Implementación de un intercambiador de calor con material de cambio de fase (PCM-HX) en un sistema de refrigeración de moldes de inyección de termoplásticos

ilustraciones, fotografías, graficas

Autores:
Perilla Arango, Daniel Alejandro
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81921
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81921
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
ELECTRONICA-APARATOS E INSTRUMENTOS-REFRIGERACION
CONTROL DE LA TEMPERATURA EN APARATOS E INSTRUMENTOS ELECTRONICOS
Electronic apparatus and appliances - Cooling
Electronic apparatus and appliances -- Temperature control
Material de cambio de fase
Eficiencia energética
Almacenamiento térmico de frío
PCM
Phase change material
Energy efficiency
Cool thermal storage
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_7e073270291b3eb6f1e650ae64c3b27d
oai_identifier_str oai:repositorio.unal.edu.co:unal/81921
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Implementación de un intercambiador de calor con material de cambio de fase (PCM-HX) en un sistema de refrigeración de moldes de inyección de termoplásticos
dc.title.translated.eng.fl_str_mv Implementation of a phase change material heat exchanger (PCM-HX) in a thermoplastic injection mold cooling system
dc.title.translated.deu.fl_str_mv Implementierung eines Phasenwechselmaterial-Wärmetauschers (PCM-HX) in einem thermoplastischen Spritzguss-Kühlsystem
title Implementación de un intercambiador de calor con material de cambio de fase (PCM-HX) en un sistema de refrigeración de moldes de inyección de termoplásticos
spellingShingle Implementación de un intercambiador de calor con material de cambio de fase (PCM-HX) en un sistema de refrigeración de moldes de inyección de termoplásticos
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
ELECTRONICA-APARATOS E INSTRUMENTOS-REFRIGERACION
CONTROL DE LA TEMPERATURA EN APARATOS E INSTRUMENTOS ELECTRONICOS
Electronic apparatus and appliances - Cooling
Electronic apparatus and appliances -- Temperature control
Material de cambio de fase
Eficiencia energética
Almacenamiento térmico de frío
PCM
Phase change material
Energy efficiency
Cool thermal storage
title_short Implementación de un intercambiador de calor con material de cambio de fase (PCM-HX) en un sistema de refrigeración de moldes de inyección de termoplásticos
title_full Implementación de un intercambiador de calor con material de cambio de fase (PCM-HX) en un sistema de refrigeración de moldes de inyección de termoplásticos
title_fullStr Implementación de un intercambiador de calor con material de cambio de fase (PCM-HX) en un sistema de refrigeración de moldes de inyección de termoplásticos
title_full_unstemmed Implementación de un intercambiador de calor con material de cambio de fase (PCM-HX) en un sistema de refrigeración de moldes de inyección de termoplásticos
title_sort Implementación de un intercambiador de calor con material de cambio de fase (PCM-HX) en un sistema de refrigeración de moldes de inyección de termoplásticos
dc.creator.fl_str_mv Perilla Arango, Daniel Alejandro
dc.contributor.advisor.none.fl_str_mv Rincón Prat, Sonia LucÍa
dc.contributor.author.none.fl_str_mv Perilla Arango, Daniel Alejandro
dc.contributor.researchgroup.spa.fl_str_mv Biomasa y Optimización Térmica de Procesos Biot
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
ELECTRONICA-APARATOS E INSTRUMENTOS-REFRIGERACION
CONTROL DE LA TEMPERATURA EN APARATOS E INSTRUMENTOS ELECTRONICOS
Electronic apparatus and appliances - Cooling
Electronic apparatus and appliances -- Temperature control
Material de cambio de fase
Eficiencia energética
Almacenamiento térmico de frío
PCM
Phase change material
Energy efficiency
Cool thermal storage
dc.subject.lemb.spa.fl_str_mv ELECTRONICA-APARATOS E INSTRUMENTOS-REFRIGERACION
CONTROL DE LA TEMPERATURA EN APARATOS E INSTRUMENTOS ELECTRONICOS
dc.subject.lemb.eng.fl_str_mv Electronic apparatus and appliances - Cooling
Electronic apparatus and appliances -- Temperature control
dc.subject.proposal.spa.fl_str_mv Material de cambio de fase
Eficiencia energética
Almacenamiento térmico de frío
dc.subject.proposal.eng.fl_str_mv PCM
Phase change material
Energy efficiency
Cool thermal storage
description ilustraciones, fotografías, graficas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-08-16T19:42:38Z
dc.date.available.none.fl_str_mv 2022-08-16T19:42:38Z
dc.date.issued.none.fl_str_mv 2022-03-18
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81921
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81921
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv RedCol
LaReferencia
dc.relation.references.spa.fl_str_mv IEA (2021, Octubre 1). World energy outlook 2021 – analysis. IEA. Paris, Retrieved March 13, 2022, from https://www.iea.org/reports/world-energy-outlook-2021
Li, S.-F., Liu, Z., & Wang, X.-J. (2019). A comprehensive review on positive cold energy storage technologies and applications in air conditioning with phase change materials. Applied Energy, 255, 113667
Gil, A., Medrano, M., Martorell, I., Lázaro, A., Dolado, P., Zalba, B., & Cabeza, L. F. (2010). State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization. Renewable and Sustainable Energy Reviews, 14(1), 31–55.
Gómez, T., & Ribó, D. (2018). Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia. Renewable and Sustainable Energy Reviews, 90, 131–141.
Jurasz, J., Canales, F. A., Kies, A., Guezgouz, M., & Beluco, A. (2020). A review on the complementarity of renewable energy sources: Concept, metrics, application and future research directions. Solar Energy, 195, 703–724.
Kumar, L., Hasanuzzaman, M., & Rahim, N. A. (2019). Global advancement of solar thermal energy technologies for industrial process heat and its future prospects: A review. Energy Conversion and Management, 195, 885–908.
Miró, L., Gasia, J., & Cabeza, L. F. (2016). Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review. Applied Energy, 179, 284–301.
Pitié, F., Zhao, C. Y., Baeyens, J., Degrève, J., & Zhang, H. L. (2013). Circulating fluidized bed heat recovery/storage and its potential to use coated phase-change-material (PCM) particles. Applied Energy, 109, 505–513.
Dutil, Y., Rousse, D. R., Salah, N. B., Lassue, S., & Zalewski, L. (2011). A review on phase-change materials: Mathematical modeling and simulations. Renewable and Sustainable Energy Reviews, 15(1), 112–130.
Elias, C. N., & Stathopoulos, V. N. (2019). A comprehensive review of recent advances in materials aspects of phase change materials in thermal energy storage. Energy Procedia, 161, 385–394.
Sharma, A., Tyagi, V. V., Chen, C. R., & Buddhi, D. (2009). Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, 13(2), 318–345.
Oró, E., de Gracia, A., Castell, A., Farid, M. M., & Cabeza, L. F. (2012). Review on phase change materials (PCMs) for cold thermal energy storage applications. Applied Energy, 99, 513–533.
Abhat, A. (1983). Low temperature latent heat thermal energy storage: heat storage materials. Solar energy, 30(4) (pp. 314), 313-332.
Feng, P. H., Zhao, B. C., & Wang, R. Z. (2020). Thermophysical heat storage for cooling, heating, and power generation: A review. Applied Thermal Engineering, 166, 114728.
Pop, O. G., Tutunaru, L. F., Bode, F., Abrudan, A. C., & Balan, M. C. (2018). Energy efficiency of PCM integrated in fresh air cooling systems in different climatic conditions. Applied energy, 212, 976-996.
Venegas, T., Ugarte, G., Vasco, D. A., Rouault, F., & Pérez, R. (2019). Feasibility study of the application of a cooling energy storage system in a chiller plant of an office building located in Santiago, Chile. International Journal of Refrigeration, 102, 142–150.
Zhang, T., Liu, X., Zhang, L., Jiang, J., Zhou, M., & Jiang, Y. (2013). Performance analysis of the air-conditioning system in Xi’an Xianyang International Airport. Energy and buildings, 59, 11-20.
Said, M. A., & Hassan, H. (2018). Parametric study on the effect of using cold thermal storage energy of phase change material on the performance of air-conditioning unit. Applied Energy, 230, 1380-1402.
Allouche, Y., Varga, S., Bouden, C., & Oliveira, A. C. (2017). Dynamic simulation of an integrated solar-driven ejector based air conditioning system with PCM cold storage. Applied energy, 190, 600-611.
Du, J., Nie, B., Zhang, Y., Du, Z., & Ding, Y. (2020). Cooling performance of a thermal energy storage-based portable box for cold chain applications. Journal of Energy Storage, 28, 101238.
Park, H. S., & Dang, X. P. (2017). Development of a smart plastic injection mold with conformal cooling channels. Procedia Manufacturing, 10, 48-59.
Camarda, M. F. (2017). Eficiencia energética y competitividad industrial: análisis del sistema de incentivos en torno al programa provincial energía eficiente (propee). Administración Pública y Sociedad (APyS), (3), 62-81.
Liu, H., Zhang, X., Quan, L., & Zhang, H. (2020). Research on energy consumption of injection molding machine driven by five different types of electro-hydraulic power units. Journal of Cleaner Production, 242, 118355.
Spiering, T., Kohlitz(2015). Energy efficiency benchmarking for injection moulding processes. Robotics and Computer-Integrated Manufacturing, 36, 45–59.
Rashid, O (2020). Mold cooling in thermoplastics injection molding: Effectiveness and energy efficiency. Journal of Cleaner Production, 264, 121375.
Le, C. V., Bansal, P. K., & Tedford, J. D. (2004). Three-zone system simulation model of a multiple-chiller plant. Applied Thermal Engineering, 24(14–15), 1995–2015.
Incropera, F. P.,Dewitt D. P., Bergman T. L.,Lavine A. S., (2007). 11. Fundamentals of heat and mass transfer 6th edition, John Wiley & Sons. Danvers, Massachusetts
Cabeza, L. F. (2015). Advances in thermal energy storage systems: Methods and applications. In Introduction to thermal energy storage (TES) systems (pp. 7). Woodhead Publishing.
Naranjo, A., & Sanz, J. R. (2001). Extrusion processing data. Hanser Verlag.
Yang, C. C., Ger, J., & Li, C. F. (2008). Formic acid: a rare but deadly source of carbon monoxide poisoning. Clinical Toxicology, 46(4), 287-289.
Medrano, M., Yilmaz, M. O., Nogués, M., Martorell, I., Roca, J., & Cabeza, L. F. (2009). Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems. Applied energy, 86(10), 2047-2055.
Mehling, H., & Cabeza, L. F. (2008). Heat and cold storage with PCM. An up to date introduction into basics and applications. Springer-Verlag Berlin Heidelberg; Berlin (Germany).
Kays, W. M., & London, A. L. (1984). Compact heat exchangers. MEDTECH
Longeon, M., Soupart, A., Fourmigué, J. F., Bruch, A., & Marty, P. (2013). Experimental and numerical study of annular PCM storage in the presence of natural convection. Applied energy, 112, 175-184.
Hirata, T., Makino, Y., Kaneko, Y. (1991). Analysis of close-contact melting for octadecane and ice inside isothermally heated horizontal rectangular capsule. International Journal of Heat and Mass Transfer, 1991, vol. 34, no 12, p. 3097-3106.
Bareiss, M., & Beer, H. (1984). An analytical solution of the heat transfer process during melting of an unfixed solid phase change material inside a horizontal tube. International Journal of Heat and Mass Transfer, 27(5), 739-746.
Yilmaz, S., Sheth, F., Martorell, I., Paksoy, H. O., & Cabeza, L. F. (2010). Salt-water solutions as PCM for cooling applications. In Proceedings of EuroSun.
Çengel Yunus A., & Ghajar, A. J. (2020). Heat and mass transfer: Fundamentals & applications. McGraw-Hill Education.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xv, 62 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Mecánica y Mecatrónica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81921/1/1097395953.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/81921/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81921/3/1097395953.2022.pdf.jpg
bitstream.checksum.fl_str_mv d1c90751dde1c58b2bb47b14243e0c33
8153f7789df02f0a4c9e079953658ab2
c3fd4fa2c066da3d6a9b4e8a5082a5ee
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089419138793472
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rincón Prat, Sonia LucÍadbed86bc6660323dc905f0d4e4caa888600Perilla Arango, Daniel Alejandro4eda6f7dbda38f2ba9ce33a8f7805db7Biomasa y Optimización Térmica de Procesos Biot2022-08-16T19:42:38Z2022-08-16T19:42:38Z2022-03-18https://repositorio.unal.edu.co/handle/unal/81921Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, graficasEl interés de lograr cada vez más eficiencia energética en los procesos y reducir la huella de carbono y el calentamiento global, son los principales pilares para buscar sistemas cada vez más eficientes. El uso de sistemas de almacenamiento térmico PCM permite aprovechar, estabilizar y almacenar energía térmica para su posterior uso, lo cual permite mejorar significativamente un proceso si se realiza un correcto diseño. En el presente trabajo se estudió un sistema de refrigeración de moldes de inyección de termoplásticos, al conocer las oscilaciones de temperatura del líquido refrigerante se diseña analíticamente un intercambiador de cambio de fase PCM-HX con geometría de aletas tipo persiana y tubos planos que ayuda a reducir las oscilaciones de temperatura presentes en el sistema. Se encontró una mejora en la estabilidad de las temperaturas del líquido refrigerante al integrar el PCM-HX, reduciendo las oscilaciones hasta un 50%, adicionalmente evidenció que el chiller opera en ciclos más largos de encendido y apagado, lo que significa una reducción del consumo energético del 11%. Los resultados encontrados permiten explorar nuevas alternativas de implementación de acumuladores de energía térmica, con lo cual se pueden tener una disminución importante en el consumo eléctrico y sistemas de refrigeración más estables contribuyendo en la reducción de la huella de carbono. (Texto tomado de la fuente)The interest in achieving more energy efficiency in processes and decreasing the carbon footprint and global warming are the main pillars for seeking increasingly efficient systems. The use of PCM thermal storage systems allows the use, stabilization and storage of thermal energy for later use, which allows a process to be significantly improved if a correct design is carried out. In the present work, a cooling system for thermoplastic injection molds was studied. Knowing the temperature oscillations of the cooling liquid, a phase change exchanger (PCM-HX) with louvered fin and flat tubes geometry is analytically designed to help reduce the temperature oscillations present in the system. An improvement was found in the stability of coolant temperatures by integrating the PCM-HX, reducing oscillations up to 50%, additionally it was shown that the chiller operates in longer cycles on and off, which means a reduction in power consumption up to 11%. The results found allow us to explore new alternatives for the implementation of thermal energy storages, which can lead to a significant decrease in electricity consumption and more stable refrigeration systems, contributing to the reduction of the carbon footprint.MaestríaMagíster en Ingeniería - Ingeniería MecánicaAlmacenamiento térmicoxv, 62 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería MecánicaDepartamento de Ingeniería Mecánica y MecatrónicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaELECTRONICA-APARATOS E INSTRUMENTOS-REFRIGERACIONCONTROL DE LA TEMPERATURA EN APARATOS E INSTRUMENTOS ELECTRONICOSElectronic apparatus and appliances - CoolingElectronic apparatus and appliances -- Temperature controlMaterial de cambio de faseEficiencia energéticaAlmacenamiento térmico de fríoPCMPhase change materialEnergy efficiencyCool thermal storageImplementación de un intercambiador de calor con material de cambio de fase (PCM-HX) en un sistema de refrigeración de moldes de inyección de termoplásticosImplementation of a phase change material heat exchanger (PCM-HX) in a thermoplastic injection mold cooling systemImplementierung eines Phasenwechselmaterial-Wärmetauschers (PCM-HX) in einem thermoplastischen Spritzguss-KühlsystemTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferenciaIEA (2021, Octubre 1). World energy outlook 2021 – analysis. IEA. Paris, Retrieved March 13, 2022, from https://www.iea.org/reports/world-energy-outlook-2021Li, S.-F., Liu, Z., & Wang, X.-J. (2019). A comprehensive review on positive cold energy storage technologies and applications in air conditioning with phase change materials. Applied Energy, 255, 113667Gil, A., Medrano, M., Martorell, I., Lázaro, A., Dolado, P., Zalba, B., & Cabeza, L. F. (2010). State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization. Renewable and Sustainable Energy Reviews, 14(1), 31–55.Gómez, T., & Ribó, D. (2018). Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia. Renewable and Sustainable Energy Reviews, 90, 131–141.Jurasz, J., Canales, F. A., Kies, A., Guezgouz, M., & Beluco, A. (2020). A review on the complementarity of renewable energy sources: Concept, metrics, application and future research directions. Solar Energy, 195, 703–724.Kumar, L., Hasanuzzaman, M., & Rahim, N. A. (2019). Global advancement of solar thermal energy technologies for industrial process heat and its future prospects: A review. Energy Conversion and Management, 195, 885–908.Miró, L., Gasia, J., & Cabeza, L. F. (2016). Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review. Applied Energy, 179, 284–301.Pitié, F., Zhao, C. Y., Baeyens, J., Degrève, J., & Zhang, H. L. (2013). Circulating fluidized bed heat recovery/storage and its potential to use coated phase-change-material (PCM) particles. Applied Energy, 109, 505–513.Dutil, Y., Rousse, D. R., Salah, N. B., Lassue, S., & Zalewski, L. (2011). A review on phase-change materials: Mathematical modeling and simulations. Renewable and Sustainable Energy Reviews, 15(1), 112–130.Elias, C. N., & Stathopoulos, V. N. (2019). A comprehensive review of recent advances in materials aspects of phase change materials in thermal energy storage. Energy Procedia, 161, 385–394.Sharma, A., Tyagi, V. V., Chen, C. R., & Buddhi, D. (2009). Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, 13(2), 318–345.Oró, E., de Gracia, A., Castell, A., Farid, M. M., & Cabeza, L. F. (2012). Review on phase change materials (PCMs) for cold thermal energy storage applications. Applied Energy, 99, 513–533.Abhat, A. (1983). Low temperature latent heat thermal energy storage: heat storage materials. Solar energy, 30(4) (pp. 314), 313-332.Feng, P. H., Zhao, B. C., & Wang, R. Z. (2020). Thermophysical heat storage for cooling, heating, and power generation: A review. Applied Thermal Engineering, 166, 114728.Pop, O. G., Tutunaru, L. F., Bode, F., Abrudan, A. C., & Balan, M. C. (2018). Energy efficiency of PCM integrated in fresh air cooling systems in different climatic conditions. Applied energy, 212, 976-996.Venegas, T., Ugarte, G., Vasco, D. A., Rouault, F., & Pérez, R. (2019). Feasibility study of the application of a cooling energy storage system in a chiller plant of an office building located in Santiago, Chile. International Journal of Refrigeration, 102, 142–150.Zhang, T., Liu, X., Zhang, L., Jiang, J., Zhou, M., & Jiang, Y. (2013). Performance analysis of the air-conditioning system in Xi’an Xianyang International Airport. Energy and buildings, 59, 11-20.Said, M. A., & Hassan, H. (2018). Parametric study on the effect of using cold thermal storage energy of phase change material on the performance of air-conditioning unit. Applied Energy, 230, 1380-1402.Allouche, Y., Varga, S., Bouden, C., & Oliveira, A. C. (2017). Dynamic simulation of an integrated solar-driven ejector based air conditioning system with PCM cold storage. Applied energy, 190, 600-611.Du, J., Nie, B., Zhang, Y., Du, Z., & Ding, Y. (2020). Cooling performance of a thermal energy storage-based portable box for cold chain applications. Journal of Energy Storage, 28, 101238.Park, H. S., & Dang, X. P. (2017). Development of a smart plastic injection mold with conformal cooling channels. Procedia Manufacturing, 10, 48-59.Camarda, M. F. (2017). Eficiencia energética y competitividad industrial: análisis del sistema de incentivos en torno al programa provincial energía eficiente (propee). Administración Pública y Sociedad (APyS), (3), 62-81.Liu, H., Zhang, X., Quan, L., & Zhang, H. (2020). Research on energy consumption of injection molding machine driven by five different types of electro-hydraulic power units. Journal of Cleaner Production, 242, 118355.Spiering, T., Kohlitz(2015). Energy efficiency benchmarking for injection moulding processes. Robotics and Computer-Integrated Manufacturing, 36, 45–59.Rashid, O (2020). Mold cooling in thermoplastics injection molding: Effectiveness and energy efficiency. Journal of Cleaner Production, 264, 121375.Le, C. V., Bansal, P. K., & Tedford, J. D. (2004). Three-zone system simulation model of a multiple-chiller plant. Applied Thermal Engineering, 24(14–15), 1995–2015.Incropera, F. P.,Dewitt D. P., Bergman T. L.,Lavine A. S., (2007). 11. Fundamentals of heat and mass transfer 6th edition, John Wiley & Sons. Danvers, MassachusettsCabeza, L. F. (2015). Advances in thermal energy storage systems: Methods and applications. In Introduction to thermal energy storage (TES) systems (pp. 7). Woodhead Publishing.Naranjo, A., & Sanz, J. R. (2001). Extrusion processing data. Hanser Verlag.Yang, C. C., Ger, J., & Li, C. F. (2008). Formic acid: a rare but deadly source of carbon monoxide poisoning. Clinical Toxicology, 46(4), 287-289.Medrano, M., Yilmaz, M. O., Nogués, M., Martorell, I., Roca, J., & Cabeza, L. F. (2009). Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems. Applied energy, 86(10), 2047-2055.Mehling, H., & Cabeza, L. F. (2008). Heat and cold storage with PCM. An up to date introduction into basics and applications. Springer-Verlag Berlin Heidelberg; Berlin (Germany).Kays, W. M., & London, A. L. (1984). Compact heat exchangers. MEDTECHLongeon, M., Soupart, A., Fourmigué, J. F., Bruch, A., & Marty, P. (2013). Experimental and numerical study of annular PCM storage in the presence of natural convection. Applied energy, 112, 175-184.Hirata, T., Makino, Y., Kaneko, Y. (1991). Analysis of close-contact melting for octadecane and ice inside isothermally heated horizontal rectangular capsule. International Journal of Heat and Mass Transfer, 1991, vol. 34, no 12, p. 3097-3106.Bareiss, M., & Beer, H. (1984). An analytical solution of the heat transfer process during melting of an unfixed solid phase change material inside a horizontal tube. International Journal of Heat and Mass Transfer, 27(5), 739-746.Yilmaz, S., Sheth, F., Martorell, I., Paksoy, H. O., & Cabeza, L. F. (2010). Salt-water solutions as PCM for cooling applications. In Proceedings of EuroSun.Çengel Yunus A., & Ghajar, A. J. (2020). Heat and mass transfer: Fundamentals & applications. McGraw-Hill Education.EstudiantesInvestigadoresORIGINAL1097395953.2022.pdf1097395953.2022.pdfTesis de Maestría en Ingeniería Mecánicaapplication/pdf3590752https://repositorio.unal.edu.co/bitstream/unal/81921/1/1097395953.2022.pdfd1c90751dde1c58b2bb47b14243e0c33MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81921/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAIL1097395953.2022.pdf.jpg1097395953.2022.pdf.jpgGenerated Thumbnailimage/jpeg5925https://repositorio.unal.edu.co/bitstream/unal/81921/3/1097395953.2022.pdf.jpgc3fd4fa2c066da3d6a9b4e8a5082a5eeMD53unal/81921oai:repositorio.unal.edu.co:unal/819212024-08-08 23:11:52.818Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK