Evaluación del efecto inmunomodulador de los cuerpos apoptóticos de células estromales mesenquimales de Gelatina de Wharton

Ilustraciones, fotografías a color,

Autores:
Beltran Ricaurte, Karl Michael
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83183
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83183
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología
Inflamación
Técnicas inmunológicas
Inflammation
Immunological techniques
Células estromales mesenquimales
Cuerpos apoptóticos
Inmunomodulación
Macrófagos
Linfocitos
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_7e90792c819ac702f2bd19dca4a53b56
oai_identifier_str oai:repositorio.unal.edu.co:unal/83183
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación del efecto inmunomodulador de los cuerpos apoptóticos de células estromales mesenquimales de Gelatina de Wharton
dc.title.translated.eng.fl_str_mv Evaluation of the immunomodulatory effect of apoptotic bodies of Wharton's jelly mesenchymal stromal stromal cells
title Evaluación del efecto inmunomodulador de los cuerpos apoptóticos de células estromales mesenquimales de Gelatina de Wharton
spellingShingle Evaluación del efecto inmunomodulador de los cuerpos apoptóticos de células estromales mesenquimales de Gelatina de Wharton
570 - Biología
Inflamación
Técnicas inmunológicas
Inflammation
Immunological techniques
Células estromales mesenquimales
Cuerpos apoptóticos
Inmunomodulación
Macrófagos
Linfocitos
title_short Evaluación del efecto inmunomodulador de los cuerpos apoptóticos de células estromales mesenquimales de Gelatina de Wharton
title_full Evaluación del efecto inmunomodulador de los cuerpos apoptóticos de células estromales mesenquimales de Gelatina de Wharton
title_fullStr Evaluación del efecto inmunomodulador de los cuerpos apoptóticos de células estromales mesenquimales de Gelatina de Wharton
title_full_unstemmed Evaluación del efecto inmunomodulador de los cuerpos apoptóticos de células estromales mesenquimales de Gelatina de Wharton
title_sort Evaluación del efecto inmunomodulador de los cuerpos apoptóticos de células estromales mesenquimales de Gelatina de Wharton
dc.creator.fl_str_mv Beltran Ricaurte, Karl Michael
dc.contributor.advisor.none.fl_str_mv Salguero, Gustavo
dc.contributor.author.none.fl_str_mv Beltran Ricaurte, Karl Michael
dc.contributor.researchgroup.spa.fl_str_mv Unidad de Terapias Avanzadas IDCBIS
dc.subject.ddc.spa.fl_str_mv 570 - Biología
topic 570 - Biología
Inflamación
Técnicas inmunológicas
Inflammation
Immunological techniques
Células estromales mesenquimales
Cuerpos apoptóticos
Inmunomodulación
Macrófagos
Linfocitos
dc.subject.lemb.spa.fl_str_mv Inflamación
Técnicas inmunológicas
dc.subject.lemb.eng.fl_str_mv Inflammation
Immunological techniques
dc.subject.proposal.spa.fl_str_mv Células estromales mesenquimales
Cuerpos apoptóticos
Inmunomodulación
Macrófagos
Linfocitos
description Ilustraciones, fotografías a color,
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-11-18
dc.date.accessioned.none.fl_str_mv 2023-01-30T16:54:07Z
dc.date.available.none.fl_str_mv 2023-01-30T16:54:07Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83183
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83183
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Almeida-Porada, G., Atala, A. J., & Porada, C. D. (2020). Therapeutic Mesenchymal Stromal Cells for Immunotherapy and for Gene and Drug Delivery. Molecular Therapy - Methods and Clinical Development, 16(March), 204–224. https://doi.org/10.1016/j.omtm.2020.01.005
Behar, S. M., Martin, C. J., Booty, M. G., Nishimura, T., Zhao, X., Gan, H. X., Divangahi, M., & Remold, H. G. (2011). Apoptosis is an innate defense function of macrophages against Mycobacterium tuberculosis. Mucosal Immunology, 4(3), 279–287. https://doi.org/10.1038/mi.2011.3
Brock, C. K., Wallin, S. T., Ruiz, O. E., Samms, K. M., Mandal, A., Sumner, E. A., & Eisenhoffer, G. T. (2019). Stem cell proliferation is induced by apoptotic bodies from dying cells during epithelial tissue maintenance. Nature Communications, 10(1), 1–11. https://doi.org/10.1038/s41467-019-09010-6
Cañas-Arboleda, M., Beltrán, K., Medina, C., Camacho, B., & Salguero, G. (2020). Human platelet lysate supports efficient expansion and stability of wharton’s jelly mesenchymal stromal cells via active uptake and release of soluble regenerative factors. International Journal of Molecular Sciences, 21(17), 1–19. https://doi.org/10.3390/ijms21176284
Caplan, H., Olson, S. D., Kumar, A., George, M., Prabhakara, K. S., Wenzel, P., Bedi, S., Toledano-Furman, N. E., Triolo, F., Kamhieh-Milz, J., Moll, G., & Cox, C. S. (2019). Mesenchymal Stromal Cell Therapeutic Delivery: Translational Challenges to Clinical Application. Frontiers in Immunology, 10(July), 1645. https://doi.org/10.3389/fimmu.2019.01645
Cassatella, M. A., Mosna, F., Micheletti, A., Lisi, V., Tamassia, N., Cont, C., Calzetti, F., Pelletier, M., Pizzolo, G., & Krampera, M. (2011). Toll-like receptor-3-activated human mesenchymal stromal cells significantly prolong the survival and function of neutrophils. Stem Cells, 29(6), 1001–1011. https://doi.org/10.1002/stem.651
Chiesa, S., Morbelli, S., Morando, S., Massollo, M., Marini, C., Bertoni, A., Frassoni, F., Bartolomé, S. T., Sambuceti, G., Traggiai, E., & Uccelli, A. (2011). Mesenchymal stem cells impair in vivo T-cell priming by dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 108(42), 17384–17389. https://doi.org/10.1073/pnas.1103650108
Cruz-Barrera, M., Flórez-Zapata, N., Lemus-Diaz, N., Medina, C., Galindo, C. C., González- Acero, L. X., Correa, L., Camacho, B., Gruber, J., & Salguero, G. (2020). Integrated Analysis of Transcriptome and Secretome From Umbilical Cord Mesenchymal Stromal Cells Reveal New Mechanisms for the Modulation of Inflammation and Immune Activation. Frontiers in Immunology, 11(September), 1–19. https://doi.org/10.3389/fimmu.2020.575488
de Witte, S. F. H., Luk, F., Sierra Parraga, J. M., Gargesha, M., Merino, A., Korevaar, S. S., Shankar, A. S., O’Flynn, L., Elliman, S. J., Roy, D., Betjes, M. G. H., Newsome, P. N., Baan, C. C., & Hoogduijn, M. J. (2018). Immunomodulation By Therapeutic Mesenchymal Stromal Cells (MSC) Is Triggered Through Phagocytosis of MSC By Monocytic Cells. Stem Cells, 36(4), 602–615. https://doi.org/10.1002/stem.2779
Del Papa, B., Sportoletti, P., Cecchini, D., Rosati, E., Balucani, C., Baldoni, S., Fettucciari, K., Marconi, P., Martelli, M. F., Falzetti, F., & Di Ianni, M. (2013). Notch1 modulates mesenchymal stem cells mediated regulatory T-cell induction. European Journal of Immunology, 43(1), 182–187. https://doi.org/10.1002/eji.201242643
Desch, A. N., Randolph, G. J., Murphy, K., Gautier, E. L., Kedl, R. M., Lahoud, M. H., Caminschi, I., Shortman, K., Henson, P. M., & Jakubzick, C. V. (2011). CD103+ pulmonary dendritic cells preferentially acquire and present apoptotic cell-associated antigen. Journal of Experimental Medicine, 208(9), 1789–1797. https://doi.org/10.1084/jem.20110538
EMA. (2009). EPAR summary for the public, ChondroCelect, INN-characterised viable autologous cartilage cells expanded ex vivo expressing specific marker proteins. European Medicines Agency. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_- _Summary_for_the_public/human/000878/WC500026033.pdf
Fournel, S., Neichel, S., Dali, H., Farci, S., Maillère, B., Briand, J.-P., & Muller, S. (2003). CD4 + T Cells from (New Zealand Black × New Zealand White)F 1 Lupus Mice and Normal Mice Immunized Against Apoptotic Nucleosomes Recognize Similar Th Cell Epitopes in the C Terminus of Histone H3 . The Journal of Immunology, 171(2), 636– 644. https://doi.org/10.4049/jimmunol.171.2.636
Fujita, H., Yamamoto, M., Ogino, T., Kobuchi, H., Ohmoto, N., Aoyama, E., Oka, T., Nakanishi, T., Inoue, K., & Sasaki, J. (2014). Necrotic and apoptotic cells serve as nuclei for calcification on osteoblastic differentiation of human mesenchymal stem cells in vitro. Cell Biochemistry and Function, 32(1), 77–86. https://doi.org/10.1002/cbf.2974
Gabr, M. M., Zakaria, M. M., Refaie, A. F., Abdel-Rahman, E. A., Reda, A. M., Ali, S. S., Khater, S. M., Ashamallah, S. A., Ismail, A. M., Ismail, H. E. D. A., El-Badri, N., & Ghoneim, M. A. (2017). From Human Mesenchymal Stem Cells to Insulin-Producing Cells: Comparison between Bone Marrow- and Adipose Tissue-Derived Cells. BioMed Research International, 2017. https://doi.org/10.1155/2017/3854232
Galleu, A., Riffo-Vasquez, Y., Trento, C., Lomas, C., Dolcetti, L., Cheung, T. S., Von Bonin, M., Barbieri, L., Halai, K., Ward, S., Weng, L., Chakraverty, R., Lombardi, G., Watt, F. M., Orchard, K., Marks, D. I., Apperley, J., Bornhauser, M., Walczak, H., ... Dazzi, F. (2017). Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation. Science Translational Medicine, 9(416). https://doi.org/10.1126/scitranslmed.aam7828
Gao, S., Mao, F., Zhang, B., Zhang, L., Zhang, X., Wang, M., Yan, Y., Yang, T., Zhang, J., Zhu, W., Qian, H., & Xu, W. (2014). Mouse bone marrow-derived mesenchymal stem cells induce macrophage M2 polarization through the nuclear factor-κB and signal transducer and activator of transcription 3 pathways. Experimental Biology and Medicine, 239(3), 366–375. https://doi.org/10.1177/1535370213518169
Gao, W. X., Sun, Y. Q., Shi, J., Li, C. L., Fang, S. Bin, Wang, D., Deng, X. Q., Wen, W., & Fu, Q. L. (2017). Effects of mesenchymal stem cells from human induced pluripotent stem cells on differentiation, maturation, and function of dendritic cells. Stem Cell Research and Therapy, 8(1), 1–16. https://doi.org/10.1186/s13287-017-0499-0
Ghahremani Piraghaj, M., Soudi, S., Ghanbarian, H., Bolandi, Z., Namaki, S., & Hashemi, S. M. (2018). Effect of efferocytosis of apoptotic mesenchymal stem cells (MSCs) on C57BL/6 peritoneal macrophages function. Life Sciences, 212(September), 203–212. https://doi.org/10.1016/j.lfs.2018.09.052
Hyvärinen, K., Holopainen, M., Skirdenko, V., Ruhanen, H., Lehenkari, P., Korhonen, M., Käkelä, R., Laitinen, S., & Kerkelä, E. (2018). Mesenchymal stromal cells and their extracellular vesicles enhance the anti-inflammatory phenotype of regulatory macrophages by downregulating the production of interleukin (IL)-23 and IL-22. Frontiers in Immunology, 9(APR), 1–13. https://doi.org/10.3389/fimmu.2018.00771
Iglesias-López, C., Agustí, A., Obach, M., & Vallano, A. (2019). Regulatory framework for advanced therapy medicinal products in Europe and United States. Frontiers in Pharmacology, 10(JULY), 1–14. https://doi.org/10.3389/fphar.2019.00921
International, R., Report, A., & No, P. (2005). Al Pr Od Uc T N O Lo Ng Er Ho. 44(June 2004), 2005.
James, R., Haridas, N., & Deb, K. D. (2019). Clinical applications of mesenchymal stem cells. In Biointegration of Medical Implant Materials. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-102680-9.00005-6
Joshua M. Hare, Joel E. Fishman, A. W. H. (2017). Comparison of Allogeneic vs Autologous Bone Marrow–Derived Mesenchymal Stem Cells Delivered by Transendocardial Injection in Patients With Ischemic Cardiomyopathy. J Autism Dev Disord, 47(3), 549– 562. https://doi.org/10.1001/jama.2012.25321.Comparison
Lee, D. S., Yi, T. G., Lee, H. J., Kim, S. N., Park, S., Jeon, M. S., & Song, S. U. (2014). Mesenchymal stem cells infected with Mycoplasma arginini secrete complement C3 to regulate immunoglobulin production in b lymphocytes. Cell Death and Disease, 5(4), 1–9. https://doi.org/10.1038/cddis.2014.147
Liu, H., Liu, S., Qiu, X., Yang, X., Bao, L., Pu, F., Liu, X., Li, C., Xuan, K., Zhou, J., Deng, Z., Liu, S., & Jin, Y. (2020). Donor MSCs release apoptotic bodies to improve myocardial infarction via autophagy regulation in recipient cells. Autophagy, 16(12), 2140–2155. https://doi.org/10.1080/15548627.2020.1717128
Liu, S., Jiang, L., Li, H., Shi, H., Luo, H., Zhang, Y., Yu, C., & Jin, Y. (2014). Mesenchymal stem cells prevent hypertrophic scar formation via inflammatory regulation when undergoing apoptosis. Journal of Investigative Dermatology, 134(10), 2648–2657. https://doi.org/10.1038/jid.2014.169
Lufkin, S. V. and T. (2013). Bridging the gap: understanding embryonic IVD. Cellular and Developmental Biology, 10(2), 54–56. https://doi.org/10.1002/stem.68.Mesenchymal
Ma, Q., Liang, M., Wu, Y., Ding, N., Duan, L., Yu, T., Bai, Y., Kang, F., Dong, S., Xu, J., & Dou, C. (2019). Mature osteoclast- derived apoptotic bodies promote osteogenic differentiation via RANKL-mediated reverse signaling. Journal of Biological Chemistry, 294(29), 11240–11247. https://doi.org/10.1074/jbc.RA119.007625
MACI (Autologous Cultured Chondrocytes on a Porcine Collagen Membrane) | FDA. (n.d.). Retrieved March 24, 2021, from https://www.fda.gov/vaccines-blood- biologics/cellular-gene-therapy-products/maci-autologous-cultured-chondrocytes- porcine-collagen-membrane
Mahmoudi, M., Taghavi-Farahabadi, M., Rezaei, N., & Hashemi, S. M. (2019). Comparison of the effects of adipose tissue mesenchymal stromal cell-derived exosomes with conditioned media on neutrophil function and apoptosis. International Immunopharmacology, 74(June), 105689. https://doi.org/10.1016/j.intimp.2019.105689
Mansnerus, J. (2017). Commercialisation of Advanced Therapies : - A Study of the EU Regulation on Advanced Therapy Medical Products. In Regulatory Rapporteur (Vol. 14, Issue 6). www.topra.org
Medication, A., Mellitus, D., & Reply, S. (2005). Etters to the. Psychiatry: Interpersonal and Biological Processes, March, 395–401.
Németh, K., Leelahavanichkul, A., Yuen, P. S. T., Mayer, B., Parmelee, A., Doi, K., Robey, P. G., Leelahavanichkul, K., Koller, B. H., Brown, J. M., Hu, X., Jelinek, I., Star, R. A., & Mezey, É. (2009). Bone marrow stromal cells attenuate sepsis via prostaglandin E 2-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nature Medicine, 15(1), 42–49. https://doi.org/10.1038/nm.1905
Petrenko, Y., Vackova, I., Kekulova, K., Chudickova, M., Koci, Z., Turnovcova, K., Kupcova Skalnikova, H., Vodicka, P., & Kubinova, S. (2020). A Comparative Analysis of Multipotent Mesenchymal Stromal Cells derived from Different Sources, with a Focus on Neuroregenerative Potential. Scientific Reports, 10(1), 1–15. https://doi.org/10.1038/s41598-020-61167-z
Phan, T. K., Ozkocak, D. C., & Poon, I. K. H. (2020). Unleashing the therapeutic potential of apoptotic bodies. Biochemical Society Transactions, 48(5), 2079–2088. https://doi.org/10.1042/BST20200225
PROVENGE (sipuleucel-T) | FDA. (n.d.). Retrieved March 24, 2021, from https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy- products/provenge-sipuleucel-t
Radrizzani, M., Soncin, S., Cicero, V. Lo, Andriolo, G., Bolis, S., & Turchetto, L. (2016). Quality control assays for clinical-grade human mesenchymal stromal cells: Methods for ATMP release. Methods in Molecular Biology, 1416, 313–337. https://doi.org/10.1007/978-1-4939-3584-0_19
Raffaghello, L., Bianchi, G., Bertolotto, M., Montecucco, F., Busca, A., Dallegri, F., Ottonello, L., & Pistoia, V. (2008). Human Mesenchymal Stem Cells Inhibit Neutrophil Apoptosis: A Model for Neutrophil Preservation in the Bone Marrow Niche. Stem Cells,26(1), 151–162. https://doi.org/10.1634/stemcells.2007-0416
Reis, M., Mavin, E., Nicholson, L., Green, K., Dickinson, A. M., & Wang, X. N. (2018). Mesenchymal stromal cell-derived extracellular vesicles attenuate dendritic cell maturation and function. Frontiers in Immunology, 9(NOV), 1–14. https://doi.org/10.3389/fimmu.2018.02538
Saas, P., Daguindau, E., & Perruche, S. (2016). Concise Review: Apoptotic Cell-Based Therapies-Rationale, Preclinical Results and Future Clinical Developments. Stem Cells, 34(6), 1464–1473. https://doi.org/10.1002/stem.2361
Sacchetti, B., Funari, A., Remoli, C., Giannicola, G., Kogler, G., Liedtke, S., Cossu, G., Serafini, M., Sampaolesi, M., Tagliafico, E., Tenedini, E., Saggio, I., Robey, P. G., Riminucci, M., & Bianco, P. (2016). No identical “mesenchymal stem cells” at different times and sites: Human committed progenitors of distinct origin and differentiation potential are incorporated as adventitial cells in microvessels. Stem Cell Reports, 6(6), 897–913. https://doi.org/10.1016/j.stemcr.2016.05.011
Sarkar, P., Redondo, J., Kemp, K., Ginty, M., Wilkins, A., Scolding, N. J., & Rice, C. M. (2018). Reduced neuroprotective potential of the mesenchymal stromal cell secretome with ex vivo expansion, age and progressive multiple sclerosis. Cytotherapy, 20(1), 21–28. https://doi.org/10.1016/j.jcyt.2017.08.007
Shin, J. Y., Park, H. J., Kim, H. N., Oh, S. H., Bae, J. S., Ha, H. J., & Lee, P. H. (2014). Mesenchymal stem cells enhance autophagy and increase β-amyloid clearance in Alzheimer disease models. Autophagy, 10(1), 32–44. https://doi.org/10.4161/auto.26508
Song, N., Scholtemeijer, M., & Shah, K. (2020). Mesenchymal Stem Cell Immunomodulation: Mechanisms and Therapeutic Potential. Trends in Pharmacological Sciences, 41(9), 653–664. https://doi.org/10.1016/j.tips.2020.06.009
Sotiropoulou, P. A., Perez, S. A., Gritzapis, A. D., Baxevanis, C. N., & Papamichail, M. (2006). Interactions Between Human Mesenchymal Stem Cells and Natural Killer Cells. Stem Cells, 24(1), 74–85. https://doi.org/10.1634/stemcells.2004-0359
Sung, P. H., Chang, C. Lo, Tsai, T. H., Chang, L. T., Leu, S., Chen, Y. L., Yang, C. C., Chua, S., Yeh, K. H., Chai, H. T., Chang, H. W., Chen, H. H., & Yip, H. K. (2013). Apoptotic adipose-derived mesenchymal stem cell therapy protects against lung and kidney injury in sepsis syndrome caused by cecal ligation puncture in rats. Stem Cell Research and Therapy, 4(6), 9–15. https://doi.org/10.1186/scrt385
ten Ham, R. M. T., Hoekman, J., Hövels, A. M., Broekmans, A. W., Leufkens, H. G. M., & Klungel, O. H. (2018). Challenges in Advanced Therapy Medicinal Product Development: A Survey among Companies in Europe. Molecular Therapy - Methods and Clinical Development, 11(December), 121–130. https://doi.org/10.1016/j.omtm.2018.10.003
Therapies, A. (2012). Reflection paper on classification of advanced therapy medicinal products Reflection paper on classification of Advanced Therapy Medicinal Products Table of contents. Therapy, 44(April), 1–19.
Ugurlu, B., & Karaoz, E. (2020). Comparison of similar cells: Mesenchymal stromal cells and fibroblasts. Acta Histochemica, 122(8), 151634. https://doi.org/10.1016/j.acthis.2020.151634
Vamvakas, S., Martinalbo, J., Pita, R., & Isaac, M. (2011). On the edge of new technologies (advanced therapies, nanomedicines). Drug Discovery Today: Technologies, 8(1), e21–e28. https://doi.org/10.1016/j.ddtec.2011.04.001
Wang, G., Zhang, S., Wang, F., Li, G., Zhang, L., & Luan, X. (2013). Expression and biological function of programmed death ligands in human placenta mesenchymal stem cells. Cell Biology International, 37(2), 137–148. https://doi.org/10.1002/cbin.10024
Weiss, D. J., English, K., Krasnodembskaya, A., Isaza-Correa, J. M., Hawthorne, I. J., & Mahon, B. P. (2019). The necrobiology of mesenchymal stromal cells affects therapeutic efficacy. Frontiers in Immunology, 10(JUN), 1–12. https://doi.org/10.3389/fimmu.2019.01228
Wobma, H., & Satwani, P. (2021). Mesenchymal stromal cells: Getting ready for clinical primetime. Transfusion and Apheresis Science, January, 103058. https://doi.org/10.1016/j.transci.2021.103058
Xu, X., Lai, Y., & Hua, Z. C. (2019). Apoptosis and apoptotic body: Disease message and therapeutic target potentials. Bioscience Reports, 39(1), 1–17. https://doi.org/10.1042/BSR20180992
Yamaguchi, H., Maruyama, T., Urade, Y., & Nagata, S. (2014). Immunosuppression via adenosine receptor activation by adenosine monophosphate released from apoptotic cells. ELife, 2014(3), 1–15. https://doi.org/10.7554/eLife.02172
Yan, Z., Zhuansun, Y., Chen, R., Li, J., & Ran, P. (2014). Immunomodulation of mesenchymal stromal cells on regulatory T cells and its possible mechanism. Experimental Cell Research, 324(1), 65–74. https://doi.org/10.1016/j.yexcr.2014.03.013
Yang, S., Mao, Y., Zhang, H., Xu, Y., An, J., & Huang, Z. (2019). The chemical biology of apoptosis: Revisited after 17 years. European Journal of Medicinal Chemistry, 177, 63–75. https://doi.org/10.1016/j.ejmech.2019.05.019
Zhao, Q., Ren, H., & Han, Z. (2016). Mesenchymal stem cells: Immunomodulatory capability and clinical potential in immune diseases. Journal of Cellular Immunotherapy, 2(1), 3–20. https://doi.org/10.1016/j.jocit.2014.12.001
Zheng, Z. H., Li, X. Y., Ding, J., Jia, J. F., & Zhu, P. (2008). Allogeneic mesenchymal stem cell and mesenchymal stem cell-differentiated chondrocyte suppress the responses of type II collagen-reactive T cells in rheumatoid arthritis. Rheumatology, 47(1), 22–30. https://doi.org/10.1093/rheumatology/kem284
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv ix, 77 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Bogotá - Medicina - Maestría en Inmunología
dc.publisher.faculty.spa.fl_str_mv Facultad de Medicina
dc.publisher.place.spa.fl_str_mv Bogotá - Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83183/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83183/2/1032484125.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/83183/3/1032484125.2022.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
241826b252f8edd149e7d0563ed3db9e
c1d9eaf0833c8b888bde8b3339a38831
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089950364172288
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Salguero, Gustavoc8dcddfb8ffa0fed1b1ffe427c79ad46Beltran Ricaurte, Karl Michaeld7a3e350f3514805cf50e2f55a6c5ed7Unidad de Terapias Avanzadas IDCBIS2023-01-30T16:54:07Z2023-01-30T16:54:07Z2022-11-18https://repositorio.unal.edu.co/handle/unal/83183Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, fotografías a color,Las inmunoterapias basadas en células estromales mesenquimales (CEM) representan herramientas para el tratamiento de enfermedades inflamatorias. Sin embargo, su aplicación clínica actualmente es un reto. La biodistribución de las CEM parece ser deficiente, lo que promueve la activación de la apoptosis y la liberación de cuerpos apoptóticos (AB). Dado que recientemente se ha propuesto una interacción entre los AB derivados de las CEM (CEM-AB) y componentes del sistema inmunitario, en este proyecto se demostró que los CEM-AB ejercen efectos inmunomoduladores sinérgicos en modelos de inflamación in-vitro. Para lo anterior, se obtuvieron CEM de la gelatina de Wharton (WJ) mediante un proceso de disgregación. La exposición a la irradiación gama (25Gy) indujo eficazmente la apoptosis; tal y como demostraron la fragmentación del ADN, la translocación de fosfatidilserina, la expresión de caspasas 3/7 y la pérdida de permeabilidad de la membrana. Los CEM-AB se aislaron, caracterizaron y utilizaron para los ensayos inmunológicos. Tras la activación de linfocitos humanos con perlas anti- CD3/anti-CD28, los CEM-AB no indujeron una inmunosupresión directa, en comparación con controles de células viables. Sin embargo, el pre-condicionamiento de monocitos/macrófagos humanos CD14+ con CEM-AB indujo un fenotipo M2 y desencadenó un potente efecto inhibidor de la proliferación de linfocitos (>90%). El tratamiento con cuerpos apoptóticos también indujo la sobreexpresión de moléculas de punto de control inmunológico y la secreción diferencial de factores de crecimiento. En conjunto, estos hallazgos sugieren que los CEM-AB mejoran la acción inmunosupresora preexistente de las CEM, confiriendo a los macrófagos un fenotipo M2 durante la inflamación. (Texto tomado de la fuente)Immunotherapies based on mesenchymal stromal cells (MSC) represent tools for the treatment of inflammatory diseases. However, their clinical application is currently challenging. The biodistribution of MSC appears to be poor, which promotes the activation of apoptosis and the release of apoptotic bodies (AB). Since an interaction between MSCderived AB (MSC-AB) and components of the immune system has recently been proposed, in this project we demonstrated that MSC-AB exert synergistic immunomodulatory effects in in-vitro models of inflammation. For this purpose, MSC were obtained from Wharton's gelatin (WJ) by a disaggregation process. Exposure to gamma irradiation (25Gy) effectively induced apoptosis; as demonstrated by DNA fragmentation, phosphatidylserine translocation, caspases 3/7 expression and loss of membrane permeability. MSC-AB were isolated, characterized and used for immunological assays. Upon activation of human lymphocytes with anti-CD3/anti-CD28 beads, MSC-AB did not induce direct immunosuppression compared to viable cell controls. However, preconditioning of CD14+ human monocytes/macrophages with MSC-AB induced an M2 phenotype and triggered a potent inhibitory effect on lymphocyte proliferation (>90%). Treatment with apoptotic bodies also induced overexpression of immune checkpoint molecules and differential secretion of growth factors. Taken together, these findings suggest that MSC-AB enhance the preexisting immunosuppressive action of MSC by conferring an M2 phenotype to macrophages during inflammation.MaestríaTerapias avanzadasix, 77 páginasapplication/pdfspa570 - BiologíaInflamaciónTécnicas inmunológicasInflammationImmunological techniquesCélulas estromales mesenquimalesCuerpos apoptóticosInmunomodulaciónMacrófagosLinfocitosEvaluación del efecto inmunomodulador de los cuerpos apoptóticos de células estromales mesenquimales de Gelatina de WhartonEvaluation of the immunomodulatory effect of apoptotic bodies of Wharton's jelly mesenchymal stromal stromal cellsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBogotá - Medicina - Maestría en InmunologíaFacultad de MedicinaBogotá - ColombiaUniversidad Nacional de Colombia - Sede BogotáAlmeida-Porada, G., Atala, A. J., & Porada, C. D. (2020). Therapeutic Mesenchymal Stromal Cells for Immunotherapy and for Gene and Drug Delivery. Molecular Therapy - Methods and Clinical Development, 16(March), 204–224. https://doi.org/10.1016/j.omtm.2020.01.005Behar, S. M., Martin, C. J., Booty, M. G., Nishimura, T., Zhao, X., Gan, H. X., Divangahi, M., & Remold, H. G. (2011). Apoptosis is an innate defense function of macrophages against Mycobacterium tuberculosis. Mucosal Immunology, 4(3), 279–287. https://doi.org/10.1038/mi.2011.3Brock, C. K., Wallin, S. T., Ruiz, O. E., Samms, K. M., Mandal, A., Sumner, E. A., & Eisenhoffer, G. T. (2019). Stem cell proliferation is induced by apoptotic bodies from dying cells during epithelial tissue maintenance. Nature Communications, 10(1), 1–11. https://doi.org/10.1038/s41467-019-09010-6Cañas-Arboleda, M., Beltrán, K., Medina, C., Camacho, B., & Salguero, G. (2020). Human platelet lysate supports efficient expansion and stability of wharton’s jelly mesenchymal stromal cells via active uptake and release of soluble regenerative factors. International Journal of Molecular Sciences, 21(17), 1–19. https://doi.org/10.3390/ijms21176284Caplan, H., Olson, S. D., Kumar, A., George, M., Prabhakara, K. S., Wenzel, P., Bedi, S., Toledano-Furman, N. E., Triolo, F., Kamhieh-Milz, J., Moll, G., & Cox, C. S. (2019). Mesenchymal Stromal Cell Therapeutic Delivery: Translational Challenges to Clinical Application. Frontiers in Immunology, 10(July), 1645. https://doi.org/10.3389/fimmu.2019.01645Cassatella, M. A., Mosna, F., Micheletti, A., Lisi, V., Tamassia, N., Cont, C., Calzetti, F., Pelletier, M., Pizzolo, G., & Krampera, M. (2011). Toll-like receptor-3-activated human mesenchymal stromal cells significantly prolong the survival and function of neutrophils. Stem Cells, 29(6), 1001–1011. https://doi.org/10.1002/stem.651Chiesa, S., Morbelli, S., Morando, S., Massollo, M., Marini, C., Bertoni, A., Frassoni, F., Bartolomé, S. T., Sambuceti, G., Traggiai, E., & Uccelli, A. (2011). Mesenchymal stem cells impair in vivo T-cell priming by dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 108(42), 17384–17389. https://doi.org/10.1073/pnas.1103650108Cruz-Barrera, M., Flórez-Zapata, N., Lemus-Diaz, N., Medina, C., Galindo, C. C., González- Acero, L. X., Correa, L., Camacho, B., Gruber, J., & Salguero, G. (2020). Integrated Analysis of Transcriptome and Secretome From Umbilical Cord Mesenchymal Stromal Cells Reveal New Mechanisms for the Modulation of Inflammation and Immune Activation. Frontiers in Immunology, 11(September), 1–19. https://doi.org/10.3389/fimmu.2020.575488de Witte, S. F. H., Luk, F., Sierra Parraga, J. M., Gargesha, M., Merino, A., Korevaar, S. S., Shankar, A. S., O’Flynn, L., Elliman, S. J., Roy, D., Betjes, M. G. H., Newsome, P. N., Baan, C. C., & Hoogduijn, M. J. (2018). Immunomodulation By Therapeutic Mesenchymal Stromal Cells (MSC) Is Triggered Through Phagocytosis of MSC By Monocytic Cells. Stem Cells, 36(4), 602–615. https://doi.org/10.1002/stem.2779Del Papa, B., Sportoletti, P., Cecchini, D., Rosati, E., Balucani, C., Baldoni, S., Fettucciari, K., Marconi, P., Martelli, M. F., Falzetti, F., & Di Ianni, M. (2013). Notch1 modulates mesenchymal stem cells mediated regulatory T-cell induction. European Journal of Immunology, 43(1), 182–187. https://doi.org/10.1002/eji.201242643Desch, A. N., Randolph, G. J., Murphy, K., Gautier, E. L., Kedl, R. M., Lahoud, M. H., Caminschi, I., Shortman, K., Henson, P. M., & Jakubzick, C. V. (2011). CD103+ pulmonary dendritic cells preferentially acquire and present apoptotic cell-associated antigen. Journal of Experimental Medicine, 208(9), 1789–1797. https://doi.org/10.1084/jem.20110538EMA. (2009). EPAR summary for the public, ChondroCelect, INN-characterised viable autologous cartilage cells expanded ex vivo expressing specific marker proteins. European Medicines Agency. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_- _Summary_for_the_public/human/000878/WC500026033.pdfFournel, S., Neichel, S., Dali, H., Farci, S., Maillère, B., Briand, J.-P., & Muller, S. (2003). CD4 + T Cells from (New Zealand Black × New Zealand White)F 1 Lupus Mice and Normal Mice Immunized Against Apoptotic Nucleosomes Recognize Similar Th Cell Epitopes in the C Terminus of Histone H3 . The Journal of Immunology, 171(2), 636– 644. https://doi.org/10.4049/jimmunol.171.2.636Fujita, H., Yamamoto, M., Ogino, T., Kobuchi, H., Ohmoto, N., Aoyama, E., Oka, T., Nakanishi, T., Inoue, K., & Sasaki, J. (2014). Necrotic and apoptotic cells serve as nuclei for calcification on osteoblastic differentiation of human mesenchymal stem cells in vitro. Cell Biochemistry and Function, 32(1), 77–86. https://doi.org/10.1002/cbf.2974Gabr, M. M., Zakaria, M. M., Refaie, A. F., Abdel-Rahman, E. A., Reda, A. M., Ali, S. S., Khater, S. M., Ashamallah, S. A., Ismail, A. M., Ismail, H. E. D. A., El-Badri, N., & Ghoneim, M. A. (2017). From Human Mesenchymal Stem Cells to Insulin-Producing Cells: Comparison between Bone Marrow- and Adipose Tissue-Derived Cells. BioMed Research International, 2017. https://doi.org/10.1155/2017/3854232Galleu, A., Riffo-Vasquez, Y., Trento, C., Lomas, C., Dolcetti, L., Cheung, T. S., Von Bonin, M., Barbieri, L., Halai, K., Ward, S., Weng, L., Chakraverty, R., Lombardi, G., Watt, F. M., Orchard, K., Marks, D. I., Apperley, J., Bornhauser, M., Walczak, H., ... Dazzi, F. (2017). Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation. Science Translational Medicine, 9(416). https://doi.org/10.1126/scitranslmed.aam7828Gao, S., Mao, F., Zhang, B., Zhang, L., Zhang, X., Wang, M., Yan, Y., Yang, T., Zhang, J., Zhu, W., Qian, H., & Xu, W. (2014). Mouse bone marrow-derived mesenchymal stem cells induce macrophage M2 polarization through the nuclear factor-κB and signal transducer and activator of transcription 3 pathways. Experimental Biology and Medicine, 239(3), 366–375. https://doi.org/10.1177/1535370213518169Gao, W. X., Sun, Y. Q., Shi, J., Li, C. L., Fang, S. Bin, Wang, D., Deng, X. Q., Wen, W., & Fu, Q. L. (2017). Effects of mesenchymal stem cells from human induced pluripotent stem cells on differentiation, maturation, and function of dendritic cells. Stem Cell Research and Therapy, 8(1), 1–16. https://doi.org/10.1186/s13287-017-0499-0Ghahremani Piraghaj, M., Soudi, S., Ghanbarian, H., Bolandi, Z., Namaki, S., & Hashemi, S. M. (2018). Effect of efferocytosis of apoptotic mesenchymal stem cells (MSCs) on C57BL/6 peritoneal macrophages function. Life Sciences, 212(September), 203–212. https://doi.org/10.1016/j.lfs.2018.09.052Hyvärinen, K., Holopainen, M., Skirdenko, V., Ruhanen, H., Lehenkari, P., Korhonen, M., Käkelä, R., Laitinen, S., & Kerkelä, E. (2018). Mesenchymal stromal cells and their extracellular vesicles enhance the anti-inflammatory phenotype of regulatory macrophages by downregulating the production of interleukin (IL)-23 and IL-22. Frontiers in Immunology, 9(APR), 1–13. https://doi.org/10.3389/fimmu.2018.00771Iglesias-López, C., Agustí, A., Obach, M., & Vallano, A. (2019). Regulatory framework for advanced therapy medicinal products in Europe and United States. Frontiers in Pharmacology, 10(JULY), 1–14. https://doi.org/10.3389/fphar.2019.00921International, R., Report, A., & No, P. (2005). Al Pr Od Uc T N O Lo Ng Er Ho. 44(June 2004), 2005.James, R., Haridas, N., & Deb, K. D. (2019). Clinical applications of mesenchymal stem cells. In Biointegration of Medical Implant Materials. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-102680-9.00005-6Joshua M. Hare, Joel E. Fishman, A. W. H. (2017). Comparison of Allogeneic vs Autologous Bone Marrow–Derived Mesenchymal Stem Cells Delivered by Transendocardial Injection in Patients With Ischemic Cardiomyopathy. J Autism Dev Disord, 47(3), 549– 562. https://doi.org/10.1001/jama.2012.25321.ComparisonLee, D. S., Yi, T. G., Lee, H. J., Kim, S. N., Park, S., Jeon, M. S., & Song, S. U. (2014). Mesenchymal stem cells infected with Mycoplasma arginini secrete complement C3 to regulate immunoglobulin production in b lymphocytes. Cell Death and Disease, 5(4), 1–9. https://doi.org/10.1038/cddis.2014.147Liu, H., Liu, S., Qiu, X., Yang, X., Bao, L., Pu, F., Liu, X., Li, C., Xuan, K., Zhou, J., Deng, Z., Liu, S., & Jin, Y. (2020). Donor MSCs release apoptotic bodies to improve myocardial infarction via autophagy regulation in recipient cells. Autophagy, 16(12), 2140–2155. https://doi.org/10.1080/15548627.2020.1717128Liu, S., Jiang, L., Li, H., Shi, H., Luo, H., Zhang, Y., Yu, C., & Jin, Y. (2014). Mesenchymal stem cells prevent hypertrophic scar formation via inflammatory regulation when undergoing apoptosis. Journal of Investigative Dermatology, 134(10), 2648–2657. https://doi.org/10.1038/jid.2014.169Lufkin, S. V. and T. (2013). Bridging the gap: understanding embryonic IVD. Cellular and Developmental Biology, 10(2), 54–56. https://doi.org/10.1002/stem.68.MesenchymalMa, Q., Liang, M., Wu, Y., Ding, N., Duan, L., Yu, T., Bai, Y., Kang, F., Dong, S., Xu, J., & Dou, C. (2019). Mature osteoclast- derived apoptotic bodies promote osteogenic differentiation via RANKL-mediated reverse signaling. Journal of Biological Chemistry, 294(29), 11240–11247. https://doi.org/10.1074/jbc.RA119.007625MACI (Autologous Cultured Chondrocytes on a Porcine Collagen Membrane) | FDA. (n.d.). Retrieved March 24, 2021, from https://www.fda.gov/vaccines-blood- biologics/cellular-gene-therapy-products/maci-autologous-cultured-chondrocytes- porcine-collagen-membraneMahmoudi, M., Taghavi-Farahabadi, M., Rezaei, N., & Hashemi, S. M. (2019). Comparison of the effects of adipose tissue mesenchymal stromal cell-derived exosomes with conditioned media on neutrophil function and apoptosis. International Immunopharmacology, 74(June), 105689. https://doi.org/10.1016/j.intimp.2019.105689Mansnerus, J. (2017). Commercialisation of Advanced Therapies : - A Study of the EU Regulation on Advanced Therapy Medical Products. In Regulatory Rapporteur (Vol. 14, Issue 6). www.topra.orgMedication, A., Mellitus, D., & Reply, S. (2005). Etters to the. Psychiatry: Interpersonal and Biological Processes, March, 395–401.Németh, K., Leelahavanichkul, A., Yuen, P. S. T., Mayer, B., Parmelee, A., Doi, K., Robey, P. G., Leelahavanichkul, K., Koller, B. H., Brown, J. M., Hu, X., Jelinek, I., Star, R. A., & Mezey, É. (2009). Bone marrow stromal cells attenuate sepsis via prostaglandin E 2-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nature Medicine, 15(1), 42–49. https://doi.org/10.1038/nm.1905Petrenko, Y., Vackova, I., Kekulova, K., Chudickova, M., Koci, Z., Turnovcova, K., Kupcova Skalnikova, H., Vodicka, P., & Kubinova, S. (2020). A Comparative Analysis of Multipotent Mesenchymal Stromal Cells derived from Different Sources, with a Focus on Neuroregenerative Potential. Scientific Reports, 10(1), 1–15. https://doi.org/10.1038/s41598-020-61167-zPhan, T. K., Ozkocak, D. C., & Poon, I. K. H. (2020). Unleashing the therapeutic potential of apoptotic bodies. Biochemical Society Transactions, 48(5), 2079–2088. https://doi.org/10.1042/BST20200225PROVENGE (sipuleucel-T) | FDA. (n.d.). Retrieved March 24, 2021, from https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy- products/provenge-sipuleucel-tRadrizzani, M., Soncin, S., Cicero, V. Lo, Andriolo, G., Bolis, S., & Turchetto, L. (2016). Quality control assays for clinical-grade human mesenchymal stromal cells: Methods for ATMP release. Methods in Molecular Biology, 1416, 313–337. https://doi.org/10.1007/978-1-4939-3584-0_19Raffaghello, L., Bianchi, G., Bertolotto, M., Montecucco, F., Busca, A., Dallegri, F., Ottonello, L., & Pistoia, V. (2008). Human Mesenchymal Stem Cells Inhibit Neutrophil Apoptosis: A Model for Neutrophil Preservation in the Bone Marrow Niche. Stem Cells,26(1), 151–162. https://doi.org/10.1634/stemcells.2007-0416Reis, M., Mavin, E., Nicholson, L., Green, K., Dickinson, A. M., & Wang, X. N. (2018). Mesenchymal stromal cell-derived extracellular vesicles attenuate dendritic cell maturation and function. Frontiers in Immunology, 9(NOV), 1–14. https://doi.org/10.3389/fimmu.2018.02538Saas, P., Daguindau, E., & Perruche, S. (2016). Concise Review: Apoptotic Cell-Based Therapies-Rationale, Preclinical Results and Future Clinical Developments. Stem Cells, 34(6), 1464–1473. https://doi.org/10.1002/stem.2361Sacchetti, B., Funari, A., Remoli, C., Giannicola, G., Kogler, G., Liedtke, S., Cossu, G., Serafini, M., Sampaolesi, M., Tagliafico, E., Tenedini, E., Saggio, I., Robey, P. G., Riminucci, M., & Bianco, P. (2016). No identical “mesenchymal stem cells” at different times and sites: Human committed progenitors of distinct origin and differentiation potential are incorporated as adventitial cells in microvessels. Stem Cell Reports, 6(6), 897–913. https://doi.org/10.1016/j.stemcr.2016.05.011Sarkar, P., Redondo, J., Kemp, K., Ginty, M., Wilkins, A., Scolding, N. J., & Rice, C. M. (2018). Reduced neuroprotective potential of the mesenchymal stromal cell secretome with ex vivo expansion, age and progressive multiple sclerosis. Cytotherapy, 20(1), 21–28. https://doi.org/10.1016/j.jcyt.2017.08.007Shin, J. Y., Park, H. J., Kim, H. N., Oh, S. H., Bae, J. S., Ha, H. J., & Lee, P. H. (2014). Mesenchymal stem cells enhance autophagy and increase β-amyloid clearance in Alzheimer disease models. Autophagy, 10(1), 32–44. https://doi.org/10.4161/auto.26508Song, N., Scholtemeijer, M., & Shah, K. (2020). Mesenchymal Stem Cell Immunomodulation: Mechanisms and Therapeutic Potential. Trends in Pharmacological Sciences, 41(9), 653–664. https://doi.org/10.1016/j.tips.2020.06.009Sotiropoulou, P. A., Perez, S. A., Gritzapis, A. D., Baxevanis, C. N., & Papamichail, M. (2006). Interactions Between Human Mesenchymal Stem Cells and Natural Killer Cells. Stem Cells, 24(1), 74–85. https://doi.org/10.1634/stemcells.2004-0359Sung, P. H., Chang, C. Lo, Tsai, T. H., Chang, L. T., Leu, S., Chen, Y. L., Yang, C. C., Chua, S., Yeh, K. H., Chai, H. T., Chang, H. W., Chen, H. H., & Yip, H. K. (2013). Apoptotic adipose-derived mesenchymal stem cell therapy protects against lung and kidney injury in sepsis syndrome caused by cecal ligation puncture in rats. Stem Cell Research and Therapy, 4(6), 9–15. https://doi.org/10.1186/scrt385ten Ham, R. M. T., Hoekman, J., Hövels, A. M., Broekmans, A. W., Leufkens, H. G. M., & Klungel, O. H. (2018). Challenges in Advanced Therapy Medicinal Product Development: A Survey among Companies in Europe. Molecular Therapy - Methods and Clinical Development, 11(December), 121–130. https://doi.org/10.1016/j.omtm.2018.10.003Therapies, A. (2012). Reflection paper on classification of advanced therapy medicinal products Reflection paper on classification of Advanced Therapy Medicinal Products Table of contents. Therapy, 44(April), 1–19.Ugurlu, B., & Karaoz, E. (2020). Comparison of similar cells: Mesenchymal stromal cells and fibroblasts. Acta Histochemica, 122(8), 151634. https://doi.org/10.1016/j.acthis.2020.151634Vamvakas, S., Martinalbo, J., Pita, R., & Isaac, M. (2011). On the edge of new technologies (advanced therapies, nanomedicines). Drug Discovery Today: Technologies, 8(1), e21–e28. https://doi.org/10.1016/j.ddtec.2011.04.001Wang, G., Zhang, S., Wang, F., Li, G., Zhang, L., & Luan, X. (2013). Expression and biological function of programmed death ligands in human placenta mesenchymal stem cells. Cell Biology International, 37(2), 137–148. https://doi.org/10.1002/cbin.10024Weiss, D. J., English, K., Krasnodembskaya, A., Isaza-Correa, J. M., Hawthorne, I. J., & Mahon, B. P. (2019). The necrobiology of mesenchymal stromal cells affects therapeutic efficacy. Frontiers in Immunology, 10(JUN), 1–12. https://doi.org/10.3389/fimmu.2019.01228Wobma, H., & Satwani, P. (2021). Mesenchymal stromal cells: Getting ready for clinical primetime. Transfusion and Apheresis Science, January, 103058. https://doi.org/10.1016/j.transci.2021.103058Xu, X., Lai, Y., & Hua, Z. C. (2019). Apoptosis and apoptotic body: Disease message and therapeutic target potentials. Bioscience Reports, 39(1), 1–17. https://doi.org/10.1042/BSR20180992Yamaguchi, H., Maruyama, T., Urade, Y., & Nagata, S. (2014). Immunosuppression via adenosine receptor activation by adenosine monophosphate released from apoptotic cells. ELife, 2014(3), 1–15. https://doi.org/10.7554/eLife.02172Yan, Z., Zhuansun, Y., Chen, R., Li, J., & Ran, P. (2014). Immunomodulation of mesenchymal stromal cells on regulatory T cells and its possible mechanism. Experimental Cell Research, 324(1), 65–74. https://doi.org/10.1016/j.yexcr.2014.03.013Yang, S., Mao, Y., Zhang, H., Xu, Y., An, J., & Huang, Z. (2019). The chemical biology of apoptosis: Revisited after 17 years. European Journal of Medicinal Chemistry, 177, 63–75. https://doi.org/10.1016/j.ejmech.2019.05.019Zhao, Q., Ren, H., & Han, Z. (2016). Mesenchymal stem cells: Immunomodulatory capability and clinical potential in immune diseases. Journal of Cellular Immunotherapy, 2(1), 3–20. https://doi.org/10.1016/j.jocit.2014.12.001Zheng, Z. H., Li, X. Y., Ding, J., Jia, J. F., & Zhu, P. (2008). Allogeneic mesenchymal stem cell and mesenchymal stem cell-differentiated chondrocyte suppress the responses of type II collagen-reactive T cells in rheumatoid arthritis. Rheumatology, 47(1), 22–30. https://doi.org/10.1093/rheumatology/kem284Instituto Distrital de Ciencia, Biotecnologia e Innovación en SaludEstudiantesLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83183/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1032484125.2022.pdf1032484125.2022.pdfTesis de Maestria en Inmunologíaapplication/pdf2918685https://repositorio.unal.edu.co/bitstream/unal/83183/2/1032484125.2022.pdf241826b252f8edd149e7d0563ed3db9eMD52THUMBNAIL1032484125.2022.pdf.jpg1032484125.2022.pdf.jpgGenerated Thumbnailimage/jpeg4445https://repositorio.unal.edu.co/bitstream/unal/83183/3/1032484125.2022.pdf.jpgc1d9eaf0833c8b888bde8b3339a38831MD53unal/83183oai:repositorio.unal.edu.co:unal/831832024-08-17 00:00:22.032Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=