On the structure of the lower crust to mantle transition beneath an accretionary inherited Andean margin, northwestern Andes

The crust-mantle transition beneath the northwestern Andes is expected to be complex given its accretionary tectonic history. Considering that research on this matter remains scarce, especially in the Colombian region, this thesis presents new insights into the structure and nature of the crust-mant...

Full description

Autores:
Avellaneda Jiménez, David Santiago
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82115
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82115
https://repositorio.unal.edu.co/
Palabra clave:
550 - Ciencias de la tierra
Geofísica
Northern Andes
Crustal thickening
Mantle anisotropy
Arclogite arc-root
Intra-continental underthrusting
Multi-technique geophysics
Andes del Norte
Engrosamiento cortical
Anisotropía del manto
Raíz cortical arclogítica
Deformación intra-continental
Geofísica multitécnica
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_7eec98d333d74a57a6f820cb04939c78
oai_identifier_str oai:repositorio.unal.edu.co:unal/82115
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv On the structure of the lower crust to mantle transition beneath an accretionary inherited Andean margin, northwestern Andes
dc.title.translated.spa.fl_str_mv Sobre la estructura de la transición corteza baja al manto en un margen andino con herencia de acreción, Andes noroccidentales
title On the structure of the lower crust to mantle transition beneath an accretionary inherited Andean margin, northwestern Andes
spellingShingle On the structure of the lower crust to mantle transition beneath an accretionary inherited Andean margin, northwestern Andes
550 - Ciencias de la tierra
Geofísica
Northern Andes
Crustal thickening
Mantle anisotropy
Arclogite arc-root
Intra-continental underthrusting
Multi-technique geophysics
Andes del Norte
Engrosamiento cortical
Anisotropía del manto
Raíz cortical arclogítica
Deformación intra-continental
Geofísica multitécnica
title_short On the structure of the lower crust to mantle transition beneath an accretionary inherited Andean margin, northwestern Andes
title_full On the structure of the lower crust to mantle transition beneath an accretionary inherited Andean margin, northwestern Andes
title_fullStr On the structure of the lower crust to mantle transition beneath an accretionary inherited Andean margin, northwestern Andes
title_full_unstemmed On the structure of the lower crust to mantle transition beneath an accretionary inherited Andean margin, northwestern Andes
title_sort On the structure of the lower crust to mantle transition beneath an accretionary inherited Andean margin, northwestern Andes
dc.creator.fl_str_mv Avellaneda Jiménez, David Santiago
dc.contributor.advisor.none.fl_str_mv Monsalve Mejía, Gaspar
dc.contributor.author.none.fl_str_mv Avellaneda Jiménez, David Santiago
dc.subject.ddc.spa.fl_str_mv 550 - Ciencias de la tierra
topic 550 - Ciencias de la tierra
Geofísica
Northern Andes
Crustal thickening
Mantle anisotropy
Arclogite arc-root
Intra-continental underthrusting
Multi-technique geophysics
Andes del Norte
Engrosamiento cortical
Anisotropía del manto
Raíz cortical arclogítica
Deformación intra-continental
Geofísica multitécnica
dc.subject.lemb.none.fl_str_mv Geofísica
dc.subject.proposal.eng.fl_str_mv Northern Andes
Crustal thickening
Mantle anisotropy
Arclogite arc-root
Intra-continental underthrusting
Multi-technique geophysics
dc.subject.proposal.spa.fl_str_mv Andes del Norte
Engrosamiento cortical
Anisotropía del manto
Raíz cortical arclogítica
Deformación intra-continental
Geofísica multitécnica
description The crust-mantle transition beneath the northwestern Andes is expected to be complex given its accretionary tectonic history. Considering that research on this matter remains scarce, especially in the Colombian region, this thesis presents new insights into the structure and nature of the crust-mantle transition in several parts of the orogen. Four chapters are presented, discussing: (1) variations in Moho depth along the orogen using inversion of gravity data; (2) latitudinal heterogeneity and anisotropy in the uppermost mantle beneath the modern arc using Pn and Sn wave speed estimates, and thermo-compositional modeling; (3) the nature of the arc root beneath the modern arc by means of a receiver function analysis; and (4) intra-continental deformation beneath the Eastern Cordillera plateau from a joint inversion of arrival times of local earthquakes and gravity data. Integrated results suggest three main features associated with a thickened crust: along the northwestern foreland region (influenced by the adjacent thickened Eastern Cordillera), along the axis of the Eastern Cordillera (related to its shortening history and magmatic additions), and in the southern part of the modern arc, in the Andes of southern Colombia and northern Ecuador (likely a combined result of mafic addition to the base of the crust, foundering tectonics, and lateral displacement of the lower crust). Investigations on the upper mantle beneath the modern arc suggest a well-developed anisotropy, showing a latitudinal dissimilarity in wave speeds and temperature. The northern part (north of 4°N; <75 km wide arc) is seismically slower, and has a higher degree of anisotropy, suggesting warmer conditions. The southern part (south of 2°N; >120 km wide arc) is faster, less anisotropic, and consistent with a colder state. Beneath the volcanic gap region (2°-4°N), seismic speeds are similar to those in the north, yet a colder thermal state is suggested. The controlling factor of the anisotropy is the preferred orientation of olivine and pyroxene. Latitudinal anisotropy and temperature dissimilarities are likely influenced by the Caldas tear to the north, prompting hot mantle influx, and the Carnegie ridge interaction to the south, prompting shallower subduction. Additional investigations on the arc domain, using the teleseismic receiver function technique, which looks for P to S phase conversions, indicate that the crustal root beneath the arc is characterized by high velocities and a latitudinally variable thickness, which coupled with documented xenoliths supports an arclogite nature. This high-velocity and high-density arc root suggest an offset between the seismic Moho and the crust-mantle boundary of around 8.5-14 km. Finally, beneath the Eastern Cordillera plateau, a well-imaged anomaly is identified at depths of 40-60 km beneath the western flank of the plateau, at a latitude of ~5.7°N. The slow velocity anomaly is interpreted as crustal materials eastwardly underthrusting beneath the western flank. This process is thought to be prompting the abrupt change in topography between the adjacent low-elevated basin and the orogenic plateau. This thesis shows how the crust-mantle transition along the northwestern Andes follows the idea that a heterogenous Moho vicinity is the rule rather than the exception for Andean-type orogens.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-08-25T19:46:38Z
dc.date.available.none.fl_str_mv 2022-08-25T19:46:38Z
dc.date.issued.none.fl_str_mv 2022-08-24
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82115
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82115
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Abers, G.A., Hacker, B.R., 2016. A MATLAB toolbox and Excel workbook for calculating the densities, seismic wave speeds, and major element composition of minerals and rocks at pressure and temperature. Geochemistry, Geophys. Geosystems 17, 616–624. https://doi.org/10.1002/2015GC006171
Abratis, M., Wörner, G., 2001. Ridge collision, slab-window formation, and the flux of Pacific asthenosphere into the Caribbean realm. Geology 29, 127–130. https://doi.org/10.1130/0091-7613
Afonso, J.C., Schutt, D.L., 2012. The effects of polybaric partial melting on density and seismic velocities of mantle restites. Lithos 134–135, 289–303. https://doi.org/10.1016/j.lithos.2012.01.009
Aitken, A.R.A., Salmon, M.L., Kennett, B.L.N., 2013. Australia’s Moho: A test of the usefulness of gravity modelling for the determination of Moho depth. Tectonophysics 609, 468–479. https://doi.org/10.1016/j.tecto.2012.06.049
Amante, C., Eakins, B.W., 2009. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Tech. Memo. NESDIS NGDC-24 19. https://doi.org/10.1594/PANGAEA.769615
Ammon, C.J., Randall, G.E., Zandt, G., 1990. On the Nonuniqueness of Receiver Function Inversions. J. Geophys. Res. 95. https://doi.org/10.1029/jb095ib10p15303
Anderson, D.L., 2005. Large Igneous Provinces, Delamination, and Fertile Mantle. Elements 1, 271–275. https://doi.org/10.2113/gselements.1.5.271
Armijo, R., Rauld, R., Thiele, R., Vargas, G., Campos, J., Lacassin, R., Kausel, E., 2010. The West Andean Thrust, the San Ramón Fault, and the seismic hazard for Santiago, Chile. Tectonics 29. https://doi.org/10.1029/2008tc002427
Avellaneda-Jiménez, D.S., Monsalve, G., León, S., Gómez-García, A.M., 2022. Insights into Moho depth beneath the northwestern Andean region from gravity data inversion. Geophys. J. Int. 229, 1964–1977. https://doi.org/https://doi.org/10.1093/gji/ggac041
Barthelmes, F., 2009. Definition of functionals of the geopotential and their calculation from spherical harmonic models: theory and formulas used by the calculation service of the International Centre for Global Earth Models (ICGEM). Dtsch. Geo-ForschungsZentrum GFZ 1–5. https://doi.org/10.2312/GFZ.b103-0902-26
Baumont, D., Paul, A., Zandt, G., Beck, S.L., Pedersen, H., 2002. Lithospheric structure of the central Andes based on surface wave dispersion. J. Geophys. Res. Solid Earth 107, ESE 18-1-ESE 18-13. https://doi.org/10.1029/2001jb000345
Bayona, G., Cortés, M., Jaramillo, C., Ojeda, G., Aristizabal, J.J., Reyes-Harker, A., 2008. An integrated analysis of an orogen-sedimentary basin pair: Latest Cretaceous-Cenozoic evolution of the linked Eastern Cordillera orogen and the Llanos foreland basin of Colombia. Bull. Geol. Soc. Am. 120, 1171–1197. https://doi.org/10.1130/B26187.1
Beck, S.L., Zandt, G., 2002. The nature of orogenic crust in the central Andes. J. Geophys. Res. Solid Earth 107, ESE 7-1-ESE 7-16. https://doi.org/10.1029/2000jb000124
Beghoul, N., Barazangi, M., 1989. Mapping high Pn velocity beneath the Colorado Plateau constrains uplift models. J. Geophys. Res. 94, 7083–7104. https://doi.org/10.1029/JB094iB06p07083
Bernal-Olaya, R., Mann, P., Vargas, C.A., 2015. Earthquake, tomographic, seismic reflection, and gravity evidence for a shallowly dipping subduction zone beneath the caribbean margin of Northwestern Colombia. AAPG Mem. 108, 247–269. https://doi.org/10.1306/13531939M1083642
Bernard, R.E., Schulte-Pelkum, V., Behr, W.M., 2021. The competing effects of olivine and orthopyroxene CPO on seismic anisotropy. Tectonophysics 814, 228954. https://doi.org/10.1016/j.tecto.2021.228954
Bernet, M., Urueña, C., Amaya, S., Peña, M.L., 2016. New thermo and geochronological constraints on the Pliocene-Pleistocene eruption history of the Paipa-Iza volcanic complex, Eastern Cordillera, Colombia. J. Volcanol. Geotherm. Res. 327, 299–309. https://doi.org/10.1016/j.jvolgeores.2016.08.013
Bishop, B.T., Beck, S.L., Zandt, G., Wagner, L., Long, M., Antonijevic, S.K., Kumar, A., Tavera, H., 2017. Causes and consequences of flat-slab subduction in southern Peru. Geosphere 13, 1392–1407. https://doi.org/10.1130/GES01440.1
Blanco, J.F., Vargas, C.A., Monsalve, G., 2017. Lithospheric thickness estimation beneath Northwestern South America from an S-wave receiver function analysis. Geochemistry, Geophys. Geosystems 18, 1376–1387. https://doi.org/10.1002/2016GC006785
Bloch, E., Ibañez-Mejia, M., Murray, K., Vervoort, J., Müntener, O., 2017. Recent crustal foundering in the Northern Volcanic Zone of the Andean arc: Petrological insights from the roots of a modern subduction zone. Earth Planet. Sci. Lett. 476, 47–58. https://doi.org/10.1016/j.epsl.2017.07.041
Borrero, C.A., Castillo, H., 2006. Vulcanitas del S-SE de Colombia: Retro-arco alcalino y su posible relacion con una ventana astenosferica. Boletín Geol. 28, 23–34
Bowman, E.E., Ducea, M.N., Triantafyllou, A., 2021. Arclogites in the subarc lower crust: effects of crystallization, partial melting, and retained melt on the foundering ability of residual roots. J. Petrol. https://doi.org/10.1093/petrology/egab094/6424248
Brocher, T.M., 2005. Empirical relations between elastic wavespeeds and density in the Earth’s crust. Bull. Seismol. Soc. Am. 95, 2081–2092. https://doi.org/10.1785/0120050077
Cardona, A., León, S., Jaramillo, J.S., Montes, C., Valencia, V., Vanegas, J., Bustamante, C., Echeverri, S., 2018. The Paleogene arcs of the northern Andes of Colombia and Panama: Insights on plate kinematic implications from new and existing geochemical, geochronological and isotopic data. Tectonophysics 749, 88–103. https://doi.org/10.1016/j.tecto.2018.10.032
Cardona, A., Montes, C., Ayala, C., Bustamante, C., Hoyos, N., Montenegro, O., Ojeda, C., Niño, H., Ramirez, V., Valencia, V., Rincón, D., Vervoort, J., Zapata, S., 2012. From arc-continent collision to continuous convergence, clues from Paleogene conglomerates along the southern Caribbean-South America plate boundary. Tectonophysics 580, 58–87. https://doi.org/10.1016/j.tecto.2012.08.039
Case, J.E., Duran S, L.G., Alfonso, L.R., Moore, W.R., 1971. Tectonic investigations in western Colombia and eastern Panama. Bull. Geol. Soc. Am. 82, 2685–2712. https://doi.org/10.1130/0016-7606(1971)82[2685:TIIWCA]2.0.CO;2
Castellanos, J.C., Clayton, R.W., Pérez-Campos, X., 2018. Imaging the Eastern Trans-Mexican Volcanic Belt With Ambient Seismic Noise: Evidence for a Slab Tear. J. Geophys. Res. Solid Earth 123, 7741–7759. https://doi.org/10.1029/2018JB015783
Chiarabba, C., De Gori, P., Faccenna, C., Speranza, F., Seccia, D., Dionicio, V., Prieto, G.A., 2015. Subduction system and flat slab beneath the Eastern Cordillera of Colombia. Geochemistry Geophys. Geosystems 17, 16–27. https://doi.org/10.1002/2015GC006048
Chiaradia, M., Müntener, O., Beate, B., Fontignie, D., 2009. Adakite-like volcanism of Ecuador: Lower crust magmatic evolution and recycling. Contrib. to Mineral. Petrol. 158, 563–588. https://doi.org/10.1007/s00410-009-0397-2
Christensen, N.I., 2004. Serpentinites, peridotites, and seismology. Int. Geol. Rev. 46, 795–816. https://doi.org/10.2747/0020-6814.46.9.795
Clark, M.K., Bush, J.W.M., Royden, L.H., 2005. Dynamic topography produced by lower crustal flow against rheological strength heterogeneities bordering the Tibetan Plateau. Geophys. J. Int. 162, 575–590. https://doi.org/10.1111/j.1365-246X.2005.02580.x
Collins, J.A., Molnar, P., 2014. Pn anisotropy beneath the South Island of New Zealand and implications for distributed deformation in continental lithosphere. AGU J. Geophys. Res. Solid Earth 119, 7745–7767. https://doi.org/doi:10.1002/ 2014JB011233
Connolly, J.A.D., 2005. Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236, 524–541. https://doi.org/10.1016/j.epsl.2005.04.033
Cook, F.A., White, D.J., Jones, A.G., Eaton, D.W.S., Hall, J., Clowes, R.M., 2010. How the crust meets the mantle: Lithoprobe perspectives on the mohorovičić discontinuity and crust-mantle transition. Can. J. Earth Sci. 47, 315–351. https://doi.org/10.1139/E09-076
Correa-Tamayo, A.M., Pulgarín-Alzate, B.A., Ancochea-Soto, E., 2020. The Nevado del Huila Volcanic Complex, in: Gómez, J., Pinilla-Pachon, A.O. (Eds.), The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombiano, Publicaciones Geológias Especiales 38, Bogotá, pp. 227–265. https://doi.org/https://doi.org/10.32685/pub.esp.38.2019.06
Cortés, M., Angelier, J., 2005. Current states of stress in the northern Andes as indicated by focal mechanisms of earthquakes. Tectonophysics 403, 29–58. https://doi.org/10.1016/j.tecto.2005.03.020
Cortés, M., Colletta, B., Angelier, J., 2006. Structure and tectonics of the central segment of the Eastern Cordillera of Colombia. J. South Am. Earth Sci. 21, 437–465. https://doi.org/10.1016/j.jsames.2006.07.004
Crotwell, H.P., Owens, T.J., Ritsema, J., 1999. The TauP Toolkit: Flexible Seismic Travel-time and Ray-path Utilities. Seismol. Res. Lett. 70, 154–160. https://doi.org/10.1785/gssrl.70.2.154
Currie, C.A., Ducea, M.N., DeCelles, P.G., Beaumont, C., 2015. Geodynamic models of Cordilleran orogens: Gravitational instability of magmatic arc roots. Mem. Geol. Soc. Am. 212, 1–22. https://doi.org/10.1130/2015.1212(01)
DeCelles, P.G., Zandt, G., Beck, S.L., Currie, C.A., Ducea, M.N., Kapp, P., Gehrels, G.E., Carrapa, B., Quade, J., Schoenbohm, L.M., 2015. Cyclical orogenic processes in the Cenozoic central Andes. Mem. Geol. Soc. Am. 212, 459–490. https://doi.org/10.1130/2015.1212(22)
Delph, J.R., Ward, K.M., Zandt, G., Ducea, M.N., Beck, S.L., 2017. Imaging a magma plumbing system from MASH zone to magma reservoir. Earth Planet. Sci. Lett. 457, 313–324. https://doi.org/10.1016/j.epsl.2016.10.008
Ducea, M.N., Chapman, A.D., Bowman, E., Balica, C., 2021a. Arclogites and their role in continental evolution; part 2: Relationship to batholiths and volcanoes, density and foundering, remelting and long-term storage in the mantle. Earth-Science Rev. 214. https://doi.org/10.1016/j.earscirev.2020.103476
Ducea, M.N., Chapman, A.D., Bowman, E., Triantafyllou, A., 2021b. Arclogites and their role in continental evolution; part 1: Background, locations, petrography, geochemistry, chronology and thermobarometry. Earth-Science Rev. 214. https://doi.org/10.1016/j.earscirev.2020.103375
Erdman, M.E., Lee, C.T.A., Levander, A., Jiang, H., 2016. Role of arc magmatism and lower crustal foundering in controlling elevation history of the Nevadaplano and Colorado Plateau: A case study of pyroxenitic lower crust from central Arizona, USA. Earth Planet. Sci. Lett. 439, 48–57. https://doi.org/10.1016/j.epsl.2016.01.032
Feng, M., An, M., Dong, S., 2017. Tectonic history of the Ordos Block and Qinling Orogen inferred from crustal thickness. Geophys. J. Int. 210, 303–320. https://doi.org/10.1093/gji/ggx163
Ferrari, L., Orozco-Esquivel, T., Manea, V., Manea, M., 2012. The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone. Tectonophysics 522–523, 122–149. https://doi.org/10.1016/j.tecto.2011.09.018
Fontaine, F.R., Tkalčić, H., Kennett, B.L.N., 2013. Imaging crustal structure variation across southeastern Australia. Tectonophysics 582, 112–125. https://doi.org/10.1016/j.tecto.2012.09.031
Förste, C., Bruinsma, S., Abrikosov, O., Lemoine, J.M., Marty, J.C., Flechtner, F., Balmino, G., Barthelmes, F., Biancale, R., 2014. EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Serv. https://doi.org/https://doi.org/10.5880/icgem.2015.1
Furlong, K.P., Fountain, D.M., 1986. Continental crustal underplating: Thermal considerations and seismic-petrologic consequences. J. Geophys. Res. 91, 8285. https://doi.org/10.1029/jb091ib08p08285
Gao, X., Sun, S., 2019. Comment on “3DINVER.M: A MATLAB program to invert the gravity anomaly over a 3D horizontal density interface by Parker-Oldenburg’s algorithm.” Comput. Geosci. 127, 133–137. https://doi.org/10.1016/j.cageo.2019.01.013
Gómez-García, A.M., Le Breton, E., Scheck-Wenderoth, M., Monsalve, G., Anikiev, D., 2021. The preserved plume of the Caribbean Large Igneous Plateau revealed by 3D data-integrative models. Solid Earth 12, 275–298. https://doi.org/10.5194/se-12-275-2021
Gómez-Ortiz, D., Agarwal, B.N.P., 2005. 3DINVER.M: A MATLAB program to invert the gravity anomaly over a 3D horizontal density interface by Parker-Oldenburg’s algorithm. Comput. Geosci. 31, 513–520. https://doi.org/10.1016/j.cageo.2004.11.004
Gómez-Ortiz, D., Tejero-López, R., Babín-Vich, R., Rivas-Ponce, A., 2005. Crustal density structure in the Spanish Central System derived from gravity data analysis (Central Spain). Tectonophysics 403, 131–149. https://doi.org/10.1016/j.tecto.2005.04.006
Graterol, V., Vargas, A., 2010. Mapa de anomalia de Bouguer total de la Republica de Colombia. ANH (Agencia Nac. Hidrocarburos Colomb. Bogota Magna/Colombia-Magna Bogota Zo. 1850000
Green, E., Holland, T., Powell, R., 2007. An order-disorder model for omphacitic pyroxenes in the system jadeite-diopside-hedenbergite-acmite, with applications to eclogitic rocks. Am. Mineral. 92, 1181–1189. https://doi.org/10.2138/am.2007.2401
Green, E., White, R.W., Diener, J.F.A., Powell, R., Holland, T.J.B., Palin, R.M., 2016. Activity–composition relations for the calculation of partial melting equilibria in metabasic rocks. J. Metamorph. Geol. 34, 845–869. https://doi.org/10.1111/jmg.12211
Griffin, W.L., O’Reilly, S.Y., Afonso, J.C., Begg, G.C., 2009. The composition and evolution of lithospheric mantle: A re-evaluation and its tectonic implications. J. Petrol. 50, 1185–1204. https://doi.org/10.1093/petrology/egn033
Guerri, M., Cammarano, F., Connolly, J.A.D., 2015. Geochemistry, Geophysics, Geosystems. Geochemistry Geophys. Geosystems 18, 1541–1576. https://doi.org/10.1002/2015GC005746.Dynamics
Gutscher, M.A., Malavieille, J., Lallemand, S., Collot, J.Y., 1999. Tectonic segmentation of the North Andean margin: Impact of the Carnegie Ridge collision. Earth Planet. Sci. Lett. 168, 255–270. https://doi.org/10.1016/S0012-821X(99)00060-6
Gutscher, M.A., Maury, F., Eissen, J.P., Bourdon, E., 2000. Can slab melting be caused by flat subduction? Geology 28, 535–538. https://doi.org/10.1130/0091-7613
Hacker, B.R., Abers, G.A., 2012. Subduction Factory 5: Unusually low Poisson’s ratios in subduction zones from elastic anisotropy of peridotite. J. Geophys. Res. Solid Earth 117, 1–15. https://doi.org/10.1029/2012JB009187
Hacker, B.R., Abers, G.A., Peacock, S.M., 2003. Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. J. Geophys. Res. Solid Earth 108, 1–26. https://doi.org/10.1029/2001jb001127
Hammond, J.O.S., Kendall, J.M., Wookey, J., Stuart, G.W., Keir, D., Ayele, A., 2014. Differentiating flow, melt, or fossil seismic anisotropy beneath Ethiopia. Geochemistry, Geophys. Geosystems 15, 1878–1894. https://doi.org/10.1002/2013GC005185
Hammond, W.C., Humphreys, E.D., 2000. Upper mantle seismic wave velocity: Effects of realistic partial melt geometries. J. Geophys. Res. Solid Earth 105, 10975–10986. https://doi.org/https://doi.org/10.1029/2000JB900041
Hayes, G.P., Moore, G.L., Portner, D.E., Hearne, M., Flamme, H., Furtney, M., Smoczyk, G.M., 2018. Slab2, a comprehensive subduction zone geometry model. Science (80-. ). 362(6410), 58–61
Herrmann, R.B., 2013. Computer programs in seismology: An evolving tool for instruction and research. Seismol. Res. Lett. 84, 1081–1088. https://doi.org/10.1785/0220110096
Hole, J.A., Zelt, B.C., 1995. 3-D finite-difference reflection traveltimes. Geophys. J. Int. 121, 427–434. https://doi.org/https://doi.org/10.1111/j.1365-246X.1995.tb05723.x
Holland, T.J.B., Powell, R., 2003. Activity-compositions relations for phases in petrological calculations: An asymetric multicomponent formulation. Contrib. to Mineral. Petrol. 145, 492–501. https://doi.org/10.1007/s00410-003-0464-z
Holland, T.J.B., Powell, R., 1998. An internally consistent thermodynamic data set for phases of petrological interest. J. Metamorph. Geol. 16, 309–343. https://doi.org/10.1111/j.1525-1314.1998.00140.x
Horton, B.K., Parra, M., Mora, A., 2020. Insights from the Sedimentary Record Chapter 3. Geol. Colomb. 3, 1–22
Huang, Y., Chubakov, V., Mantovani, F., Rudnick, R.L., McDonough, W.F., 2013. A reference Earth model for the heat-producing elements and associated geoneutrino flux. Geochemistry, Geophys. Geosystems 14, 2003–2029. https://doi.org/10.1002/ggge.20129
Hyndman, R.D., Peacock, S.M., 2003. Serpentinization of the forearc mantle. Earth Planet. Sci. Lett. 212, 417–432. https://doi.org/10.1016/S0012-821X(03)00263-2
Idárraga-García, J., Kendall, J.M., Vargas, C.A., 2016. Shear wave anisotropy in northwestern South America and its link to the Caribbean and Nazca subduction geodynamics. Geochemistry Geophys. Geosystems 17, 3655–3673. https://doi.org/doi:10.1002/2016GC006323
Ince, E.S., Barthelmes, F., Reißland, S., Elger, K., Förste, C., Flechtner, F., Schuh, H., 2019. ICGEM - 15 years of successful collection and distribution of global gravitational models, associated services and future plans. Earth Syst. Sci. Data Discuss. 1–61. https://doi.org/10.5194/essd-2019-17
Jeffreys, H., Bullen, K.E., 1940. Seismological Tables, British Association for the Advancement of Science, London
Jennings, E.S., Holland, T.J.B., 2015. A simple thermodynamic model for melting of peridotite in the system NCFMASOCr. J. Petrol. 56, 869–892. https://doi.org/10.1093/petrology/egv020
Jones, C.H., Reeg, H., Zandt, G., Gilbert, H., Owens, T.J., Stachnik, J., 2014. P-wave tomography of potential convective downwellings and their source regions, Sierra Nevada, California. Geosphere 10, 505–533. https://doi.org/10.1130/GES00961.1
Julià, J., Ammon, C.J., Herrmann, R.B., Correig, A.M., 2000. Joint inversion of receiver function and surface wave dispersion observations. Geophys. J. Int. 143, 99–112. https://doi.org/10.1046/j.1365-246X.2000.00217.x
Karabulut, H., Paul, A., Erg, T.A., Hatzfeld, D., Childs, D.M., Aktar, M., 2013. Long-wavelength undulations of the seismic Moho beneath the strongly stretched Western Anatolia 450–464. https://doi.org/10.1093/gji/ggt100
Kay, S.M., Mpodozis, C., Gardeweg, M., 2014. Magma sources and tectonic setting of Central Andean andesites (25.5-28°S) related to crustal thickening, forearc subduction erosion and delamination. Geol. Soc. Spec. Publ. 385, 303–334. https://doi.org/10.1144/SP385.11
Kellogg, J.N., Camelio, G.B.F., Mora-Páez, H., 2019. Cenozoic tectonic evolution of the North Andes with constraints from volcanic ages, seismic reflection, and satellite geodesy, Andean Tectonics. https://doi.org/10.1016/b978-0-12-816009-1.00006-x
Kennett, B.L.N., Engdahl, E.R., 1991. Traveltimes for global earthquake location and phase identification. Geophys. J. Int. 105, 429–465. https://doi.org/10.1111/j.1365-246X.1991.tb06724.x
Kennett, B.L.N., Engdahl, E.R., Buland, R., 1995. Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int. 122, 108–124. https://doi.org/10.1111/j.1365-246X.1995.tb03540.x
Koch, C.D., Delph, J., Beck, S.L., Lynner, C., Ruiz, M., Hernandez, S., Samaniego, P., Meltzer, A., Mothes, P., Hidalgo, S., 2021. Crustal thickness and magma storage beneath the Ecuadorian arc. J. South Am. Earth Sci. 110, 103331. https://doi.org/10.1016/j.jsames.2021.103331
Koulakov, I., 2009. Out-of-network events can be of great importance for improving results of local earthquake tomography. Bull. Seismol. Soc. Am. 99, 2556–2563. https://doi.org/10.1785/0120080365
Koulakov, I., Sobolev, S. V., Asch, G., 2006. P - And S-velocity images of the lithosphere-asthenosphere system in the Central Andes from local-source tomographic inversion. Geophys. J. Int. 167, 106–126. https://doi.org/10.1111/j.1365-246X.2006.02949.x
Larkin, S.P., Levander, A., Henstock, T.J., Pullammanappallil, S., 1997. the northern Basin and Range Is the Moho flat ? Seismic evidence for a rough crust-mantle interface beneath the northern Basin and Range 7613. https://doi.org/10.1130/0091-7613(1997)025<0451
Laske, G., Masters, G., Ma, Z., Pasyanos, M., 2013. Update on CRUST1.0 - A 1-degree Global Model of Earth’s Crust. EGU Gen. Assem. 2013 15, 2658
Lee, C.. T.A., 2003. Compositional variation of density and seismic velocities in natural peridotites at STP conditions: Implications for seismic imaging of compositional heterogeneities in the upper mantle. J. Geophys. Res. Solid Earth 108. https://doi.org/10.1029/2003jb002413
Lee, C.T.A., 2014. Physics and Chemistry of Deep Continental Crust Recycling, 2nd ed, Treatise on Geochemistry: Second Edition. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-095975-7.00314-4
Lee, C.T.A., Anderson, D.L., 2015. Continental crust formation at arcs, the arclogite “delamination” cycle, and one origin for fertile melting anomalies in the mantle. Sci. Bull. 60, 1141–1156. https://doi.org/10.1007/s11434-015-0828-6
Lee, C.T.A., Cheng, X., Horodyskyj, U., 2006. The development and refinement of continental arcs by primary basaltic magmatism, garnet pyroxenite accumulation, basaltic recharge and delamination: Insights from the Sierra Nevada, California. Contrib. to Mineral. Petrol. 151, 222–242. https://doi.org/10.1007/s00410-005-0056-1
León, S., Cardona, A., Parra, M., Sobel, E.R., Jaramillo, J.S., Glodny, J., Valencia, V.A., Chew, D., Montes, C., Posada, G., Monsalve, G., Pardo-Trujillo, A., 2018. Transition From Collisional to Subduction-Related Regimes: An Example From Neogene Panama-Nazca-South America Interactions. Tectonics 37, 119–139. https://doi.org/10.1002/2017TC004785
León, S., Monsalve, G., Bustamante, C., 2021. How Much Did the Colombian Andes Rise by the Collision of the Caribbean Oceanic Plateau? Geophys. Res. Lett. 48, 1–11. https://doi.org/10.1029/2021gl093362
Ligorría, J.P., Ammon, C.J., 1999. Iterative deconvolution and receiver-function estimation. Bull. Seismol. Soc. Am. 89, 1395–1400. https://doi.org/10.1785/bssa0890051395
Londoño, J.M., Bohorquez, O.P., Ospina, L.F., 2010. Tomografía Sísmica 3D Del Sector De Cúcuta, Colombia. Bol. Geol. 32, 107–124
Londoño, J.M., Sudo, Y., 2003. Velocity structure and a seismic model for Nevado del Ruiz Volcano (Colombia). J. Volcanol. Geotherm. Res. 119, 61–87. https://doi.org/10.1016/S0377-0273(02)00306-2
Lonsdale, P., 2005. Creation of the Cocos and Nazca plates by fission of the Farallon plate. Tectonophysics 404, 237–264. https://doi.org/10.1016/j.tecto.2005.05.011
Mahan, K.H., Schulte-Pelkum, V., Blackburn, T.J., Bowring, S.A., Dudas, F.O., 2012. Seismic structure and lithospheric rheology from deep crustal xenoliths, central Montana, USA. Geochemistry, Geophys. Geosystems 13. https://doi.org/10.1029/2012GC004332
Mainprice, D., 2015. Seismic Anisotropy of the Deep Earth from a Mineral and Rock Physics Perspective, in: Schubert, G. (Ed.), Treatise on Geophysics. Oxford: Elsevier, pp. 487–538
Manea, V.C., Manea, M., 2011. Flat-slab thermal structure and evolution beneath central Mexico. Pure Appl. Geophys. 168, 1475–1487. https://doi.org/10.1007/s00024-010-0207-9
Marín-Cerón, M.I., Leal-Mejía, H., Bernet, M., Mesa-García, J., 2019. Late Cenozoic to modern-day volcanism in the Northern Andes: A geochronological, petrographical, and geochemical review, Frontiers in Earth Sciences. https://doi.org/10.1007/978-3-319-76132-9_8
Marot, M., Monfret, T., Gerbault, M., Nolet, G., Ranalli, G., Pardo, M., 2014. Flat versus normal subduction zones: A comparison based on 3-D regional traveltime tomography and petrological modelling of central Chile and western Argentina (29°-35°S). Geophys. J. Int. 199, 1633–1654. https://doi.org/10.1093/gji/ggu355
McKenzie, D., Jackson, J., 2002. Conditions for flow in the continental crust. Tectonics 21, 5-1-5–7. https://doi.org/10.1029/2002tc001394
Meissnar, R.O., Flueh, E.R., Stibane, F., Berg, E., 1976. Dynamics of the active plate boundary in southwest colombia according to recent geophysical measurements. Tectonophysics 35, 115–136. https://doi.org/10.1016/0040-1951(76)90032-9
Monsalve-Bustamante, M.L., 2020. The volcanic front in Colombia: Segmentation and recent and historical activity, in: Gómez, J., Pinilla-Pachon, A.O. (Eds.), The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales, Bogotá, pp. 97–159. https://doi.org/10.32685/pub.esp.38.2019.03
Monsalve-Bustamante, M.L., Gómez-Tapias, J., Núñez-Tello, A., 2020. Rear–arc small–volume basaltic volcanism in Colombia: Monogenetic volcanic fields. The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombia- no, Publicaciones Geológicas Especiales, Bogotá. https://doi.org/https://doi.org/10.32685/pub. esp.38.2019.10
Monsalve, G., Jaramillo, J.S., Cardona, A., Schulte-Pelkum, V., Posada, G., Valencia, V., Poveda, E., 2019. Deep Crustal Faults, Shear Zones, and Magmatism in the Eastern Cordillera of Colombia: Growth of a Plateau From Teleseismic Receiver Function and Geochemical Mio-Pliocene Volcanism Constraints. J. Geophys. Res. Solid Earth 124, 9833–9851. https://doi.org/10.1029/2019JB017835
Monsalve, H., Pacheco, J.F., Vargas, C.A., Morales, Y.A., 2013. Crustal velocity structure beneath the western Andes of Colombian using receiver-function inversion. J. South Am. Earth Sci. 48, 106–122. https://doi.org/10.1016/j.jsames.2013.09.001
Monsalve, M.L., Correa-Tamayo, A.M., Arcila, M., Dixon, J., 2015. Firma Adakítica en los productos recientes de los volcanes Nevado del Huila y Puracé, Colombia. Boletín Geológico 23–40. https://doi.org/10.32685/0120-1425/boletingeo.43.2015.27
Montes, C., Rodriguez-Corcho, A.F., Bayona, G., Hoyos, N., Zapata, S., Cardona, A., 2019. Continental margin response to multiple arc-continent collisions: The northern Andes-Caribbean margin. Earth-Science Rev. 198, 102903. https://doi.org/10.1016/j.earscirev.2019.102903
Mooney, W.D., 2021. The Moho Discontinuity, 2nd ed, Encyclopedia of Geology. Elsevier Inc. https://doi.org/10.1016/b978-0-08-102908-4.00049-7
Mora-Páez, H., Kellogg, J.N., Frymueller, J.T., Mencin, D., Fernandes, R.M.S., Diederix, H., LaFemina, P., Cardona-Piedrahita, L., Lizarazo, S., Peláez-Gaviria, J.R., Díaz-Mila, F., Bohórquez-Orozco, O., Giraldo-Londoño, L., Corchuelo-Cuervo, Y., 2019. Crustal deformation in the northern Andes - A new GPS velocity field. J. South Am. Earth Sci. 89, 76–91. https://doi.org/10.1016/j.jsames.2018.11.002
Mora-Páez, H., Mencin, D.J., Molnar, P., Diederix, H., Cardona-Piedrahita, L., Peláez-Gaviria, J.R., Corchuelo-Cuervo, Y., 2016. GPS velocities and the construction of the Eastern Cordillera of the Colombian Andes. Geophys. Res. Lett. 43, 8407–8416. https://doi.org/10.1002/2016GL069795
Mora, A., Parra, M., Rodriguez Forero, G., Blanco, V., Moreno, N., Caballero, V., Stockli, D., Duddy, I., Ghorbal, B., 2015. What drives orogenic asymmetry in the northern Andes?: A case study from the apex of the northern Andean orocline. AAPG Mem. 108, 547–586. https://doi.org/10.1306/13531949M1083652
Mora, A., Parra, M., Strecker, M.R., Sobel, E.R., Hooghiemstra, H., Torres, V., Jaramillo, J. V., 2008. Climatic forcing of asymmetric orogenic evolution in the Eastern Cordillera of Colombia. Bull. Geol. Soc. Am. 120, 930–949. https://doi.org/10.1130/B26186.1
Mora, A., Reyes-Harker, A., Rodriguez, G., Tesón, E., Ramirez-Arias, J.C., Parra, M., Caballero, V., Mora, J.P., Quintero, I., Valencia, V., Ibañez, M., Horton, B.K., Stockli, D.F., 2013. Inversion tectonics under increasing rates of shortening and sedimentation: Cenozoic example from the Eastern Cordillera of Colombia. Geol. Soc. Spec. Publ. 377, 411–442. https://doi.org/10.1144/SP377.6
Mora, A., Villagómez, D., Parra, M., Caballero, V.M., Spikings, R., Horton, B.K., Mora-Bohórquez, J.A., Ketcham, R.A., Arias-Martínez, J.P., 2020. Late Cretaceous to Cenozoic Uplift of the Northern Andes: Paleogeographic Implications, in: Gómez, J., Mateus-Zabala, D. (Eds.), The Geology of Colombia, Volume 3 Paleogene-Neogene. Servicio Geológico Colombiano, Publicaciones Geológias Especiales 37, Bogotá, pp. 89–121. https://doi.org/htpps://doi.org/10.32685/pub.exp.37.2019.04
Motaghi, K., Shabanian, E., Kalvandi, F., 2017. Underplating along the northern portion of the Zagros suture zone, Iran. Geophys. J. Int. 210, 375–389. https://doi.org/10.1093/gji/ggx168
Myers, S.C., Beck, S., Zandt, G., Wallace, T., 1998. Lithospheric-scale structure across the Bolivian Andes from tomographic images of velocity and attenuation for P and S waves. System 103, 21,233-21,252
Ojeda, A., Havskov, J., 2001. Crustal structure and local seismicity in Colombia. J. Seismol. 5, 575–593. https://doi.org/10.1023/A:1012053206408
Oldenburg, D.W., 1974. The inversion and interpretation of gravity anomalies. Geophysics 39, 526–536
Owens, T., Zandt, G., 1985. The response of the continental crust-Mantle boundary observed on broadband teleseismic receiver functions. Geophys. Res. Lett. 12, 705–708. https://doi.org/https://doi.org/10.1029/GL012i010p00705
Paige, C.C., Saunders, M.A., 1982. LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares. ACM Trans. Math. Softw. 8, 43–71. https://doi.org/10.1145/355993.356000
Pardo-Trujillo, A., Cardona, A., Giraldo, A.S., León, S., Vallejo, D.F., Trejos-Tamayo, R., Plata, A., Ceballos, J., Echeverri, S., Barbosa-Espitia, A., Slattery, J., Salazar-Ríos, A., Botello, G.E., Celis, S.A., Osorio-Granada, E., Giraldo-Villegas, C.A., 2020. Sedimentary record of the Cretaceous–Paleocene arc–continent collision in the northwestern Colombian Andes: Insights from stratigraphic and provenance constraints. Sediment. Geol. 401, 105627. https://doi.org/10.1016/j.sedgeo.2020.105627
Parker, R.L., 1973. The Rapid Calculation of Potential Anomalies. Geophys. J. R. Astron. Soc. 31, 447–455. https://doi.org/10.1111/j.1365-246X.1973.tb06513.x
Parra, M., Mora, A., Lopez, C., Rojas, L.E., Horton, B.K., 2012. Detecting earliest shortening and deformation advance in thrust belt hinterlands: Example from the Colombian Andes. Geology 40, 175–178. https://doi.org/10.1130/G32519.1
Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K., 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res. Solid Earth 117, 1–38. https://doi.org/10.1029/2011JB008916
Pedraza-Garcia, P., Vargas, C.A., Monsalve, H., 2007. Geometric model of the Nazca plate subduction in Southwest Colombia. Earth Sci. Res. J. 11, 118–131
Pennington, W.D., 1981. Subduction of the Eastern Panama Basin and Seismotectonics of Northwestern South America 86, 10753–10770. https://doi.org/doi:10.1029/JB086iB11p10753
Porritt, R.W., Becker, T.W., Monsalve, G., 2014. Seismic anisotropy and slab dynamics from SKS splitting recorded in Colombia. Geophys. Res. Lett. 41, 8775–8783. https://doi.org/10.1002/2014GL061958
Poveda, E., 2013. Discontinuidades sísmicas en la litósfera bajo la zona andina y el occidente colombianos a partir de formas de onda de sismos distantes. Universidad Nacional de Colombia
Poveda, E., Julià, J., Schimmel, M., Perez-Garcia, N., 2018. Upper and Middle Crustal Velocity Structure of the Colombian Andes From Ambient Noise Tomography: Investigating Subduction-Related Magmatism in the Overriding Plate. J. Geophys. Res. Solid Earth 123, 1459–1485. https://doi.org/10.1002/2017JB014688
Prasanna, H.M.I., Chen, W., Iz, H.B., 2013. High resolution local Moho determination using gravity inversion: A case study in Sri Lanka. J. Asian Earth Sci. 74, 62–70. https://doi.org/10.1016/j.jseaes.2013.06.005
Reguzzoni, M., Sampietro, D., 2015. GEMMA: An Earth crustal model based on GOCE satellite data. Int. J. Appl. Earth Obs. Geoinf. 35, 31–43. https://doi.org/10.1016/j.jag.2014.04.002
Riesner, M., Lacassin, R., Simoes, M., Carrizo, D., Armijo, R., 2018a. Revisiting the Crustal Structure and Kinematics of the Central Andes at 33.5°S: Implications for the Mechanics of Andean Mountain Building. Tectonics 37, 1347–1375. https://doi.org/10.1002/2017TC004513
Riesner, M., Lacassin, R., Simoes, M., Carrizo, D., Armijo, R., 2018b. Revisiting the Crustal Structure and Kinematics of the Central Andes at 33.5°S: Implications for the Mechanics of Andean Mountain Building. Tectonics 37, 1347–1375. https://doi.org/10.1002/2017TC004513
Rodriguez-Vargas, A., Koester, E., Mallmann, G., Conceição, R. V., Kawashita, K., Weber, M.B.I., 2005. Mantle diversity beneath the Colombian Andes, Northern Volcanic Zone: Constraints from Sr and Nd isotopes. Lithos 82, 471–484. https://doi.org/10.1016/j.lithos.2004.09.027
Roecker, S., Ebinger, C., Tiberi, C., Mulibo, G., Ferdinand-Wambura, R., Mtelela, K., Kianji, G., Muzuka, A., Gautier, S., Albaric, J., Peyrat, S., 2017. Subsurface images of the Eastern Rift, Africa, from the joint inversion of body waves, surface waves and gravity: Investigating the role of fluids in early-stage continental rifting. Geophys. J. Int. 210, 931–950. https://doi.org/10.1093/gji/ggx220
Roecker, S., Thurber, C., Roberts, K., Powell, L., 2006. Refining the image of the San Andreas Fault near Parkfield, California using a finite difference travel time computation technique. Tectonophysics 426, 189–205. https://doi.org/10.1016/j.tecto.2006.02.026
Rondenay, S., Montési, L.G.J., Abers, G.A., 2010. New geophysical insight into the origin of the Denali volcanic gap. Geophys. J. Int. 182, 613–630. https://doi.org/10.1111/j.1365-246X.2010.04659.x
Saeid, E., Bakioglu, K.B., Kellogg, J., Leier, A., Martinez, J.A., Guerrero, E., 2017. Garzón Massif basement tectonics: Structural control on evolution of petroleum systems in upper Magdalena and Putumayo basins, Colombia. Mar. Pet. Geol. 88, 381–401. https://doi.org/10.1016/j.marpetgeo.2017.08.035
Sahoo, S.D., Pal, S.K., 2021. Crustal structure and Moho topography of the southern part (18° S–25° S) of Central Indian Ridge using high-resolution EIGEN6C4 global gravity model data. Geo-Marine Lett. 41. https://doi.org/10.1007/s00367-020-00679-z
Sánchez, J., Horton, B.K., Tesón, E., Mora, A., Ketcham, R.A., Stockli, D.F., 2012. Kinematic evolution of Andean fold-thrust structures along the boundary between the Eastern Cordillera and Middle Magdalena Valley basin, Colombia. Tectonics 31, 1–24. https://doi.org/10.1029/2011TC003089
Sarmiento-Rojas, L.F., 2019. Cretaceous stratigraphy and paleo-facies maps of northwestern South America, Frontiers in Earth Sciences. https://doi.org/10.1007/978-3-319-76132-9_10
Schreiber, D., Lardeaux, J.M., Martelet, G., Courrioux, G., Guillen, A., 2010. 3-D modelling of Alpine Mohos in Southwestern Alps. Geophys. J. Int. 180, 961–975. https://doi.org/10.1111/j.1365-246X.2009.04486.x
Schulte-Pelkum, V., Mahan, K.H., 2014. Imaging Faults and Shear Zones Using Receiver Functions. Pure Appl. Geophys. 171, 2967–2991. https://doi.org/10.1007/s00024-014-0853-4
Schurr, B., Rietbrock, A., Asch, G., Kind, R., Oncken, O., 2006. Evidence for lithospheric detachment in the central Andes from local earthquake tomography. Tectonophysics 415, 203–223. https://doi.org/10.1016/j.tecto.2005.12.007
Shearer, P.M., 2009. Introduction to Seismology, 2nd ed. Cambridge University Press, New York
Shi, Z., Gao, R., Li, W., Lu, Z., Li, H., 2020. Tectonophysics Cenozoic crustal-scale duplexing and flat Moho in southern Tibet: Evidence from reflection seismology. Tectonophysics 790, 228562. https://doi.org/10.1016/j.tecto.2020.228562
Sippl, C., Schurr, B., Tympel, J., Angiboust, S., Mechie, J., Yuan, X., Schneider, F.M., Sobolev, S. V., Ratschbacher, L., Haberland, C., 2013. Deep burial of Asian continental crust beneath the Pamir imaged with local earthquake tomography. Earth Planet. Sci. Lett. 384, 165–177. https://doi.org/10.1016/j.epsl.2013.10.013
Siravo, G., Faccenna, C., Gérault, M., Becker, T.W., Fellin, M.G., Herman, F., Molin, P., 2019. Slab flattening and the rise of the Eastern Cordillera, Colombia. Earth Planet. Sci. Lett. 512, 100–110. https://doi.org/10.1016/j.epsl.2019.02.002
Siravo, G., Fellin, M.G., Faccenna, C., Bayona, G., Lucci, F., Molin, P., Maden, C., 2018a. Constraints on the Cenozoic Deformation of the Northern Eastern Cordillera, Colombia. Tectonics 37, 4311–4337. https://doi.org/10.1029/2018TC005162
Siravo, G., Fellin, M.G., Faccenna, C., Bayona, G., Lucci, F., Molin, P., Maden, C., 2018b. Constraints on the Cenozoic Deformation of the Northern Eastern Cordillera, Colombia. Tectonics 37, 4311–4337. https://doi.org/10.1029/2018TC005162
Siravo, G., Molin, P., Sembroni, A., Fellin, M.G., Faccenna, C., 2021. Tectonically driven drainage reorganization in the Eastern Cordillera, Colombia. Geomorphology 389, 107847. https://doi.org/10.1016/j.geomorph.2021.107847
Sjöberg, L.E., Bagherbandi, M., 2011. A method of estimating the Moho density contrast with a tentative application of EGM08 and CRUST2.0. Acta Geophys. 59, 502–525. https://doi.org/10.2478/s11600-011-0004-6
Sobolev, S. V., Babeyko, A.Y., 2005. What drives orogeny in the Andes? Geology 33, 617–620. https://doi.org/10.1130/G21557.1
Sobolev, S. V., Babeyko, A.Y., Koulakov, I., Oncken, O., 2006. Mechanism of the Andean Orogeny: Insight from Numerical Modeling, in: The Andes. Springer, Berlin, Heidelberg, pp. 513–535. https://doi.org/10.1007/978-3-540-48684-8_25
Spada, M., Bianchi, I., Kissling, E., Agostinetti, N.P., Wiemer, S., 2013. Combining controlled-source seismology and receiver function 1050–1068. https://doi.org/10.1093/gji/ggt148
Steffen, R., Strykowski, G., Lund, B., 2017. High-resolution Moho model for Greenland from EIGEN-6C4 gravity data. Tectonophysics 706–707, 206–220. https://doi.org/10.1016/j.tecto.2017.04.014
Storchak, D.A., Schweitzer, J., Bormann, P., 2003. The IASPEI standard seismic phase list. Seismol. Res. Lett. 74, 761–772. https://doi.org/10.1785/gssrl.74.6.761
Sun, M., Bezada, M.J., Cornthwaite, J., Prieto, G.A., Niu, F., Levander, A., 2022. Overlapping slabs: Untangling subduction in NW South America through finite-frequency teleseismic tomography. Earth Planet. Sci. Lett. 577, 117253. https://doi.org/10.1016/j.epsl.2021.117253
Syracuse, E.M., Maceira, M., Prieto, G.A., Zhang, H., Ammon, C.J., 2016. Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data. Earth Planet. Sci. Lett. 444, 139–149. https://doi.org/10.1016/j.epsl.2016.03.050
Tang, M., Lee, C.T.A., Chen, K., Erdman, M., Costin, G., Jiang, H., 2019. Nb/Ta systematics in arc magma differentiation and the role of arclogites in continent formation. Nat. Commun. 10. https://doi.org/10.1038/s41467-018-08198-3
Tesón, E., Mora, A., Silva, A., Namson, J., Teixell, A., Castellanos, J., Casallas, W., Julivert, M., Taylor, M., Ibáñez-Mejía, M., Valencia, V.A., 2013. Relationship of Mesozoic graben development, stress, shortening magnitude, and structural style in the Eastern Cordillera of the Colombian Andes. Geol. Soc. Spec. Publ. 377, 257–283. https://doi.org/10.1144/SP377.10
Thybo, H., Artemieva, I.M., 2013. Moho and magmatic underplating in continental lithosphere. Tectonophysics 609, 605–619. https://doi.org/10.1016/j.tecto.2013.05.032
Tirel, C., Gueydan, F., Tiberi, C., Brun, J.P., 2004. Aegean crustal thickness inferred from gravity inversion. Geodynamical implications. Earth Planet. Sci. Lett. 228, 267–280. https://doi.org/10.1016/j.epsl.2004.10.023
Tkalčić, H., Chen, Y., Liu, R., Zhibin, H., Sun, L., Chan, W., 2011. Multistep modelling of teleseismic receiver functions combined with constraints from seismic tomography: Crustal structure beneath southeast China. Geophys. J. Int. 187, 303–326. https://doi.org/10.1111/j.1365-246X.2011.05132.x
Uieda, L., Barbosa, V.C.F., 2017. Fast nonlinear gravity inversion in spherical coordinates with application to the South American Moho. Geophys. J. Int. 208, 162–176. https://doi.org/10.1093/gji/ggw390
van der Meijde, M., Julià, J., Assumpção, M., 2013. Gravity derived Moho for South America. Tectonophysics 609, 456–467. https://doi.org/10.1016/j.tecto.2013.03.023
Vargas, C.A., 2020. Subduction Geometries in Northwestern South America. Geol. Colomb. Vol. 4 Quat. 4, 397–422
Vargas, C.A., Mann, P., 2013. Tearing and breaking off of subducted slabs as the result of collision of the panama arc-indenter with Northwestern South America. Bull. Seismol. Soc. Am. 103, 2025–2046. https://doi.org/10.1785/0120120328
Vargas, C.A., Ochoa, L.H., Caneva, A., 2019. Estimation of the Thermal Structure Beneath the Volcanic Arc of the Northern Andes by Coda Wave Attenuation Tomography. Front. Earth Sci. 7, 1–13. https://doi.org/10.3389/feart.2019.00208
Vargas, C.A., Pujades, L., Caneva, A., 2012. Attenuation structure of the Galeras volcano, Colombia. Bol. Geol. 34, 149–161
Vargas, C.A., Pujades, L.G., Montes, L., 2007. Seismic structure of South-Central Andes of Colombia by tomographic inversion. Geofis. Int. 46, 117–127. https://doi.org/10.22201/igeof.00167169p.2007.46.2.21
Vauchez, A., Tommasi, A., Mainprice, D., 2012. Faults (shear zones) in the Earth’s mantle. Tectonophysics 558–559, 1–27. https://doi.org/10.1016/j.tecto.2012.06.006
Veloza, G., Styron, R., Taylor, M., 2012. Open-source archive of active faults for northwest South America. GSA Today 22, 4–10. https://doi.org/10.1130/GSAT-G156A.1
Vidale, J.E., 1990. Finite‐difference calculation of traveltimes in three dimensions. Geophysics 55, 521–526. https://doi.org/10.1190/1.1442863
Vietor, T., Oncken, O., 2005. Controls on the shape and kinematics of the Central Andean plateau flanks: Insights from numerical modeling. Earth Planet. Sci. Lett. 236, 814–827. https://doi.org/10.1016/j.epsl.2005.06.004
Villagómez, D., Spikings, R., 2013. Thermochronology and tectonics of the Central and Western Cordilleras of Colombia: Early Cretaceous-Tertiary evolution of the Northern Andes. Lithos 160–161, 228–249. https://doi.org/10.1016/j.lithos.2012.12.008
Wagner, L.S., Anderson, M.L., Jackson, J.M., Beck, S.L., Zandt, G., 2008. Seismic evidence for orthopyroxene enrichment in the continental lithosphere. Geology 36, 935–938. https://doi.org/10.1130/G25108A.1
Wagner, L.S., Beck, S., Zandt, G., 2005. Upper mantle structure in the south central Chilean subduction zone (30° to 36°S). J. Geophys. Res. Solid Earth 110, 1–20. https://doi.org/10.1029/2004JB003238
Wagner, L.S., Jaramillo, J.S., Ramírez-Hoyos, L.F., Monsalve, G., Cardona, A., Becker, T.W., 2017. Transient slab flattening beneath Colombia. Geophys. Res. Lett. 44, 6616–6623. https://doi.org/10.1002/2017GL073981
Wang, C., Liang, Y., Xu, W., 2021. Formation of Amphibole-Bearing Peridotite and Amphibole-Bearing Pyroxenite Through Hydrous Melt-Peridotite Reaction and In Situ Crystallization: An Experimental Study. J. Geophys. Res. Solid Earth 126, 1–22. https://doi.org/10.1029/2020JB019382
Wang, Q., Bagdassarov, N., Ji, S., 2013. The Moho as a transition zone: A revisit from seismic and electrical properties of minerals and rocks. Tectonophysics 609, 395–422. https://doi.org/10.1016/j.tecto.2013.08.041
Ward, K.M., Zandt, G., Beck, S.L., Wagner, L.S., Tavera, H., 2016. Lithospheric structure beneath the northern Central Andean Plateau from the joint inversion of ambient noise and earthquake-generated surface waves. J. Geophys. Res. Solid Earth 121, 8217–8238. https://doi.org/10.1002/2016JB013237
Weber, M.B., 1998. The Mercaderes-Rio Mayo xenoliths, Colombia: their bearing on mantle and crustal processes in the Northern Andes PhD Thesis.
Weber, M.B., Tarney, J., Kempton, P.D., Kent, R.W., 2002. Crustal make-up of the Northern Andes: Evidence based on deep crustal xenolith suites, Mercaderes, SW Colombia. Tectonophysics 345, 49–82. https://doi.org/10.1016/S0040-1951(01)00206-2
White, R.W., Powell, R., Johnson, T.E., 2014. The effect of Mn on mineral stability in metapelites revisited: new a–x relations for manganese-bearing minerals. J. Metamorph. Geol. 32, 809–828. https://doi.org/10.1111/jmg.12
Whitman, D., 1994. Moho geometry beneath the eastern margin of the Andes, northwest Argentina, and its implications to the effective elastic thickness of the Andean foreland. J. Geophys. Res. 99, 15277–15289
Xuan, S., Jin, S., Chen, Y., 2020. Determination of the isostatic and gravity Moho in the East China Sea and its implications. J. Asian Earth Sci. 187, 104098. https://doi.org/10.1016/j.jseaes.2019.104098
Yarce, J., Monsalve, G., Becker, T.W., Cardona, A., Poveda, E., Alvira, D., Ordoñez-Carmona, O., 2014. Seismological observations in Northwestern South America: Evidence for two subduction segments, contrasting crustal thicknesses and upper mantle flow. Tectonophysics 637, 57–67. https://doi.org/10.1016/j.tecto.2014.09.006
Ydri, A., Idres, M., Ouyed, M., Samai, S., 2020. Moho geometry beneath northern Algeria from gravity data inversion. J. African Earth Sci. 168, 103851. https://doi.org/10.1016/j.jafrearsci.2020.103851
Zandt, G., Gilbert, H., Owens, T.J., Ducea, M., Saleeby, J., Jones, C.H., 2004. Active foundering of a continental arc root beneath the southern Sierra Nevada in California. Nature 431, 41–46. https://doi.org/10.1038/nature02847
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxi, 146 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales
dc.publisher.department.spa.fl_str_mv Departamento de Materiales y Minerales
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82115/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82115/2/1098714003.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/82115/3/Supplementary%20Material%20S2-1.xls
https://repositorio.unal.edu.co/bitstream/unal/82115/4/Supplementary%20Material%20S3-1.xlsx
https://repositorio.unal.edu.co/bitstream/unal/82115/5/Supplementary%20Material%20S3-2.xlsx
https://repositorio.unal.edu.co/bitstream/unal/82115/6/Supplementary%20Material%20S4-1.xlsx
https://repositorio.unal.edu.co/bitstream/unal/82115/7/Supplementary%20Material%20S5-1.xlsx
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
e5620541943a4c3da0ebd5988f5884cd
a9aa6eb0ffc9427febed658ea2d0192c
f0f95732e45f3ca4660d3fa0a27a1ee8
f91165e036f823d64f895095910728e6
29976b2e5cd11890a67c6f4b078707c7
a6c45a57d762200ee2c0fe3760ad63d7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886556027322368
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Monsalve Mejía, Gaspar24932fa3561948cfb9d8ea2e55e6c7a8Avellaneda Jiménez, David Santiago883866417c24a760f34cf9008b24a7c12022-08-25T19:46:38Z2022-08-25T19:46:38Z2022-08-24https://repositorio.unal.edu.co/handle/unal/82115Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/The crust-mantle transition beneath the northwestern Andes is expected to be complex given its accretionary tectonic history. Considering that research on this matter remains scarce, especially in the Colombian region, this thesis presents new insights into the structure and nature of the crust-mantle transition in several parts of the orogen. Four chapters are presented, discussing: (1) variations in Moho depth along the orogen using inversion of gravity data; (2) latitudinal heterogeneity and anisotropy in the uppermost mantle beneath the modern arc using Pn and Sn wave speed estimates, and thermo-compositional modeling; (3) the nature of the arc root beneath the modern arc by means of a receiver function analysis; and (4) intra-continental deformation beneath the Eastern Cordillera plateau from a joint inversion of arrival times of local earthquakes and gravity data. Integrated results suggest three main features associated with a thickened crust: along the northwestern foreland region (influenced by the adjacent thickened Eastern Cordillera), along the axis of the Eastern Cordillera (related to its shortening history and magmatic additions), and in the southern part of the modern arc, in the Andes of southern Colombia and northern Ecuador (likely a combined result of mafic addition to the base of the crust, foundering tectonics, and lateral displacement of the lower crust). Investigations on the upper mantle beneath the modern arc suggest a well-developed anisotropy, showing a latitudinal dissimilarity in wave speeds and temperature. The northern part (north of 4°N; <75 km wide arc) is seismically slower, and has a higher degree of anisotropy, suggesting warmer conditions. The southern part (south of 2°N; >120 km wide arc) is faster, less anisotropic, and consistent with a colder state. Beneath the volcanic gap region (2°-4°N), seismic speeds are similar to those in the north, yet a colder thermal state is suggested. The controlling factor of the anisotropy is the preferred orientation of olivine and pyroxene. Latitudinal anisotropy and temperature dissimilarities are likely influenced by the Caldas tear to the north, prompting hot mantle influx, and the Carnegie ridge interaction to the south, prompting shallower subduction. Additional investigations on the arc domain, using the teleseismic receiver function technique, which looks for P to S phase conversions, indicate that the crustal root beneath the arc is characterized by high velocities and a latitudinally variable thickness, which coupled with documented xenoliths supports an arclogite nature. This high-velocity and high-density arc root suggest an offset between the seismic Moho and the crust-mantle boundary of around 8.5-14 km. Finally, beneath the Eastern Cordillera plateau, a well-imaged anomaly is identified at depths of 40-60 km beneath the western flank of the plateau, at a latitude of ~5.7°N. The slow velocity anomaly is interpreted as crustal materials eastwardly underthrusting beneath the western flank. This process is thought to be prompting the abrupt change in topography between the adjacent low-elevated basin and the orogenic plateau. This thesis shows how the crust-mantle transition along the northwestern Andes follows the idea that a heterogenous Moho vicinity is the rule rather than the exception for Andean-type orogens.La transición corteza-manto bajo los Andes noroccidentales se espera que sea compleja, dada su historia tectónica que involucra la acreción de bloques. Teniendo en cuenta que la investigación sobre este tema sigue siendo escasa, especialmente en la región colombiana, esta tesis presenta nuevos conocimientos sobre la estructura y la naturaleza de la transición corteza-manto en varias partes del orógeno. Se presentan cuatro capítulos, en los que se analizan: (1) las variaciones en la profundidad del Moho a lo largo del orógeno mediante la inversión de datos de gravedad; (2) la heterogeneidad latitudinal en el manto superior bajo el arco moderno mediante estimaciones de velocidad de las ondas Pn y Sn, anisotropía y modelamiento termo-composicional; (3) la naturaleza de la raíz del arco debajo el arco moderno mediante el análisis de la función receptora; y (4) la deformación intra-continental bajo la meseta de la Cordillera Oriental a partir de la inversión conjunta de tiempos de llegada de terremotos locales y datos de gravedad. Los resultados integrados sugieren tres rasgos principales de engrosamiento de la corteza a lo largo del orógeno: en la región noroccidental del antepaís (influenciada por la adyacente Cordillera Oriental con corteza engrosada), a lo largo del eje de la Cordillera Oriental (relacionado con su historia de acortamiento y adición magmática), y en la parte sur del arco moderno, en los Andes al sur de Colombia y norte de Ecuador (probablemente el resultado combinado de adición magmática a la base de la corteza, la tectónica de hundimiento/delaminación, y del desplazamiento lateral de la corteza inferior). Investigaciones en el manto superior bajo el arco moderno sugiere que es anisotrópico, mostrando una disimilitud latitudinal en las velocidades de ondas sísmicas y la temperatura. La parte norte (al norte de 4°N; arco <75 km de ancho) es sísmicamente más lenta, tiene una mayor anisotropía y sugiere condiciones más cálidas. La parte sur (al sur de 2°N; arco >120 km de ancho) es más rápida, menos anisotrópica y sugiere condiciones más frías. Por debajo de la región con ausencia magmática (2°-4°N), las velocidades sísmicas son similares a las del norte, pero se sugiere un estado térmico más frío. El factor que controla la anisotropía es la orientación preferente del olivino y el piroxeno. La anisotropía latitudinal y las disimilitudes de temperatura están probablemente influenciadas por el desgarro litosférico de Caldas al norte, que provoca la entrada de manto caliente, y la interacción de la dorsal de Carnegie al sur, que permite una subducción menos profunda. Adicionalmente, investigaciones sobre la región del arco, utilizando la técnica de función de receptora telesísmica, que busca conversiones de fase P a S, sugiere que la raíz cortical bajo el arco moderno muestra altas velocidades con un grosor variable en latitud, que, junto con xenolitos documentados, apoyan una naturaleza arclogítica. Esta capa de alta velocidad y densidad sugiere un desfase entre el Moho sísmico y el límite corteza-manto de unos 8.5-14 km. Por último, debajo de la meseta de la Cordillera Oriental, se identifica una anomalía bien constreñida a profundidades de 40-60 km bajo el flanco occidental de la meseta, a una latitud de ~5.7°N. La anomalía de velocidad lenta se interpreta como una inyección de materiales corticales hacia el este por debajo del flanco occidental. Este proceso provoca un cambio abrupto en la topografía entre la cuenca adyacente de baja elevación y la meseta orogénica. Esta tesis muestra cómo la transición corteza-manto a lo largo de los Andes noroccidentales es una región heterogénea y compleja en orógenos de tipo andino.Fundación para la Promoción de la Investigación y la Tecnología (Project 4.634)DoctoradoDoctor en IngenieríaTectonophysicsÁrea Curricular de Materiales y Nanotecnologíaxxi, 146 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Minas - Doctorado en Ingeniería - Ciencia y Tecnología de MaterialesDepartamento de Materiales y MineralesFacultad de MinasMedellínUniversidad Nacional de Colombia - Sede Medellín550 - Ciencias de la tierraGeofísicaNorthern AndesCrustal thickeningMantle anisotropyArclogite arc-rootIntra-continental underthrustingMulti-technique geophysicsAndes del NorteEngrosamiento corticalAnisotropía del mantoRaíz cortical arclogíticaDeformación intra-continentalGeofísica multitécnicaOn the structure of the lower crust to mantle transition beneath an accretionary inherited Andean margin, northwestern AndesSobre la estructura de la transición corteza baja al manto en un margen andino con herencia de acreción, Andes noroccidentalesTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDAbers, G.A., Hacker, B.R., 2016. A MATLAB toolbox and Excel workbook for calculating the densities, seismic wave speeds, and major element composition of minerals and rocks at pressure and temperature. Geochemistry, Geophys. Geosystems 17, 616–624. https://doi.org/10.1002/2015GC006171Abratis, M., Wörner, G., 2001. Ridge collision, slab-window formation, and the flux of Pacific asthenosphere into the Caribbean realm. Geology 29, 127–130. https://doi.org/10.1130/0091-7613Afonso, J.C., Schutt, D.L., 2012. The effects of polybaric partial melting on density and seismic velocities of mantle restites. Lithos 134–135, 289–303. https://doi.org/10.1016/j.lithos.2012.01.009Aitken, A.R.A., Salmon, M.L., Kennett, B.L.N., 2013. Australia’s Moho: A test of the usefulness of gravity modelling for the determination of Moho depth. Tectonophysics 609, 468–479. https://doi.org/10.1016/j.tecto.2012.06.049Amante, C., Eakins, B.W., 2009. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Tech. Memo. NESDIS NGDC-24 19. https://doi.org/10.1594/PANGAEA.769615Ammon, C.J., Randall, G.E., Zandt, G., 1990. On the Nonuniqueness of Receiver Function Inversions. J. Geophys. Res. 95. https://doi.org/10.1029/jb095ib10p15303Anderson, D.L., 2005. Large Igneous Provinces, Delamination, and Fertile Mantle. Elements 1, 271–275. https://doi.org/10.2113/gselements.1.5.271Armijo, R., Rauld, R., Thiele, R., Vargas, G., Campos, J., Lacassin, R., Kausel, E., 2010. The West Andean Thrust, the San Ramón Fault, and the seismic hazard for Santiago, Chile. Tectonics 29. https://doi.org/10.1029/2008tc002427Avellaneda-Jiménez, D.S., Monsalve, G., León, S., Gómez-García, A.M., 2022. Insights into Moho depth beneath the northwestern Andean region from gravity data inversion. Geophys. J. Int. 229, 1964–1977. https://doi.org/https://doi.org/10.1093/gji/ggac041Barthelmes, F., 2009. Definition of functionals of the geopotential and their calculation from spherical harmonic models: theory and formulas used by the calculation service of the International Centre for Global Earth Models (ICGEM). Dtsch. Geo-ForschungsZentrum GFZ 1–5. https://doi.org/10.2312/GFZ.b103-0902-26Baumont, D., Paul, A., Zandt, G., Beck, S.L., Pedersen, H., 2002. Lithospheric structure of the central Andes based on surface wave dispersion. J. Geophys. Res. Solid Earth 107, ESE 18-1-ESE 18-13. https://doi.org/10.1029/2001jb000345Bayona, G., Cortés, M., Jaramillo, C., Ojeda, G., Aristizabal, J.J., Reyes-Harker, A., 2008. An integrated analysis of an orogen-sedimentary basin pair: Latest Cretaceous-Cenozoic evolution of the linked Eastern Cordillera orogen and the Llanos foreland basin of Colombia. Bull. Geol. Soc. Am. 120, 1171–1197. https://doi.org/10.1130/B26187.1Beck, S.L., Zandt, G., 2002. The nature of orogenic crust in the central Andes. J. Geophys. Res. Solid Earth 107, ESE 7-1-ESE 7-16. https://doi.org/10.1029/2000jb000124Beghoul, N., Barazangi, M., 1989. Mapping high Pn velocity beneath the Colorado Plateau constrains uplift models. J. Geophys. Res. 94, 7083–7104. https://doi.org/10.1029/JB094iB06p07083Bernal-Olaya, R., Mann, P., Vargas, C.A., 2015. Earthquake, tomographic, seismic reflection, and gravity evidence for a shallowly dipping subduction zone beneath the caribbean margin of Northwestern Colombia. AAPG Mem. 108, 247–269. https://doi.org/10.1306/13531939M1083642Bernard, R.E., Schulte-Pelkum, V., Behr, W.M., 2021. The competing effects of olivine and orthopyroxene CPO on seismic anisotropy. Tectonophysics 814, 228954. https://doi.org/10.1016/j.tecto.2021.228954Bernet, M., Urueña, C., Amaya, S., Peña, M.L., 2016. New thermo and geochronological constraints on the Pliocene-Pleistocene eruption history of the Paipa-Iza volcanic complex, Eastern Cordillera, Colombia. J. Volcanol. Geotherm. Res. 327, 299–309. https://doi.org/10.1016/j.jvolgeores.2016.08.013Bishop, B.T., Beck, S.L., Zandt, G., Wagner, L., Long, M., Antonijevic, S.K., Kumar, A., Tavera, H., 2017. Causes and consequences of flat-slab subduction in southern Peru. Geosphere 13, 1392–1407. https://doi.org/10.1130/GES01440.1Blanco, J.F., Vargas, C.A., Monsalve, G., 2017. Lithospheric thickness estimation beneath Northwestern South America from an S-wave receiver function analysis. Geochemistry, Geophys. Geosystems 18, 1376–1387. https://doi.org/10.1002/2016GC006785Bloch, E., Ibañez-Mejia, M., Murray, K., Vervoort, J., Müntener, O., 2017. Recent crustal foundering in the Northern Volcanic Zone of the Andean arc: Petrological insights from the roots of a modern subduction zone. Earth Planet. Sci. Lett. 476, 47–58. https://doi.org/10.1016/j.epsl.2017.07.041Borrero, C.A., Castillo, H., 2006. Vulcanitas del S-SE de Colombia: Retro-arco alcalino y su posible relacion con una ventana astenosferica. Boletín Geol. 28, 23–34Bowman, E.E., Ducea, M.N., Triantafyllou, A., 2021. Arclogites in the subarc lower crust: effects of crystallization, partial melting, and retained melt on the foundering ability of residual roots. J. Petrol. https://doi.org/10.1093/petrology/egab094/6424248Brocher, T.M., 2005. Empirical relations between elastic wavespeeds and density in the Earth’s crust. Bull. Seismol. Soc. Am. 95, 2081–2092. https://doi.org/10.1785/0120050077Cardona, A., León, S., Jaramillo, J.S., Montes, C., Valencia, V., Vanegas, J., Bustamante, C., Echeverri, S., 2018. The Paleogene arcs of the northern Andes of Colombia and Panama: Insights on plate kinematic implications from new and existing geochemical, geochronological and isotopic data. Tectonophysics 749, 88–103. https://doi.org/10.1016/j.tecto.2018.10.032Cardona, A., Montes, C., Ayala, C., Bustamante, C., Hoyos, N., Montenegro, O., Ojeda, C., Niño, H., Ramirez, V., Valencia, V., Rincón, D., Vervoort, J., Zapata, S., 2012. From arc-continent collision to continuous convergence, clues from Paleogene conglomerates along the southern Caribbean-South America plate boundary. Tectonophysics 580, 58–87. https://doi.org/10.1016/j.tecto.2012.08.039Case, J.E., Duran S, L.G., Alfonso, L.R., Moore, W.R., 1971. Tectonic investigations in western Colombia and eastern Panama. Bull. Geol. Soc. Am. 82, 2685–2712. https://doi.org/10.1130/0016-7606(1971)82[2685:TIIWCA]2.0.CO;2Castellanos, J.C., Clayton, R.W., Pérez-Campos, X., 2018. Imaging the Eastern Trans-Mexican Volcanic Belt With Ambient Seismic Noise: Evidence for a Slab Tear. J. Geophys. Res. Solid Earth 123, 7741–7759. https://doi.org/10.1029/2018JB015783Chiarabba, C., De Gori, P., Faccenna, C., Speranza, F., Seccia, D., Dionicio, V., Prieto, G.A., 2015. Subduction system and flat slab beneath the Eastern Cordillera of Colombia. Geochemistry Geophys. Geosystems 17, 16–27. https://doi.org/10.1002/2015GC006048Chiaradia, M., Müntener, O., Beate, B., Fontignie, D., 2009. Adakite-like volcanism of Ecuador: Lower crust magmatic evolution and recycling. Contrib. to Mineral. Petrol. 158, 563–588. https://doi.org/10.1007/s00410-009-0397-2Christensen, N.I., 2004. Serpentinites, peridotites, and seismology. Int. Geol. Rev. 46, 795–816. https://doi.org/10.2747/0020-6814.46.9.795Clark, M.K., Bush, J.W.M., Royden, L.H., 2005. Dynamic topography produced by lower crustal flow against rheological strength heterogeneities bordering the Tibetan Plateau. Geophys. J. Int. 162, 575–590. https://doi.org/10.1111/j.1365-246X.2005.02580.xCollins, J.A., Molnar, P., 2014. Pn anisotropy beneath the South Island of New Zealand and implications for distributed deformation in continental lithosphere. AGU J. Geophys. Res. Solid Earth 119, 7745–7767. https://doi.org/doi:10.1002/ 2014JB011233Connolly, J.A.D., 2005. Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236, 524–541. https://doi.org/10.1016/j.epsl.2005.04.033Cook, F.A., White, D.J., Jones, A.G., Eaton, D.W.S., Hall, J., Clowes, R.M., 2010. How the crust meets the mantle: Lithoprobe perspectives on the mohorovičić discontinuity and crust-mantle transition. Can. J. Earth Sci. 47, 315–351. https://doi.org/10.1139/E09-076Correa-Tamayo, A.M., Pulgarín-Alzate, B.A., Ancochea-Soto, E., 2020. The Nevado del Huila Volcanic Complex, in: Gómez, J., Pinilla-Pachon, A.O. (Eds.), The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombiano, Publicaciones Geológias Especiales 38, Bogotá, pp. 227–265. https://doi.org/https://doi.org/10.32685/pub.esp.38.2019.06Cortés, M., Angelier, J., 2005. Current states of stress in the northern Andes as indicated by focal mechanisms of earthquakes. Tectonophysics 403, 29–58. https://doi.org/10.1016/j.tecto.2005.03.020Cortés, M., Colletta, B., Angelier, J., 2006. Structure and tectonics of the central segment of the Eastern Cordillera of Colombia. J. South Am. Earth Sci. 21, 437–465. https://doi.org/10.1016/j.jsames.2006.07.004Crotwell, H.P., Owens, T.J., Ritsema, J., 1999. The TauP Toolkit: Flexible Seismic Travel-time and Ray-path Utilities. Seismol. Res. Lett. 70, 154–160. https://doi.org/10.1785/gssrl.70.2.154Currie, C.A., Ducea, M.N., DeCelles, P.G., Beaumont, C., 2015. Geodynamic models of Cordilleran orogens: Gravitational instability of magmatic arc roots. Mem. Geol. Soc. Am. 212, 1–22. https://doi.org/10.1130/2015.1212(01)DeCelles, P.G., Zandt, G., Beck, S.L., Currie, C.A., Ducea, M.N., Kapp, P., Gehrels, G.E., Carrapa, B., Quade, J., Schoenbohm, L.M., 2015. Cyclical orogenic processes in the Cenozoic central Andes. Mem. Geol. Soc. Am. 212, 459–490. https://doi.org/10.1130/2015.1212(22)Delph, J.R., Ward, K.M., Zandt, G., Ducea, M.N., Beck, S.L., 2017. Imaging a magma plumbing system from MASH zone to magma reservoir. Earth Planet. Sci. Lett. 457, 313–324. https://doi.org/10.1016/j.epsl.2016.10.008Ducea, M.N., Chapman, A.D., Bowman, E., Balica, C., 2021a. Arclogites and their role in continental evolution; part 2: Relationship to batholiths and volcanoes, density and foundering, remelting and long-term storage in the mantle. Earth-Science Rev. 214. https://doi.org/10.1016/j.earscirev.2020.103476Ducea, M.N., Chapman, A.D., Bowman, E., Triantafyllou, A., 2021b. Arclogites and their role in continental evolution; part 1: Background, locations, petrography, geochemistry, chronology and thermobarometry. Earth-Science Rev. 214. https://doi.org/10.1016/j.earscirev.2020.103375Erdman, M.E., Lee, C.T.A., Levander, A., Jiang, H., 2016. Role of arc magmatism and lower crustal foundering in controlling elevation history of the Nevadaplano and Colorado Plateau: A case study of pyroxenitic lower crust from central Arizona, USA. Earth Planet. Sci. Lett. 439, 48–57. https://doi.org/10.1016/j.epsl.2016.01.032Feng, M., An, M., Dong, S., 2017. Tectonic history of the Ordos Block and Qinling Orogen inferred from crustal thickness. Geophys. J. Int. 210, 303–320. https://doi.org/10.1093/gji/ggx163Ferrari, L., Orozco-Esquivel, T., Manea, V., Manea, M., 2012. The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone. Tectonophysics 522–523, 122–149. https://doi.org/10.1016/j.tecto.2011.09.018Fontaine, F.R., Tkalčić, H., Kennett, B.L.N., 2013. Imaging crustal structure variation across southeastern Australia. Tectonophysics 582, 112–125. https://doi.org/10.1016/j.tecto.2012.09.031Förste, C., Bruinsma, S., Abrikosov, O., Lemoine, J.M., Marty, J.C., Flechtner, F., Balmino, G., Barthelmes, F., Biancale, R., 2014. EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Serv. https://doi.org/https://doi.org/10.5880/icgem.2015.1Furlong, K.P., Fountain, D.M., 1986. Continental crustal underplating: Thermal considerations and seismic-petrologic consequences. J. Geophys. Res. 91, 8285. https://doi.org/10.1029/jb091ib08p08285Gao, X., Sun, S., 2019. Comment on “3DINVER.M: A MATLAB program to invert the gravity anomaly over a 3D horizontal density interface by Parker-Oldenburg’s algorithm.” Comput. Geosci. 127, 133–137. https://doi.org/10.1016/j.cageo.2019.01.013Gómez-García, A.M., Le Breton, E., Scheck-Wenderoth, M., Monsalve, G., Anikiev, D., 2021. The preserved plume of the Caribbean Large Igneous Plateau revealed by 3D data-integrative models. Solid Earth 12, 275–298. https://doi.org/10.5194/se-12-275-2021Gómez-Ortiz, D., Agarwal, B.N.P., 2005. 3DINVER.M: A MATLAB program to invert the gravity anomaly over a 3D horizontal density interface by Parker-Oldenburg’s algorithm. Comput. Geosci. 31, 513–520. https://doi.org/10.1016/j.cageo.2004.11.004Gómez-Ortiz, D., Tejero-López, R., Babín-Vich, R., Rivas-Ponce, A., 2005. Crustal density structure in the Spanish Central System derived from gravity data analysis (Central Spain). Tectonophysics 403, 131–149. https://doi.org/10.1016/j.tecto.2005.04.006Graterol, V., Vargas, A., 2010. Mapa de anomalia de Bouguer total de la Republica de Colombia. ANH (Agencia Nac. Hidrocarburos Colomb. Bogota Magna/Colombia-Magna Bogota Zo. 1850000Green, E., Holland, T., Powell, R., 2007. An order-disorder model for omphacitic pyroxenes in the system jadeite-diopside-hedenbergite-acmite, with applications to eclogitic rocks. Am. Mineral. 92, 1181–1189. https://doi.org/10.2138/am.2007.2401Green, E., White, R.W., Diener, J.F.A., Powell, R., Holland, T.J.B., Palin, R.M., 2016. Activity–composition relations for the calculation of partial melting equilibria in metabasic rocks. J. Metamorph. Geol. 34, 845–869. https://doi.org/10.1111/jmg.12211Griffin, W.L., O’Reilly, S.Y., Afonso, J.C., Begg, G.C., 2009. The composition and evolution of lithospheric mantle: A re-evaluation and its tectonic implications. J. Petrol. 50, 1185–1204. https://doi.org/10.1093/petrology/egn033Guerri, M., Cammarano, F., Connolly, J.A.D., 2015. Geochemistry, Geophysics, Geosystems. Geochemistry Geophys. Geosystems 18, 1541–1576. https://doi.org/10.1002/2015GC005746.DynamicsGutscher, M.A., Malavieille, J., Lallemand, S., Collot, J.Y., 1999. Tectonic segmentation of the North Andean margin: Impact of the Carnegie Ridge collision. Earth Planet. Sci. Lett. 168, 255–270. https://doi.org/10.1016/S0012-821X(99)00060-6Gutscher, M.A., Maury, F., Eissen, J.P., Bourdon, E., 2000. Can slab melting be caused by flat subduction? Geology 28, 535–538. https://doi.org/10.1130/0091-7613Hacker, B.R., Abers, G.A., 2012. Subduction Factory 5: Unusually low Poisson’s ratios in subduction zones from elastic anisotropy of peridotite. J. Geophys. Res. Solid Earth 117, 1–15. https://doi.org/10.1029/2012JB009187Hacker, B.R., Abers, G.A., Peacock, S.M., 2003. Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. J. Geophys. Res. Solid Earth 108, 1–26. https://doi.org/10.1029/2001jb001127Hammond, J.O.S., Kendall, J.M., Wookey, J., Stuart, G.W., Keir, D., Ayele, A., 2014. Differentiating flow, melt, or fossil seismic anisotropy beneath Ethiopia. Geochemistry, Geophys. Geosystems 15, 1878–1894. https://doi.org/10.1002/2013GC005185Hammond, W.C., Humphreys, E.D., 2000. Upper mantle seismic wave velocity: Effects of realistic partial melt geometries. J. Geophys. Res. Solid Earth 105, 10975–10986. https://doi.org/https://doi.org/10.1029/2000JB900041Hayes, G.P., Moore, G.L., Portner, D.E., Hearne, M., Flamme, H., Furtney, M., Smoczyk, G.M., 2018. Slab2, a comprehensive subduction zone geometry model. Science (80-. ). 362(6410), 58–61Herrmann, R.B., 2013. Computer programs in seismology: An evolving tool for instruction and research. Seismol. Res. Lett. 84, 1081–1088. https://doi.org/10.1785/0220110096Hole, J.A., Zelt, B.C., 1995. 3-D finite-difference reflection traveltimes. Geophys. J. Int. 121, 427–434. https://doi.org/https://doi.org/10.1111/j.1365-246X.1995.tb05723.xHolland, T.J.B., Powell, R., 2003. Activity-compositions relations for phases in petrological calculations: An asymetric multicomponent formulation. Contrib. to Mineral. Petrol. 145, 492–501. https://doi.org/10.1007/s00410-003-0464-zHolland, T.J.B., Powell, R., 1998. An internally consistent thermodynamic data set for phases of petrological interest. J. Metamorph. Geol. 16, 309–343. https://doi.org/10.1111/j.1525-1314.1998.00140.xHorton, B.K., Parra, M., Mora, A., 2020. Insights from the Sedimentary Record Chapter 3. Geol. Colomb. 3, 1–22Huang, Y., Chubakov, V., Mantovani, F., Rudnick, R.L., McDonough, W.F., 2013. A reference Earth model for the heat-producing elements and associated geoneutrino flux. Geochemistry, Geophys. Geosystems 14, 2003–2029. https://doi.org/10.1002/ggge.20129Hyndman, R.D., Peacock, S.M., 2003. Serpentinization of the forearc mantle. Earth Planet. Sci. Lett. 212, 417–432. https://doi.org/10.1016/S0012-821X(03)00263-2Idárraga-García, J., Kendall, J.M., Vargas, C.A., 2016. Shear wave anisotropy in northwestern South America and its link to the Caribbean and Nazca subduction geodynamics. Geochemistry Geophys. Geosystems 17, 3655–3673. https://doi.org/doi:10.1002/2016GC006323Ince, E.S., Barthelmes, F., Reißland, S., Elger, K., Förste, C., Flechtner, F., Schuh, H., 2019. ICGEM - 15 years of successful collection and distribution of global gravitational models, associated services and future plans. Earth Syst. Sci. Data Discuss. 1–61. https://doi.org/10.5194/essd-2019-17Jeffreys, H., Bullen, K.E., 1940. Seismological Tables, British Association for the Advancement of Science, LondonJennings, E.S., Holland, T.J.B., 2015. A simple thermodynamic model for melting of peridotite in the system NCFMASOCr. J. Petrol. 56, 869–892. https://doi.org/10.1093/petrology/egv020Jones, C.H., Reeg, H., Zandt, G., Gilbert, H., Owens, T.J., Stachnik, J., 2014. P-wave tomography of potential convective downwellings and their source regions, Sierra Nevada, California. Geosphere 10, 505–533. https://doi.org/10.1130/GES00961.1Julià, J., Ammon, C.J., Herrmann, R.B., Correig, A.M., 2000. Joint inversion of receiver function and surface wave dispersion observations. Geophys. J. Int. 143, 99–112. https://doi.org/10.1046/j.1365-246X.2000.00217.xKarabulut, H., Paul, A., Erg, T.A., Hatzfeld, D., Childs, D.M., Aktar, M., 2013. Long-wavelength undulations of the seismic Moho beneath the strongly stretched Western Anatolia 450–464. https://doi.org/10.1093/gji/ggt100Kay, S.M., Mpodozis, C., Gardeweg, M., 2014. Magma sources and tectonic setting of Central Andean andesites (25.5-28°S) related to crustal thickening, forearc subduction erosion and delamination. Geol. Soc. Spec. Publ. 385, 303–334. https://doi.org/10.1144/SP385.11Kellogg, J.N., Camelio, G.B.F., Mora-Páez, H., 2019. Cenozoic tectonic evolution of the North Andes with constraints from volcanic ages, seismic reflection, and satellite geodesy, Andean Tectonics. https://doi.org/10.1016/b978-0-12-816009-1.00006-xKennett, B.L.N., Engdahl, E.R., 1991. Traveltimes for global earthquake location and phase identification. Geophys. J. Int. 105, 429–465. https://doi.org/10.1111/j.1365-246X.1991.tb06724.xKennett, B.L.N., Engdahl, E.R., Buland, R., 1995. Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int. 122, 108–124. https://doi.org/10.1111/j.1365-246X.1995.tb03540.xKoch, C.D., Delph, J., Beck, S.L., Lynner, C., Ruiz, M., Hernandez, S., Samaniego, P., Meltzer, A., Mothes, P., Hidalgo, S., 2021. Crustal thickness and magma storage beneath the Ecuadorian arc. J. South Am. Earth Sci. 110, 103331. https://doi.org/10.1016/j.jsames.2021.103331Koulakov, I., 2009. Out-of-network events can be of great importance for improving results of local earthquake tomography. Bull. Seismol. Soc. Am. 99, 2556–2563. https://doi.org/10.1785/0120080365Koulakov, I., Sobolev, S. V., Asch, G., 2006. P - And S-velocity images of the lithosphere-asthenosphere system in the Central Andes from local-source tomographic inversion. Geophys. J. Int. 167, 106–126. https://doi.org/10.1111/j.1365-246X.2006.02949.xLarkin, S.P., Levander, A., Henstock, T.J., Pullammanappallil, S., 1997. the northern Basin and Range Is the Moho flat ? Seismic evidence for a rough crust-mantle interface beneath the northern Basin and Range 7613. https://doi.org/10.1130/0091-7613(1997)025<0451Laske, G., Masters, G., Ma, Z., Pasyanos, M., 2013. Update on CRUST1.0 - A 1-degree Global Model of Earth’s Crust. EGU Gen. Assem. 2013 15, 2658Lee, C.. T.A., 2003. Compositional variation of density and seismic velocities in natural peridotites at STP conditions: Implications for seismic imaging of compositional heterogeneities in the upper mantle. J. Geophys. Res. Solid Earth 108. https://doi.org/10.1029/2003jb002413Lee, C.T.A., 2014. Physics and Chemistry of Deep Continental Crust Recycling, 2nd ed, Treatise on Geochemistry: Second Edition. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-095975-7.00314-4Lee, C.T.A., Anderson, D.L., 2015. Continental crust formation at arcs, the arclogite “delamination” cycle, and one origin for fertile melting anomalies in the mantle. Sci. Bull. 60, 1141–1156. https://doi.org/10.1007/s11434-015-0828-6Lee, C.T.A., Cheng, X., Horodyskyj, U., 2006. The development and refinement of continental arcs by primary basaltic magmatism, garnet pyroxenite accumulation, basaltic recharge and delamination: Insights from the Sierra Nevada, California. Contrib. to Mineral. Petrol. 151, 222–242. https://doi.org/10.1007/s00410-005-0056-1León, S., Cardona, A., Parra, M., Sobel, E.R., Jaramillo, J.S., Glodny, J., Valencia, V.A., Chew, D., Montes, C., Posada, G., Monsalve, G., Pardo-Trujillo, A., 2018. Transition From Collisional to Subduction-Related Regimes: An Example From Neogene Panama-Nazca-South America Interactions. Tectonics 37, 119–139. https://doi.org/10.1002/2017TC004785León, S., Monsalve, G., Bustamante, C., 2021. How Much Did the Colombian Andes Rise by the Collision of the Caribbean Oceanic Plateau? Geophys. Res. Lett. 48, 1–11. https://doi.org/10.1029/2021gl093362Ligorría, J.P., Ammon, C.J., 1999. Iterative deconvolution and receiver-function estimation. Bull. Seismol. Soc. Am. 89, 1395–1400. https://doi.org/10.1785/bssa0890051395Londoño, J.M., Bohorquez, O.P., Ospina, L.F., 2010. Tomografía Sísmica 3D Del Sector De Cúcuta, Colombia. Bol. Geol. 32, 107–124Londoño, J.M., Sudo, Y., 2003. Velocity structure and a seismic model for Nevado del Ruiz Volcano (Colombia). J. Volcanol. Geotherm. Res. 119, 61–87. https://doi.org/10.1016/S0377-0273(02)00306-2Lonsdale, P., 2005. Creation of the Cocos and Nazca plates by fission of the Farallon plate. Tectonophysics 404, 237–264. https://doi.org/10.1016/j.tecto.2005.05.011Mahan, K.H., Schulte-Pelkum, V., Blackburn, T.J., Bowring, S.A., Dudas, F.O., 2012. Seismic structure and lithospheric rheology from deep crustal xenoliths, central Montana, USA. Geochemistry, Geophys. Geosystems 13. https://doi.org/10.1029/2012GC004332Mainprice, D., 2015. Seismic Anisotropy of the Deep Earth from a Mineral and Rock Physics Perspective, in: Schubert, G. (Ed.), Treatise on Geophysics. Oxford: Elsevier, pp. 487–538Manea, V.C., Manea, M., 2011. Flat-slab thermal structure and evolution beneath central Mexico. Pure Appl. Geophys. 168, 1475–1487. https://doi.org/10.1007/s00024-010-0207-9Marín-Cerón, M.I., Leal-Mejía, H., Bernet, M., Mesa-García, J., 2019. Late Cenozoic to modern-day volcanism in the Northern Andes: A geochronological, petrographical, and geochemical review, Frontiers in Earth Sciences. https://doi.org/10.1007/978-3-319-76132-9_8Marot, M., Monfret, T., Gerbault, M., Nolet, G., Ranalli, G., Pardo, M., 2014. Flat versus normal subduction zones: A comparison based on 3-D regional traveltime tomography and petrological modelling of central Chile and western Argentina (29°-35°S). Geophys. J. Int. 199, 1633–1654. https://doi.org/10.1093/gji/ggu355McKenzie, D., Jackson, J., 2002. Conditions for flow in the continental crust. Tectonics 21, 5-1-5–7. https://doi.org/10.1029/2002tc001394Meissnar, R.O., Flueh, E.R., Stibane, F., Berg, E., 1976. Dynamics of the active plate boundary in southwest colombia according to recent geophysical measurements. Tectonophysics 35, 115–136. https://doi.org/10.1016/0040-1951(76)90032-9Monsalve-Bustamante, M.L., 2020. The volcanic front in Colombia: Segmentation and recent and historical activity, in: Gómez, J., Pinilla-Pachon, A.O. (Eds.), The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales, Bogotá, pp. 97–159. https://doi.org/10.32685/pub.esp.38.2019.03Monsalve-Bustamante, M.L., Gómez-Tapias, J., Núñez-Tello, A., 2020. Rear–arc small–volume basaltic volcanism in Colombia: Monogenetic volcanic fields. The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombia- no, Publicaciones Geológicas Especiales, Bogotá. https://doi.org/https://doi.org/10.32685/pub. esp.38.2019.10Monsalve, G., Jaramillo, J.S., Cardona, A., Schulte-Pelkum, V., Posada, G., Valencia, V., Poveda, E., 2019. Deep Crustal Faults, Shear Zones, and Magmatism in the Eastern Cordillera of Colombia: Growth of a Plateau From Teleseismic Receiver Function and Geochemical Mio-Pliocene Volcanism Constraints. J. Geophys. Res. Solid Earth 124, 9833–9851. https://doi.org/10.1029/2019JB017835Monsalve, H., Pacheco, J.F., Vargas, C.A., Morales, Y.A., 2013. Crustal velocity structure beneath the western Andes of Colombian using receiver-function inversion. J. South Am. Earth Sci. 48, 106–122. https://doi.org/10.1016/j.jsames.2013.09.001Monsalve, M.L., Correa-Tamayo, A.M., Arcila, M., Dixon, J., 2015. Firma Adakítica en los productos recientes de los volcanes Nevado del Huila y Puracé, Colombia. Boletín Geológico 23–40. https://doi.org/10.32685/0120-1425/boletingeo.43.2015.27Montes, C., Rodriguez-Corcho, A.F., Bayona, G., Hoyos, N., Zapata, S., Cardona, A., 2019. Continental margin response to multiple arc-continent collisions: The northern Andes-Caribbean margin. Earth-Science Rev. 198, 102903. https://doi.org/10.1016/j.earscirev.2019.102903Mooney, W.D., 2021. The Moho Discontinuity, 2nd ed, Encyclopedia of Geology. Elsevier Inc. https://doi.org/10.1016/b978-0-08-102908-4.00049-7Mora-Páez, H., Kellogg, J.N., Frymueller, J.T., Mencin, D., Fernandes, R.M.S., Diederix, H., LaFemina, P., Cardona-Piedrahita, L., Lizarazo, S., Peláez-Gaviria, J.R., Díaz-Mila, F., Bohórquez-Orozco, O., Giraldo-Londoño, L., Corchuelo-Cuervo, Y., 2019. Crustal deformation in the northern Andes - A new GPS velocity field. J. South Am. Earth Sci. 89, 76–91. https://doi.org/10.1016/j.jsames.2018.11.002Mora-Páez, H., Mencin, D.J., Molnar, P., Diederix, H., Cardona-Piedrahita, L., Peláez-Gaviria, J.R., Corchuelo-Cuervo, Y., 2016. GPS velocities and the construction of the Eastern Cordillera of the Colombian Andes. Geophys. Res. Lett. 43, 8407–8416. https://doi.org/10.1002/2016GL069795Mora, A., Parra, M., Rodriguez Forero, G., Blanco, V., Moreno, N., Caballero, V., Stockli, D., Duddy, I., Ghorbal, B., 2015. What drives orogenic asymmetry in the northern Andes?: A case study from the apex of the northern Andean orocline. AAPG Mem. 108, 547–586. https://doi.org/10.1306/13531949M1083652Mora, A., Parra, M., Strecker, M.R., Sobel, E.R., Hooghiemstra, H., Torres, V., Jaramillo, J. V., 2008. Climatic forcing of asymmetric orogenic evolution in the Eastern Cordillera of Colombia. Bull. Geol. Soc. Am. 120, 930–949. https://doi.org/10.1130/B26186.1Mora, A., Reyes-Harker, A., Rodriguez, G., Tesón, E., Ramirez-Arias, J.C., Parra, M., Caballero, V., Mora, J.P., Quintero, I., Valencia, V., Ibañez, M., Horton, B.K., Stockli, D.F., 2013. Inversion tectonics under increasing rates of shortening and sedimentation: Cenozoic example from the Eastern Cordillera of Colombia. Geol. Soc. Spec. Publ. 377, 411–442. https://doi.org/10.1144/SP377.6Mora, A., Villagómez, D., Parra, M., Caballero, V.M., Spikings, R., Horton, B.K., Mora-Bohórquez, J.A., Ketcham, R.A., Arias-Martínez, J.P., 2020. Late Cretaceous to Cenozoic Uplift of the Northern Andes: Paleogeographic Implications, in: Gómez, J., Mateus-Zabala, D. (Eds.), The Geology of Colombia, Volume 3 Paleogene-Neogene. Servicio Geológico Colombiano, Publicaciones Geológias Especiales 37, Bogotá, pp. 89–121. https://doi.org/htpps://doi.org/10.32685/pub.exp.37.2019.04Motaghi, K., Shabanian, E., Kalvandi, F., 2017. Underplating along the northern portion of the Zagros suture zone, Iran. Geophys. J. Int. 210, 375–389. https://doi.org/10.1093/gji/ggx168Myers, S.C., Beck, S., Zandt, G., Wallace, T., 1998. Lithospheric-scale structure across the Bolivian Andes from tomographic images of velocity and attenuation for P and S waves. System 103, 21,233-21,252Ojeda, A., Havskov, J., 2001. Crustal structure and local seismicity in Colombia. J. Seismol. 5, 575–593. https://doi.org/10.1023/A:1012053206408Oldenburg, D.W., 1974. The inversion and interpretation of gravity anomalies. Geophysics 39, 526–536Owens, T., Zandt, G., 1985. The response of the continental crust-Mantle boundary observed on broadband teleseismic receiver functions. Geophys. Res. Lett. 12, 705–708. https://doi.org/https://doi.org/10.1029/GL012i010p00705Paige, C.C., Saunders, M.A., 1982. LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares. ACM Trans. Math. Softw. 8, 43–71. https://doi.org/10.1145/355993.356000Pardo-Trujillo, A., Cardona, A., Giraldo, A.S., León, S., Vallejo, D.F., Trejos-Tamayo, R., Plata, A., Ceballos, J., Echeverri, S., Barbosa-Espitia, A., Slattery, J., Salazar-Ríos, A., Botello, G.E., Celis, S.A., Osorio-Granada, E., Giraldo-Villegas, C.A., 2020. Sedimentary record of the Cretaceous–Paleocene arc–continent collision in the northwestern Colombian Andes: Insights from stratigraphic and provenance constraints. Sediment. Geol. 401, 105627. https://doi.org/10.1016/j.sedgeo.2020.105627Parker, R.L., 1973. The Rapid Calculation of Potential Anomalies. Geophys. J. R. Astron. Soc. 31, 447–455. https://doi.org/10.1111/j.1365-246X.1973.tb06513.xParra, M., Mora, A., Lopez, C., Rojas, L.E., Horton, B.K., 2012. Detecting earliest shortening and deformation advance in thrust belt hinterlands: Example from the Colombian Andes. Geology 40, 175–178. https://doi.org/10.1130/G32519.1Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K., 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res. Solid Earth 117, 1–38. https://doi.org/10.1029/2011JB008916Pedraza-Garcia, P., Vargas, C.A., Monsalve, H., 2007. Geometric model of the Nazca plate subduction in Southwest Colombia. Earth Sci. Res. J. 11, 118–131Pennington, W.D., 1981. Subduction of the Eastern Panama Basin and Seismotectonics of Northwestern South America 86, 10753–10770. https://doi.org/doi:10.1029/JB086iB11p10753Porritt, R.W., Becker, T.W., Monsalve, G., 2014. Seismic anisotropy and slab dynamics from SKS splitting recorded in Colombia. Geophys. Res. Lett. 41, 8775–8783. https://doi.org/10.1002/2014GL061958Poveda, E., 2013. Discontinuidades sísmicas en la litósfera bajo la zona andina y el occidente colombianos a partir de formas de onda de sismos distantes. Universidad Nacional de ColombiaPoveda, E., Julià, J., Schimmel, M., Perez-Garcia, N., 2018. Upper and Middle Crustal Velocity Structure of the Colombian Andes From Ambient Noise Tomography: Investigating Subduction-Related Magmatism in the Overriding Plate. J. Geophys. Res. Solid Earth 123, 1459–1485. https://doi.org/10.1002/2017JB014688Prasanna, H.M.I., Chen, W., Iz, H.B., 2013. High resolution local Moho determination using gravity inversion: A case study in Sri Lanka. J. Asian Earth Sci. 74, 62–70. https://doi.org/10.1016/j.jseaes.2013.06.005Reguzzoni, M., Sampietro, D., 2015. GEMMA: An Earth crustal model based on GOCE satellite data. Int. J. Appl. Earth Obs. Geoinf. 35, 31–43. https://doi.org/10.1016/j.jag.2014.04.002Riesner, M., Lacassin, R., Simoes, M., Carrizo, D., Armijo, R., 2018a. Revisiting the Crustal Structure and Kinematics of the Central Andes at 33.5°S: Implications for the Mechanics of Andean Mountain Building. Tectonics 37, 1347–1375. https://doi.org/10.1002/2017TC004513Riesner, M., Lacassin, R., Simoes, M., Carrizo, D., Armijo, R., 2018b. Revisiting the Crustal Structure and Kinematics of the Central Andes at 33.5°S: Implications for the Mechanics of Andean Mountain Building. Tectonics 37, 1347–1375. https://doi.org/10.1002/2017TC004513Rodriguez-Vargas, A., Koester, E., Mallmann, G., Conceição, R. V., Kawashita, K., Weber, M.B.I., 2005. Mantle diversity beneath the Colombian Andes, Northern Volcanic Zone: Constraints from Sr and Nd isotopes. Lithos 82, 471–484. https://doi.org/10.1016/j.lithos.2004.09.027Roecker, S., Ebinger, C., Tiberi, C., Mulibo, G., Ferdinand-Wambura, R., Mtelela, K., Kianji, G., Muzuka, A., Gautier, S., Albaric, J., Peyrat, S., 2017. Subsurface images of the Eastern Rift, Africa, from the joint inversion of body waves, surface waves and gravity: Investigating the role of fluids in early-stage continental rifting. Geophys. J. Int. 210, 931–950. https://doi.org/10.1093/gji/ggx220Roecker, S., Thurber, C., Roberts, K., Powell, L., 2006. Refining the image of the San Andreas Fault near Parkfield, California using a finite difference travel time computation technique. Tectonophysics 426, 189–205. https://doi.org/10.1016/j.tecto.2006.02.026Rondenay, S., Montési, L.G.J., Abers, G.A., 2010. New geophysical insight into the origin of the Denali volcanic gap. Geophys. J. Int. 182, 613–630. https://doi.org/10.1111/j.1365-246X.2010.04659.xSaeid, E., Bakioglu, K.B., Kellogg, J., Leier, A., Martinez, J.A., Guerrero, E., 2017. Garzón Massif basement tectonics: Structural control on evolution of petroleum systems in upper Magdalena and Putumayo basins, Colombia. Mar. Pet. Geol. 88, 381–401. https://doi.org/10.1016/j.marpetgeo.2017.08.035Sahoo, S.D., Pal, S.K., 2021. Crustal structure and Moho topography of the southern part (18° S–25° S) of Central Indian Ridge using high-resolution EIGEN6C4 global gravity model data. Geo-Marine Lett. 41. https://doi.org/10.1007/s00367-020-00679-zSánchez, J., Horton, B.K., Tesón, E., Mora, A., Ketcham, R.A., Stockli, D.F., 2012. Kinematic evolution of Andean fold-thrust structures along the boundary between the Eastern Cordillera and Middle Magdalena Valley basin, Colombia. Tectonics 31, 1–24. https://doi.org/10.1029/2011TC003089Sarmiento-Rojas, L.F., 2019. Cretaceous stratigraphy and paleo-facies maps of northwestern South America, Frontiers in Earth Sciences. https://doi.org/10.1007/978-3-319-76132-9_10Schreiber, D., Lardeaux, J.M., Martelet, G., Courrioux, G., Guillen, A., 2010. 3-D modelling of Alpine Mohos in Southwestern Alps. Geophys. J. Int. 180, 961–975. https://doi.org/10.1111/j.1365-246X.2009.04486.xSchulte-Pelkum, V., Mahan, K.H., 2014. Imaging Faults and Shear Zones Using Receiver Functions. Pure Appl. Geophys. 171, 2967–2991. https://doi.org/10.1007/s00024-014-0853-4Schurr, B., Rietbrock, A., Asch, G., Kind, R., Oncken, O., 2006. Evidence for lithospheric detachment in the central Andes from local earthquake tomography. Tectonophysics 415, 203–223. https://doi.org/10.1016/j.tecto.2005.12.007Shearer, P.M., 2009. Introduction to Seismology, 2nd ed. Cambridge University Press, New YorkShi, Z., Gao, R., Li, W., Lu, Z., Li, H., 2020. Tectonophysics Cenozoic crustal-scale duplexing and flat Moho in southern Tibet: Evidence from reflection seismology. Tectonophysics 790, 228562. https://doi.org/10.1016/j.tecto.2020.228562Sippl, C., Schurr, B., Tympel, J., Angiboust, S., Mechie, J., Yuan, X., Schneider, F.M., Sobolev, S. V., Ratschbacher, L., Haberland, C., 2013. Deep burial of Asian continental crust beneath the Pamir imaged with local earthquake tomography. Earth Planet. Sci. Lett. 384, 165–177. https://doi.org/10.1016/j.epsl.2013.10.013Siravo, G., Faccenna, C., Gérault, M., Becker, T.W., Fellin, M.G., Herman, F., Molin, P., 2019. Slab flattening and the rise of the Eastern Cordillera, Colombia. Earth Planet. Sci. Lett. 512, 100–110. https://doi.org/10.1016/j.epsl.2019.02.002Siravo, G., Fellin, M.G., Faccenna, C., Bayona, G., Lucci, F., Molin, P., Maden, C., 2018a. Constraints on the Cenozoic Deformation of the Northern Eastern Cordillera, Colombia. Tectonics 37, 4311–4337. https://doi.org/10.1029/2018TC005162Siravo, G., Fellin, M.G., Faccenna, C., Bayona, G., Lucci, F., Molin, P., Maden, C., 2018b. Constraints on the Cenozoic Deformation of the Northern Eastern Cordillera, Colombia. Tectonics 37, 4311–4337. https://doi.org/10.1029/2018TC005162Siravo, G., Molin, P., Sembroni, A., Fellin, M.G., Faccenna, C., 2021. Tectonically driven drainage reorganization in the Eastern Cordillera, Colombia. Geomorphology 389, 107847. https://doi.org/10.1016/j.geomorph.2021.107847Sjöberg, L.E., Bagherbandi, M., 2011. A method of estimating the Moho density contrast with a tentative application of EGM08 and CRUST2.0. Acta Geophys. 59, 502–525. https://doi.org/10.2478/s11600-011-0004-6Sobolev, S. V., Babeyko, A.Y., 2005. What drives orogeny in the Andes? Geology 33, 617–620. https://doi.org/10.1130/G21557.1Sobolev, S. V., Babeyko, A.Y., Koulakov, I., Oncken, O., 2006. Mechanism of the Andean Orogeny: Insight from Numerical Modeling, in: The Andes. Springer, Berlin, Heidelberg, pp. 513–535. https://doi.org/10.1007/978-3-540-48684-8_25Spada, M., Bianchi, I., Kissling, E., Agostinetti, N.P., Wiemer, S., 2013. Combining controlled-source seismology and receiver function 1050–1068. https://doi.org/10.1093/gji/ggt148Steffen, R., Strykowski, G., Lund, B., 2017. High-resolution Moho model for Greenland from EIGEN-6C4 gravity data. Tectonophysics 706–707, 206–220. https://doi.org/10.1016/j.tecto.2017.04.014Storchak, D.A., Schweitzer, J., Bormann, P., 2003. The IASPEI standard seismic phase list. Seismol. Res. Lett. 74, 761–772. https://doi.org/10.1785/gssrl.74.6.761Sun, M., Bezada, M.J., Cornthwaite, J., Prieto, G.A., Niu, F., Levander, A., 2022. Overlapping slabs: Untangling subduction in NW South America through finite-frequency teleseismic tomography. Earth Planet. Sci. Lett. 577, 117253. https://doi.org/10.1016/j.epsl.2021.117253Syracuse, E.M., Maceira, M., Prieto, G.A., Zhang, H., Ammon, C.J., 2016. Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data. Earth Planet. Sci. Lett. 444, 139–149. https://doi.org/10.1016/j.epsl.2016.03.050Tang, M., Lee, C.T.A., Chen, K., Erdman, M., Costin, G., Jiang, H., 2019. Nb/Ta systematics in arc magma differentiation and the role of arclogites in continent formation. Nat. Commun. 10. https://doi.org/10.1038/s41467-018-08198-3Tesón, E., Mora, A., Silva, A., Namson, J., Teixell, A., Castellanos, J., Casallas, W., Julivert, M., Taylor, M., Ibáñez-Mejía, M., Valencia, V.A., 2013. Relationship of Mesozoic graben development, stress, shortening magnitude, and structural style in the Eastern Cordillera of the Colombian Andes. Geol. Soc. Spec. Publ. 377, 257–283. https://doi.org/10.1144/SP377.10Thybo, H., Artemieva, I.M., 2013. Moho and magmatic underplating in continental lithosphere. Tectonophysics 609, 605–619. https://doi.org/10.1016/j.tecto.2013.05.032Tirel, C., Gueydan, F., Tiberi, C., Brun, J.P., 2004. Aegean crustal thickness inferred from gravity inversion. Geodynamical implications. Earth Planet. Sci. Lett. 228, 267–280. https://doi.org/10.1016/j.epsl.2004.10.023Tkalčić, H., Chen, Y., Liu, R., Zhibin, H., Sun, L., Chan, W., 2011. Multistep modelling of teleseismic receiver functions combined with constraints from seismic tomography: Crustal structure beneath southeast China. Geophys. J. Int. 187, 303–326. https://doi.org/10.1111/j.1365-246X.2011.05132.xUieda, L., Barbosa, V.C.F., 2017. Fast nonlinear gravity inversion in spherical coordinates with application to the South American Moho. Geophys. J. Int. 208, 162–176. https://doi.org/10.1093/gji/ggw390van der Meijde, M., Julià, J., Assumpção, M., 2013. Gravity derived Moho for South America. Tectonophysics 609, 456–467. https://doi.org/10.1016/j.tecto.2013.03.023Vargas, C.A., 2020. Subduction Geometries in Northwestern South America. Geol. Colomb. Vol. 4 Quat. 4, 397–422Vargas, C.A., Mann, P., 2013. Tearing and breaking off of subducted slabs as the result of collision of the panama arc-indenter with Northwestern South America. Bull. Seismol. Soc. Am. 103, 2025–2046. https://doi.org/10.1785/0120120328Vargas, C.A., Ochoa, L.H., Caneva, A., 2019. Estimation of the Thermal Structure Beneath the Volcanic Arc of the Northern Andes by Coda Wave Attenuation Tomography. Front. Earth Sci. 7, 1–13. https://doi.org/10.3389/feart.2019.00208Vargas, C.A., Pujades, L., Caneva, A., 2012. Attenuation structure of the Galeras volcano, Colombia. Bol. Geol. 34, 149–161Vargas, C.A., Pujades, L.G., Montes, L., 2007. Seismic structure of South-Central Andes of Colombia by tomographic inversion. Geofis. Int. 46, 117–127. https://doi.org/10.22201/igeof.00167169p.2007.46.2.21Vauchez, A., Tommasi, A., Mainprice, D., 2012. Faults (shear zones) in the Earth’s mantle. Tectonophysics 558–559, 1–27. https://doi.org/10.1016/j.tecto.2012.06.006Veloza, G., Styron, R., Taylor, M., 2012. Open-source archive of active faults for northwest South America. GSA Today 22, 4–10. https://doi.org/10.1130/GSAT-G156A.1Vidale, J.E., 1990. Finite‐difference calculation of traveltimes in three dimensions. Geophysics 55, 521–526. https://doi.org/10.1190/1.1442863Vietor, T., Oncken, O., 2005. Controls on the shape and kinematics of the Central Andean plateau flanks: Insights from numerical modeling. Earth Planet. Sci. Lett. 236, 814–827. https://doi.org/10.1016/j.epsl.2005.06.004Villagómez, D., Spikings, R., 2013. Thermochronology and tectonics of the Central and Western Cordilleras of Colombia: Early Cretaceous-Tertiary evolution of the Northern Andes. Lithos 160–161, 228–249. https://doi.org/10.1016/j.lithos.2012.12.008Wagner, L.S., Anderson, M.L., Jackson, J.M., Beck, S.L., Zandt, G., 2008. Seismic evidence for orthopyroxene enrichment in the continental lithosphere. Geology 36, 935–938. https://doi.org/10.1130/G25108A.1Wagner, L.S., Beck, S., Zandt, G., 2005. Upper mantle structure in the south central Chilean subduction zone (30° to 36°S). J. Geophys. Res. Solid Earth 110, 1–20. https://doi.org/10.1029/2004JB003238Wagner, L.S., Jaramillo, J.S., Ramírez-Hoyos, L.F., Monsalve, G., Cardona, A., Becker, T.W., 2017. Transient slab flattening beneath Colombia. Geophys. Res. Lett. 44, 6616–6623. https://doi.org/10.1002/2017GL073981Wang, C., Liang, Y., Xu, W., 2021. Formation of Amphibole-Bearing Peridotite and Amphibole-Bearing Pyroxenite Through Hydrous Melt-Peridotite Reaction and In Situ Crystallization: An Experimental Study. J. Geophys. Res. Solid Earth 126, 1–22. https://doi.org/10.1029/2020JB019382Wang, Q., Bagdassarov, N., Ji, S., 2013. The Moho as a transition zone: A revisit from seismic and electrical properties of minerals and rocks. Tectonophysics 609, 395–422. https://doi.org/10.1016/j.tecto.2013.08.041Ward, K.M., Zandt, G., Beck, S.L., Wagner, L.S., Tavera, H., 2016. Lithospheric structure beneath the northern Central Andean Plateau from the joint inversion of ambient noise and earthquake-generated surface waves. J. Geophys. Res. Solid Earth 121, 8217–8238. https://doi.org/10.1002/2016JB013237Weber, M.B., 1998. The Mercaderes-Rio Mayo xenoliths, Colombia: their bearing on mantle and crustal processes in the Northern Andes PhD Thesis.Weber, M.B., Tarney, J., Kempton, P.D., Kent, R.W., 2002. Crustal make-up of the Northern Andes: Evidence based on deep crustal xenolith suites, Mercaderes, SW Colombia. Tectonophysics 345, 49–82. https://doi.org/10.1016/S0040-1951(01)00206-2White, R.W., Powell, R., Johnson, T.E., 2014. The effect of Mn on mineral stability in metapelites revisited: new a–x relations for manganese-bearing minerals. J. Metamorph. Geol. 32, 809–828. https://doi.org/10.1111/jmg.12Whitman, D., 1994. Moho geometry beneath the eastern margin of the Andes, northwest Argentina, and its implications to the effective elastic thickness of the Andean foreland. J. Geophys. Res. 99, 15277–15289Xuan, S., Jin, S., Chen, Y., 2020. Determination of the isostatic and gravity Moho in the East China Sea and its implications. J. Asian Earth Sci. 187, 104098. https://doi.org/10.1016/j.jseaes.2019.104098Yarce, J., Monsalve, G., Becker, T.W., Cardona, A., Poveda, E., Alvira, D., Ordoñez-Carmona, O., 2014. Seismological observations in Northwestern South America: Evidence for two subduction segments, contrasting crustal thicknesses and upper mantle flow. Tectonophysics 637, 57–67. https://doi.org/10.1016/j.tecto.2014.09.006Ydri, A., Idres, M., Ouyed, M., Samai, S., 2020. Moho geometry beneath northern Algeria from gravity data inversion. J. African Earth Sci. 168, 103851. https://doi.org/10.1016/j.jafrearsci.2020.103851Zandt, G., Gilbert, H., Owens, T.J., Ducea, M., Saleeby, J., Jones, C.H., 2004. Active foundering of a continental arc root beneath the southern Sierra Nevada in California. Nature 431, 41–46. https://doi.org/10.1038/nature02847Fundación para la Promoción de la Investigación y la TecnologíaBibliotecariosEstudiantesInvestigadoresMaestrosMedios de comunicaciónPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unal.edu.co/bitstream/unal/82115/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINAL1098714003.2022.pdf1098714003.2022.pdfTesis de Doctorado en ingenieríaapplication/pdf5997642https://repositorio.unal.edu.co/bitstream/unal/82115/2/1098714003.2022.pdfe5620541943a4c3da0ebd5988f5884cdMD52Supplementary Material S2-1.xlsSupplementary Material S2-1.xlsMaterial suplementario S2-1application/vnd.ms-excel52736https://repositorio.unal.edu.co/bitstream/unal/82115/3/Supplementary%20Material%20S2-1.xlsa9aa6eb0ffc9427febed658ea2d0192cMD53Supplementary Material S3-1.xlsxSupplementary Material S3-1.xlsxMaterial suplementario S3-1application/vnd.openxmlformats-officedocument.spreadsheetml.sheet912732https://repositorio.unal.edu.co/bitstream/unal/82115/4/Supplementary%20Material%20S3-1.xlsxf0f95732e45f3ca4660d3fa0a27a1ee8MD54Supplementary Material S3-2.xlsxSupplementary Material S3-2.xlsxMaterial suplementario S3-2application/vnd.openxmlformats-officedocument.spreadsheetml.sheet4495605https://repositorio.unal.edu.co/bitstream/unal/82115/5/Supplementary%20Material%20S3-2.xlsxf91165e036f823d64f895095910728e6MD55Supplementary Material S4-1.xlsxSupplementary Material S4-1.xlsxMaterial suplementario S4-1application/vnd.openxmlformats-officedocument.spreadsheetml.sheet321168https://repositorio.unal.edu.co/bitstream/unal/82115/6/Supplementary%20Material%20S4-1.xlsx29976b2e5cd11890a67c6f4b078707c7MD56Supplementary Material S5-1.xlsxSupplementary Material S5-1.xlsxMaterial suplementario S5-1application/vnd.openxmlformats-officedocument.spreadsheetml.sheet114882https://repositorio.unal.edu.co/bitstream/unal/82115/7/Supplementary%20Material%20S5-1.xlsxa6c45a57d762200ee2c0fe3760ad63d7MD57unal/82115oai:repositorio.unal.edu.co:unal/821152023-10-20 21:07:04.094Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=