Evaluación del efecto inmunomodulador de los cuerpos apoptóticos de células estromales mesenquimales de Gelatina de Wharton
Ilustraciones, fotografías a color,
- Autores:
-
Beltran Ricaurte, Karl Michael
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/83183
- Palabra clave:
- 570 - Biología
Inflamación
Técnicas inmunológicas
Inflammation
Immunological techniques
Células estromales mesenquimales
Cuerpos apoptóticos
Inmunomodulación
Macrófagos
Linfocitos
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_7e90792c819ac702f2bd19dca4a53b56 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/83183 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluación del efecto inmunomodulador de los cuerpos apoptóticos de células estromales mesenquimales de Gelatina de Wharton |
dc.title.translated.eng.fl_str_mv |
Evaluation of the immunomodulatory effect of apoptotic bodies of Wharton's jelly mesenchymal stromal stromal cells |
title |
Evaluación del efecto inmunomodulador de los cuerpos apoptóticos de células estromales mesenquimales de Gelatina de Wharton |
spellingShingle |
Evaluación del efecto inmunomodulador de los cuerpos apoptóticos de células estromales mesenquimales de Gelatina de Wharton 570 - Biología Inflamación Técnicas inmunológicas Inflammation Immunological techniques Células estromales mesenquimales Cuerpos apoptóticos Inmunomodulación Macrófagos Linfocitos |
title_short |
Evaluación del efecto inmunomodulador de los cuerpos apoptóticos de células estromales mesenquimales de Gelatina de Wharton |
title_full |
Evaluación del efecto inmunomodulador de los cuerpos apoptóticos de células estromales mesenquimales de Gelatina de Wharton |
title_fullStr |
Evaluación del efecto inmunomodulador de los cuerpos apoptóticos de células estromales mesenquimales de Gelatina de Wharton |
title_full_unstemmed |
Evaluación del efecto inmunomodulador de los cuerpos apoptóticos de células estromales mesenquimales de Gelatina de Wharton |
title_sort |
Evaluación del efecto inmunomodulador de los cuerpos apoptóticos de células estromales mesenquimales de Gelatina de Wharton |
dc.creator.fl_str_mv |
Beltran Ricaurte, Karl Michael |
dc.contributor.advisor.none.fl_str_mv |
Salguero, Gustavo |
dc.contributor.author.none.fl_str_mv |
Beltran Ricaurte, Karl Michael |
dc.contributor.researchgroup.spa.fl_str_mv |
Unidad de Terapias Avanzadas IDCBIS |
dc.subject.ddc.spa.fl_str_mv |
570 - Biología |
topic |
570 - Biología Inflamación Técnicas inmunológicas Inflammation Immunological techniques Células estromales mesenquimales Cuerpos apoptóticos Inmunomodulación Macrófagos Linfocitos |
dc.subject.lemb.spa.fl_str_mv |
Inflamación Técnicas inmunológicas |
dc.subject.lemb.eng.fl_str_mv |
Inflammation Immunological techniques |
dc.subject.proposal.spa.fl_str_mv |
Células estromales mesenquimales Cuerpos apoptóticos Inmunomodulación Macrófagos Linfocitos |
description |
Ilustraciones, fotografías a color, |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-11-18 |
dc.date.accessioned.none.fl_str_mv |
2023-01-30T16:54:07Z |
dc.date.available.none.fl_str_mv |
2023-01-30T16:54:07Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/83183 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/83183 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Almeida-Porada, G., Atala, A. J., & Porada, C. D. (2020). Therapeutic Mesenchymal Stromal Cells for Immunotherapy and for Gene and Drug Delivery. Molecular Therapy - Methods and Clinical Development, 16(March), 204–224. https://doi.org/10.1016/j.omtm.2020.01.005 Behar, S. M., Martin, C. J., Booty, M. G., Nishimura, T., Zhao, X., Gan, H. X., Divangahi, M., & Remold, H. G. (2011). Apoptosis is an innate defense function of macrophages against Mycobacterium tuberculosis. Mucosal Immunology, 4(3), 279–287. https://doi.org/10.1038/mi.2011.3 Brock, C. K., Wallin, S. T., Ruiz, O. E., Samms, K. M., Mandal, A., Sumner, E. A., & Eisenhoffer, G. T. (2019). Stem cell proliferation is induced by apoptotic bodies from dying cells during epithelial tissue maintenance. Nature Communications, 10(1), 1–11. https://doi.org/10.1038/s41467-019-09010-6 Cañas-Arboleda, M., Beltrán, K., Medina, C., Camacho, B., & Salguero, G. (2020). Human platelet lysate supports efficient expansion and stability of wharton’s jelly mesenchymal stromal cells via active uptake and release of soluble regenerative factors. International Journal of Molecular Sciences, 21(17), 1–19. https://doi.org/10.3390/ijms21176284 Caplan, H., Olson, S. D., Kumar, A., George, M., Prabhakara, K. S., Wenzel, P., Bedi, S., Toledano-Furman, N. E., Triolo, F., Kamhieh-Milz, J., Moll, G., & Cox, C. S. (2019). Mesenchymal Stromal Cell Therapeutic Delivery: Translational Challenges to Clinical Application. Frontiers in Immunology, 10(July), 1645. https://doi.org/10.3389/fimmu.2019.01645 Cassatella, M. A., Mosna, F., Micheletti, A., Lisi, V., Tamassia, N., Cont, C., Calzetti, F., Pelletier, M., Pizzolo, G., & Krampera, M. (2011). Toll-like receptor-3-activated human mesenchymal stromal cells significantly prolong the survival and function of neutrophils. Stem Cells, 29(6), 1001–1011. https://doi.org/10.1002/stem.651 Chiesa, S., Morbelli, S., Morando, S., Massollo, M., Marini, C., Bertoni, A., Frassoni, F., Bartolomé, S. T., Sambuceti, G., Traggiai, E., & Uccelli, A. (2011). Mesenchymal stem cells impair in vivo T-cell priming by dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 108(42), 17384–17389. https://doi.org/10.1073/pnas.1103650108 Cruz-Barrera, M., Flórez-Zapata, N., Lemus-Diaz, N., Medina, C., Galindo, C. C., González- Acero, L. X., Correa, L., Camacho, B., Gruber, J., & Salguero, G. (2020). Integrated Analysis of Transcriptome and Secretome From Umbilical Cord Mesenchymal Stromal Cells Reveal New Mechanisms for the Modulation of Inflammation and Immune Activation. Frontiers in Immunology, 11(September), 1–19. https://doi.org/10.3389/fimmu.2020.575488 de Witte, S. F. H., Luk, F., Sierra Parraga, J. M., Gargesha, M., Merino, A., Korevaar, S. S., Shankar, A. S., O’Flynn, L., Elliman, S. J., Roy, D., Betjes, M. G. H., Newsome, P. N., Baan, C. C., & Hoogduijn, M. J. (2018). Immunomodulation By Therapeutic Mesenchymal Stromal Cells (MSC) Is Triggered Through Phagocytosis of MSC By Monocytic Cells. Stem Cells, 36(4), 602–615. https://doi.org/10.1002/stem.2779 Del Papa, B., Sportoletti, P., Cecchini, D., Rosati, E., Balucani, C., Baldoni, S., Fettucciari, K., Marconi, P., Martelli, M. F., Falzetti, F., & Di Ianni, M. (2013). Notch1 modulates mesenchymal stem cells mediated regulatory T-cell induction. European Journal of Immunology, 43(1), 182–187. https://doi.org/10.1002/eji.201242643 Desch, A. N., Randolph, G. J., Murphy, K., Gautier, E. L., Kedl, R. M., Lahoud, M. H., Caminschi, I., Shortman, K., Henson, P. M., & Jakubzick, C. V. (2011). CD103+ pulmonary dendritic cells preferentially acquire and present apoptotic cell-associated antigen. Journal of Experimental Medicine, 208(9), 1789–1797. https://doi.org/10.1084/jem.20110538 EMA. (2009). EPAR summary for the public, ChondroCelect, INN-characterised viable autologous cartilage cells expanded ex vivo expressing specific marker proteins. European Medicines Agency. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_- _Summary_for_the_public/human/000878/WC500026033.pdf Fournel, S., Neichel, S., Dali, H., Farci, S., Maillère, B., Briand, J.-P., & Muller, S. (2003). CD4 + T Cells from (New Zealand Black × New Zealand White)F 1 Lupus Mice and Normal Mice Immunized Against Apoptotic Nucleosomes Recognize Similar Th Cell Epitopes in the C Terminus of Histone H3 . The Journal of Immunology, 171(2), 636– 644. https://doi.org/10.4049/jimmunol.171.2.636 Fujita, H., Yamamoto, M., Ogino, T., Kobuchi, H., Ohmoto, N., Aoyama, E., Oka, T., Nakanishi, T., Inoue, K., & Sasaki, J. (2014). Necrotic and apoptotic cells serve as nuclei for calcification on osteoblastic differentiation of human mesenchymal stem cells in vitro. Cell Biochemistry and Function, 32(1), 77–86. https://doi.org/10.1002/cbf.2974 Gabr, M. M., Zakaria, M. M., Refaie, A. F., Abdel-Rahman, E. A., Reda, A. M., Ali, S. S., Khater, S. M., Ashamallah, S. A., Ismail, A. M., Ismail, H. E. D. A., El-Badri, N., & Ghoneim, M. A. (2017). From Human Mesenchymal Stem Cells to Insulin-Producing Cells: Comparison between Bone Marrow- and Adipose Tissue-Derived Cells. BioMed Research International, 2017. https://doi.org/10.1155/2017/3854232 Galleu, A., Riffo-Vasquez, Y., Trento, C., Lomas, C., Dolcetti, L., Cheung, T. S., Von Bonin, M., Barbieri, L., Halai, K., Ward, S., Weng, L., Chakraverty, R., Lombardi, G., Watt, F. M., Orchard, K., Marks, D. I., Apperley, J., Bornhauser, M., Walczak, H., ... Dazzi, F. (2017). Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation. Science Translational Medicine, 9(416). https://doi.org/10.1126/scitranslmed.aam7828 Gao, S., Mao, F., Zhang, B., Zhang, L., Zhang, X., Wang, M., Yan, Y., Yang, T., Zhang, J., Zhu, W., Qian, H., & Xu, W. (2014). Mouse bone marrow-derived mesenchymal stem cells induce macrophage M2 polarization through the nuclear factor-κB and signal transducer and activator of transcription 3 pathways. Experimental Biology and Medicine, 239(3), 366–375. https://doi.org/10.1177/1535370213518169 Gao, W. X., Sun, Y. Q., Shi, J., Li, C. L., Fang, S. Bin, Wang, D., Deng, X. Q., Wen, W., & Fu, Q. L. (2017). Effects of mesenchymal stem cells from human induced pluripotent stem cells on differentiation, maturation, and function of dendritic cells. Stem Cell Research and Therapy, 8(1), 1–16. https://doi.org/10.1186/s13287-017-0499-0 Ghahremani Piraghaj, M., Soudi, S., Ghanbarian, H., Bolandi, Z., Namaki, S., & Hashemi, S. M. (2018). Effect of efferocytosis of apoptotic mesenchymal stem cells (MSCs) on C57BL/6 peritoneal macrophages function. Life Sciences, 212(September), 203–212. https://doi.org/10.1016/j.lfs.2018.09.052 Hyvärinen, K., Holopainen, M., Skirdenko, V., Ruhanen, H., Lehenkari, P., Korhonen, M., Käkelä, R., Laitinen, S., & Kerkelä, E. (2018). Mesenchymal stromal cells and their extracellular vesicles enhance the anti-inflammatory phenotype of regulatory macrophages by downregulating the production of interleukin (IL)-23 and IL-22. Frontiers in Immunology, 9(APR), 1–13. https://doi.org/10.3389/fimmu.2018.00771 Iglesias-López, C., Agustí, A., Obach, M., & Vallano, A. (2019). Regulatory framework for advanced therapy medicinal products in Europe and United States. Frontiers in Pharmacology, 10(JULY), 1–14. https://doi.org/10.3389/fphar.2019.00921 International, R., Report, A., & No, P. (2005). Al Pr Od Uc T N O Lo Ng Er Ho. 44(June 2004), 2005. James, R., Haridas, N., & Deb, K. D. (2019). Clinical applications of mesenchymal stem cells. In Biointegration of Medical Implant Materials. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-102680-9.00005-6 Joshua M. Hare, Joel E. Fishman, A. W. H. (2017). Comparison of Allogeneic vs Autologous Bone Marrow–Derived Mesenchymal Stem Cells Delivered by Transendocardial Injection in Patients With Ischemic Cardiomyopathy. J Autism Dev Disord, 47(3), 549– 562. https://doi.org/10.1001/jama.2012.25321.Comparison Lee, D. S., Yi, T. G., Lee, H. J., Kim, S. N., Park, S., Jeon, M. S., & Song, S. U. (2014). Mesenchymal stem cells infected with Mycoplasma arginini secrete complement C3 to regulate immunoglobulin production in b lymphocytes. Cell Death and Disease, 5(4), 1–9. https://doi.org/10.1038/cddis.2014.147 Liu, H., Liu, S., Qiu, X., Yang, X., Bao, L., Pu, F., Liu, X., Li, C., Xuan, K., Zhou, J., Deng, Z., Liu, S., & Jin, Y. (2020). Donor MSCs release apoptotic bodies to improve myocardial infarction via autophagy regulation in recipient cells. Autophagy, 16(12), 2140–2155. https://doi.org/10.1080/15548627.2020.1717128 Liu, S., Jiang, L., Li, H., Shi, H., Luo, H., Zhang, Y., Yu, C., & Jin, Y. (2014). Mesenchymal stem cells prevent hypertrophic scar formation via inflammatory regulation when undergoing apoptosis. Journal of Investigative Dermatology, 134(10), 2648–2657. https://doi.org/10.1038/jid.2014.169 Lufkin, S. V. and T. (2013). Bridging the gap: understanding embryonic IVD. Cellular and Developmental Biology, 10(2), 54–56. https://doi.org/10.1002/stem.68.Mesenchymal Ma, Q., Liang, M., Wu, Y., Ding, N., Duan, L., Yu, T., Bai, Y., Kang, F., Dong, S., Xu, J., & Dou, C. (2019). Mature osteoclast- derived apoptotic bodies promote osteogenic differentiation via RANKL-mediated reverse signaling. Journal of Biological Chemistry, 294(29), 11240–11247. https://doi.org/10.1074/jbc.RA119.007625 MACI (Autologous Cultured Chondrocytes on a Porcine Collagen Membrane) | FDA. (n.d.). Retrieved March 24, 2021, from https://www.fda.gov/vaccines-blood- biologics/cellular-gene-therapy-products/maci-autologous-cultured-chondrocytes- porcine-collagen-membrane Mahmoudi, M., Taghavi-Farahabadi, M., Rezaei, N., & Hashemi, S. M. (2019). Comparison of the effects of adipose tissue mesenchymal stromal cell-derived exosomes with conditioned media on neutrophil function and apoptosis. International Immunopharmacology, 74(June), 105689. https://doi.org/10.1016/j.intimp.2019.105689 Mansnerus, J. (2017). Commercialisation of Advanced Therapies : - A Study of the EU Regulation on Advanced Therapy Medical Products. In Regulatory Rapporteur (Vol. 14, Issue 6). www.topra.org Medication, A., Mellitus, D., & Reply, S. (2005). Etters to the. Psychiatry: Interpersonal and Biological Processes, March, 395–401. Németh, K., Leelahavanichkul, A., Yuen, P. S. T., Mayer, B., Parmelee, A., Doi, K., Robey, P. G., Leelahavanichkul, K., Koller, B. H., Brown, J. M., Hu, X., Jelinek, I., Star, R. A., & Mezey, É. (2009). Bone marrow stromal cells attenuate sepsis via prostaglandin E 2-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nature Medicine, 15(1), 42–49. https://doi.org/10.1038/nm.1905 Petrenko, Y., Vackova, I., Kekulova, K., Chudickova, M., Koci, Z., Turnovcova, K., Kupcova Skalnikova, H., Vodicka, P., & Kubinova, S. (2020). A Comparative Analysis of Multipotent Mesenchymal Stromal Cells derived from Different Sources, with a Focus on Neuroregenerative Potential. Scientific Reports, 10(1), 1–15. https://doi.org/10.1038/s41598-020-61167-z Phan, T. K., Ozkocak, D. C., & Poon, I. K. H. (2020). Unleashing the therapeutic potential of apoptotic bodies. Biochemical Society Transactions, 48(5), 2079–2088. https://doi.org/10.1042/BST20200225 PROVENGE (sipuleucel-T) | FDA. (n.d.). Retrieved March 24, 2021, from https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy- products/provenge-sipuleucel-t Radrizzani, M., Soncin, S., Cicero, V. Lo, Andriolo, G., Bolis, S., & Turchetto, L. (2016). Quality control assays for clinical-grade human mesenchymal stromal cells: Methods for ATMP release. Methods in Molecular Biology, 1416, 313–337. https://doi.org/10.1007/978-1-4939-3584-0_19 Raffaghello, L., Bianchi, G., Bertolotto, M., Montecucco, F., Busca, A., Dallegri, F., Ottonello, L., & Pistoia, V. (2008). Human Mesenchymal Stem Cells Inhibit Neutrophil Apoptosis: A Model for Neutrophil Preservation in the Bone Marrow Niche. Stem Cells,26(1), 151–162. https://doi.org/10.1634/stemcells.2007-0416 Reis, M., Mavin, E., Nicholson, L., Green, K., Dickinson, A. M., & Wang, X. N. (2018). Mesenchymal stromal cell-derived extracellular vesicles attenuate dendritic cell maturation and function. Frontiers in Immunology, 9(NOV), 1–14. https://doi.org/10.3389/fimmu.2018.02538 Saas, P., Daguindau, E., & Perruche, S. (2016). Concise Review: Apoptotic Cell-Based Therapies-Rationale, Preclinical Results and Future Clinical Developments. Stem Cells, 34(6), 1464–1473. https://doi.org/10.1002/stem.2361 Sacchetti, B., Funari, A., Remoli, C., Giannicola, G., Kogler, G., Liedtke, S., Cossu, G., Serafini, M., Sampaolesi, M., Tagliafico, E., Tenedini, E., Saggio, I., Robey, P. G., Riminucci, M., & Bianco, P. (2016). No identical “mesenchymal stem cells” at different times and sites: Human committed progenitors of distinct origin and differentiation potential are incorporated as adventitial cells in microvessels. Stem Cell Reports, 6(6), 897–913. https://doi.org/10.1016/j.stemcr.2016.05.011 Sarkar, P., Redondo, J., Kemp, K., Ginty, M., Wilkins, A., Scolding, N. J., & Rice, C. M. (2018). Reduced neuroprotective potential of the mesenchymal stromal cell secretome with ex vivo expansion, age and progressive multiple sclerosis. Cytotherapy, 20(1), 21–28. https://doi.org/10.1016/j.jcyt.2017.08.007 Shin, J. Y., Park, H. J., Kim, H. N., Oh, S. H., Bae, J. S., Ha, H. J., & Lee, P. H. (2014). Mesenchymal stem cells enhance autophagy and increase β-amyloid clearance in Alzheimer disease models. Autophagy, 10(1), 32–44. https://doi.org/10.4161/auto.26508 Song, N., Scholtemeijer, M., & Shah, K. (2020). Mesenchymal Stem Cell Immunomodulation: Mechanisms and Therapeutic Potential. Trends in Pharmacological Sciences, 41(9), 653–664. https://doi.org/10.1016/j.tips.2020.06.009 Sotiropoulou, P. A., Perez, S. A., Gritzapis, A. D., Baxevanis, C. N., & Papamichail, M. (2006). Interactions Between Human Mesenchymal Stem Cells and Natural Killer Cells. Stem Cells, 24(1), 74–85. https://doi.org/10.1634/stemcells.2004-0359 Sung, P. H., Chang, C. Lo, Tsai, T. H., Chang, L. T., Leu, S., Chen, Y. L., Yang, C. C., Chua, S., Yeh, K. H., Chai, H. T., Chang, H. W., Chen, H. H., & Yip, H. K. (2013). Apoptotic adipose-derived mesenchymal stem cell therapy protects against lung and kidney injury in sepsis syndrome caused by cecal ligation puncture in rats. Stem Cell Research and Therapy, 4(6), 9–15. https://doi.org/10.1186/scrt385 ten Ham, R. M. T., Hoekman, J., Hövels, A. M., Broekmans, A. W., Leufkens, H. G. M., & Klungel, O. H. (2018). Challenges in Advanced Therapy Medicinal Product Development: A Survey among Companies in Europe. Molecular Therapy - Methods and Clinical Development, 11(December), 121–130. https://doi.org/10.1016/j.omtm.2018.10.003 Therapies, A. (2012). Reflection paper on classification of advanced therapy medicinal products Reflection paper on classification of Advanced Therapy Medicinal Products Table of contents. Therapy, 44(April), 1–19. Ugurlu, B., & Karaoz, E. (2020). Comparison of similar cells: Mesenchymal stromal cells and fibroblasts. Acta Histochemica, 122(8), 151634. https://doi.org/10.1016/j.acthis.2020.151634 Vamvakas, S., Martinalbo, J., Pita, R., & Isaac, M. (2011). On the edge of new technologies (advanced therapies, nanomedicines). Drug Discovery Today: Technologies, 8(1), e21–e28. https://doi.org/10.1016/j.ddtec.2011.04.001 Wang, G., Zhang, S., Wang, F., Li, G., Zhang, L., & Luan, X. (2013). Expression and biological function of programmed death ligands in human placenta mesenchymal stem cells. Cell Biology International, 37(2), 137–148. https://doi.org/10.1002/cbin.10024 Weiss, D. J., English, K., Krasnodembskaya, A., Isaza-Correa, J. M., Hawthorne, I. J., & Mahon, B. P. (2019). The necrobiology of mesenchymal stromal cells affects therapeutic efficacy. Frontiers in Immunology, 10(JUN), 1–12. https://doi.org/10.3389/fimmu.2019.01228 Wobma, H., & Satwani, P. (2021). Mesenchymal stromal cells: Getting ready for clinical primetime. Transfusion and Apheresis Science, January, 103058. https://doi.org/10.1016/j.transci.2021.103058 Xu, X., Lai, Y., & Hua, Z. C. (2019). Apoptosis and apoptotic body: Disease message and therapeutic target potentials. Bioscience Reports, 39(1), 1–17. https://doi.org/10.1042/BSR20180992 Yamaguchi, H., Maruyama, T., Urade, Y., & Nagata, S. (2014). Immunosuppression via adenosine receptor activation by adenosine monophosphate released from apoptotic cells. ELife, 2014(3), 1–15. https://doi.org/10.7554/eLife.02172 Yan, Z., Zhuansun, Y., Chen, R., Li, J., & Ran, P. (2014). Immunomodulation of mesenchymal stromal cells on regulatory T cells and its possible mechanism. Experimental Cell Research, 324(1), 65–74. https://doi.org/10.1016/j.yexcr.2014.03.013 Yang, S., Mao, Y., Zhang, H., Xu, Y., An, J., & Huang, Z. (2019). The chemical biology of apoptosis: Revisited after 17 years. European Journal of Medicinal Chemistry, 177, 63–75. https://doi.org/10.1016/j.ejmech.2019.05.019 Zhao, Q., Ren, H., & Han, Z. (2016). Mesenchymal stem cells: Immunomodulatory capability and clinical potential in immune diseases. Journal of Cellular Immunotherapy, 2(1), 3–20. https://doi.org/10.1016/j.jocit.2014.12.001 Zheng, Z. H., Li, X. Y., Ding, J., Jia, J. F., & Zhu, P. (2008). Allogeneic mesenchymal stem cell and mesenchymal stem cell-differentiated chondrocyte suppress the responses of type II collagen-reactive T cells in rheumatoid arthritis. Rheumatology, 47(1), 22–30. https://doi.org/10.1093/rheumatology/kem284 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
ix, 77 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Medicina - Maestría en Inmunología |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Medicina |
dc.publisher.place.spa.fl_str_mv |
Bogotá - Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/83183/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/83183/2/1032484125.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/83183/3/1032484125.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 241826b252f8edd149e7d0563ed3db9e c1d9eaf0833c8b888bde8b3339a38831 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089950364172288 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Salguero, Gustavoc8dcddfb8ffa0fed1b1ffe427c79ad46Beltran Ricaurte, Karl Michaeld7a3e350f3514805cf50e2f55a6c5ed7Unidad de Terapias Avanzadas IDCBIS2023-01-30T16:54:07Z2023-01-30T16:54:07Z2022-11-18https://repositorio.unal.edu.co/handle/unal/83183Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, fotografías a color,Las inmunoterapias basadas en células estromales mesenquimales (CEM) representan herramientas para el tratamiento de enfermedades inflamatorias. Sin embargo, su aplicación clínica actualmente es un reto. La biodistribución de las CEM parece ser deficiente, lo que promueve la activación de la apoptosis y la liberación de cuerpos apoptóticos (AB). Dado que recientemente se ha propuesto una interacción entre los AB derivados de las CEM (CEM-AB) y componentes del sistema inmunitario, en este proyecto se demostró que los CEM-AB ejercen efectos inmunomoduladores sinérgicos en modelos de inflamación in-vitro. Para lo anterior, se obtuvieron CEM de la gelatina de Wharton (WJ) mediante un proceso de disgregación. La exposición a la irradiación gama (25Gy) indujo eficazmente la apoptosis; tal y como demostraron la fragmentación del ADN, la translocación de fosfatidilserina, la expresión de caspasas 3/7 y la pérdida de permeabilidad de la membrana. Los CEM-AB se aislaron, caracterizaron y utilizaron para los ensayos inmunológicos. Tras la activación de linfocitos humanos con perlas anti- CD3/anti-CD28, los CEM-AB no indujeron una inmunosupresión directa, en comparación con controles de células viables. Sin embargo, el pre-condicionamiento de monocitos/macrófagos humanos CD14+ con CEM-AB indujo un fenotipo M2 y desencadenó un potente efecto inhibidor de la proliferación de linfocitos (>90%). El tratamiento con cuerpos apoptóticos también indujo la sobreexpresión de moléculas de punto de control inmunológico y la secreción diferencial de factores de crecimiento. En conjunto, estos hallazgos sugieren que los CEM-AB mejoran la acción inmunosupresora preexistente de las CEM, confiriendo a los macrófagos un fenotipo M2 durante la inflamación. (Texto tomado de la fuente)Immunotherapies based on mesenchymal stromal cells (MSC) represent tools for the treatment of inflammatory diseases. However, their clinical application is currently challenging. The biodistribution of MSC appears to be poor, which promotes the activation of apoptosis and the release of apoptotic bodies (AB). Since an interaction between MSCderived AB (MSC-AB) and components of the immune system has recently been proposed, in this project we demonstrated that MSC-AB exert synergistic immunomodulatory effects in in-vitro models of inflammation. For this purpose, MSC were obtained from Wharton's gelatin (WJ) by a disaggregation process. Exposure to gamma irradiation (25Gy) effectively induced apoptosis; as demonstrated by DNA fragmentation, phosphatidylserine translocation, caspases 3/7 expression and loss of membrane permeability. MSC-AB were isolated, characterized and used for immunological assays. Upon activation of human lymphocytes with anti-CD3/anti-CD28 beads, MSC-AB did not induce direct immunosuppression compared to viable cell controls. However, preconditioning of CD14+ human monocytes/macrophages with MSC-AB induced an M2 phenotype and triggered a potent inhibitory effect on lymphocyte proliferation (>90%). Treatment with apoptotic bodies also induced overexpression of immune checkpoint molecules and differential secretion of growth factors. Taken together, these findings suggest that MSC-AB enhance the preexisting immunosuppressive action of MSC by conferring an M2 phenotype to macrophages during inflammation.MaestríaTerapias avanzadasix, 77 páginasapplication/pdfspa570 - BiologíaInflamaciónTécnicas inmunológicasInflammationImmunological techniquesCélulas estromales mesenquimalesCuerpos apoptóticosInmunomodulaciónMacrófagosLinfocitosEvaluación del efecto inmunomodulador de los cuerpos apoptóticos de células estromales mesenquimales de Gelatina de WhartonEvaluation of the immunomodulatory effect of apoptotic bodies of Wharton's jelly mesenchymal stromal stromal cellsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBogotá - Medicina - Maestría en InmunologíaFacultad de MedicinaBogotá - ColombiaUniversidad Nacional de Colombia - Sede BogotáAlmeida-Porada, G., Atala, A. J., & Porada, C. D. (2020). Therapeutic Mesenchymal Stromal Cells for Immunotherapy and for Gene and Drug Delivery. Molecular Therapy - Methods and Clinical Development, 16(March), 204–224. https://doi.org/10.1016/j.omtm.2020.01.005Behar, S. M., Martin, C. J., Booty, M. G., Nishimura, T., Zhao, X., Gan, H. X., Divangahi, M., & Remold, H. G. (2011). Apoptosis is an innate defense function of macrophages against Mycobacterium tuberculosis. Mucosal Immunology, 4(3), 279–287. https://doi.org/10.1038/mi.2011.3Brock, C. K., Wallin, S. T., Ruiz, O. E., Samms, K. M., Mandal, A., Sumner, E. A., & Eisenhoffer, G. T. (2019). Stem cell proliferation is induced by apoptotic bodies from dying cells during epithelial tissue maintenance. Nature Communications, 10(1), 1–11. https://doi.org/10.1038/s41467-019-09010-6Cañas-Arboleda, M., Beltrán, K., Medina, C., Camacho, B., & Salguero, G. (2020). Human platelet lysate supports efficient expansion and stability of wharton’s jelly mesenchymal stromal cells via active uptake and release of soluble regenerative factors. International Journal of Molecular Sciences, 21(17), 1–19. https://doi.org/10.3390/ijms21176284Caplan, H., Olson, S. D., Kumar, A., George, M., Prabhakara, K. S., Wenzel, P., Bedi, S., Toledano-Furman, N. E., Triolo, F., Kamhieh-Milz, J., Moll, G., & Cox, C. S. (2019). Mesenchymal Stromal Cell Therapeutic Delivery: Translational Challenges to Clinical Application. Frontiers in Immunology, 10(July), 1645. https://doi.org/10.3389/fimmu.2019.01645Cassatella, M. A., Mosna, F., Micheletti, A., Lisi, V., Tamassia, N., Cont, C., Calzetti, F., Pelletier, M., Pizzolo, G., & Krampera, M. (2011). Toll-like receptor-3-activated human mesenchymal stromal cells significantly prolong the survival and function of neutrophils. Stem Cells, 29(6), 1001–1011. https://doi.org/10.1002/stem.651Chiesa, S., Morbelli, S., Morando, S., Massollo, M., Marini, C., Bertoni, A., Frassoni, F., Bartolomé, S. T., Sambuceti, G., Traggiai, E., & Uccelli, A. (2011). Mesenchymal stem cells impair in vivo T-cell priming by dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 108(42), 17384–17389. https://doi.org/10.1073/pnas.1103650108Cruz-Barrera, M., Flórez-Zapata, N., Lemus-Diaz, N., Medina, C., Galindo, C. C., González- Acero, L. X., Correa, L., Camacho, B., Gruber, J., & Salguero, G. (2020). Integrated Analysis of Transcriptome and Secretome From Umbilical Cord Mesenchymal Stromal Cells Reveal New Mechanisms for the Modulation of Inflammation and Immune Activation. Frontiers in Immunology, 11(September), 1–19. https://doi.org/10.3389/fimmu.2020.575488de Witte, S. F. H., Luk, F., Sierra Parraga, J. M., Gargesha, M., Merino, A., Korevaar, S. S., Shankar, A. S., O’Flynn, L., Elliman, S. J., Roy, D., Betjes, M. G. H., Newsome, P. N., Baan, C. C., & Hoogduijn, M. J. (2018). Immunomodulation By Therapeutic Mesenchymal Stromal Cells (MSC) Is Triggered Through Phagocytosis of MSC By Monocytic Cells. Stem Cells, 36(4), 602–615. https://doi.org/10.1002/stem.2779Del Papa, B., Sportoletti, P., Cecchini, D., Rosati, E., Balucani, C., Baldoni, S., Fettucciari, K., Marconi, P., Martelli, M. F., Falzetti, F., & Di Ianni, M. (2013). Notch1 modulates mesenchymal stem cells mediated regulatory T-cell induction. European Journal of Immunology, 43(1), 182–187. https://doi.org/10.1002/eji.201242643Desch, A. N., Randolph, G. J., Murphy, K., Gautier, E. L., Kedl, R. M., Lahoud, M. H., Caminschi, I., Shortman, K., Henson, P. M., & Jakubzick, C. V. (2011). CD103+ pulmonary dendritic cells preferentially acquire and present apoptotic cell-associated antigen. Journal of Experimental Medicine, 208(9), 1789–1797. https://doi.org/10.1084/jem.20110538EMA. (2009). EPAR summary for the public, ChondroCelect, INN-characterised viable autologous cartilage cells expanded ex vivo expressing specific marker proteins. European Medicines Agency. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_- _Summary_for_the_public/human/000878/WC500026033.pdfFournel, S., Neichel, S., Dali, H., Farci, S., Maillère, B., Briand, J.-P., & Muller, S. (2003). CD4 + T Cells from (New Zealand Black × New Zealand White)F 1 Lupus Mice and Normal Mice Immunized Against Apoptotic Nucleosomes Recognize Similar Th Cell Epitopes in the C Terminus of Histone H3 . The Journal of Immunology, 171(2), 636– 644. https://doi.org/10.4049/jimmunol.171.2.636Fujita, H., Yamamoto, M., Ogino, T., Kobuchi, H., Ohmoto, N., Aoyama, E., Oka, T., Nakanishi, T., Inoue, K., & Sasaki, J. (2014). Necrotic and apoptotic cells serve as nuclei for calcification on osteoblastic differentiation of human mesenchymal stem cells in vitro. Cell Biochemistry and Function, 32(1), 77–86. https://doi.org/10.1002/cbf.2974Gabr, M. M., Zakaria, M. M., Refaie, A. F., Abdel-Rahman, E. A., Reda, A. M., Ali, S. S., Khater, S. M., Ashamallah, S. A., Ismail, A. M., Ismail, H. E. D. A., El-Badri, N., & Ghoneim, M. A. (2017). From Human Mesenchymal Stem Cells to Insulin-Producing Cells: Comparison between Bone Marrow- and Adipose Tissue-Derived Cells. BioMed Research International, 2017. https://doi.org/10.1155/2017/3854232Galleu, A., Riffo-Vasquez, Y., Trento, C., Lomas, C., Dolcetti, L., Cheung, T. S., Von Bonin, M., Barbieri, L., Halai, K., Ward, S., Weng, L., Chakraverty, R., Lombardi, G., Watt, F. M., Orchard, K., Marks, D. I., Apperley, J., Bornhauser, M., Walczak, H., ... Dazzi, F. (2017). Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation. Science Translational Medicine, 9(416). https://doi.org/10.1126/scitranslmed.aam7828Gao, S., Mao, F., Zhang, B., Zhang, L., Zhang, X., Wang, M., Yan, Y., Yang, T., Zhang, J., Zhu, W., Qian, H., & Xu, W. (2014). Mouse bone marrow-derived mesenchymal stem cells induce macrophage M2 polarization through the nuclear factor-κB and signal transducer and activator of transcription 3 pathways. Experimental Biology and Medicine, 239(3), 366–375. https://doi.org/10.1177/1535370213518169Gao, W. X., Sun, Y. Q., Shi, J., Li, C. L., Fang, S. Bin, Wang, D., Deng, X. Q., Wen, W., & Fu, Q. L. (2017). Effects of mesenchymal stem cells from human induced pluripotent stem cells on differentiation, maturation, and function of dendritic cells. Stem Cell Research and Therapy, 8(1), 1–16. https://doi.org/10.1186/s13287-017-0499-0Ghahremani Piraghaj, M., Soudi, S., Ghanbarian, H., Bolandi, Z., Namaki, S., & Hashemi, S. M. (2018). Effect of efferocytosis of apoptotic mesenchymal stem cells (MSCs) on C57BL/6 peritoneal macrophages function. Life Sciences, 212(September), 203–212. https://doi.org/10.1016/j.lfs.2018.09.052Hyvärinen, K., Holopainen, M., Skirdenko, V., Ruhanen, H., Lehenkari, P., Korhonen, M., Käkelä, R., Laitinen, S., & Kerkelä, E. (2018). Mesenchymal stromal cells and their extracellular vesicles enhance the anti-inflammatory phenotype of regulatory macrophages by downregulating the production of interleukin (IL)-23 and IL-22. Frontiers in Immunology, 9(APR), 1–13. https://doi.org/10.3389/fimmu.2018.00771Iglesias-López, C., Agustí, A., Obach, M., & Vallano, A. (2019). Regulatory framework for advanced therapy medicinal products in Europe and United States. Frontiers in Pharmacology, 10(JULY), 1–14. https://doi.org/10.3389/fphar.2019.00921International, R., Report, A., & No, P. (2005). Al Pr Od Uc T N O Lo Ng Er Ho. 44(June 2004), 2005.James, R., Haridas, N., & Deb, K. D. (2019). Clinical applications of mesenchymal stem cells. In Biointegration of Medical Implant Materials. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-102680-9.00005-6Joshua M. Hare, Joel E. Fishman, A. W. H. (2017). Comparison of Allogeneic vs Autologous Bone Marrow–Derived Mesenchymal Stem Cells Delivered by Transendocardial Injection in Patients With Ischemic Cardiomyopathy. J Autism Dev Disord, 47(3), 549– 562. https://doi.org/10.1001/jama.2012.25321.ComparisonLee, D. S., Yi, T. G., Lee, H. J., Kim, S. N., Park, S., Jeon, M. S., & Song, S. U. (2014). Mesenchymal stem cells infected with Mycoplasma arginini secrete complement C3 to regulate immunoglobulin production in b lymphocytes. Cell Death and Disease, 5(4), 1–9. https://doi.org/10.1038/cddis.2014.147Liu, H., Liu, S., Qiu, X., Yang, X., Bao, L., Pu, F., Liu, X., Li, C., Xuan, K., Zhou, J., Deng, Z., Liu, S., & Jin, Y. (2020). Donor MSCs release apoptotic bodies to improve myocardial infarction via autophagy regulation in recipient cells. Autophagy, 16(12), 2140–2155. https://doi.org/10.1080/15548627.2020.1717128Liu, S., Jiang, L., Li, H., Shi, H., Luo, H., Zhang, Y., Yu, C., & Jin, Y. (2014). Mesenchymal stem cells prevent hypertrophic scar formation via inflammatory regulation when undergoing apoptosis. Journal of Investigative Dermatology, 134(10), 2648–2657. https://doi.org/10.1038/jid.2014.169Lufkin, S. V. and T. (2013). Bridging the gap: understanding embryonic IVD. Cellular and Developmental Biology, 10(2), 54–56. https://doi.org/10.1002/stem.68.MesenchymalMa, Q., Liang, M., Wu, Y., Ding, N., Duan, L., Yu, T., Bai, Y., Kang, F., Dong, S., Xu, J., & Dou, C. (2019). Mature osteoclast- derived apoptotic bodies promote osteogenic differentiation via RANKL-mediated reverse signaling. Journal of Biological Chemistry, 294(29), 11240–11247. https://doi.org/10.1074/jbc.RA119.007625MACI (Autologous Cultured Chondrocytes on a Porcine Collagen Membrane) | FDA. (n.d.). Retrieved March 24, 2021, from https://www.fda.gov/vaccines-blood- biologics/cellular-gene-therapy-products/maci-autologous-cultured-chondrocytes- porcine-collagen-membraneMahmoudi, M., Taghavi-Farahabadi, M., Rezaei, N., & Hashemi, S. M. (2019). Comparison of the effects of adipose tissue mesenchymal stromal cell-derived exosomes with conditioned media on neutrophil function and apoptosis. International Immunopharmacology, 74(June), 105689. https://doi.org/10.1016/j.intimp.2019.105689Mansnerus, J. (2017). Commercialisation of Advanced Therapies : - A Study of the EU Regulation on Advanced Therapy Medical Products. In Regulatory Rapporteur (Vol. 14, Issue 6). www.topra.orgMedication, A., Mellitus, D., & Reply, S. (2005). Etters to the. Psychiatry: Interpersonal and Biological Processes, March, 395–401.Németh, K., Leelahavanichkul, A., Yuen, P. S. T., Mayer, B., Parmelee, A., Doi, K., Robey, P. G., Leelahavanichkul, K., Koller, B. H., Brown, J. M., Hu, X., Jelinek, I., Star, R. A., & Mezey, É. (2009). Bone marrow stromal cells attenuate sepsis via prostaglandin E 2-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nature Medicine, 15(1), 42–49. https://doi.org/10.1038/nm.1905Petrenko, Y., Vackova, I., Kekulova, K., Chudickova, M., Koci, Z., Turnovcova, K., Kupcova Skalnikova, H., Vodicka, P., & Kubinova, S. (2020). A Comparative Analysis of Multipotent Mesenchymal Stromal Cells derived from Different Sources, with a Focus on Neuroregenerative Potential. Scientific Reports, 10(1), 1–15. https://doi.org/10.1038/s41598-020-61167-zPhan, T. K., Ozkocak, D. C., & Poon, I. K. H. (2020). Unleashing the therapeutic potential of apoptotic bodies. Biochemical Society Transactions, 48(5), 2079–2088. https://doi.org/10.1042/BST20200225PROVENGE (sipuleucel-T) | FDA. (n.d.). Retrieved March 24, 2021, from https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy- products/provenge-sipuleucel-tRadrizzani, M., Soncin, S., Cicero, V. Lo, Andriolo, G., Bolis, S., & Turchetto, L. (2016). Quality control assays for clinical-grade human mesenchymal stromal cells: Methods for ATMP release. Methods in Molecular Biology, 1416, 313–337. https://doi.org/10.1007/978-1-4939-3584-0_19Raffaghello, L., Bianchi, G., Bertolotto, M., Montecucco, F., Busca, A., Dallegri, F., Ottonello, L., & Pistoia, V. (2008). Human Mesenchymal Stem Cells Inhibit Neutrophil Apoptosis: A Model for Neutrophil Preservation in the Bone Marrow Niche. Stem Cells,26(1), 151–162. https://doi.org/10.1634/stemcells.2007-0416Reis, M., Mavin, E., Nicholson, L., Green, K., Dickinson, A. M., & Wang, X. N. (2018). Mesenchymal stromal cell-derived extracellular vesicles attenuate dendritic cell maturation and function. Frontiers in Immunology, 9(NOV), 1–14. https://doi.org/10.3389/fimmu.2018.02538Saas, P., Daguindau, E., & Perruche, S. (2016). Concise Review: Apoptotic Cell-Based Therapies-Rationale, Preclinical Results and Future Clinical Developments. Stem Cells, 34(6), 1464–1473. https://doi.org/10.1002/stem.2361Sacchetti, B., Funari, A., Remoli, C., Giannicola, G., Kogler, G., Liedtke, S., Cossu, G., Serafini, M., Sampaolesi, M., Tagliafico, E., Tenedini, E., Saggio, I., Robey, P. G., Riminucci, M., & Bianco, P. (2016). No identical “mesenchymal stem cells” at different times and sites: Human committed progenitors of distinct origin and differentiation potential are incorporated as adventitial cells in microvessels. Stem Cell Reports, 6(6), 897–913. https://doi.org/10.1016/j.stemcr.2016.05.011Sarkar, P., Redondo, J., Kemp, K., Ginty, M., Wilkins, A., Scolding, N. J., & Rice, C. M. (2018). Reduced neuroprotective potential of the mesenchymal stromal cell secretome with ex vivo expansion, age and progressive multiple sclerosis. Cytotherapy, 20(1), 21–28. https://doi.org/10.1016/j.jcyt.2017.08.007Shin, J. Y., Park, H. J., Kim, H. N., Oh, S. H., Bae, J. S., Ha, H. J., & Lee, P. H. (2014). Mesenchymal stem cells enhance autophagy and increase β-amyloid clearance in Alzheimer disease models. Autophagy, 10(1), 32–44. https://doi.org/10.4161/auto.26508Song, N., Scholtemeijer, M., & Shah, K. (2020). Mesenchymal Stem Cell Immunomodulation: Mechanisms and Therapeutic Potential. Trends in Pharmacological Sciences, 41(9), 653–664. https://doi.org/10.1016/j.tips.2020.06.009Sotiropoulou, P. A., Perez, S. A., Gritzapis, A. D., Baxevanis, C. N., & Papamichail, M. (2006). Interactions Between Human Mesenchymal Stem Cells and Natural Killer Cells. Stem Cells, 24(1), 74–85. https://doi.org/10.1634/stemcells.2004-0359Sung, P. H., Chang, C. Lo, Tsai, T. H., Chang, L. T., Leu, S., Chen, Y. L., Yang, C. C., Chua, S., Yeh, K. H., Chai, H. T., Chang, H. W., Chen, H. H., & Yip, H. K. (2013). Apoptotic adipose-derived mesenchymal stem cell therapy protects against lung and kidney injury in sepsis syndrome caused by cecal ligation puncture in rats. Stem Cell Research and Therapy, 4(6), 9–15. https://doi.org/10.1186/scrt385ten Ham, R. M. T., Hoekman, J., Hövels, A. M., Broekmans, A. W., Leufkens, H. G. M., & Klungel, O. H. (2018). Challenges in Advanced Therapy Medicinal Product Development: A Survey among Companies in Europe. Molecular Therapy - Methods and Clinical Development, 11(December), 121–130. https://doi.org/10.1016/j.omtm.2018.10.003Therapies, A. (2012). Reflection paper on classification of advanced therapy medicinal products Reflection paper on classification of Advanced Therapy Medicinal Products Table of contents. Therapy, 44(April), 1–19.Ugurlu, B., & Karaoz, E. (2020). Comparison of similar cells: Mesenchymal stromal cells and fibroblasts. Acta Histochemica, 122(8), 151634. https://doi.org/10.1016/j.acthis.2020.151634Vamvakas, S., Martinalbo, J., Pita, R., & Isaac, M. (2011). On the edge of new technologies (advanced therapies, nanomedicines). Drug Discovery Today: Technologies, 8(1), e21–e28. https://doi.org/10.1016/j.ddtec.2011.04.001Wang, G., Zhang, S., Wang, F., Li, G., Zhang, L., & Luan, X. (2013). Expression and biological function of programmed death ligands in human placenta mesenchymal stem cells. Cell Biology International, 37(2), 137–148. https://doi.org/10.1002/cbin.10024Weiss, D. J., English, K., Krasnodembskaya, A., Isaza-Correa, J. M., Hawthorne, I. J., & Mahon, B. P. (2019). The necrobiology of mesenchymal stromal cells affects therapeutic efficacy. Frontiers in Immunology, 10(JUN), 1–12. https://doi.org/10.3389/fimmu.2019.01228Wobma, H., & Satwani, P. (2021). Mesenchymal stromal cells: Getting ready for clinical primetime. Transfusion and Apheresis Science, January, 103058. https://doi.org/10.1016/j.transci.2021.103058Xu, X., Lai, Y., & Hua, Z. C. (2019). Apoptosis and apoptotic body: Disease message and therapeutic target potentials. Bioscience Reports, 39(1), 1–17. https://doi.org/10.1042/BSR20180992Yamaguchi, H., Maruyama, T., Urade, Y., & Nagata, S. (2014). Immunosuppression via adenosine receptor activation by adenosine monophosphate released from apoptotic cells. ELife, 2014(3), 1–15. https://doi.org/10.7554/eLife.02172Yan, Z., Zhuansun, Y., Chen, R., Li, J., & Ran, P. (2014). Immunomodulation of mesenchymal stromal cells on regulatory T cells and its possible mechanism. Experimental Cell Research, 324(1), 65–74. https://doi.org/10.1016/j.yexcr.2014.03.013Yang, S., Mao, Y., Zhang, H., Xu, Y., An, J., & Huang, Z. (2019). The chemical biology of apoptosis: Revisited after 17 years. European Journal of Medicinal Chemistry, 177, 63–75. https://doi.org/10.1016/j.ejmech.2019.05.019Zhao, Q., Ren, H., & Han, Z. (2016). Mesenchymal stem cells: Immunomodulatory capability and clinical potential in immune diseases. Journal of Cellular Immunotherapy, 2(1), 3–20. https://doi.org/10.1016/j.jocit.2014.12.001Zheng, Z. H., Li, X. Y., Ding, J., Jia, J. F., & Zhu, P. (2008). Allogeneic mesenchymal stem cell and mesenchymal stem cell-differentiated chondrocyte suppress the responses of type II collagen-reactive T cells in rheumatoid arthritis. Rheumatology, 47(1), 22–30. https://doi.org/10.1093/rheumatology/kem284Instituto Distrital de Ciencia, Biotecnologia e Innovación en SaludEstudiantesLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83183/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1032484125.2022.pdf1032484125.2022.pdfTesis de Maestria en Inmunologíaapplication/pdf2918685https://repositorio.unal.edu.co/bitstream/unal/83183/2/1032484125.2022.pdf241826b252f8edd149e7d0563ed3db9eMD52THUMBNAIL1032484125.2022.pdf.jpg1032484125.2022.pdf.jpgGenerated Thumbnailimage/jpeg4445https://repositorio.unal.edu.co/bitstream/unal/83183/3/1032484125.2022.pdf.jpgc1d9eaf0833c8b888bde8b3339a38831MD53unal/83183oai:repositorio.unal.edu.co:unal/831832024-08-17 00:00:22.032Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |