio Silicio en plantas Nanopartículas de sílice Residuos agrícolas Mecanismo de absorción del silicio Desecho agrícola Agricultural waste Materiales nanoestructurados |
title_short |
Materiales nanoestructurados de silicio en el contexto agroindustrial |
title_full |
Materiales nanoestructurados de silicio en el contexto agroindustrial |
title_fullStr |
Materiales nanoestructurados de silicio en el contexto agroindustrial |
title_full_unstemmed |
Materiales nanoestructurados de silicio en el contexto agroindustrial |
title_sort |
Materiales nanoestructurados de silicio en el contexto agroindustrial |
dc.creator.fl_str_mv |
Preciado Muñoz, Nicolas |
dc.contributor.advisor.none.fl_str_mv |
Sierra Ávila, Cesar Augusto |
dc.contributor.author.none.fl_str_mv |
Preciado Muñoz, Nicolas |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Macromoléculas |
dc.subject.ddc.spa.fl_str_mv |
540 - Química y ciencias afines |
topic |
540 - Química y ciencias afines Residuo Silicio Nanopartículas Silicon Nanoparticles Nanomateriales de silicio Silicio en plantas Nanopartículas de sílice Residuos agrícolas Mecanismo de absorción del silicio Desecho agrícola Agricultural waste Materiales nanoestructurados |
dc.subject.agrovoc.spa.fl_str_mv |
Residuo |
dc.subject.lemb.spa.fl_str_mv |
Silicio Nanopartículas |
dc.subject.lemb.eng.fl_str_mv |
Silicon Nanoparticles |
dc.subject.proposal.spa.fl_str_mv |
Nanomateriales de silicio Silicio en plantas Nanopartículas de sílice Residuos agrícolas Mecanismo de absorción del silicio |
dc.subject.wikidata.spa.fl_str_mv |
Desecho agrícola |
dc.subject.wikidata.eng.fl_str_mv |
Agricultural waste |
dc.subject.bne.spa.fl_str_mv |
Materiales nanoestructurados |
description |
Ilustraciones a color, diagramas, mapas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-07-22T15:44:27Z |
dc.date.available.none.fl_str_mv |
2024-07-22T15:44:27Z |
dc.date.issued.none.fl_str_mv |
2024-07-16 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86584 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86584 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
United Nations, “World Population Prospects 2022, Online Edition.,” 2022. A. B. David Jimenez-Arias, Estefania Carrillo, Agricultural Research Updates. New york: Nova Science Publishers Inc., 2017. D. Gerten et al., “Feeding ten billion people is possible within four terrestrial planetary boundaries,” Nat. Sustain., vol. 3, no. 3, pp. 200–208, Jan. 2020, doi: 10.1038/s41893-019-0465-1. I. H. Elsokkary, “Silicon as a Beneficial Element and as an Essential Plant Nutrient: An Outlook (Review),” Alexandria Sci. Exch. J., vol. 39, no. 3, pp. 534–550, 2018, doi: 10.21608/asejaiqjsae.2018.16920. D. Coskun et al., “The controversies of silicon’s role in plant biology,” New Phytologist, vol. 221, no. 1. Blackwell Publishing Ltd, pp. 67–85, Jan. 01, 2019. doi: 10.1111/nph.15343. FAO, “Perspectivas de cosechas y situación alimentaria N.o 4, diciembre 2022,” FAO, Roma, Jan. 2023. doi: 10.4060/cc3233es. J. Singh, R. Boddula, and H. Digambar Jirimali, “Utilization of secondary agricultural products for the preparation of value added silica materials and their important applications: a review,” J. Sol-Gel Sci. Technol., vol. 96, no. 1, pp. 15–33, Oct. 2020, doi: 10.1007/s10971-020-05353-5. S. Gaur, J. Kumar, D. Kumar, D. K. Chauhan, S. M. Prasad, and P. K. Srivastava, “Fascinating impact of silicon and silicon transporters in plants: A review,” Ecotoxicol. Environ. Saf., vol. 202, no. March, p. 110885, 2020, doi: 10.1016/j.ecoenv.2020.110885 H. E. Bergna, “Colloid Chemistry of Silica,” 1994, pp. 1–47. doi: 10.1021/ba-1994-0234.ch001. S. Prabha, D. Durgalakshmi, S. Rajendran, and E. Lichtfouse, “Plant-derived silica nanoparticles and composites for biosensors, bioimaging, drug delivery and supercapacitors: a review,” Environmental Chemistry Letters, vol. 19, no. 2. Springer Science and Business Media Deutschland GmbH, pp. 1667–1691, Apr. 01, 2021. doi: 10.1007/s10311-020-01123-5. O. Katz, D. Puppe, D. Kaczorek, N. B. Prakash, and J. Schaller, “Silicon in the Soil–Plant Continuum: Intricate Feedback Mechanisms within Ecosystems,” Plants, vol. 10, no. 4, p. 652, Mar. 2021, doi: 10.3390/plants10040652. J. G. Croissant, K. S. Butler, J. I. Zink, and C. J. Brinker, “Synthetic amorphous silica nanoparticles: toxicity, biomedical and environmental implications,” Nature Reviews Materials, vol. 5, no. 12. Nature Research, pp. 886–909, Dec. 01, 2020. doi: 10.1038/s41578-020-0230-0. I. Khan, K. Saeed, and I. Khan, “Nanoparticles: Properties, applications and toxicities,” Arab. J. Chem., vol. 12, no. 7, pp. 908–931, Nov. 2019, doi: 10.1016/j.arabjc.2017.05.011. S. A. Afolalu, S. B. Soetan, S. O. Ongbali, A. A. Abioye, and A. S. Oni, “Morphological characterization and physio-chemical properties of nanoparticle - review,” IOP Conf. Ser. Mater. Sci. Eng., vol. 640, no. 1, p. 012065, Nov. 2019, doi: 10.1088/1757-899X/640/1/012065. N. Ranjan and R. Kumar, “Nanoparticles: Properties and its 3D printing applications,” Mater. Today Proc., vol. 48, pp. 1316–1319, 2022, doi: 10.1016/j.matpr.2021.09.004. E. A. Tejeda Villagómez, L. Hernandez-Adame, F. Nieto Navarro, and M. Anzaldo Montoya, “Nanopartículas de silicio como vehículos de transporte para moléculas de interés agrícola,” Mundo Nano. Rev. Interdiscip. en Nanociencias y Nanotecnología, vol. 16, no. 30, pp. 1e-20e, Oct. 2022, doi: 10.22201/ceiich.24485691e.2023.30.69732. V. S. Smetacek, “Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance,” 1985. R. J. Haynes, “Significance and Role of Si in Crop Production,” Adv. Agron., vol. 146, pp. 83–166, 2017, doi: 10.1016/bs.agron.2017.06.001. E. Epstein, “The anomaly of silicon in plant biology,” 1994. M. Yuvaraj et al., “Silicon nanoparticles (SiNPs): Challenges and perspectives for sustainable agriculture,” Physiological and Molecular Plant Pathology, vol. 128. Academic Press, Nov. 01, 2023. doi: 10.1016/j.pmpp.2023.102161. A. Rastogi et al., “Application of silicon nanoparticles in agriculture,” 3 Biotech, vol. 9, no. 3. Springer Verlag, Mar. 01, 2019. doi: 10.1007/s13205-019-1626-7. D. Coskun, D. T. Britto, W. Q. Huynh, and H. J. Kronzucker, “The role of silicon in higher plants under salinity and drought stress,” Front. Plant Sci., vol. 7, no. 2016JULY, pp. 1–7, 2016, doi: 10.3389/fpls.2016.01072. J. Cooke and M. R. Leishman, “Consistent alleviation of abiotic stress with silicon addition: a meta-analysis,” Funct. Ecol., vol. 30, no. 8, pp. 1340–1357, 2016, doi: 10.1111/1365-2435.12713. M. Luyckx, J. F. Hausman, S. Lutts, and G. Guerriero, “Silicon and plants: Current knowledge and technological perspectives,” Front. Plant Sci., vol. 8, Mar. 2017, doi: 10.3389/fpls.2017.00411. Z. Li et al., “Silicon enhancement of estimated plant biomass carbon accumulation under abiotic and biotic stresses. A meta-analysis,” Agron. Sustain. Dev., vol. 38, no. 3, 2018, doi: 10.1007/s13593-018-0496-4. Z. Souri, K. Khanna, N. Karimi, and P. Ahmad, “Silicon and Plants: Current Knowledge and Future Prospects,” Journal of Plant Growth Regulation, vol. 40, no. 3. Springer, pp. 906–925, Jun. 01, 2021. doi: 10.1007/s00344-020-10172-7. J. K. Zhu, “Abiotic Stress Signaling and Responses in Plants,” Cell, vol. 167, no. 2. Cell Press, pp. 313–324, Oct. 06, 2016. doi: 10.1016/j.cell.2016.08.029. S. Wang, F. Wang, S. Gao, and X. Wang, “Heavy Metal Accumulation in Different Rice Cultivars as Influenced by Foliar Application of Nano-silicon,” Water. Air. Soil Pollut., vol. 227, no. 7, Jul. 2016, doi: 10.1007/s11270-016-2928-6. D. Puppe and M. Sommer, Experiments, Uptake Mechanisms, and Functioning of Silicon Foliar Fertilization—A Review Focusing on Maize, Rice, and Wheat, vol. 152. Elsevier Ltd, 2018. doi: 10.1016/bs.agron.2018.07.003. O. L. Reynolds, M. P. Padula, R. Zeng, and G. M. Gurr, “Silicon: Potential to promote direct and indirect effects on plant defense against arthropod pests in agriculture,” Front. Plant Sci., vol. 7, no. June2016, pp. 1–13, 2016, doi: 10.3389/fpls.2016.00744. D. Debona, F. A. Rodrigues, and L. E. Datnoff, “Silicon’s Role in Abiotic and Biotic Plant Stresses,” Annu. Rev. Phytopathol, 2017, doi: 10.1146/annurev-phyto-080516. G. J. Gascho, “Silicon sources for agriculture,” 2001. J. F. Ma and N. Yamaji, “Silicon uptake and accumulation in higher plants,” Trends Plant Sci., vol. 11, no. 8, pp. 392–397, 2006, doi: 10.1016/j.tplants.2006.06.007. J. A. Bhat et al., “Silicon nanoparticles (SiNPs) in sustainable agriculture: Major emphasis on the practicality, efficacy and concerns,” Nanoscale Advances, vol. 3, no. 14. Royal Society of Chemistry, pp. 4019–4028, Jul. 21, 2021. doi: 10.1039/d1na00233c. W. Pan et al., “Silica nanoparticle accumulation in plants: current state and future perspectives,” Nanoscale, vol. 15, no. 37. Royal Society of Chemistry, pp. 15079–15091, Sep. 06, 2023. doi: 10.1039/d3nr02221h. V. Selvarajan, S. Obuobi, and P. L. R. Ee, “Silica Nanoparticles—A Versatile Tool for the Treatment of Bacterial Infections,” Frontiers in Chemistry, vol. 8. Frontiers Media S.A., Jul. 15, 2020. doi: 10.3389/fchem.2020.00602. R. Yuvakkumar, V. Elango, V. Rajendran, N. S. Kannan, and P. Prabu, “Influence of nanosilica powder on the growth of maize crop (Zea Mays L.),” Int. J. Green Nanotechnol. Biomed., vol. 3, no. 3, pp. 180–190, 2011, doi: 10.1080/19430892.2011.628581. M. Mukarram, M. M. A. Khan, and F. J. Corpas, “Silicon nanoparticles elicit an increase in lemongrass (Cymbopogon flexuosus (Steud.) Wats) agronomic parameters with a higher essential oil yield,” J. Hazard. Mater., vol. 412, Jun. 2021, doi: 10.1016/j.jhazmat.2021.125254. F. Asgari, A. Majd, P. Jonoubi, and F. Najafi, “Effects of silicon nanoparticles on molecular, chemical, structural and ultrastructural characteristics of oat (Avena sativa L.),” Plant Physiol. Biochem., vol. 127, pp. 152–160, 2018, doi: 10.1016/j.plaphy.2018.03.021. R. Azimi, M. J. Borzelabad, H. Feizi, and A. Azimi, “Interaction of SiO2 nanoparticles with seed prechilling on germination and early seedling growth of tall wheatgrass (Agropyron Elongatum L.),” Polish J. Chem. Technol., vol. 16, no. 3, pp. 25–29, Sep. 2014, doi: 10.2478/pjct-2014-0045. M. Mukarram, P. Petrik, Z. Mushtaq, M. M. A. Khan, M. Gulfishan, and A. Lux, “Silicon nanoparticles in higher plants: Uptake, action, stress tolerance, and crosstalk with phytohormones, antioxidants, and other signalling molecules,” Environ. Pollut., vol. 310, Oct. 2022, doi: 10.1016/j.envpol.2022.119855. M. Ghorbanpour, H. Mohammadi, and K. Kariman, “Nanosilicon-based recovery of barley (: Hordeum vulgare) plants subjected to drought stress,” Environ. Sci. Nano, vol. 7, no. 2, pp. 443–461, Feb. 2020, doi: 10.1039/c9en00973f. D. Sun, H. I. Hussain, Z. Yi, J. E. Rookes, L. Kong, and D. M. Cahill, “Mesoporous silica nanoparticles enhance seedling growth and photosynthesis in wheat and lupin,” Chemosphere, vol. 152, pp. 81–91, Jun. 2016, doi: 10.1016/j.chemosphere.2016.02.096. R. Suriyaprabha, G. Karunakaran, K. Kavitha, R. Yuvakkumar, V. Rajendran, and N. Kannan, “Application of silica nanoparticles in maize to enhance fungal resistance,” IET Nanobiotechnology, vol. 8, no. 3, pp. 133–137, 2014, doi: 10.1049/iet-nbt.2013.0004. J. Karimi and S. Mohsenzadeh, “Effects of silicon oxide nanoparticles on growth and physiology of wheat seedlings,” Russ. J. Plant Physiol., vol. 63, no. 1, pp. 119–123, Jan. 2016, doi: 10.1134/S1021443716010106. A. M. S. Kheir, H. M. Abouelsoud, E. M. Hafez, and O. A. M. Ali, “Integrated effect of nano-Zn, nano-Si, and drainage using crop straw–filled ditches on saline sodic soil properties and rice productivity,” Arab. J. Geosci., vol. 12, no. 15, Aug. 2019, doi: 10.1007/s12517-019-4653-0. D. M. Naguib and H. Abdalla, “Metabolic Status during Germination of Nano Silica Primed Zea mays Seeds under Salinity Stress,” J. Crop Sci. Biotechnol., vol. 22, no. 5, pp. 415–423, Dec. 2019, doi: 10.1007/s12892-019-0168-0 F. Behboudi, Z. T. Sarvestani, M. Zaman Kassaee, S. A. M. Modares Sanavi, and A. Sorooshzadeh, “Improving Growth and Yield of Wheat under Drought Stress via Application of SiO 2 Nanoparticles,” 2018. P. Aqaei, W. Weisany, M. Diyanat, J. Razmi, and P. C. Struik, “Response of maize (Zea mays L.) to potassium nano-silica application under drought stress,” J. Plant Nutr., vol. 43, no. 9, pp. 1205–1216, May 2020, doi: 10.1080/01904167.2020.1727508. A. Hussain, M. Rizwan, Q. Ali, and S. Ali, “Seed priming with silicon nanoparticles improved the biomass and yield while reduced the oxidative stress and cadmium concentration in wheat grains,” Environ. Sci. Pollut. Res., vol. 26, no. 8, pp. 7579–7588, Mar. 2019, doi: 10.1007/s11356-019-04210-5. A. Emamverdian, Y. Ding, F. Mokhberdoran, Y. Xie, X. Zheng, and Y. Wang, “Silicon dioxide nanoparticles improve plant growth by enhancing antioxidant enzyme capacity in bamboo (Pleioblastus pygmaeus) under lead toxicity,” Trees - Struct. Funct., vol. 34, no. 2, pp. 469–481, Apr. 2020, doi: 10.1007/s00468-019-01929-z. A. Banerjee, A. Singh, M. Sudarshan, and A. Roychoudhury, “Silicon nanoparticle-pulsing mitigates fluoride stress in rice by fine-tuning the ionomic and metabolomic balance and refining agronomic traits,” Chemosphere, vol. 262, Jan. 2021, doi: 10.1016/j.chemosphere.2020.127826. N. I. Elsheery, V. S. J. Sunoj, Y. Wen, J. J. Zhu, G. Muralidharan, and K. F. Cao, “Foliar application of nanoparticles mitigates the chilling effect on photosynthesis and photoprotection in sugarcane,” Plant Physiol. Biochem., vol. 149, pp. 50–60, Apr. 2020, doi: 10.1016/j.plaphy.2020.01.035. D. K. Tripathi, S. Singh, V. P. Singh, S. M. Prasad, N. K. Dubey, and D. K. Chauhan, “Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings,” Plant Physiol. Biochem., vol. 110, pp. 70–81, Jan. 2017, doi: 10.1016/j.plaphy.2016.06.026 M. E. F. Abdel-Haliem, H. S. Hegazy, N. S. Hassan, and D. M. Naguib, “Effect of silica ions and nano silica on rice plants under salinity stress,” Ecol. Eng., vol. 99, pp. 282–289, Feb. 2017, doi: 10.1016/j.ecoleng.2016.11.060. S. Wang, F. Wang, and S. Gao, “Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings,” Environ. Sci. Pollut. Res., vol. 22, no. 4, pp. 2837–2845, 2015, doi: 10.1007/s11356-014-3525-0. M. Rizwan et al., “Effect of foliar applications of silicon and titanium dioxide nanoparticles on growth, oxidative stress, and cadmium accumulation by rice (Oryza sativa),” Acta Physiol. Plant., vol. 41, no. 3, p. 0, 2019, doi: 10.1007/s11738-019-2828-7. B. Hussain et al., “Foliage application of selenium and silicon nanoparticles alleviates Cd and Pb toxicity in rice (Oryza sativa L.),” Sci. Total Environ., vol. 712, Apr. 2020, doi: 10.1016/j.scitotenv.2020.136497. D. K. Tripathi, S. Singh, V. P. Singh, S. M. Prasad, D. K. Chauhan, and N. K. Dubey, “Silicon nanoparticles more efficiently alleviate arsenate toxicity than silicon in maize cultiver and hybrid differing in arsenate tolerance,” Front. Environ. Sci., vol. 4, no. JUL, 2016, doi: 10.3389/fenvs.2016.00046. A. A. Younis, H. Khattab, and M. M. Emam, “Impacts of silicon and silicon nanoparticles on leaf ultrastructure and tapip1 and tanip2 gene expressions in heat stressed wheat seedlings,” Biol. Plant., vol. 64, pp. 343–352, 2020, doi: 10.32615/bp.2020.030. J. Cui, Y. Li, Q. Jin, and F. Li, “Silica nanoparticles inhibit arsenic uptake into rice suspension cells: Via improving pectin synthesis and the mechanical force of the cell wall,” Environ. Sci. Nano, vol. 7, no. 1, pp. 162–171, Jan. 2020, doi: 10.1039/c9en01035a. L. Nghiem Anh Tuan, L. Thi Kim Dung, N. Quoc Hien, D. Van Phu, and B. Duy Du, “Effect of nanosilica/chitosan hybrid on leaf blast and blight diseases of rice in Vietnam,” Vietnam J. Chem., vol. 54, no. 6, pp. 719–723, 2016, doi: 10.15625/0866-7144.2016-00393. A. de Sousa et al., “Silicon dioxide nanoparticles ameliorate the phytotoxic hazards of aluminum in maize grown on acidic soil,” Sci. Total Environ., vol. 693, Nov. 2019, doi: 10.1016/j.scitotenv.2019.133636. G. chao YAN, M. Nikolic, M. jun YE, Z. xi XIAO, and Y. chao LIANG, “Silicon acquisition and accumulation in plant and its significance for agriculture,” J. Integr. Agric., vol. 17, no. 10, pp. 2138–2150, 2018, doi: 10.1016/S2095-3119(18)62037-4. M. Wang, L. Gao, S. Dong, Y. Sun, Q. Shen, and S. Guo, “Role of silicon on plant–pathogen interactions,” Front. Plant Sci., vol. 8, no. May, pp. 1–14, 2017, doi: 10.3389/fpls.2017.00701. J. F. Ma and N. Yamaji, “A cooperative system of silicon transport in plants,” Trends Plant Sci., vol. 20, no. 7, pp. 435–442, 2015, doi: 10.1016/j.tplants.2015.04.007. P. J. O’Reagain and M. T. Mentis, “Leaf silicification in grasses - A review,” J. Grassl. Soc. South. Africa, vol. 6, no. 1, pp. 37–43, 1989, doi: 10.1080/02566702.1989.9648158. K. Tamai and J. F. Ma, “Characterization of silicon uptake by rice roots,” New Phytol., vol. 158, no. 3, pp. 431–436, 2003, doi: 10.1046/j.1469-8137.2003.00773.x. X. Wang, H. Xie, P. Wang, and H. Yin, “Nanoparticles in Plants: Uptake, Transport and Physiological Activity in Leaf and Root,” Materials (Basel)., vol. 16, no. 8, pp. 1–21, 2023, doi: 10.3390/ma16083097. H. Zhang et al., “Nanoparticle cellular internalization is not required for RNA delivery to mature plant leaves,” Nat. Nanotechnol., vol. 17, no. 2, pp. 197–205, Feb. 2022, doi: 10.1038/s41565-021-01018-8. D. Sun et al., “Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles,” Plant Cell Rep., vol. 33, no. 8, pp. 1389–1402, 2014, doi: 10.1007/s00299-014-1624-5. F. & Factors, “Nano Silica Market Size, Share Global Analysis Report, 2022 – 2030,” FAF-2191, 2023. https://www.fnfresearch.com/nano-silica-market S. Research, “Silica Market report forecast 2031,” 2023, [Online]. Available: https://straitsresearch.com/report/silica-market J. Virkutyte and R. S. Varma, “Environmentally friendly preparation of metal nanoparticles,” RSC Green Chem., no. 19, pp. 7–33, 2013. S. M. Zargar, R. Mahajan, J. A. Bhat, M. Nazir, and R. Deshmukh, “Role of silicon in plant stress tolerance: opportunities to achieve a sustainable cropping system,” 3 Biotech, vol. 9, no. 3, pp. 1–16, 2019, doi: 10.1007/s13205-019-1613-z K. Vishwakarma et al., Potential Applications and Avenues of Nanotechnology in Sustainable Agriculture, vol. 1. Elsevier, 2017. doi: 10.1016/B978-0-12-811487-2.00021-9. M. Karumanchi, R. Nerella, and I. Mikkili, “An integrated approach on extraction methodologies of nanosilica from cultivated agricultural wastes and microstructural characteristics – A review,” Mater. Today Proc., vol. 62, pp. 2883–2891, Jan. 2022, doi: 10.1016/j.matpr.2022.02.476. N. K. Mohd, N. N. A. N. Wee, and A. A. Azmi, “Green synthesis of silica nanoparticles using sugarcane bagasse,” in AIP Conference Proceedings, Sep. 2017, vol. 1885. doi: 10.1063/1.5002317. S. K. S. Hossain, L. Mathur, and P. K. Roy, “Rice husk/rice husk ash as an alternative source of silica in ceramics: A review,” Journal of Asian Ceramic Societies, vol. 6, no. 4. Taylor and Francis Ltd., pp. 299–313, Oct. 02, 2018. doi: 10.1080/21870764.2018.1539210. D. F. Hincapié-Rojas, S. P. Rojas-Hernández, F. Castaño-González, K. N. Parra-Castaño, and L. R. Giraldo-Torres, “Mesoporous silica nanoparticles obtention, functionalization and biomedical applications: A review,” DYNA (Colombia), vol. 87, no. 215. Universidad Nacional de Colombia, pp. 239–253, 2020. doi: 10.15446/DYNA.V87N215.88586. J. I. Tobón and O. J. Restrepo, “Análisis comparativo del desempeño del cemento portlan adicionado con nanosílice y humo de cemento.,” vol. 77, 2010. Peñaranda, S. P. Montenegro Gómez, P. Andrea, and G. Abad, “Aprovechamiento de residuos agroindustriales Exploitation of agroindustrial waste in Colombia” 2017. N. F. Molina, O. I. Fragozo Tarifa, and L. Vizcaíno Mendoza, “Residuos agroindustriales como adiciones en la elaboración de bloques de concreto no estructural,” Cienc. e Ing. Neogranadina, vol. 25, no. 2, p. 99, Dec. 2015, doi: 10.18359/rcin.1434. N. El Ashkar, A. MORSY, and A. TAREK, “Using of Nanoparticles Extracted from Rice Husk as Cementitious Material for Sustainability Issues,” Stroit. Mater., vol. 770, no. 5, pp. 25–31, 2019, doi: 10.31659/0585-430x-2019-770-5-25-31. P. P. Abhilash, D. K. Nayak, B. Sangoju, R. Kumar, and V. Kumar, “Effect of nano-silica in concrete; a review,” Construction and Building Materials, vol. 278. Elsevier Ltd, Apr. 05, 2021. doi: 10.1016/j.conbuildmat.2021.122347. J. David and P. Suárez, “Efecto de la nanosílice sobre las propiedades reológicas de la matriz cementante y su influencia en el estado endurecido del concreto hidráulico,” 2019. E. Lagos Burbano, “Subproductos de la caña de azúcar (Saccharum officinarum L.): usos en alimentación animal y producción de compost,” 2022. D. Álvarez Sánchez and D. M. Chaves, “El cultivo de trigo en Colombia: Su agonía y posible desaparición,” Rev. Ciencias Agrícolas, vol. 34, no. 2, Dec. 2017, doi: 10.22267/rcia.173402.77. S. Chakroborty et al., “Sustainable synthesis of multifunctional nanomaterials from rice wastes: a comprehensive review,” Environ. Sci. Pollut. Res., vol. 30, no. 42, pp. 95039–95053, Aug. 2023, doi: 10.1007/s11356-023-29235-9. G. Yan, Q. Huang, S. Zhao, Y. Liang, and Z. Zhu, “Silicon nanoparticles in sustainable agriculture : synthesis , absorption , and plant stress alleviation,” no. March, pp. 1–13, 2024, doi: 10.3389/fpls.2024.1393458. M. M. Sarkar, P. Mathur, T. Mitsui, and S. Roy, “A review on functionalized silica nanoparticle amendment on plant growth and development under stress,” Plant Growth Regulation, vol. 98, no. 3. Springer Science and Business Media B.V., pp. 421–437, Dec. 01, 2022. doi: 10.1007/s10725-022-00891-0. P. Chen, W. Gu, W. Fang, X. Ji, and R. Bie, “Removal of metal impurities in rice husk and characterization of rice husk ash under simplified acid pretreatment process,” Environ. Prog. Sustain. Energy, vol. 36, no. 3, pp. 830–837, May 2017, doi: 10.1002/ep.12513. P. Chen, W. Gu, W. Fang, X. Ji, and R. Bie, “Removal of metal impurities in rice husk and characterization of rice husk ash under simplified acid pretreatment process,” Environ. Prog. Sustain. Energy, vol. 36, no. 3, pp. 830–837, May 2017, doi: 10.1002/ep.12513. T. H. Liou and C. C. Yang, “Synthesis and surface characteristics of nanosilica produced from alkali-extracted rice husk ash,” Mater. Sci. Eng. B, vol. 176, no. 7, pp. 521–529, Apr. 2011, doi: 10.1016/j.mseb.2011.01.007. D. J. Belton, O. Deschaume, and C. C. Perry, “An overview of the fundamentals of the chemistry of silica with relevance to biosilicification and technological advances,” FEBS Journal, vol. 279, no. 10. pp. 1710–1720, May 2012. doi: 10.1111/j.1742-4658.2012.08531.x. S. Khurana, S. Negi, and A. Chandra, “Effect of surface modification of dispersoid on hybrid polymer electrolyte,” Polym. Test., vol. 96, p. 107118, Apr. 2021, doi: 10.1016/j.polymertesting.2021.107118. M. Kley, A. Kempter, V. Boyko, and K. Huber, “Silica Polymerization from Supersaturated Dilute Aqueous Solutions in the Presence of Alkaline Earth Salts,” 2017. R. Narayan, U. Y. Nayak, A. M. Raichur, and S. Garg, “Mesoporous silica nanoparticles: A comprehensive review on synthesis and recent advances,” Pharmaceutics, vol. 10, no. 3. MDPI AG, Sep. 01, 2018. doi: 10.3390/pharmaceutics10030118. P. Singh, S. Srivastava, and S. K. Singh, “Nanosilica: Recent Progress in Synthesis, Functionalization, Biocompatibility, and Biomedical Applications,” ACS Biomater. Sci. Eng., vol. 5, no. 10, pp. 4882–4898, Oct. 2019, doi: 10.1021/acsbiomaterials.9b00464. F. Akhter et al., “A Comprehensive Review of Synthesis, Applications and Future Prospects for Silica Nanoparticles (SNPs),” Silicon, vol. 14, no. 14. Springer Science and Business Media B.V., pp. 8295–8310, Sep. 01, 2022. doi: 10.1007/s12633-021-01611-5. J. Sarkar et al., “Synthesis of nanosilica from agricultural wastes and its multifaceted applications: A review,” Biocatal. Agric. Biotechnol., vol. 37, p. 102175, Oct. 2021, doi: 10.1016/j.bcab.2021.102175. J. Cui, H. Sun, Z. Luo, J. Sun, and Z. Wen, “Preparation of low surface area SiO2 microsphere from wheat husk ash with a facile precipitation process,” Mater. Lett., vol. 156, pp. 42–45, Oct. 2015, doi: 10.1016/j.matlet.2015.04.134. T. Witoon, M. Chareonpanich, and J. Limtrakul, “Synthesis of bimodal porous silica from rice husk ash via sol–gel process using chitosan as template,” Mater. Lett., vol. 62, no. 10–11, pp. 1476–1479, Apr. 2008, doi: 10.1016/j.matlet.2007.09.004. S. D. Karande, S. A. Jadhav, H. B. Garud, V. A. Kalantre, S. H. Burungale, and P. S. Patil, “Green and sustainable synthesis of silica nanoparticles,” Nanotechnology for Environmental Engineering, vol. 6, no. 2. Springer Science and Business Media Deutschland GmbH, Aug. 01, 2021. doi: 10.1007/s41204-021-00124-1. A. Pieła et al., “Biogenic synthesis of silica nanoparticles from corn cobs husks. Dependence of the productivity on the method of raw material processing,” Bioorg. Chem., vol. 99, Jun. 2020, doi: 10.1016/j.bioorg.2020.103773. N. Liu, K. Huo, M. T. McDowell, J. Zhao, and Y. Cui, “Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes,” Sci. Rep., vol. 3, pp. 1–7, 2013, doi: 10.1038/srep01919. F. Adam, T.-S. Chew, and J. Andas, “A simple template-free sol–gel synthesis of spherical nanosilica from agricultural biomass,” J. Sol-Gel Sci. Technol., vol. 59, no. 3, pp. 580–583, Sep. 2011, doi: 10.1007/s10971-011-2531-7. P. Mathur and S. Roy, “Nanosilica facilitates silica uptake, growth and stress tolerance in plants,” Plant Physiology and Biochemistry, vol. 157. Elsevier Masson s.r.l., pp. 114–127, Dec. 01, 2020. doi: 10.1016/j.plaphy.2020.10.011. N. Debnath, S. Das, D. Seth, R. Chandra, S. C. Bhattacharya, and A. Goswami, “Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.),” J. Pest Sci. (2004)., vol. 84, no. 1, pp. 99–105, Mar. 2011, doi: 10.1007/s10340-010-0332-3. S. Rangaraj, K. Gopalu, P. Muthusamy, Y. Rathinam, R. Venkatachalam, and K. Narayanasamy, “Augmented biocontrol action of silica nanoparticles and Pseudomonas fluorescens bioformulant in maize (Zea mays L.),” RSC Adv., vol. 4, no. 17, p. 8461, 2014, doi: 10.1039/c3ra46251j. L. Cao, H. Zhang, C. Cao, J. Zhang, F. Li, and Q. Huang, “Quaternized Chitosan-Capped Mesoporous Silica Nanoparticles as Nanocarriers for Controlled Pesticide Release,” Nanomaterials, vol. 6, no. 7, p. 126, Jun. 2016, doi: 10.3390/nano6070126. N. Boroumand, M. Behbahani, and G. Dini, “Combined Effects of Phosphate Solubilizing Bacteria and Nanosilica on the Growth of Land Cress Plant,” J. Soil Sci. Plant Nutr., vol. 20, no. 1, pp. 232–243, Mar. 2020, doi: 10.1007/s42729-019-00126-8. M. Moradipour, R. Saberi-Riseh, R. Mohammadinejad, and A. Hosseini, “Nano-Encapsulation of Plant Growth-Promoting Rhizobacteria and Their Metabolites Using Alginate-Silica Nanoparticles and Carbon Nanotube Improves UCB1 Pistachio Micropropagation,” J. Microbiol. Biotechnol., vol. 29, no. 7, pp. 1096–1103, Jul. 2019, doi: 10.4014/jmb.1903.03022. Y. Shen, J. Zhou, and C. Du, “Development of a Polyacrylate/Silica Nanoparticle Hybrid Emulsion for Delaying Nutrient Release in Coated Controlled-Release Urea,” Coatings, vol. 9, no. 2, p. 88, Jan. 2019, doi: 10.3390/coatings9020088. Y. Niu, R. Ke, T. Yang, and J. Song, “pH-Responsively Water-Retaining Controlled-Release Fertilizer Using Humic Acid Hydrogel and Nano-Silica Aqueous Dispersion,” J. Nanosci. Nanotechnol., vol. 20, no. 4, pp. 2286–2291, Apr. 2020, doi: 10.1166/jnn.2020.17216 Y. Gao et al., “A Bioresponsive System Based on Mesoporous Organosilica Nanoparticles for Smart Delivery of Fungicide in Response to Pathogen Presence,” ACS Sustain. Chem. Eng., vol. 8, no. 14, pp. 5716–5723, Apr. 2020, doi: 10.1021/acssuschemeng.0c00649. M. E. Beltrán Pineda, L. M. Lizarazo Forero, and C. A. Sierra, “Antibacterial fibers impregnated with mycosynthetized AgNPs for control of Pectobacterium carotovorum,” Heliyon, vol. 10, no. 1, p. e23108, Jan. 2024, doi: 10.1016/j.heliyon.2023.e23108. H. R. Zea Ramírez, K. G. Bastidas Gómez, and C. A. Sierra Ávila, “Adsorción de mercurio sobre nanopartículas de hierro soportadas en fibra de Fique: cinética e isoterma de adsorción,” Ing. y Compet., vol. 25, no. Suplemento, Dec. 2023, doi: 10.25100/iyc.v25i4.13109. R. J. Solano, C. A. Sierra, and M. Ávila Murillo, “Antifungal activity of LDPE/lauric acid films against Colletotrichum tamarilloi,” Food Packag. Shelf Life, vol. 24, p. 100495, Jun. 2020, doi: 10.1016/j.fpsl.2020.100495. D. K. Tripathi, V. P. Singh, P. Ahmad, D. K. Chauhan, and S. M. Prasad, Advances and Future Prospects Silicon in Plants, First. CRC Press, 2016. doi: 10.1201/9781315369310. A. Mushtaq et al., “Synthesis of Silica Nanoparticles and their effect on priming of wheat (Triticum aestivum L.) under salinity stress,” 2017, [Online]. Available: www.researchtrend.net U. of oxford Our world in data, “Agricultural land use,” https://ourworldindata.org/grapher/agricultural-land, 2022. U. of oxford Our world in data, “Global agricultural land use by major crop type,” https://ourworldindata.org/grapher/global-agricultural-land-use-by-major-crop-type, 2022. M. Alejandro and R. Manzano, “Nanosílice como aditivo para el concreto-caso Colombia.” [Online]. Available: https://www.researchgate.net/publication/341600696 V. K. Yadav and M. H. Fulekar, “Green synthesis and characterization of amorphous silica nanoparticles from fly ash,” 2019. [Online]. Available: www.sciencedirect.comwww.materialstoday.com/proceedings2214-7853 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
viii, 74 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86584/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/86584/4/1032464592.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/86584/5/1032464592.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 0b7616e8894a434cae383cefba91cbe8 c3d694aee2c10d6b93cef3118b490fa8 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090123413815296 |
spelling |
Reconocimiento 4.0 Internacionalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sierra Ávila, Cesar Augusto4eb6f674a1c19920e6341148e3a210abPreciado Muñoz, Nicolasa1abff12768c5d9eb190a972a2dfc97eGrupo de Investigación en Macromoléculas2024-07-22T15:44:27Z2024-07-22T15:44:27Z2024-07-16https://repositorio.unal.edu.co/handle/unal/86584Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones a color, diagramas, mapasLos materiales nanoestructurados de silicio emergen como una alternativa prometedora en la agricultura, gracias a sus propiedades novedosas permitiendo optimizar la utilización de los recursos naturales del planeta. Los mecanismos de absorción del ácido silícico y las nanopartículas de sílice constituyen modelos que tratan de explicar, a nivel biológico y bioquímico, las causas detrás de estas propiedades particulares. Al abordar estos modelos desde la perspectiva de las interacciones moleculares, basándose en la química de los nanomateriales, se abre la puerta a discusiones sobre el diseño de estos materiales y el incremento de su aplicación en la agroindustria donde los nanoportadores de sílice, miembro de esta familia de nanopartículas, actúan como vehículos para la entrega controlada de sustancias activas, como pesticidas o fertilizantes a las plantas. Estos nanoportadores ofrecen varias ventajas potenciales en comparación con los métodos convencionales de aplicación de pesticidas, como la mejora de la eficiencia en la liberación de los compuestos activos y la reducción de la cantidad total de sustancias químicas necesarias. El papel de los nanomateriales de silicio en la agroindustria va más allá de su función como insumo, ya que la gestión de subproductos y residuos, transformándolos en nanopartículas de sílice, también podría reducir el impacto ambiental asociado a la producción de biomasa residual. Por lo cual, estudios proyectan un crecimiento en el mercado global de nanopartículas de sílice, impulsado por la inversión en el desarrollo de estos productos y el interés continuo de los investigadores en explorar las diversas aplicaciones de estos materiales. Colombia, con su robusta producción agrícola, tiene el potencial de generar productos de alto valor añadido al utilizar la biomasa como precursor en la producción de nanopartículas de sílice. (Texto tomado de la fuente)Nanostructured silicon materials are emerging as a promising alternative in agriculture, thanks to their novel properties that allow for the optimization of the Earth's natural resources. The absorption mechanisms of silicic acid and silica nanoparticles serve as models that explain, at a biological and biochemical level, the reasons behind these particular properties. Addressing these models from the perspective of molecular interactions, based on nanomaterial chemistry, opens the door to discussions about the design of these materials and the expansion of their application in agribusiness. Silica nanocarriers are nanoparticles that act as vehicles for the controlled delivery of active substances, such as pesticides or fertilizers, to plants. These nanocarriers offer several potential advantages compared to conventional methods of pesticide application, including improved efficiency in releasing active compounds and a reduction in the total amount of necessary chemicals. The role of silicon nanomaterials in agribusiness extends beyond their function as inputs, as the management of by-products and waste, transformed into silica nanoparticles, could also reduce the environmental impact associated with residual biomass production. Therefore, studies project growth in the global market for silica nanoparticles, driven by investment in the development of these products and the ongoing interest of researchers in exploring the various applications of these materials. Colombia, with its robust agricultural production, has the potential to generate high-value-added products by using biomass as a precursor in the production of silica nanoparticles.MaestríaMagister en Ciencias-QuímicaMateriales y energíaviii, 74 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afinesResiduoSilicioNanopartículasSiliconNanoparticlesNanomateriales de silicioSilicio en plantasNanopartículas de síliceResiduos agrícolasMecanismo de absorción del silicioDesecho agrícolaAgricultural wasteMateriales nanoestructuradosMateriales nanoestructurados de silicio en el contexto agroindustrialNanostructured silicon materials in the agroindustrial contextTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMUnited Nations, “World Population Prospects 2022, Online Edition.,” 2022.A. B. David Jimenez-Arias, Estefania Carrillo, Agricultural Research Updates. New york: Nova Science Publishers Inc., 2017.D. Gerten et al., “Feeding ten billion people is possible within four terrestrial planetary boundaries,” Nat. Sustain., vol. 3, no. 3, pp. 200–208, Jan. 2020, doi: 10.1038/s41893-019-0465-1.I. H. Elsokkary, “Silicon as a Beneficial Element and as an Essential Plant Nutrient: An Outlook (Review),” Alexandria Sci. Exch. J., vol. 39, no. 3, pp. 534–550, 2018, doi: 10.21608/asejaiqjsae.2018.16920.D. Coskun et al., “The controversies of silicon’s role in plant biology,” New Phytologist, vol. 221, no. 1. Blackwell Publishing Ltd, pp. 67–85, Jan. 01, 2019. doi: 10.1111/nph.15343.FAO, “Perspectivas de cosechas y situación alimentaria N.o 4, diciembre 2022,” FAO, Roma, Jan. 2023. doi: 10.4060/cc3233es.J. Singh, R. Boddula, and H. Digambar Jirimali, “Utilization of secondary agricultural products for the preparation of value added silica materials and their important applications: a review,” J. Sol-Gel Sci. Technol., vol. 96, no. 1, pp. 15–33, Oct. 2020, doi: 10.1007/s10971-020-05353-5.S. Gaur, J. Kumar, D. Kumar, D. K. Chauhan, S. M. Prasad, and P. K. Srivastava, “Fascinating impact of silicon and silicon transporters in plants: A review,” Ecotoxicol. Environ. Saf., vol. 202, no. March, p. 110885, 2020, doi: 10.1016/j.ecoenv.2020.110885H. E. Bergna, “Colloid Chemistry of Silica,” 1994, pp. 1–47. doi: 10.1021/ba-1994-0234.ch001.S. Prabha, D. Durgalakshmi, S. Rajendran, and E. Lichtfouse, “Plant-derived silica nanoparticles and composites for biosensors, bioimaging, drug delivery and supercapacitors: a review,” Environmental Chemistry Letters, vol. 19, no. 2. Springer Science and Business Media Deutschland GmbH, pp. 1667–1691, Apr. 01, 2021. doi: 10.1007/s10311-020-01123-5.O. Katz, D. Puppe, D. Kaczorek, N. B. Prakash, and J. Schaller, “Silicon in the Soil–Plant Continuum: Intricate Feedback Mechanisms within Ecosystems,” Plants, vol. 10, no. 4, p. 652, Mar. 2021, doi: 10.3390/plants10040652.J. G. Croissant, K. S. Butler, J. I. Zink, and C. J. Brinker, “Synthetic amorphous silica nanoparticles: toxicity, biomedical and environmental implications,” Nature Reviews Materials, vol. 5, no. 12. Nature Research, pp. 886–909, Dec. 01, 2020. doi: 10.1038/s41578-020-0230-0.I. Khan, K. Saeed, and I. Khan, “Nanoparticles: Properties, applications and toxicities,” Arab. J. Chem., vol. 12, no. 7, pp. 908–931, Nov. 2019, doi: 10.1016/j.arabjc.2017.05.011.S. A. Afolalu, S. B. Soetan, S. O. Ongbali, A. A. Abioye, and A. S. Oni, “Morphological characterization and physio-chemical properties of nanoparticle - review,” IOP Conf. Ser. Mater. Sci. Eng., vol. 640, no. 1, p. 012065, Nov. 2019, doi: 10.1088/1757-899X/640/1/012065.N. Ranjan and R. Kumar, “Nanoparticles: Properties and its 3D printing applications,” Mater. Today Proc., vol. 48, pp. 1316–1319, 2022, doi: 10.1016/j.matpr.2021.09.004.E. A. Tejeda Villagómez, L. Hernandez-Adame, F. Nieto Navarro, and M. Anzaldo Montoya, “Nanopartículas de silicio como vehículos de transporte para moléculas de interés agrícola,” Mundo Nano. Rev. Interdiscip. en Nanociencias y Nanotecnología, vol. 16, no. 30, pp. 1e-20e, Oct. 2022, doi: 10.22201/ceiich.24485691e.2023.30.69732.V. S. Smetacek, “Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance,” 1985.R. J. Haynes, “Significance and Role of Si in Crop Production,” Adv. Agron., vol. 146, pp. 83–166, 2017, doi: 10.1016/bs.agron.2017.06.001.E. Epstein, “The anomaly of silicon in plant biology,” 1994.M. Yuvaraj et al., “Silicon nanoparticles (SiNPs): Challenges and perspectives for sustainable agriculture,” Physiological and Molecular Plant Pathology, vol. 128. Academic Press, Nov. 01, 2023. doi: 10.1016/j.pmpp.2023.102161.A. Rastogi et al., “Application of silicon nanoparticles in agriculture,” 3 Biotech, vol. 9, no. 3. Springer Verlag, Mar. 01, 2019. doi: 10.1007/s13205-019-1626-7.D. Coskun, D. T. Britto, W. Q. Huynh, and H. J. Kronzucker, “The role of silicon in higher plants under salinity and drought stress,” Front. Plant Sci., vol. 7, no. 2016JULY, pp. 1–7, 2016, doi: 10.3389/fpls.2016.01072.J. Cooke and M. R. Leishman, “Consistent alleviation of abiotic stress with silicon addition: a meta-analysis,” Funct. Ecol., vol. 30, no. 8, pp. 1340–1357, 2016, doi: 10.1111/1365-2435.12713.M. Luyckx, J. F. Hausman, S. Lutts, and G. Guerriero, “Silicon and plants: Current knowledge and technological perspectives,” Front. Plant Sci., vol. 8, Mar. 2017, doi: 10.3389/fpls.2017.00411.Z. Li et al., “Silicon enhancement of estimated plant biomass carbon accumulation under abiotic and biotic stresses. A meta-analysis,” Agron. Sustain. Dev., vol. 38, no. 3, 2018, doi: 10.1007/s13593-018-0496-4.Z. Souri, K. Khanna, N. Karimi, and P. Ahmad, “Silicon and Plants: Current Knowledge and Future Prospects,” Journal of Plant Growth Regulation, vol. 40, no. 3. Springer, pp. 906–925, Jun. 01, 2021. doi: 10.1007/s00344-020-10172-7.J. K. Zhu, “Abiotic Stress Signaling and Responses in Plants,” Cell, vol. 167, no. 2. Cell Press, pp. 313–324, Oct. 06, 2016. doi: 10.1016/j.cell.2016.08.029.S. Wang, F. Wang, S. Gao, and X. Wang, “Heavy Metal Accumulation in Different Rice Cultivars as Influenced by Foliar Application of Nano-silicon,” Water. Air. Soil Pollut., vol. 227, no. 7, Jul. 2016, doi: 10.1007/s11270-016-2928-6.D. Puppe and M. Sommer, Experiments, Uptake Mechanisms, and Functioning of Silicon Foliar Fertilization—A Review Focusing on Maize, Rice, and Wheat, vol. 152. Elsevier Ltd, 2018. doi: 10.1016/bs.agron.2018.07.003.O. L. Reynolds, M. P. Padula, R. Zeng, and G. M. Gurr, “Silicon: Potential to promote direct and indirect effects on plant defense against arthropod pests in agriculture,” Front. Plant Sci., vol. 7, no. June2016, pp. 1–13, 2016, doi: 10.3389/fpls.2016.00744.D. Debona, F. A. Rodrigues, and L. E. Datnoff, “Silicon’s Role in Abiotic and Biotic Plant Stresses,” Annu. Rev. Phytopathol, 2017, doi: 10.1146/annurev-phyto-080516.G. J. Gascho, “Silicon sources for agriculture,” 2001.J. F. Ma and N. Yamaji, “Silicon uptake and accumulation in higher plants,” Trends Plant Sci., vol. 11, no. 8, pp. 392–397, 2006, doi: 10.1016/j.tplants.2006.06.007.J. A. Bhat et al., “Silicon nanoparticles (SiNPs) in sustainable agriculture: Major emphasis on the practicality, efficacy and concerns,” Nanoscale Advances, vol. 3, no. 14. Royal Society of Chemistry, pp. 4019–4028, Jul. 21, 2021. doi: 10.1039/d1na00233c.W. Pan et al., “Silica nanoparticle accumulation in plants: current state and future perspectives,” Nanoscale, vol. 15, no. 37. Royal Society of Chemistry, pp. 15079–15091, Sep. 06, 2023. doi: 10.1039/d3nr02221h.V. Selvarajan, S. Obuobi, and P. L. R. Ee, “Silica Nanoparticles—A Versatile Tool for the Treatment of Bacterial Infections,” Frontiers in Chemistry, vol. 8. Frontiers Media S.A., Jul. 15, 2020. doi: 10.3389/fchem.2020.00602.R. Yuvakkumar, V. Elango, V. Rajendran, N. S. Kannan, and P. Prabu, “Influence of nanosilica powder on the growth of maize crop (Zea Mays L.),” Int. J. Green Nanotechnol. Biomed., vol. 3, no. 3, pp. 180–190, 2011, doi: 10.1080/19430892.2011.628581.M. Mukarram, M. M. A. Khan, and F. J. Corpas, “Silicon nanoparticles elicit an increase in lemongrass (Cymbopogon flexuosus (Steud.) Wats) agronomic parameters with a higher essential oil yield,” J. Hazard. Mater., vol. 412, Jun. 2021, doi: 10.1016/j.jhazmat.2021.125254.F. Asgari, A. Majd, P. Jonoubi, and F. Najafi, “Effects of silicon nanoparticles on molecular, chemical, structural and ultrastructural characteristics of oat (Avena sativa L.),” Plant Physiol. Biochem., vol. 127, pp. 152–160, 2018, doi: 10.1016/j.plaphy.2018.03.021.R. Azimi, M. J. Borzelabad, H. Feizi, and A. Azimi, “Interaction of SiO2 nanoparticles with seed prechilling on germination and early seedling growth of tall wheatgrass (Agropyron Elongatum L.),” Polish J. Chem. Technol., vol. 16, no. 3, pp. 25–29, Sep. 2014, doi: 10.2478/pjct-2014-0045.M. Mukarram, P. Petrik, Z. Mushtaq, M. M. A. Khan, M. Gulfishan, and A. Lux, “Silicon nanoparticles in higher plants: Uptake, action, stress tolerance, and crosstalk with phytohormones, antioxidants, and other signalling molecules,” Environ. Pollut., vol. 310, Oct. 2022, doi: 10.1016/j.envpol.2022.119855.M. Ghorbanpour, H. Mohammadi, and K. Kariman, “Nanosilicon-based recovery of barley (: Hordeum vulgare) plants subjected to drought stress,” Environ. Sci. Nano, vol. 7, no. 2, pp. 443–461, Feb. 2020, doi: 10.1039/c9en00973f.D. Sun, H. I. Hussain, Z. Yi, J. E. Rookes, L. Kong, and D. M. Cahill, “Mesoporous silica nanoparticles enhance seedling growth and photosynthesis in wheat and lupin,” Chemosphere, vol. 152, pp. 81–91, Jun. 2016, doi: 10.1016/j.chemosphere.2016.02.096.R. Suriyaprabha, G. Karunakaran, K. Kavitha, R. Yuvakkumar, V. Rajendran, and N. Kannan, “Application of silica nanoparticles in maize to enhance fungal resistance,” IET Nanobiotechnology, vol. 8, no. 3, pp. 133–137, 2014, doi: 10.1049/iet-nbt.2013.0004.J. Karimi and S. Mohsenzadeh, “Effects of silicon oxide nanoparticles on growth and physiology of wheat seedlings,” Russ. J. Plant Physiol., vol. 63, no. 1, pp. 119–123, Jan. 2016, doi: 10.1134/S1021443716010106.A. M. S. Kheir, H. M. Abouelsoud, E. M. Hafez, and O. A. M. Ali, “Integrated effect of nano-Zn, nano-Si, and drainage using crop straw–filled ditches on saline sodic soil properties and rice productivity,” Arab. J. Geosci., vol. 12, no. 15, Aug. 2019, doi: 10.1007/s12517-019-4653-0.D. M. Naguib and H. Abdalla, “Metabolic Status during Germination of Nano Silica Primed Zea mays Seeds under Salinity Stress,” J. Crop Sci. Biotechnol., vol. 22, no. 5, pp. 415–423, Dec. 2019, doi: 10.1007/s12892-019-0168-0F. Behboudi, Z. T. Sarvestani, M. Zaman Kassaee, S. A. M. Modares Sanavi, and A. Sorooshzadeh, “Improving Growth and Yield of Wheat under Drought Stress via Application of SiO 2 Nanoparticles,” 2018.P. Aqaei, W. Weisany, M. Diyanat, J. Razmi, and P. C. Struik, “Response of maize (Zea mays L.) to potassium nano-silica application under drought stress,” J. Plant Nutr., vol. 43, no. 9, pp. 1205–1216, May 2020, doi: 10.1080/01904167.2020.1727508.A. Hussain, M. Rizwan, Q. Ali, and S. Ali, “Seed priming with silicon nanoparticles improved the biomass and yield while reduced the oxidative stress and cadmium concentration in wheat grains,” Environ. Sci. Pollut. Res., vol. 26, no. 8, pp. 7579–7588, Mar. 2019, doi: 10.1007/s11356-019-04210-5.A. Emamverdian, Y. Ding, F. Mokhberdoran, Y. Xie, X. Zheng, and Y. Wang, “Silicon dioxide nanoparticles improve plant growth by enhancing antioxidant enzyme capacity in bamboo (Pleioblastus pygmaeus) under lead toxicity,” Trees - Struct. Funct., vol. 34, no. 2, pp. 469–481, Apr. 2020, doi: 10.1007/s00468-019-01929-z.A. Banerjee, A. Singh, M. Sudarshan, and A. Roychoudhury, “Silicon nanoparticle-pulsing mitigates fluoride stress in rice by fine-tuning the ionomic and metabolomic balance and refining agronomic traits,” Chemosphere, vol. 262, Jan. 2021, doi: 10.1016/j.chemosphere.2020.127826.N. I. Elsheery, V. S. J. Sunoj, Y. Wen, J. J. Zhu, G. Muralidharan, and K. F. Cao, “Foliar application of nanoparticles mitigates the chilling effect on photosynthesis and photoprotection in sugarcane,” Plant Physiol. Biochem., vol. 149, pp. 50–60, Apr. 2020, doi: 10.1016/j.plaphy.2020.01.035.D. K. Tripathi, S. Singh, V. P. Singh, S. M. Prasad, N. K. Dubey, and D. K. Chauhan, “Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings,” Plant Physiol. Biochem., vol. 110, pp. 70–81, Jan. 2017, doi: 10.1016/j.plaphy.2016.06.026M. E. F. Abdel-Haliem, H. S. Hegazy, N. S. Hassan, and D. M. Naguib, “Effect of silica ions and nano silica on rice plants under salinity stress,” Ecol. Eng., vol. 99, pp. 282–289, Feb. 2017, doi: 10.1016/j.ecoleng.2016.11.060.S. Wang, F. Wang, and S. Gao, “Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings,” Environ. Sci. Pollut. Res., vol. 22, no. 4, pp. 2837–2845, 2015, doi: 10.1007/s11356-014-3525-0.M. Rizwan et al., “Effect of foliar applications of silicon and titanium dioxide nanoparticles on growth, oxidative stress, and cadmium accumulation by rice (Oryza sativa),” Acta Physiol. Plant., vol. 41, no. 3, p. 0, 2019, doi: 10.1007/s11738-019-2828-7.B. Hussain et al., “Foliage application of selenium and silicon nanoparticles alleviates Cd and Pb toxicity in rice (Oryza sativa L.),” Sci. Total Environ., vol. 712, Apr. 2020, doi: 10.1016/j.scitotenv.2020.136497.D. K. Tripathi, S. Singh, V. P. Singh, S. M. Prasad, D. K. Chauhan, and N. K. Dubey, “Silicon nanoparticles more efficiently alleviate arsenate toxicity than silicon in maize cultiver and hybrid differing in arsenate tolerance,” Front. Environ. Sci., vol. 4, no. JUL, 2016, doi: 10.3389/fenvs.2016.00046.A. A. Younis, H. Khattab, and M. M. Emam, “Impacts of silicon and silicon nanoparticles on leaf ultrastructure and tapip1 and tanip2 gene expressions in heat stressed wheat seedlings,” Biol. Plant., vol. 64, pp. 343–352, 2020, doi: 10.32615/bp.2020.030.J. Cui, Y. Li, Q. Jin, and F. Li, “Silica nanoparticles inhibit arsenic uptake into rice suspension cells: Via improving pectin synthesis and the mechanical force of the cell wall,” Environ. Sci. Nano, vol. 7, no. 1, pp. 162–171, Jan. 2020, doi: 10.1039/c9en01035a.L. Nghiem Anh Tuan, L. Thi Kim Dung, N. Quoc Hien, D. Van Phu, and B. Duy Du, “Effect of nanosilica/chitosan hybrid on leaf blast and blight diseases of rice in Vietnam,” Vietnam J. Chem., vol. 54, no. 6, pp. 719–723, 2016, doi: 10.15625/0866-7144.2016-00393.A. de Sousa et al., “Silicon dioxide nanoparticles ameliorate the phytotoxic hazards of aluminum in maize grown on acidic soil,” Sci. Total Environ., vol. 693, Nov. 2019, doi: 10.1016/j.scitotenv.2019.133636.G. chao YAN, M. Nikolic, M. jun YE, Z. xi XIAO, and Y. chao LIANG, “Silicon acquisition and accumulation in plant and its significance for agriculture,” J. Integr. Agric., vol. 17, no. 10, pp. 2138–2150, 2018, doi: 10.1016/S2095-3119(18)62037-4.M. Wang, L. Gao, S. Dong, Y. Sun, Q. Shen, and S. Guo, “Role of silicon on plant–pathogen interactions,” Front. Plant Sci., vol. 8, no. May, pp. 1–14, 2017, doi: 10.3389/fpls.2017.00701.J. F. Ma and N. Yamaji, “A cooperative system of silicon transport in plants,” Trends Plant Sci., vol. 20, no. 7, pp. 435–442, 2015, doi: 10.1016/j.tplants.2015.04.007.P. J. O’Reagain and M. T. Mentis, “Leaf silicification in grasses - A review,” J. Grassl. Soc. South. Africa, vol. 6, no. 1, pp. 37–43, 1989, doi: 10.1080/02566702.1989.9648158.K. Tamai and J. F. Ma, “Characterization of silicon uptake by rice roots,” New Phytol., vol. 158, no. 3, pp. 431–436, 2003, doi: 10.1046/j.1469-8137.2003.00773.x.X. Wang, H. Xie, P. Wang, and H. Yin, “Nanoparticles in Plants: Uptake, Transport and Physiological Activity in Leaf and Root,” Materials (Basel)., vol. 16, no. 8, pp. 1–21, 2023, doi: 10.3390/ma16083097.H. Zhang et al., “Nanoparticle cellular internalization is not required for RNA delivery to mature plant leaves,” Nat. Nanotechnol., vol. 17, no. 2, pp. 197–205, Feb. 2022, doi: 10.1038/s41565-021-01018-8.D. Sun et al., “Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles,” Plant Cell Rep., vol. 33, no. 8, pp. 1389–1402, 2014, doi: 10.1007/s00299-014-1624-5.F. & Factors, “Nano Silica Market Size, Share Global Analysis Report, 2022 – 2030,” FAF-2191, 2023. https://www.fnfresearch.com/nano-silica-marketS. Research, “Silica Market report forecast 2031,” 2023, [Online]. Available: https://straitsresearch.com/report/silica-marketJ. Virkutyte and R. S. Varma, “Environmentally friendly preparation of metal nanoparticles,” RSC Green Chem., no. 19, pp. 7–33, 2013.S. M. Zargar, R. Mahajan, J. A. Bhat, M. Nazir, and R. Deshmukh, “Role of silicon in plant stress tolerance: opportunities to achieve a sustainable cropping system,” 3 Biotech, vol. 9, no. 3, pp. 1–16, 2019, doi: 10.1007/s13205-019-1613-zK. Vishwakarma et al., Potential Applications and Avenues of Nanotechnology in Sustainable Agriculture, vol. 1. Elsevier, 2017. doi: 10.1016/B978-0-12-811487-2.00021-9.M. Karumanchi, R. Nerella, and I. Mikkili, “An integrated approach on extraction methodologies of nanosilica from cultivated agricultural wastes and microstructural characteristics – A review,” Mater. Today Proc., vol. 62, pp. 2883–2891, Jan. 2022, doi: 10.1016/j.matpr.2022.02.476.N. K. Mohd, N. N. A. N. Wee, and A. A. Azmi, “Green synthesis of silica nanoparticles using sugarcane bagasse,” in AIP Conference Proceedings, Sep. 2017, vol. 1885. doi: 10.1063/1.5002317.S. K. S. Hossain, L. Mathur, and P. K. Roy, “Rice husk/rice husk ash as an alternative source of silica in ceramics: A review,” Journal of Asian Ceramic Societies, vol. 6, no. 4. Taylor and Francis Ltd., pp. 299–313, Oct. 02, 2018. doi: 10.1080/21870764.2018.1539210.D. F. Hincapié-Rojas, S. P. Rojas-Hernández, F. Castaño-González, K. N. Parra-Castaño, and L. R. Giraldo-Torres, “Mesoporous silica nanoparticles obtention, functionalization and biomedical applications: A review,” DYNA (Colombia), vol. 87, no. 215. Universidad Nacional de Colombia, pp. 239–253, 2020. doi: 10.15446/DYNA.V87N215.88586.J. I. Tobón and O. J. Restrepo, “Análisis comparativo del desempeño del cemento portlan adicionado con nanosílice y humo de cemento.,” vol. 77, 2010.Peñaranda, S. P. Montenegro Gómez, P. Andrea, and G. Abad, “Aprovechamiento de residuos agroindustriales Exploitation of agroindustrial waste in Colombia” 2017.N. F. Molina, O. I. Fragozo Tarifa, and L. Vizcaíno Mendoza, “Residuos agroindustriales como adiciones en la elaboración de bloques de concreto no estructural,” Cienc. e Ing. Neogranadina, vol. 25, no. 2, p. 99, Dec. 2015, doi: 10.18359/rcin.1434.N. El Ashkar, A. MORSY, and A. TAREK, “Using of Nanoparticles Extracted from Rice Husk as Cementitious Material for Sustainability Issues,” Stroit. Mater., vol. 770, no. 5, pp. 25–31, 2019, doi: 10.31659/0585-430x-2019-770-5-25-31.P. P. Abhilash, D. K. Nayak, B. Sangoju, R. Kumar, and V. Kumar, “Effect of nano-silica in concrete; a review,” Construction and Building Materials, vol. 278. Elsevier Ltd, Apr. 05, 2021. doi: 10.1016/j.conbuildmat.2021.122347.J. David and P. Suárez, “Efecto de la nanosílice sobre las propiedades reológicas de la matriz cementante y su influencia en el estado endurecido del concreto hidráulico,” 2019.E. Lagos Burbano, “Subproductos de la caña de azúcar (Saccharum officinarum L.): usos en alimentación animal y producción de compost,” 2022.D. Álvarez Sánchez and D. M. Chaves, “El cultivo de trigo en Colombia: Su agonía y posible desaparición,” Rev. Ciencias Agrícolas, vol. 34, no. 2, Dec. 2017, doi: 10.22267/rcia.173402.77.S. Chakroborty et al., “Sustainable synthesis of multifunctional nanomaterials from rice wastes: a comprehensive review,” Environ. Sci. Pollut. Res., vol. 30, no. 42, pp. 95039–95053, Aug. 2023, doi: 10.1007/s11356-023-29235-9.G. Yan, Q. Huang, S. Zhao, Y. Liang, and Z. Zhu, “Silicon nanoparticles in sustainable agriculture : synthesis , absorption , and plant stress alleviation,” no. March, pp. 1–13, 2024, doi: 10.3389/fpls.2024.1393458.M. M. Sarkar, P. Mathur, T. Mitsui, and S. Roy, “A review on functionalized silica nanoparticle amendment on plant growth and development under stress,” Plant Growth Regulation, vol. 98, no. 3. Springer Science and Business Media B.V., pp. 421–437, Dec. 01, 2022. doi: 10.1007/s10725-022-00891-0.P. Chen, W. Gu, W. Fang, X. Ji, and R. Bie, “Removal of metal impurities in rice husk and characterization of rice husk ash under simplified acid pretreatment process,” Environ. Prog. Sustain. Energy, vol. 36, no. 3, pp. 830–837, May 2017, doi: 10.1002/ep.12513.P. Chen, W. Gu, W. Fang, X. Ji, and R. Bie, “Removal of metal impurities in rice husk and characterization of rice husk ash under simplified acid pretreatment process,” Environ. Prog. Sustain. Energy, vol. 36, no. 3, pp. 830–837, May 2017, doi: 10.1002/ep.12513.T. H. Liou and C. C. Yang, “Synthesis and surface characteristics of nanosilica produced from alkali-extracted rice husk ash,” Mater. Sci. Eng. B, vol. 176, no. 7, pp. 521–529, Apr. 2011, doi: 10.1016/j.mseb.2011.01.007.D. J. Belton, O. Deschaume, and C. C. Perry, “An overview of the fundamentals of the chemistry of silica with relevance to biosilicification and technological advances,” FEBS Journal, vol. 279, no. 10. pp. 1710–1720, May 2012. doi: 10.1111/j.1742-4658.2012.08531.x.S. Khurana, S. Negi, and A. Chandra, “Effect of surface modification of dispersoid on hybrid polymer electrolyte,” Polym. Test., vol. 96, p. 107118, Apr. 2021, doi: 10.1016/j.polymertesting.2021.107118.M. Kley, A. Kempter, V. Boyko, and K. Huber, “Silica Polymerization from Supersaturated Dilute Aqueous Solutions in the Presence of Alkaline Earth Salts,” 2017.R. Narayan, U. Y. Nayak, A. M. Raichur, and S. Garg, “Mesoporous silica nanoparticles: A comprehensive review on synthesis and recent advances,” Pharmaceutics, vol. 10, no. 3. MDPI AG, Sep. 01, 2018. doi: 10.3390/pharmaceutics10030118.P. Singh, S. Srivastava, and S. K. Singh, “Nanosilica: Recent Progress in Synthesis, Functionalization, Biocompatibility, and Biomedical Applications,” ACS Biomater. Sci. Eng., vol. 5, no. 10, pp. 4882–4898, Oct. 2019, doi: 10.1021/acsbiomaterials.9b00464.F. Akhter et al., “A Comprehensive Review of Synthesis, Applications and Future Prospects for Silica Nanoparticles (SNPs),” Silicon, vol. 14, no. 14. Springer Science and Business Media B.V., pp. 8295–8310, Sep. 01, 2022. doi: 10.1007/s12633-021-01611-5.J. Sarkar et al., “Synthesis of nanosilica from agricultural wastes and its multifaceted applications: A review,” Biocatal. Agric. Biotechnol., vol. 37, p. 102175, Oct. 2021, doi: 10.1016/j.bcab.2021.102175.J. Cui, H. Sun, Z. Luo, J. Sun, and Z. Wen, “Preparation of low surface area SiO2 microsphere from wheat husk ash with a facile precipitation process,” Mater. Lett., vol. 156, pp. 42–45, Oct. 2015, doi: 10.1016/j.matlet.2015.04.134.T. Witoon, M. Chareonpanich, and J. Limtrakul, “Synthesis of bimodal porous silica from rice husk ash via sol–gel process using chitosan as template,” Mater. Lett., vol. 62, no. 10–11, pp. 1476–1479, Apr. 2008, doi: 10.1016/j.matlet.2007.09.004.S. D. Karande, S. A. Jadhav, H. B. Garud, V. A. Kalantre, S. H. Burungale, and P. S. Patil, “Green and sustainable synthesis of silica nanoparticles,” Nanotechnology for Environmental Engineering, vol. 6, no. 2. Springer Science and Business Media Deutschland GmbH, Aug. 01, 2021. doi: 10.1007/s41204-021-00124-1.A. Pieła et al., “Biogenic synthesis of silica nanoparticles from corn cobs husks. Dependence of the productivity on the method of raw material processing,” Bioorg. Chem., vol. 99, Jun. 2020, doi: 10.1016/j.bioorg.2020.103773.N. Liu, K. Huo, M. T. McDowell, J. Zhao, and Y. Cui, “Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes,” Sci. Rep., vol. 3, pp. 1–7, 2013, doi: 10.1038/srep01919.F. Adam, T.-S. Chew, and J. Andas, “A simple template-free sol–gel synthesis of spherical nanosilica from agricultural biomass,” J. Sol-Gel Sci. Technol., vol. 59, no. 3, pp. 580–583, Sep. 2011, doi: 10.1007/s10971-011-2531-7.P. Mathur and S. Roy, “Nanosilica facilitates silica uptake, growth and stress tolerance in plants,” Plant Physiology and Biochemistry, vol. 157. Elsevier Masson s.r.l., pp. 114–127, Dec. 01, 2020. doi: 10.1016/j.plaphy.2020.10.011.N. Debnath, S. Das, D. Seth, R. Chandra, S. C. Bhattacharya, and A. Goswami, “Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.),” J. Pest Sci. (2004)., vol. 84, no. 1, pp. 99–105, Mar. 2011, doi: 10.1007/s10340-010-0332-3.S. Rangaraj, K. Gopalu, P. Muthusamy, Y. Rathinam, R. Venkatachalam, and K. Narayanasamy, “Augmented biocontrol action of silica nanoparticles and Pseudomonas fluorescens bioformulant in maize (Zea mays L.),” RSC Adv., vol. 4, no. 17, p. 8461, 2014, doi: 10.1039/c3ra46251j.L. Cao, H. Zhang, C. Cao, J. Zhang, F. Li, and Q. Huang, “Quaternized Chitosan-Capped Mesoporous Silica Nanoparticles as Nanocarriers for Controlled Pesticide Release,” Nanomaterials, vol. 6, no. 7, p. 126, Jun. 2016, doi: 10.3390/nano6070126.N. Boroumand, M. Behbahani, and G. Dini, “Combined Effects of Phosphate Solubilizing Bacteria and Nanosilica on the Growth of Land Cress Plant,” J. Soil Sci. Plant Nutr., vol. 20, no. 1, pp. 232–243, Mar. 2020, doi: 10.1007/s42729-019-00126-8.M. Moradipour, R. Saberi-Riseh, R. Mohammadinejad, and A. Hosseini, “Nano-Encapsulation of Plant Growth-Promoting Rhizobacteria and Their Metabolites Using Alginate-Silica Nanoparticles and Carbon Nanotube Improves UCB1 Pistachio Micropropagation,” J. Microbiol. Biotechnol., vol. 29, no. 7, pp. 1096–1103, Jul. 2019, doi: 10.4014/jmb.1903.03022.Y. Shen, J. Zhou, and C. Du, “Development of a Polyacrylate/Silica Nanoparticle Hybrid Emulsion for Delaying Nutrient Release in Coated Controlled-Release Urea,” Coatings, vol. 9, no. 2, p. 88, Jan. 2019, doi: 10.3390/coatings9020088.Y. Niu, R. Ke, T. Yang, and J. Song, “pH-Responsively Water-Retaining Controlled-Release Fertilizer Using Humic Acid Hydrogel and Nano-Silica Aqueous Dispersion,” J. Nanosci. Nanotechnol., vol. 20, no. 4, pp. 2286–2291, Apr. 2020, doi: 10.1166/jnn.2020.17216Y. Gao et al., “A Bioresponsive System Based on Mesoporous Organosilica Nanoparticles for Smart Delivery of Fungicide in Response to Pathogen Presence,” ACS Sustain. Chem. Eng., vol. 8, no. 14, pp. 5716–5723, Apr. 2020, doi: 10.1021/acssuschemeng.0c00649.M. E. Beltrán Pineda, L. M. Lizarazo Forero, and C. A. Sierra, “Antibacterial fibers impregnated with mycosynthetized AgNPs for control of Pectobacterium carotovorum,” Heliyon, vol. 10, no. 1, p. e23108, Jan. 2024, doi: 10.1016/j.heliyon.2023.e23108.H. R. Zea Ramírez, K. G. Bastidas Gómez, and C. A. Sierra Ávila, “Adsorción de mercurio sobre nanopartículas de hierro soportadas en fibra de Fique: cinética e isoterma de adsorción,” Ing. y Compet., vol. 25, no. Suplemento, Dec. 2023, doi: 10.25100/iyc.v25i4.13109.R. J. Solano, C. A. Sierra, and M. Ávila Murillo, “Antifungal activity of LDPE/lauric acid films against Colletotrichum tamarilloi,” Food Packag. Shelf Life, vol. 24, p. 100495, Jun. 2020, doi: 10.1016/j.fpsl.2020.100495.D. K. Tripathi, V. P. Singh, P. Ahmad, D. K. Chauhan, and S. M. Prasad, Advances and Future Prospects Silicon in Plants, First. CRC Press, 2016. doi: 10.1201/9781315369310.A. Mushtaq et al., “Synthesis of Silica Nanoparticles and their effect on priming of wheat (Triticum aestivum L.) under salinity stress,” 2017, [Online]. Available: www.researchtrend.netU. of oxford Our world in data, “Agricultural land use,” https://ourworldindata.org/grapher/agricultural-land, 2022.U. of oxford Our world in data, “Global agricultural land use by major crop type,” https://ourworldindata.org/grapher/global-agricultural-land-use-by-major-crop-type, 2022.M. Alejandro and R. Manzano, “Nanosílice como aditivo para el concreto-caso Colombia.” [Online]. Available: https://www.researchgate.net/publication/341600696V. K. Yadav and M. H. Fulekar, “Green synthesis and characterization of amorphous silica nanoparticles from fly ash,” 2019. [Online]. Available: www.sciencedirect.comwww.materialstoday.com/proceedings2214-7853BibliotecariosEstudiantesGrupos comunitariosInvestigadoresPúblico generalReceptores de fondos federales y solicitantesLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86584/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1032464592.2024.pdf1032464592.2024.pdfTesis de Magister en Ciencias-Químicaapplication/pdf1875215https://repositorio.unal.edu.co/bitstream/unal/86584/4/1032464592.2024.pdf0b7616e8894a434cae383cefba91cbe8MD54THUMBNAIL1032464592.2024.pdf.jpg1032464592.2024.pdf.jpgGenerated Thumbnailimage/jpeg3988https://repositorio.unal.edu.co/bitstream/unal/86584/5/1032464592.2024.pdf.jpgc3d694aee2c10d6b93cef3118b490fa8MD55unal/86584oai:repositorio.unal.edu.co:unal/865842024-07-22 23:21:19.005Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |