La microbiota intestinal y la disbiosis, relaciones metabólicas a nivel patológico y en la salud.
ilustraciones
- Autores:
-
Pinto Niño, Monica Andrea
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/83775
- Palabra clave:
- 540 - Química y ciencias afines::547 - Química orgánica
570 - Biología::572 - Bioquímica
610 - Medicina y salud::612 - Fisiología humana
570 - Biología::579 - Historia natural microorganismos, hongos, algas
540 - Química y ciencias afines::546 - Química inorgánica
Antibacterianos
Anti-Bacterial Agents
Microbiota intestinal
Eubiosis
Disbiosis
Obesidad
Diabetes
Enfermedades inflamatorias intestinales
Enfermedades neurodegenerativas
Gut microbiota
Dysbiosis
Leaky gut
Obesity
Diabetes
Inflammatory bowel diseases
Neurodegenerative diseases
- Rights
- openAccess
- License
- Atribución-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_7ddbb62d8078ad6a805698d6a3cb72b1 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/83775 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
La microbiota intestinal y la disbiosis, relaciones metabólicas a nivel patológico y en la salud. |
dc.title.translated.eng.fl_str_mv |
The gut microbiota and dysbiosis, metabolic relationships at the pathological level and in health |
title |
La microbiota intestinal y la disbiosis, relaciones metabólicas a nivel patológico y en la salud. |
spellingShingle |
La microbiota intestinal y la disbiosis, relaciones metabólicas a nivel patológico y en la salud. 540 - Química y ciencias afines::547 - Química orgánica 570 - Biología::572 - Bioquímica 610 - Medicina y salud::612 - Fisiología humana 570 - Biología::579 - Historia natural microorganismos, hongos, algas 540 - Química y ciencias afines::546 - Química inorgánica Antibacterianos Anti-Bacterial Agents Microbiota intestinal Eubiosis Disbiosis Obesidad Diabetes Enfermedades inflamatorias intestinales Enfermedades neurodegenerativas Gut microbiota Dysbiosis Leaky gut Obesity Diabetes Inflammatory bowel diseases Neurodegenerative diseases |
title_short |
La microbiota intestinal y la disbiosis, relaciones metabólicas a nivel patológico y en la salud. |
title_full |
La microbiota intestinal y la disbiosis, relaciones metabólicas a nivel patológico y en la salud. |
title_fullStr |
La microbiota intestinal y la disbiosis, relaciones metabólicas a nivel patológico y en la salud. |
title_full_unstemmed |
La microbiota intestinal y la disbiosis, relaciones metabólicas a nivel patológico y en la salud. |
title_sort |
La microbiota intestinal y la disbiosis, relaciones metabólicas a nivel patológico y en la salud. |
dc.creator.fl_str_mv |
Pinto Niño, Monica Andrea |
dc.contributor.advisor.none.fl_str_mv |
Calderón Ozuna, Martha Nancy |
dc.contributor.author.none.fl_str_mv |
Pinto Niño, Monica Andrea |
dc.contributor.researchgroup.spa.fl_str_mv |
Bioquímica y Biología Molecular de las Micobacterias |
dc.subject.ddc.spa.fl_str_mv |
540 - Química y ciencias afines::547 - Química orgánica 570 - Biología::572 - Bioquímica 610 - Medicina y salud::612 - Fisiología humana 570 - Biología::579 - Historia natural microorganismos, hongos, algas 540 - Química y ciencias afines::546 - Química inorgánica |
topic |
540 - Química y ciencias afines::547 - Química orgánica 570 - Biología::572 - Bioquímica 610 - Medicina y salud::612 - Fisiología humana 570 - Biología::579 - Historia natural microorganismos, hongos, algas 540 - Química y ciencias afines::546 - Química inorgánica Antibacterianos Anti-Bacterial Agents Microbiota intestinal Eubiosis Disbiosis Obesidad Diabetes Enfermedades inflamatorias intestinales Enfermedades neurodegenerativas Gut microbiota Dysbiosis Leaky gut Obesity Diabetes Inflammatory bowel diseases Neurodegenerative diseases |
dc.subject.decs.spa.fl_str_mv |
Antibacterianos |
dc.subject.decs.eng.fl_str_mv |
Anti-Bacterial Agents |
dc.subject.proposal.spa.fl_str_mv |
Microbiota intestinal Eubiosis Disbiosis Obesidad Diabetes Enfermedades inflamatorias intestinales Enfermedades neurodegenerativas |
dc.subject.proposal.eng.fl_str_mv |
Gut microbiota Dysbiosis Leaky gut Obesity Diabetes Inflammatory bowel diseases Neurodegenerative diseases |
description |
ilustraciones |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-04-25T16:17:49Z |
dc.date.available.none.fl_str_mv |
2023-04-25T16:17:49Z |
dc.date.issued.none.fl_str_mv |
2023 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/83775 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/83775 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abbasi, S., & Masoumi, S. (2020). Next-generation sequencing (NGS). International Journal of Advanced Science and Technology, 29(3). https://doi.org/10.1007/978-981-16-1037-0_23 Adlerberth, I., & Wold, A. E. (2009). Establishment of the gut microbiota in Western infants. Acta Pædiatrica, 98(2), 229–238. https://doi.org/10.1111/J.1651-2227.2008.01060.X Ait-Belgnaoui, A., Durand, H., Cartier, C., Chaumaz, G., Eutamene, H., Ferrier, L., Houdeau, E.,Fioramonti, J., Bueno, L., & Theodorou, V. (2012). Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology, 37(11). https://doi.org/10.1016/j.psyneuen.2012.03.024 Alam, M. T., Amos, G. C. A., Murphy, A. R. J., Murch, S., Wellington, E. M. H., & Arasaradnam, R. P. (2020). Microbial imbalance in inflammatory bowel disease patients at different taxonomic levels. Gut Pathogens, 12(1). https://doi.org/10.1186/s13099-019-0341-6 Alex, S., Lichtenstein, L., Dijk, W., Mensink, R. P., Tan, N. S., & Kersten, S. (2014). ANGPTL4 is produced by entero-endocrine cells in the human intestinal tract. Histochemistry and Cell Biology, 141(4). https://doi.org/10.1007/s00418-013-1157-y Álvarez, J., Fernández Real, J. M., Guarner, F., Gueimonde, M., Rodríguez, J. M., Saenz de Pipaon, M., & Sanz, Y. (2021). Gut microbes and health. Gastroenterologia y Hepatologia, 44(7), 519– 535. https://doi.org/10.1016/J.GASTROHEP.2021.01.009 Amar, J., Chabo, C., Waget, A., Klopp, P., Vachoux, C., Bermúdez-Humarán, L. G., Smirnova, N., Bergé, M., Sulpice, T., Lahtinen, S., Ouwehand, A., Langella, P., Rautonen, N., Sansonetti, P. J., & Burcelin, R. (2011). Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: Molecular mechanisms and probiotic treatment. EMBO Molecular Medicine, 3(9). https://doi.org/10.1002/emmm.201100159 Aminov, R. I., Walker, A. W., Duncan, S. H., Harmsen, H. J. M., Welling, G. W., & Flint, H. J. (2006). Molecular diversity, cultivation, and improved detection by fluorescent in situ hybridization of a dominant group of human gut bacteria related to Roseburia spp. or Eubacterium rectale. Applied and Environmental Microbiology, 72(9). https://doi.org/10.1128/AEM.00701-06 Aoki, R., Kamikado, K., Suda, W., Takii, H., Mikami, Y., Suganuma, N., Hattori, M., & Koga, Y. (2017). A proliferative probiotic Bifidobacterium strain in the gut ameliorates progression of metabolic disorders via microbiota modulation and acetate elevation. Scientific Reports, 7. https://doi.org/10.1038/srep43522 Archer, A. C., Muthukumar, S. P., & Halami, P. M. (2021). Lactobacillus fermentum MCC2759 and MCC2760 Alleviate Inflammation and Intestinal Function in High-Fat Diet-Fed and Streptozotocin-Induced Diabetic Rats. Probiotics and Antimicrobial Proteins, 13(4). https://doi.org/10.1007/s12602-021-09744-0 Aroniadis, O. C., & Brandt, L. J. (2013). Fecal microbiota transplantation: Past, present and future. In Current Opinion in Gastroenterology (Vol. 29, Issue 1). https://doi.org/10.1097/MOG.0b013e32835a4b3e Babakhani, S., & Hosseini, F. (2019). Gut Microbiota: An Effective Factor in the Human Brain and Behavior. The Neuroscience Journal of Shefaye Khatam, 7(1), 106–118. https://doi.org/10.29252/SHEFA.7.1.106 Bäckhed, F., Ding, H., Wang, T., Hooper, L. V., Gou, Y. K., Nagy, A., Semenkovich, C. F., & Gordon, J. I. (2004). The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences of the United States of America, 101(44). https://doi.org/10.1073/pnas.0407076101 Bäckhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., & Gordon, J. I. (2005). Host-bacterial mutualism in the human intestine. In Science (Vol. 307, Issue 5717). https://doi.org/10.1126/science.1104816 Bastard, J. P., Maachi, M., Van Nhieu, J. T., Jardel, C., Bruckert, E., Grimaldi, A., Robert, J. J., Capeau, J., & Hainque, B. (2002). Adipose tissue IL-6 content correlates with resistance to insulin activation of glucose uptake both in vivo and in vitro. Journal of Clinical Endocrinology and Metabolism, 87(5). https://doi.org/10.1210/jcem.87.5.8450 Batterham, R. L., Cowley, M. A., Small, C. J., Herzog, H., Cohen, M. A., Dakin, C. L., Wren, A. M., Brynes, A. E., Low, M. J., Ghatei, M. A., Cone, R. D., & Bloom, S. R. (2002). Gut hormone PYY3-36 physiologically inhibits food intake. Nature 2002 418:6898, 418(6898), 650–654. https://doi.org/10.1038/nature00887 Belizário, J. E., Faintuch, J., Belizário, J. E., & Faintuch, J. (2018). doi: 10.1007/978-3-319-74932- 7_13 ++. Experientia Supplementum, 109 Beltrán Martín, A. (2017). Microbiota Intestinal Y Diabetes. 1–20. http://147.96.70.122/Web/TFG/TFG/Memoria/ALBA GARCIA ALONSO.pdf Bercik, P., Denou, E., Collins, J., Jackson, W., Lu, J., Jury, J., Deng, Y., Blennerhassett, P., MacRi, J., McCoy, K. D., Verdu, E. F., & Collins, S. M. (2011). The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology, 141(2). https://doi.org/10.1053/j.gastro.2011.04.052 Blaak, E. E., Canfora, E. E., Theis, S., Frost, G., Groen, A. K., Mithieux, G., Nauta, A., Scott, K., Stahl, B., van Harsselaar, J., van Tol, R., Vaughan, E. E., & Verbeke, K. (2020). Short chain fatty acids in human gut and metabolic health. In Beneficial Microbes (Vol. 11, Issue 5). https://doi.org/10.3920/BM2020.0057 Bozkurt, H. S., & Kara, B. (2020). A new treatment for ulcerative colitis: Intracolonic Bifidobacterium and xyloglucan application. European Journal of Inflammation, 18. https://doi.org/10.1177/2058739220942626 Brahe, L. K., Astrup, A., & Larsen, L. H. (2016). Can we prevent obesity-Related metabolic diseases by dietary modulation of the gut microbiota? In Advances in Nutrition (Vol. 7, Issue 1). https://doi.org/10.3945/an.115.010587 Braniste, V., Al-Asmakh, M., Kowal, C., Anuar, F., Abbaspour, A., Tóth, M., Korecka, A., Bakocevic, N., Guan, N. L., Kundu, P., Gulyás, B., Halldin, C., Hultenby, K., Nilsson, H., Hebert, H., Volpe, B. T., Diamond, B., & Pettersson, S. (2014). The gut microbiota influences blood-brain barrier permeability in mice. Science Translational Medicine, 6(263). https://doi.org/10.1126/scitranslmed.3009759 Bravo, J. A., Forsythe, P., Chew, M. V., Escaravage, E., Savignac, H. M., Dinan, T. G., Bienenstock, J., & Cryan, J. F. (2011). Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences of the United States of America, 108(38). https://doi.org/10.1073/pnas.1102999108 Brown, J., Wang, H., Hajishengallis, G. N., & Martin, M. (2011). TLR-signaling networks: An integration of adaptor molecules, kinases, and cross-talk. Journal of Dental Research, 90(4). Burokas, A., Arboleya, S., Moloney, R. D., Peterson, V. L., Murphy, K., Clarke, G., Stanton, C., Dinan, T. G., & Cryan, J. F. (2017). Targeting the Microbiota-Gut-Brain Axis: Prebiotics Have Anxiolytic and Antidepressant-like Effects and Reverse the Impact of Chronic Stress in Mice. Biological Psychiatry, 82(7). https://doi.org/10.1016/j.biopsych.2016.12.031 Candela, M., Biagi, E., Soverini, M., Consolandi, C., Quercia, S., Severgnini, M., Peano, C., Turroni, S., Rampelli, S., Pozzilli, P., Pianesi, M., Fallucca, F., & Brigidi, P. (2016). Modulation of gut microbiota dysbioses in type 2 diabetic patients by macrobiotic Ma-Pi 2 diet. British Journal of Nutrition, 116(1). https://doi.org/10.1017/S0007114516001045 Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M., Knauf, C., Bastelica, D., Neyrinck, A. M., Fava, F., Tuohy, K. M., Chabo, C., Waget, A., Delmée, E., Cousin, B., Sulpice, T., Chamontin, B., Ferrières, J., Tanti, J. F., Gibson, G. R., Casteilla, L., … Burcelin, R. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56(7). https://doi.org/10.2337/db06-1491 Cani, P. D., Neyrinck, A. M., Fava, F., Knauf, C., Burcelin, R. G., Tuohy, K. M., Gibson, G. R., & Delzenne, N. M. (2007). Selective increases of bifidobacteria in gut microflora improve highfat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia, 50(11). https://doi.org/10.1007/s00125-007-0791-0 Cani, P. D., Possemiers, S., Van De Wiele, T., Guiot, Y., Everard, A., Rottier, O., Geurts, L., Naslain, D., Neyrinck, A., Lambert, D. M., Muccioli, G. G., & Delzenne, N. M. (2009). Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut, 58(8). https://doi.org/10.1136/gut.2008.165886 Cani, P., & Delzenne, N. (2009). The Role of the Gut Microbiota in Energy Metabolism and Metabolic Disease. Current Pharmaceutical Design, 15(13). https://doi.org/10.2174/138161209788168164 Caputi, V., Marsilio, I., Filpa, V., Cerantola, S., Orso, G., Bistoletti, M., Paccagnella, N., De Martin, S., Montopoli, M., Dall’Acqua, S., Crema, F., Di Gangi, I. M., Galuppini, F., Lante, I., Bogialli, S., Rugge, M., Debetto, P., Giaroni, C., & Giron, M. C. (2017). Antibiotic-induced dysbiosis of the microbiota impairs gut neuromuscular function in juvenile mice. British Journal of Pharmacology, 174(20). https://doi.org/10.1111/bph.13965 Chávez-Carbajal, A., Pizano-Zárate, M. L., Hernández-Quiroz, F., Ortiz-Luna, G. F., MoralesHernández, R. M., De Sales-Millán, A., Hernández-Trejo, M., García-Vite, A., Beltrán-Lagunes, L., Hoyo-Vadillo, C., & García-Mena, J. (2020). Characterization of the gut microbiota of individuals at different T2D stages reveals a complex relationship with the host. Microorganisms, 8(1). https://doi.org/10.3390/microorganisms8010094 Chen, Y., Xiao, N., Chen, Y., Chen, X., Zhong, C., Cheng, Y., Du, B., & Li, P. (2021). Semen Sojae Praeparatum alters depression-like behaviors in chronic unpredictable mild stress rats via intestinal microbiota. Food Research International, 150. https://doi.org/10.1016/j.foodres.2021.110808 Chiang, J. Y. L., & Ferrell, J. M. (2020). Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy. American Journal of Physiology - Gastrointestinal and Liver Physiology, 318(3). https://doi.org/10.1152/ajpgi.00223.2019 Chimerel, C., Emery, E., Summers, D. K., Keyser, U., Gribble, F. M., & Reimann, F. (2014). Bacterial Metabolite Indole Modulates Incretin Secretion from Intestinal Enteroendocrine L Cells. Cell Reports, 9(4). https://doi.org/10.1016/j.celrep.2014.10.032 Clarke, G., Sandhu, K. V., Griffin, B. T., Dinan, T. G., Cryan, J. F., & Hyland, N. P. (2019). Gut Reactions: Breaking Down Xenobiotic–Microbiome Interactions. Pharmacological Reviews, 71(2), 198–224. https://doi.org/10.1124/PR.118.015768 Clooney, A. G., Eckenberger, J., Laserna-Mendieta, E., Sexton, K. A., Bernstein, M. T., Vagianos, K., Sargent, M., Ryan, F. J., Moran, C., Sheehan, D., Sleator, R. D., Targownik, L. E., Bernstein, C. N., Shanahan, F., & Claesson, M. J. (2021). Ranking microbiome variance in inflammatory bowel disease: A large longitudinal intercontinental study. Gut, 70(3). https://doi.org/10.1136/gutjnl-2020-321106 Cornejo-Pareja, I., Muñoz-Garach, A., Clemente-Postigo, M., & Tinahones, F. J. (2019). Importance of gut microbiota in obesity. European Journal of Clinical Nutrition, 72, 26–37. https://doi.org/10.1038/s41430-018-0306-8 Creely, S. J., McTernan, P. G., Kusminski, C. M., Fisher, F. M., Da Silva, N. F., Khanolkar, M., Evans, M., Harte, A. L., & Kumar, S. (2007). Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. American Journal of Physiology - Endocrinology and Metabolism, 292(3). https://doi.org/10.1152/ajpendo.00302.2006 Cummings, J. H., Beatty, E. R., Kingman, S. M., Bingham, S. A., & Englyst, H. N. (1996). Digestion and physiological properties of resistant starch in the human large bowel. British Journal of Nutrition, 75(5). https://doi.org/10.1079/bjn19960177 Cummings, J. H., Macfarlane, G. T., & Englyst, H. N. (2001). Prebiotic digestion and fermentation. American Journal of Clinical Nutrition, 73(2 SUPPL.). https://doi.org/10.1093/ajcn/73.2.415s Dalile, B., Vervliet, B., Bergonzelli, G., Verbeke, K., & Van Oudenhove, L. (2020). Colon-delivered short-chain fatty acids attenuate the cortisol response to psychosocial stress in healthy men: a randomized, placebo-controlled trial. Neuropsychopharmacology, 45(13). https://doi.org/10.1038/s41386-020-0732-x Dam, B., Misra, A., & Banerjee, S. (2019). Role of Gut Microbiota in Combating Oxidative Stress. Oxidative Stress in Microbial Diseases, 43–82. https://doi.org/10.1007/978-981-13-8763-0_4 De Mello, V. D., Paananen, J., Lindström, J., Lankinen, M. A., Shi, L., Kuusisto, J., Pihlajamäki, J., Auriola, S., Lehtonen, M., Rolandsson, O., Bergdahl, I. A., Nordin, E., Ilanne-Parikka, P., Keinänen-Kiukaanniemi, S., Landberg, R., Eriksson, J. G., Tuomilehto, J., Hanhineva, K., & Uusitupa, M. (2017). Indolepropionic acid and novel lipid metabolites are associated with a lower risk of type 2 diabetes in the Finnish Diabetes Prevention Study. Scientific Reports, 7. https://doi.org/10.1038/srep46337 De Santis, S., Cavalcanti, E., Mastronardi, M., Jirillo, E., & Chieppa, M. (2015). Nutritional keys for intestinal barrier modulation. In Frontiers in Immunology (Vol. 6, Issue DEC). https://doi.org/10.3389/fimmu.2015.00612 Den Besten, G., Van Eunen, K., Groen, A. K., Venema, K., Reijngoud, D. J., & Bakker, B. M. (2013). The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research, 54(9), 2325. https://doi.org/10.1194/JLR.R036012 Dong, S., Zhu, M., Wang, K., Zhao, X., Hu, L., Jing, W., Lu, H., & Wang, S. (2021). Dihydromyricetin improves DSS-induced colitis in mice via modulation of fecal-bacteria-related bile acid metabolism. Pharmacological Research, 171. https://doi.org/10.1016/j.phrs.2021.105767 Drake, H. L., Hu, S. I., & Wood, H. G. (1981). Purification of five components from Clostridium thermoaceticum which catalyze synthesis of acetate from pyruvate and methyltetrahydrofolate. Properties of phosphotransacetylase. Journal of Biological Chemistry, 256(21). Duan, M., Wang, Y., Zhang, Q., Zou, R., Guo, M., & Zheng, H. (2021). Characteristics of gut microbiota in people with obesity. PLoS ONE, 16(8 August). https://doi.org/10.1371/journal.pone.0255446 Duncan, S. H., Belenguer, A., Holtrop, G., Johnstone, A. M., Flint, H. J., & Lobley, G. E. (2007). Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Applied and Environmental Microbiology, 73(4). https://doi.org/10.1128/AEM.02340-06 Duncan, S. H., Louis, P., & Flint, H. J. (2004). Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Applied and Environmental Microbiology, 70(10), 5810–5817. https://doi.org/10.1128/AEM.70.10.5810-5817.2004 Erny, D., De Angelis, A. L. H., Jaitin, D., Wieghofer, P., Staszewski, O., David, E., Keren-Shaul, H., Mahlakoiv, T., Jakobshagen, K., Buch, T., Schwierzeck, V., Utermöhlen, O., Chun, E., Garrett, W. S., Mccoy, K. D., Diefenbach, A., Staeheli, P., Stecher, B., Amit, I., & Prinz, M. (2015). Host microbiota constantly control maturation and function of microglia in the CNS. Nature Neuroscience, 18(7). https://doi.org/10.1038/nn.4030 Escobar, J. S., Klotz, B., Valdes, B. E., & Agudelo, G. M. (2015). The gut microbiota of Colombians differs from that of Americans, Europeans and Asians. BMC Microbiology, 14(1). https://doi.org/10.1186/s12866-014-0311-6 Fan, Y., & Pedersen, O. (2020). Gut microbiota in human metabolic health and disease. Nature Reviews Microbiology 2020 19:1, 19(1), 55–71. https://doi.org/10.1038/s41579-020-0433-9 Fasano, A. (2012). Leaky gut and autoimmune diseases. Clinical Reviews in Allergy and Immunology, 42(1). https://doi.org/10.1007/s12016-011-8291-x Fernández Real, J. M., Moreno-Navarrete, J. M., & Manco, M. (2019). Iron influences on the GutBrain axis and development of type 2 diabetes. In Critical Reviews in Food Science and Nutrition (Vol. 59, Issue 3). https://doi.org/10.1080/10408398.2017.1376616 Fiorucci, S., Carino, A., Baldoni, M., Santucci, L., Costanzi, E., Graziosi, L., Distrutti, E., & Biagioli, M. (2021). Bile Acid Signaling in Inflammatory Bowel Diseases. In Digestive Diseases and Sciences (Vol. 66, Issue 3). https://doi.org/10.1007/s10620-020-06715-3 Flint, A., Raben, A., Rehfeld, J. F., Holst, J. J., & Astrup, A. (2000). The effect of glucagon-like peptide-1 on energy expenditure and substrate metabolism in humans. International Journal of Obesity, 24(3). https://doi.org/10.1038/sj.ijo.0801126 Fujimori, S., Tatsuguchi, A., Gudis, K., Kishida, T., Mitsui, K., Ehara, A., Kobayashi, T., Sekita, Y., Seo, T., & Sakamoto, C. (2007). High dose probiotic and prebiotic cotherapy for remission induction of active Crohn’s disease. Journal of Gastroenterology and Hepatology (Australia), 22(8). https://doi.org/10.1111/j.1440-1746.2006.04535.x Fülling, C., Dinan, T. G., & Cryan, J. F. (2019a). Gut Microbe to Brain Signaling: What Happens in Vagus…. In Neuron (Vol. 101, Issue 6). https://doi.org/10.1016/j.neuron.2019.02.008 Fülling, C., Dinan, T. G., & Cryan, J. F. (2019b). Gut Microbe to Brain Signaling: What Happens in Vagus…. Neuron, 101(6), 998–1002. https://doi.org/10.1016/J.NEURON.2019.02.008 Gareau, M., Silva, M., & Perdue, M. (2008). Pathophysiological Mechanisms of Stress-Induced Intestina Damage. Current Molecular Medicine, 8(4), 274–281. https://doi.org/10.2174/156652408784533760 Generoso, J. S., Giridharan, V. V., Lee, J., Macedo, D., & Barichello, T. (2021). The role of the microbiota-gut-brain axis in neuropsychiatric disorders. In Revista brasileira de psiquiatria (Sao Paulo, Brazil : 1999) (Vol. 43, Issue 3). https://doi.org/10.1590/1516-4446-2020-0987 Gonzalez-Santana, A., & Diaz Heijtz, R. (2020). Bacterial Peptidoglycans from Microbiota in Neurodevelopment and Behavior. In Trends in Molecular Medicine (Vol. 26, Issue 8). https://doi.org/10.1016/j.molmed.2020.05.003 Gózd-Barszczewska, A., Kozioł-Montewka, M., Barszczewski, P., Młodzińska, A., & Humińska, K. (2017). Gut microbiome as a biomarker of cardiometabolic disorders. Annals of Agricultural and Environmental Medicine, 24(3). https://doi.org/10.26444/aaem/75456 Grab, D. J., Perides, G., Dumler, J. S., Kim, K. J., Park, J., Kim, Y. V., Nikolskaia, O., Choi, K. S., Stins, M. F., & Kim, K. S. (2005). Borrelia burgdorferi, host-derived proteases, and the bloodbrain barrier. Infection and Immunity, 73(2). https://doi.org/10.1128/IAI.73.2.1014-1022.2005 Guarner, F., & Malagelada, J. R. (2003). Gut flora in health and disease. The Lancet, 361(9356), 512–519. https://doi.org/10.1016/S0140-6736(03)12489-0 Guo, J., Han, X., Tan, H., Huang, W., You, Y., & Zhan, J. (2019). Blueberry Extract Improves Obesity through Regulation of the Gut Microbiota and Bile Acids via Pathways Involving FXR and TGR5. IScience, 19. https://doi.org/10.1016/j.isci.2019.08.020 Gurung, M., Li, Z., You, H., Rodrigues, R., Jump, D. B., Morgun, A., & Shulzhenko, N. (2020). Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine, 51. https://doi.org/10.1016/J.EBIOM.2019.11.051/ATTACHMENT/CB942F49-C906-4922-A160- AC1B2D24B8E7/MMC1.XLSX Haileselassie, Y., Fischbach, M. A., Sonnenburg, J. L., & Habtezion, A. (2020). Clinical and Translational Report Dysbiosis-Induced Secondary Bile Acid Deficiency Clinical and Translational Report Dysbiosis-Induced Secondary Bile Acid Deficiency Promotes Intestinal Inflammation. Cell Host and Microbe, 0(0). Harpreet Kaur, Svetlana Golovko, Mikhail Y. Golovko, Surjeet Singh, D. C. D. and C. K. C. (2022). Erratum to “Effects of Probiotic Supplementation on Short Chain Fatty Acids in the AppNL–G– F Mouse Model of Alzheimer’s Disease.” Journal of Alzheimer’s Disease, 86(2). https://doi.org/10.3233/jad-229001 Hetzel, M., Brock, M., Selmer, T., Pierik, A. J., Golding, B. T., & Buckel, W. (2003). Acryloyl-CoA reductase from Clostridium propionicum: An enzyme complex of propionyl-CoA dehydrogenase and electron-transferring flavoprotein. European Journal of Biochemistry, 270(5). https://doi.org/10.1046/j.1432-1033.2003.03450.x Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). Expert consensus document: The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology and Hepatology, 11(8). https://doi.org/10.1038/nrgastro.2014.66 Hoentjen, F., Welling, G. W., Harmsen, H. J. M., Zhang, X., Snart, J., Tannock, G. W., Lien, K., Churchill, T. A., Lupicki, M., & Dieleman, L. A. (2005). Reduction of colitis by prebiotics in HLAB27 transgenic rats is associated with microflora changes and immunomodulation. Inflammatory Bowel Diseases, 11(11). https://doi.org/10.1097/01.MIB.0000183421.02316.d5 Holmes, E., Li, J. V., Marchesi, J. R., & Nicholson, J. K. (2012). Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. In Cell Metabolism (Vol. 16, Issue 5). https://doi.org/10.1016/j.cmet.2012.10.007 Hou, M., Xu, G., Ran, M., Luo, W., & Wang, H. (2021). APOE-ε4 Carrier Status and Gut Microbiota Dysbiosis in Patients With Alzheimer Disease. Frontiers in Neuroscience, 15. https://doi.org/10.3389/fnins.2021.619051 Houser, M. C., & Tansey, M. G. (2017). The gut-brain axis: Is intestinal inflammation a silent driver of Parkinson’s disease pathogenesis? In npj Parkinson’s Disease (Vol. 3, Issue 1). https://doi.org/10.1038/s41531-016-0002-0 Hsiao, E. Y., McBride, S. W., Hsien, S., Sharon, G., Hyde, E. R., McCue, T., Codelli, J. A., Chow, J., Reisman, S. E., Petrosino, J. F., Patterson, P. H., & Mazmanian, S. K. (2013). Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell, 155(7), 1451–1463. https://doi.org/10.1016/J.CELL.2013.11.024/ATTACHMENT/3C2F31F8-0226-47B8-A48EAB542B8C7423/MMC2.ZIP I., P., V., B., J., H., S., G., & A., H. (2017). Gut microbiome associated with cognitive and brain structural outcomes in apolipoprotein E4 variant. Journal of Cerebral Blood Flow and Metabolism, 37(1 Supplement 1). Jaganathan, R., Ravindran, R., & Dhanasekaran, S. (2018). Emerging Role of Adipocytokines in Type 2 Diabetes as Mediators of Insulin Resistance and Cardiovascular Disease. In Canadian Journal of Diabetes (Vol. 42, Issue 4). https://doi.org/10.1016/j.jcjd.2017.10.040 Jan, G., Belzacq, A. S., Haouzi, D., Rouault, A., Métivier, D., Kroemer, G., & Brenner, C. (2002). Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids acting on mitochondria. Cell Death and Differentiation, 9(2). https://doi.org/10.1038/sj.cdd.4400935 Jandhyala, S. M., Talukdar, R., Subramanyam, C., Vuyyuru, H., Sasikala, M., & Reddy, D. N. (2015). Role of the normal gut microbiota. World Journal of Gastroenterology, 21(29). https://doi.org/10.3748/wjg.v21.i29.8787 Jang, H. M., Lee, K. E., Lee, H. J., & Kim, D. H. (2018). Immobilization stress-induced Escherichia coli causes anxiety by inducing NF-κB activation through gut microbiota disturbance. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-31764-0 Janssen, A. W. F., & Kersten, S. (2017). Potential mediators linking gut bacteria to metabolic health: a critical view. In Journal of Physiology (Vol. 595, Issue 2). https://doi.org/10.1113/JP272476 Jumpertz, R., Le, D. S., Turnbaugh, P. J., Trinidad, C., Bogardus, C., Gordon, J. I., & Krakoff, J. (2011). Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. American Journal of Clinical Nutrition, 94(1). https://doi.org/10.3945/ajcn.110.010132 Jung, D., Fantin, A. C., Scheurer, U., Fried, M., & Kullak-Ublick, G. A. (2004). Human ileal bile acid transporter gene ASBT (SLC10A2) is transactivated by the glucocorticoid receptor. Gut, 53(1). https://doi.org/10.1136/gut.53.1.78 Kalia, L. V., & Lang, A. E. (2015). Parkinson’s disease. The Lancet, 386(9996), 896–912. https://doi.org/10.1016/S0140-6736(14)61393-3 Kaur, H., Nookala, S., Singh, S., Mukundan, S., Nagamoto-Combs, K., & Combs, C. K. (2021). Sexdependent effects of intestinal microbiome manipulation in a mouse model of alzheimer’s disease. Cells, 10(9). https://doi.org/10.3390/cells10092370 Khanna, S., Vazquez-Baeza, Y., González, A., Weiss, S., Schmidt, B., Muñiz-Pedrogo, D. A., Rainey, J. F., Kammer, P., Nelson, H., Sadowsky, M., Khoruts, A., Farrugia, S. L., Knight, R.,Pardi, D. S., & Kashyap, P. C. (2017). Changes in microbial ecology after fecal microbiota transplantation for recurrent C. difficile infection affected by underlying inflammatory bowel disease. Microbiome, 5(1). https://doi.org/10.1186/S40168-017-0269-3 Kieler, I. N., Kamal, S. S., Vitger, A. D., Nielsen, D. S., Lauridsen, C., & Bjornvad, C. R. (2017). Gut microbiota composition may relate to weight loss rate in obese pet dogs. Veterinary Medicine and Science, 3(4). https://doi.org/10.1002/vms3.80 Kilinçarslan, S., & Evrensel, A. (2020). Efecto del trasplante de microbiota fecal sobre los síntomas psiquiátricos de los pacientes con enfermedad intestinal inflamatoria: estudio experimental. Actas Españolas de Psiquiatría, ISSN 1139-9287, Vol. 48, No . 1, 2020, Págs. 1-7, 48(1). Koh, A., De Vadder, F., Kovatcheva-Datchary, P., & Bäckhed, F. (2016). From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. In Cell (Vol. 165, Issue 6). https://doi.org/10.1016/j.cell.2016.05.041 LeBlanc, J. G., Milani, C., de Giori, G. S., Sesma, F., van Sinderen, D., & Ventura, M. (2013). Bacteria as vitamin suppliers to their host: A gut microbiota perspective. In Current Opinion in Biotechnology (Vol. 24, Issue 2). https://doi.org/10.1016/j.copbio.2012.08.005 Li, N., Zhan, S., Tian, Z., Liu, C., Xie, Z., Zhang, S., Chen, M., Zeng, Z., & Zhuang, X. (2021). Alterations in Bile Acid Metabolism Associated with Inflammatory Bowel Disease. In Inflammatory Bowel Diseases (Vol. 27, Issue 9). https://doi.org/10.1093/ibd/izaa342 Li, Q., Chang, Y., Zhang, K., Chen, H., Tao, S., & Zhang, Z. (2020). Implication of the gut microbiome composition of type 2 diabetic patients from northern China. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-62224-3 Li, X., Li, Z., He, Y., Li, P., Zhou, H., & Zeng, N. (2020). Regional distribution of Christensenellaceae and its associations with metabolic syndrome based on a population-level analysis. PeerJ, 8. https://doi.org/10.7717/peerj.9591 Lin, H. V., Frassetto, A., Kowalik, E. J., Nawrocki, A. R., Lu, M. M., Kosinski, J. R., Hubert, J. A., Szeto, D., Yao, X., Forrest, G., & Marsh, D. J. (2012). Butyrate and Propionate Protect against Diet-Induced Obesity and Regulate Gut Hormones via Free Fatty Acid Receptor 3-Independent Mechanisms. PLoS ONE, 7(4), e35240. https://doi.org/10.1371/JOURNAL.PONE.0035240 Liu, B. N., Liu, X. T., Liang, Z. H., & Wang, J. H. (2021). Gut microbiota in obesity. World Journal of Gastroenterology, 27(25), 3837. https://doi.org/10.3748/WJG.V27.I25.3837 Liu, Y., Sanderson, D., Mian, M. F., McVey Neufeld, K. A., & Forsythe, P. (2021). Loss of vagal integrity disrupts immune components of the microbiota-gut-brain axis and inhibits the effect of Lactobacillus rhamnosus on behavior and the corticosterone stress response. Neuropharmacology, 195. https://doi.org/10.1016/j.neuropharm.2021.108682 Louis, P., Duncan, S. H., McCrae, S. I., Millar, J., Jackson, M. S., & Flint, H. J. (2004). Restricted Distribution of the Butyrate Kinase Pathway among Butyrate-Producing Bacteria from the Human Colon. Journal of Bacteriology, 186(7). https://doi.org/10.1128/JB.186.7.2099- 2106.2004 Louis, P., & Flint, H. J. (2009). Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiology Letters, 294(1). https://doi.org/10.1111/j.1574-6968.2009.01514.x Louis, P., & Flint, H. J. (2017). Formation of propionate and butyrate by the human colonic microbiota. Environmental Microbiology, 19(1), 29–41. https://doi.org/10.1111/1462- 2920.13589 Luck, B., Engevik, M. A., Ganesh, B. P., Lackey, E. P., Lin, T., Balderas, M., Major, A., Runge, J., Luna, R. A., Sillitoe, R. V., & Versalovic, J. (2020). Bifidobacteria shape host neural circuits during postnatal development by promoting synapse formation and microglial function. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-64173-3 Lukovac, S., Belzer, C., Pellis, L., Keijser, B. J., de Vos, W. M., Montijn, R. C., & Roeselers, G. (2014). Differential modulation by Akkermansia muciniphila and faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids. MBio, 5(4). https://doi.org/10.1128/mBio.01438-14 Macfarlane, S., & Macfarlane, G. T. (2003). Regulation of short-chain fatty acid production. Proceedings of the Nutrition Society, 62(1), 67–72. https://doi.org/10.1079/pns2002207 Macfarlane, S., & Macfarlane, G. T. (2006). Composition and metabolic activities of bacterial biofilms colonizing food residues in the human gut. Applied and Environmental Microbiology, 72(9). https://doi.org/10.1128/AEM.00754-06 Madan, A., Thompson, D., Fowler, J. C., Ajami, N. J., Salas, R., Frueh, B. C., Bradshaw, M. R., Weinstein, B. L., Oldham, J. M., & Petrosino, J. F. (2020). The gut microbiota is associated with psychiatric symptom severity and treatment outcome among individuals with serious mental illness. Journal of Affective Disorders, 264, 98–106. https://doi.org/10.1016/J.JAD.2019.12.020 Mäger, I., Roberts, T. C., Wood, M. J. A., & El Andaloussi, S. (2014). From gut to brain: Bioencapsulated therapeutic protein reduces amyloid load upon oral delivery. In Molecular Therapy (Vol. 22, Issue 3). https://doi.org/10.1038/mt.2014.13 Magnúsdóttir, S., Ravcheev, D., De Crécy-Lagard, V., & Thiele, I. (2015). Systematic genome assessment of B-vitamin biosynthesis suggests cooperation among gut microbes. Frontiers in Genetics, 6(MAR). https://doi.org/10.3389/fgene.2015.00148 Mancabelli, L., Tarracchini, C., Milani, C., Lugli, G. A., Fontana, F., Turroni, F., van Sinderen, D., & Ventura, M. (2020). Multi-population cohort meta-analysis of human intestinal microbiota in early life reveals the existence of infant community state types (ICSTs). Computational and Structural Biotechnology Journal, 18. https://doi.org/10.1016/j.csbj.2020.08.028 Mandard, S., Zandbergen, F., Nguan, S. T., Escher, P., Patsouris, D., Koenig, W., Kleemann, R., Bakker, A., Veenman, F., Wahli, W., Müller, M., & Kersten, S. (2004). The direct peroxisome proliferator-activated receptor target fasting-induced adipose factor (FIAF/PGAR/ANGPTL4) is present in blood plasma as a truncated protein that is increased by fenofibrate treatment. Journal of Biological Chemistry, 279(33). https://doi.org/10.1074/jbc.M403058200 Mangiola, F., Ianiro, G., Franceschi, F., Fagiuoli, S., Gasbarrini, G., & Gasbarrini, A. (2016). Gut microbiota in autism and mood disorders. In World Journal of Gastroenterology (Vol. 22, Issue 1). https://doi.org/10.3748/wjg.v22.i1.361 Marques, T. M., Wall, R., Ross, R. P., Fitzgerald, G. F., Ryan, C. A., & Stanton, C. (2010). Programming infant gut microbiota: influence of dietary and environmental factors. Current Opinion in Biotechnology, 21(2), 149–156. https://doi.org/10.1016/J.COPBIO.2010.03.020 Martin-Gallausiaux, C., Marinelli, L., Blottière, H. M., Larraufie, P., & Lapaque, N. (2021). SCFA: mechanisms and functional importance in the gut. Proceedings of the Nutrition Society, 80(1). https://doi.org/10.1017/s0029665120006916 Martin, R., Makino, H., Yavuz, A. C., Ben-Amor, K., Roelofs, M., Ishikawa, E., Kubota, H., Swinkels, S., Sakai, T., Oishi, K., Kushiro, A., & Knol, J. (2016). Early-Life events, including mode of delivery and type of feeding, siblings and gender, shape the developing gut microbiota. PLoS ONE, 11(6). https://doi.org/10.1371/journal.pone.0158498 Mccartney, A. L., Wenzhi, W., & Tannock, G. W. (1996). Molecular analysis of the composition of the bifidobacterial and lactobacillus microflora of humans. Applied and Environmental Microbiology, 62(12). https://doi.org/10.1128/aem.62.12.4608-4613.1996 McCreath, K. J., Espada, S., Gálvez, B. G., Benito, M., De Molina, A., Sepúlveda, P., & Cervera, A. M. (2015). Targeted disruption of the SUCNR1 metabolic receptor leads to dichotomous effects on obesity. Diabetes, 64(4). https://doi.org/10.2337/db14-0346 Mcvey Neufeld, K. A., Mao, Y. K., Bienenstock, J., Foster, J. A., & Kunze, W. A. (2013). The microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the mouse. Neurogastroenterology and Motility, 25(2). https://doi.org/10.1111/nmo.12049 Medvecky, M., Cejkova, D., Polansky, O., Karasova, D., Kubasova, T., Cizek, A., & Rychlik, I. (2018). Whole genome sequencing and function prediction of 133 gut anaerobes isolated from chicken caecum in pure cultures. BMC Genomics, 19(1). https://doi.org/10.1186/s12864-018-4959-4 Mentella, M. C., Scaldaferri, F., Pizzoferrato, M., Gasbarrini, A., & Miggiano, G. A. D. (2020). Nutrition, IBD and Gut Microbiota: A Review. Nutrients, 12(4). https://doi.org/10.3390/NU12040944 Miller, T. L., & Wolin, M. J. (1996). Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Applied and Environmental Microbiology, 62(5), 1589. https://doi.org/10.1128/AEM.62.5.1589-1592.1996 Million, M., Maraninchi, M., Henry, M., Armougom, F., Richet, H., Carrieri, P., Valero, R., Raccah, D., Vialettes, B., & Raoult, D. (2012). Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. International Journal of Obesity, 36(6). https://doi.org/10.1038/ijo.2011.153 Mitev, K., & Taleski, V. (2019). Association between the gut microbiota and obesity. Open Access Macedonian Journal of Medical Sciences, 7(12), 2050–2056. https://doi.org/10.3889/oamjms.2019.586 Mizrahi-Man, O., Davenport, E. R., & Gilad, Y. (2013). Taxonomic Classification of Bacterial 16S rRNA Genes Using Short Sequencing Reads: Evaluation of Effective Study Designs. PLoS ONE, 8(1). https://doi.org/10.1371/journal.pone.0053608 Morais, L. H., Schreiber, H. L., & Mazmanian, S. K. (2021). The gut microbiota–brain axis in behaviour and brain disorders. Nature Reviews Microbiology, 19(4), 241–255. https://doi.org/10.1038/s41579-020-00460-0 Moreno-Indias, I., Cardona, F., Tinahones, F. J., & Queipo-Ortuño, M. I. (2014). Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Frontiers in Microbiology, 5(APR). https://doi.org/10.3389/FMICB.2014.00190 Morris, G., Berk, M., Carvalho, A., Caso, J. R., Sanz, Y., Walder, K., & Maes, M. (2017). The Role of the Microbial Metabolites Including Tryptophan Catabolites and Short Chain Fatty Acids in the Pathophysiology of Immune-Inflammatory and Neuroimmune Disease. In Molecular Neurobiology (Vol. 54, Issue 6). https://doi.org/10.1007/s12035-016-0004-2 Morrow, L. E., Kollef, M. H., & Casale, T. B. (2010). Probiotic prophylaxis of ventilator-associated pneumonia: A blinded, randomized, controlled trial. American Journal of Respiratory and Critical Care Medicine, 182(8). https://doi.org/10.1164/rccm.200912-1853OC Morshedi, M., Saghafi-Asl, M., & Hosseinifard, E. S. (2020). The potential therapeutic effects of the gut microbiome manipulation by synbiotic containing-Lactobacillus plantarum on neuropsychological performance of diabetic rats. Journal of Translational Medicine, 18(1). https://doi.org/10.1186/s12967-019-02169-y Nagpal, R., Wang, S., Ahmadi, S., Hayes, J., Gagliano, J., Subashchandrabose, S., Kitzman, D. W., Becton, T., Read, R., & Yadav, H. (2018). Human-origin probiotic cocktail increases short-chain fatty acid production via modulation of mice and human gut microbiome. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-30114-4 Nakkarach, A., Foo, H. L., Song, A. A. L., Mutalib, N. E. A., Nitisinprasert, S., & Withayagiat, U. (2021). Anti-cancer and anti-inflammatory effects elicited by short chain fatty acids produced by Escherichia coli isolated from healthy human gut microbiota. Microbial Cell Factories, 20(1). https://doi.org/10.1186/s12934-020-01477-z Neimark, E., Chen, F., Li, X., Magid, M. S., Alasio, T. M., Frankenberg, T., Sinha, J., Dawson, P. A., & Shneider, B. L. (2006). c-Fos Is a Critical Mediator of Inflammatory-Mediated Repression of the Apical Sodium-Dependent Bile Acid Transporter. Gastroenterology, 131(2). https://doi.org/10.1053/j.gastro.2006.05.002 Nelson, K. E., Weinstock, G. M., Highlander, S. K., Worley, K. C., Creasy, H. H., Wortman, J. R., Rusch, D. B., Mitreva, M., Sodergren, E., Chinwalla, A. T., Feldgarden, M., Gevers, D., Haas, B. J., Madupu, R., Ward, D. V., Birren, B. W., Gibbs, R. A., Methe, B., Petrosino, J. F., … Zhu, D. (2010). A catalog of reference genomes from the human microbiome. Science, 328(5981). https://doi.org/10.1126/science.1183605 Nicholson, J. K., Holmes, E., Kinross, J., Burcelin, R., Gibson, G., Jia, W., & Pettersson, S. (2012). Host-gut microbiota metabolic interactions. Science, 336(6086), 1262–1267. https://doi.org/10.1126/SCIENCE.1223813 Nishida, A., Inoue, R., Inatomi, O., Bamba, S., Naito, Y., & Andoh, A. (2018). Gut microbiota in the pathogenesis of inflammatory bowel disease. In Clinical Journal of Gastroenterology (Vol. 11, Issue 1). https://doi.org/10.1007/s12328-017-0813-5 Odenwald, M. A., & Turner, J. R. (2013). Intestinal Permeability Defects: Is It Time to Treat? Clinical Gastroenterology and Hepatology, 11(9). https://doi.org/10.1016/j.cgh.2013.07.001 Onyszkiewicz, M., Gawrys-Kopczynska, M., Konopelski, P., Aleksandrowicz, M., Sawicka, A., Koźniewska, E., Samborowska, E., & Ufnal, M. (2019). Butyric acid, a gut bacteria metabolite, lowers arterial blood pressure via colon-vagus nerve signaling and GPR41/43 receptors. Pflugers Archiv European Journal of Physiology, 471(11–12). https://doi.org/10.1007/s00424- 019-02322-y Oróstica, L., García, P., Vera, C., García, V., Romero, C., & Vega, M. (2018). Effect of TNF-α on molecules related to the insulin action in endometrial cells exposed to hyperandrogenic and hyperinsulinic conditions characteristics of polycystic ovary syndrome. Reproductive Sciences, 25(7). https://doi.org/10.1177/1933719117732157 Ouellette, A. J. (2011). Paneth cell α-defensins in enteric innate immunity. In Cellular and Molecular Life Sciences (Vol. 68, Issue 13). https://doi.org/10.1007/s00018-011-0714-6 Pabst, O., & Slack, E. (2020). IgA and the intestinal microbiota: the importance of being specific. In Mucosal Immunology (Vol. 13, Issue 1). https://doi.org/10.1038/s41385-019-0227-4 Pachikian, B. D., Druart, C., Catry, E., Bindels, L. B., Neyrinck, A. M., Larondelle, Y., Cani, P. D., & Delzenne, N. M. (2018). Implication of trans-11,trans-13 conjugated linoleic acid in the development of hepatic steatosis. PLoS ONE, 13(2). https://doi.org/10.1371/journal.pone.0192447 Paiva, I. H. R., Duarte-Silva, E., & Peixoto, C. A. (2020). The role of prebiotics in cognition, anxiety, and depression. In European Neuropsychopharmacology (Vol. 34). https://doi.org/10.1016/j.euroneuro.2020.03.006 Parks, D. H., Chuvochina, M., Waite, D. W., Rinke, C., Skarshewski, A., Chaumeil, P. A., & Hugenholtz, P. (2018). A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nature Biotechnology, 36(10), 996. https://doi.org/10.1038/nbt.4229 Pascual, V., Pozuelo, M., Borruel, N., Casellas, F., Campos, D., Santiago, A., Martinez, X., Varela, E., Sarrabayrouse, G., Machiels, K., Vermeire, S., Sokol, H., Guarner, F., & Manichanh, C. (2017). A microbial signature for Crohn’s disease. Gut, 66(5). https://doi.org/10.1136/gutjnl2016-313235 Pekkala, S., Munukka, E., Kong, L., Pöllänen, E., Autio, R., Roos, C., Wiklund, P., FischerPosovszky, P., Wabitsch, M., Alen, M., Huovinen, P., & Cheng, S. (2015). Toll-like receptor 5 in obesity: The role of gut microbiota and adipose tissue inflammation. Obesity, 23(3). https://doi.org/10.1002/oby.20993 Peredo-Lovillo, A., Romero-Luna, H. E., & Jiménez-Fernández, M. (2020). Health promoting microbial metabolites produced by gut microbiota after prebiotics metabolism. In Food Research International (Vol. 136). https://doi.org/10.1016/j.foodres.2020.109473 Pistollato, F., Cano, S. S., Elio, I., Vergara, M. M., Giampieri, F., & Battino, M. (2016). Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutrition Reviews, 74(10). https://doi.org/10.1093/nutrit/nuw023 Plovier, H., Everard, A., Druart, C., Depommier, C., Van Hul, M., Geurts, L., Chilloux, J., Ottman, N., Duparc, T., Lichtenstein, L., Myridakis, A., Delzenne, N. M., Klievink, J., Bhattacharjee, A., Van Der Ark, K. C. H., Aalvink, S., Martinez, L. O., Dumas, M. E., Maiter, D., … Cani, P. D. (2017). A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nature Medicine, 23(1). https://doi.org/10.1038/nm.4236 Qiang, X., Liotta, A. S., Shiloach, J., Gutierrez, J. C., Wang, H., Ochani, M., Ochani, K., Yang, H., Rabin, A., Leroith, D., Lesniak, M. A., Böhm, M., Maaser, C., Kannengiesser, K., Donowitz, M., Rabizadeh, S., Czura, C. J., Tracey, K. J., Westlake, M., … Roth, J. (2017). New melanocortinlike peptide of E. coli can suppress inflammation via the mammalian melanocortin-1 receptor (MC1R): Possible endocrine-like function for microbes of the gut. Npj Biofilms and Microbiomes, 3(1). https://doi.org/10.1038/s41522-017-0039-9 Ragsdale, S. W., & Pierce, E. (2008). Acetogenesis and the Wood-Ljungdahl Pathway of CO2 Fixation. Biochimica et Biophysica Acta, 1784(12), 1873. https://doi.org/10.1016/J.BBAPAP.2008.08.012 Reichardt, N., Duncan, S. H., Young, P., Belenguer, A., McWilliam Leitch, C., Scott, K. P., Flint, H. J., & Louis, P. (2014). Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME Journal, 8(6). https://doi.org/10.1038/ismej.2014.14 Rodríguez, J. M., Murphy, K., Stanton, C., Ross, R. P., Kober, O. I., Juge, N., Avershina, E., Rudi, K., Narbad, A., Jenmalm, M. C., Marchesi, J. R., & Collado, M. C. (2015). The composition of the gut microbiota throughout life, with an emphasis on early life. Microbial Ecology in Health & Disease, 26(0). https://doi.org/10.3402/MEHD.V26.26050 Romanitsa, A. I., Nemchenko, U. M., Pogodina, A. V., Grigorova, E. V., Belkova, N. L., Voropaeva, N. M., Grigoryeva, E. A., Savelkaeva, M. V., & Rychkova, L. V. (2021). Associations of clinical features of functional bowel disorders with gut microbiota characteristics in adolescents: A pilot study. Acta Biomedica Scientifica, 6(6). https://doi.org/10.29413/ABS.2021-6.6-2.8 Rosado, E. L., & Crovesy, L. (2019). Gut microbiota modulation with probiotic or symbiotic in weight loss in women with obesity. Obes. Facts, 12. Rüb, A. M., Tsakmaklis, A., Gräfe, S. K., Simon, M. C., Vehreschild, M. J. G. T., & Wuethrich, I. (2021). Biomarkers of human gut microbiota diversity and dysbiosis. In Biomarkers in Medicine (Vol. 15, Issue 2). https://doi.org/10.2217/bmm-2020-0353 Ryan, J. J., Monteagudo-Mera, A., Contractor, N., & Gibson, G. R. (2021). Impact of 2′-fucosyllactose on gut microbiota composition in adults with chronic gastrointestinal conditions: Batch culture fermentation model and pilot clinical trial findings. Nutrients, 13(3). https://doi.org/10.3390/nu13030938 Sakakibara, S., Yamauchi, T., Oshima, Y., Tsukamoto, Y., & Kadowaki, T. (2006). Acetic acid activates hepatic AMPK and reduces hyperglycemia in diabetic KK-A(y) mice. Biochemical and Biophysical Research Communications, 344(2). https://doi.org/10.1016/j.bbrc.2006.03.176 Saltiel, A. R., & Olefsky, J. M. (2017). Inflammatory mechanisms linking obesity and metabolic disease. In Journal of Clinical Investigation (Vol. 127, Issue 1). https://doi.org/10.1172/JCI92035 Sampson, T. R., Challis, C., Jain, N., Moiseyenko, A., Ladinsky, M. S., Shastri, G. G., Thron, T., Needham, B. D., Horvath, I., Debelius, J. W., Janssen, S., Knight, R., Wittung-Stafshede, P., Gradinaru, V., Chapman, M., & Mazmanian, S. K. (2020). A gut bacterial amyloid promotes asynuclein aggregation and motor impairment in mice. ELife, 9. https://doi.org/10.7554/eLife.53111 Sankarasubramanian, J., Ahmad, R., Avuthu, N., Singh, A. B., & Guda, C. (2020). Gut Microbiota and Metabolic Specificity in Ulcerative Colitis and Crohn’s Disease. In Frontiers in Medicine (Vol. 7). https://doi.org/10.3389/fmed.2020.606298 Schaupp, A., & Ljungdahl, L. G. (1974). Purification and properties of acetate kinase from Clostridium thermoaceticum. Archives of Microbiology, 100(1). https://doi.org/10.1007/BF00446312 Scheperjans, F., Aho, V., Pereira, P. A. B., Koskinen, K., Paulin, L., Pekkonen, E., Haapaniemi, E., Kaakkola, S., Eerola-Rautio, J., Pohja, M., Kinnunen, E., Murros, K., & Auvinen, P. (2015). Gut microbiota are related to Parkinson’s disease and clinical phenotype. Movement Disorders, 30(3). https://doi.org/10.1002/mds.26069 Scott, K. P., Martin, J. C., Campbell, G., Mayer, C. D., & Flint, H. J. (2006). Whole-genome transcription profiling reveals genes up-regulated by growth on fucose in the human gut bacterium “Roseburia inulinivorans.” Journal of Bacteriology, 188(12). https://doi.org/10.1128/JB.00137-06 Seekatz, A. M., Schnizlein, M. K., Koenigsknecht, M. J., Baker, J. R., Hasler, W. L., Bleske, B. E., Young, V. B., & Sun, D. (2019). Spatial and Temporal Analysis of the Stomach and SmallIntestinal Microbiota in Fasted Healthy Humans. MSphere, 4(2). https://doi.org/10.1128/msphere.00126-19 Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biology, 12(6). https://doi.org/10.1186/gb-2011-12-6-r60 Sgritta, M., Dooling, S. W., Buffington, S. A., Momin, E. N., Francis, M. B., Britton, R. A., & CostaMattioli, M. (2019). Mechanisms underlying microbial-mediated changes in social behavior in mouse models of Autism Spectrum Disorder. Neuron, 101(2), 246 Shi, J., Xie, Q., Yue, Y., Chen, Q., Zhao, L., Evivie, S. E., Li, B., & Huo, G. (2021). Gut microbiota modulation and anti-inflammatory properties of mixed lactobacilli in dextran sodium sulfateinduced colitis in mice. Food and Function, 12(11). https://doi.org/10.1039/d1fo00317h Slatko, B. E., Gardner, A. F., & Ausubel, F. M. (2018). Overview of Next-Generation Sequencing Technologies. Current Protocols in Molecular Biology, 122(1). https://doi.org/10.1002/cpmb.59 Śliżewska, K., Markowiak-Kopeć, P., & Śliżewska, W. (2020). The Role of Probiotics in Cancer Prevention. Cancers 2021, Vol. 13, Page 20, 13(1), 20. https://doi.org/10.3390/CANCERS13010020 Smith, C., Berzins, K., Rodrigues, D. M., Sousa, A. J., Sherman, P. M., Barrett, K. E., & Gareau, M. G. (2013). Tu1979 Probiotics Can Normalize the Gut-Brain Axis in Immunodeficient Mice. Gastroenterology, 144(5). https://doi.org/10.1016/s0016-5085(13)63335-1 Sun, L., Ma, L., Zhang, H., Cao, Y., Wang, C., Hou, N., Huang, N., von Deneen, K. M., Zhao, C., Shi, Y., Pan, Y., Wang, M., Ji, G., & Nie, Y. (2019). FTO deficiency reduces anxiety- and depression-like behaviors in mice via alterations in gut microbiota. Theranostics, 9(3). https://doi.org/10.7150/thno.31562 Sun, N., Hu, H., Wang, F., Li, L., Zhu, W., Shen, Y., Xiu, J., & Xu, Q. (2021). Antibiotic-induced microbiome depletion in adult mice disrupts blood-brain barrier and facilitates brain infiltration of monocytes after bone-marrow transplantation. Brain, Behavior, and Immunity, 92. https://doi.org/10.1016/j.bbi.2020.11.032 Tabasi, M., Eybpoosh, S., Siadat, S. D., Elyasinia, F., Soroush, A., & Bouzari, S. (2021). Modulation of the Gut Microbiota and Serum Biomarkers After Laparoscopic Sleeve Gastrectomy: a 1-Year Follow-Up Study. Obesity Surgery, 31(5). https://doi.org/10.1007/s11695-020-05139-2 Tan, M. J., Teo, Z., Sng, M. K., Zhu, P., & Tan, N. S. (2012). Emerging roles of angiopoietin-like 4 in human cancer. In Molecular Cancer Research (Vol. 10, Issue 6). https://doi.org/10.1158/1541- 7786.MCR-11-0519 Tennoune, N., Chan, P., Breton, J., Legrand, R., Chabane, Y. N., Akkermann, K., Järv, A., Ouelaa, W., Takagi, K., Ghouzali, I., Francois, M., Lucas, N., Bole-Feysot, C., Pestel-Caron, M., do Rego, J. C., Vaudry, D., Harro, J., Dé, E., Déchelotte, P., & Fetissov, S. O. (2014). Bacterial ClpB heat-shock protein, an antigen-mimetic of the anorexigenic peptide α-MSH, at the origin of eating disorders. Translational Psychiatry, 4. https://doi.org/10.1038/tp.2014.98 Thursby, E., & Juge, N. (2017). Introduction to the human gut microbiota. In Biochemical Journal (Vol. 474, Issue 11). https://doi.org/10.1042/BCJ20160510 Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., & Gordon, J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444(7122), 1027–1031. https://doi.org/10.1038/nature05414 Valdes, A. M., Walter, J., Segal, E., & Spector, T. D. (2018). Role of the gut microbiota in nutrition and health. BMJ, 361, 36–44. https://doi.org/10.1136/BMJ.K2179 Valdovinos-Díaz, M. (2013). Intestinal microbiota in digestive disorders. Probiotics, prebiotics and symbiotics. Revista de Gastroenterologia de Mexico, 78. https://doi.org/10.1016/j.rgmx.2013.06.008 Vancamelbeke, M., & Vermeire, S. (2017). The intestinal barrier: a fundamental role in health and disease. Expert Review of Gastroenterology & Hepatology, 11(9), 821. Vascellari, S., Palmas, V., Melis, M., Pisanu, S., Cusano, R., Uva, P., Perra, D., Madau, V., Sarchioto, M., Oppo, V., Simola, N., Morelli, M., Santoru, M. L., Atzori, L., Melis, M., Cossu, G., & Manzin, A. (2020). Gut Microbiota and Metabolome Alterations Associated with Parkinson’s Disease. MSystems, 5(5). https://doi.org/10.1128/msystems.00561-20 Venema, K. (2010). Role of gut microbiota in the control of energy and carbohydrate metabolism. Current Opinion in Clinical Nutrition and Metabolic Care, 13(4), 432–438. https://doi.org/10.1097/MCO.0B013E32833A8B60 Verhaar, B. J. H., Hendriksen, H. M. A., de Leeuw, F. A., Doorduijn, A. S., van Leeuwenstijn, M., Teunissen, C. E., Barkhof, F., Scheltens, P., Kraaij, R., van Duijn, C. M., Nieuwdorp, M., Muller, M., & van der Flier, W. M. (2022). Gut Microbiota Composition Is Related to AD PathologVerhaar, B. J. H., Hendriksen, H. M. A., de Leeuw, F. A., Doorduijn, A. S., van Leeuwenstijn, M., Teunissen, C. E., Barkhof, F., Scheltens, P., Kraaij, R., van Duijn, C. M., Nieuwdorp, M., Muller, M., &. Frontiers in Immunology, 12. https://doi.org/10.3389/FIMMU.2021.794519/FULL Virtue, A. T., McCright, S. J., Wright, J. M., Jimenez, M. T., Mowel, W. K., Kotzin, J. J., Joannas, L., Basavappa, M. G., Spencer, S. P., Clark, M. L., Eisennagel, S. H., Williams, A., Levy, M., Manne, S., Henrickson, S. E., John Wherry, E., Thaiss, C. A., Elinav, E., & Henao-Mejia, J. (2019). The gut microbiota regulates white adipose tissue inflammation and obesity via a family of microRNAs. Science Translational Medicine, 11(496). https://doi.org/10.1126/scitranslmed.aav1892 Vital, M., Howe, A. C., & Tiedje, J. M. (2014). Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. MBio, 5(2). https://doi.org/10.1128/MBIO.00889-14 Wang, H. X., & Wang, Y. P. (2016). Gut Microbiota-brain Axis. Chinese Medical Journal, 129(19), 2373. https://doi.org/10.4103/0366-6999.190667 Wang, J., Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., Liang, S., Zhang, W., Guan, Y., Shen, D., Peng, Y., Zhang, D., Jie, Z., Wu, W., Qin, Y., Xue, W., Li, J., Han, L., … Wang, J. (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490(7418). https://doi.org/10.1038/nature11450 Wells, J. E., & Hylemon, P. B. (2000). Identification and characterization of a bile acid 7alphadehydroxylation operon in Clostridium sp. strain TO-931, a highly active 7alphadehydroxylating strain isolated from human feces. Applied and Environmental Microbiology, 66(3), 1107–1113. https://doi.org/10.1128/AEM.66.3.1107-1113.2000 Wu, H., Tremaroli, V., Schmidt, C., Lundqvist, A., Olsson, L. M., Krämer, M., Gummesson, A., Perkins, R., Bergström, G., & Bäckhed, F. (2020). The Gut Microbiota in Prediabetes and Diabetes: A Population-Based Cross-Sectional Study. Cell Metabolism, 32(3). https://doi.org/10.1016/j.cmet.2020.06.011 Xu, L., Ma, C., Huang, X., Yang, W., Chen, L., Bilotta, A. J., Yao, S., & Cong, Y. (2018). Microbiota metabolites short-chain fatty acid butyrate conditions intestinal epithelial cells to promote development of Treg cells and T cell IL-10 production. The Journal of Immunology, 200(1 Supplement). Yadav, H., Lee, J. H., Lloyd, J., Walter, P., & Rane, S. G. (2013). Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion. Journal of Biological Chemistry, 288(35). https://doi.org/10.1074/jbc.M113.452516 Yamashiro, Y. (2018). Gut Microbiota in Health and Disease. In Annals of Nutrition and Metabolism (Vol. 71, Issues 3–4). https://doi.org/10.1159/000481627 Yan, L., Yang, C., & Tang, J. (2013). Disruption of the intestinal mucosal barrier in Candida albicans infections. In Microbiological Research (Vol. 168, Issue 7). https://doi.org/10.1016/j.micres.2013.02.008 Yang, L. L., Millischer, V., Rodin, S., MacFabe, D. F., Villaescusa, J. C., & Lavebratt, C. (2020). Enteric short-chain fatty acids promote proliferation of human neural progenitor cells. Journal of Neurochemistry, 154(6). https://doi.org/10.1111/jnc.14928 Yoshii, K., Hosomi, K., Sawane, K., & Kunisawa, J. (2019). Metabolism of dietary and microbial vitamin b family in the regulation of host immunity. In Frontiers in Nutrition (Vol. 6). https://doi.org/10.3389/fnut.2019.00048 Yuille, S., Reichardt, N., Panda, S., Dunbar, H., & Mulder, I. E. (2018). Human gut bacteria as potent class I histone deacetylase inhibitors in vitro through production of butyric acid and valeric acid. PLoS ONE, 13(7). https://doi.org/10.1371/journal.pone.0201073 Zhang, Q., Zou, R., Guo, M., Duan, M., Li, Q., & Zheng, H. (2021). Comparison of gut microbiota between adults with autism spectrum disorder and obese adults. PeerJ, 9. https://doi.org/10.7717/peerj.10946 Zhao, J., Wang, L., Cheng, S., Zhang, Y., Yang, M., Fang, R., Li, H., Man, C., & Jiang, Y. (2022). A Potential Synbiotic Strategy for the Prevention of Type 2 Diabetes: Lactobacillus paracasei JY062 and Exopolysaccharide Isolated from Lactobacillus plantarum JY039. Nutrients, 14(2). https://doi.org/10.3390/nu14020377 Zheng, Z., Lyu, W., Ren, Y., Li, X., Zhao, S., Yang, H., & Xiao, Y. (2021). Allobaculum Involves in the Modulation of Intestinal ANGPTLT4 Expression in Mice Treated by High-Fat Diet. Frontiers in Nutrition, 8. https://doi.org/10.3389/fnut.2021.690138 Zhou, H., Tai, J., Xu, H., Lu, X., & Meng, D. (2019). Xanthoceraside could ameliorate Alzheimer’s disease symptoms of rats by affecting the gut microbiota composition and modulating the endogenous metabolite levels. Frontiers in Pharmacology, 10. https://doi.org/10.3389/fphar.2019.01035 Zhou, Y., He, Y., Liu, L., Zhou, W., Wang, P., Hu, H., Nie, Y., & Chen, Y. (2021). Alterations in Gut Microbial Communities Across Anatomical Locations in Inflammatory Bowel Diseases. Frontiers in Nutrition, 8. https://doi.org/10.3389/fnut.2021.615064 Zhuang, X., Liu, C., Zhan, S., Tian, Z., Li, N., Mao, R., Zeng, Z., & Chen, M. (2021). Gut Microbiota Profile in Pediatric Patients With Inflammatory Bowel Disease: A Systematic Review. In Frontiers in Pediatrics (Vol. 9). https://doi.org/10.3389/fped.2021.626232 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
69 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá,Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/83775/5/license.txt https://repositorio.unal.edu.co/bitstream/unal/83775/6/1022932886.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/83775/7/1022932886.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a cb177d96b7520c21217482d67ecca227 6a64187400df81b10422248baf6f449a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089739277434880 |
spelling |
Atribución-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Calderón Ozuna, Martha Nancyda0e44b0621d4d0cebb05657c72baf19Pinto Niño, Monica Andreae5728e8041edc8491eb18292eef802ecBioquímica y Biología Molecular de las Micobacterias2023-04-25T16:17:49Z2023-04-25T16:17:49Z2023https://repositorio.unal.edu.co/handle/unal/83775Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesLa alta diversidad bacteriana en el tracto gastrointestinal se caracteriza por la presencia de diferentes filos, que establecen interacciones relacionadas con una serie de sucesos a nivel celular que actúan fisiológicamente con el hospedero. La microbiota intestinal digiere oligosacáridos provenientes de la fibra dietaría que influye y genera diversos metabolitos, como son ácidos grasos de cadena corta (AGCC), vitamina K, vitamina B, triptófano, serotonina, entre otros. Aunque los mecanismos moleculares entre la microbiota intestinal y el hospedero aún continúan en estudio, se han establecido vías de interacción en un estado de eubiosis y en diferentes patologías. Se propuso en este trabajo de grado revisar los reportes científicos de caracterización de la microbiota en eubiosis y relacionar algunas vías del hospedero con el estado de disbiosis en diferentes patologías, además de consultar posibles tratamientos aplicados para la recuperación del equilibrio bacteriano. Para el desarrollo de esta revisión se emplearon diferentes plataformas de búsqueda, entre ellas, Scopus, Science Direct, Scielo, Base Search y PubMed, empleando palabras clave como “gut microbiota human”, “pathologies human gut microbiota”, “healthy human gut microbiota”. El estado de disbiosis se caracteriza por abundancias relativas desproporcionadas de géneros como Sutterella, Clostridium, Eggerthella, Escherichia, Shigella y Desulfovibrios. Se reporta disminución en las abundancias relativas de especies promotoras de salud como Akkermansia muciniphila, Faecalibacterium prausnitzii, los géneros Bifidobacterium, Lactobacillus y Roseburia. La pérdida de biodiversidad se asocia con el desarrollo de diferentes patologías como obesidad, diabetes, alteraciones del comportamiento, procesos inflamatorios y neurodegenerativos. La aplicación de prebióticos, probióticos, simbióticos y el trasplante de materia fecal (TMF), apuntan a la recuperación de la eubiosis intestinal como coadyuvantes en el tratamiento en diferentes patologías. (Texto tomado de la fuente)The high bacterial diversity in the gastrointestinal tract is characterized by the presence of different phyla, which generated interactions related to a series of events at the cellular level that act physiologically with the host. The intestinal microbiota digests oligosaccharides from dietary fiber that influences and generates various metabolites, such as short-chain fatty acids (SCFA), vitamin K, vitamin B, tryptophan, serotonin, among others. Although the molecular mechanisms between the intestinal microbiota and the host are still under study, interaction pathways have been established in a state of eubiosis and in different pathologies. It is perhaps in this degree work to review the scientific reports on the characterization of the microbiota in eubiosis and to relate some host pathways with the state of dysbiosis in different pathologies, in addition to consulting possible treatments applied for the recovery of the bacterial balance. For the development of this review, different search platforms were used, such as Scopus, Science Direct, Scielo, Base Search and PubMed, using keywords such as "gut microbiota human", "pathologies human gut microbiota", "healthy human gut microbiota". The state of dysbiosis is characterized by disproportionate relative abundances of genera such as Sutterella, Clostridium, Eggerthella, Escherichia, Shigella and Desulfovibrios. A decrease in the relative abundance of health-promoting species such as Akkermansia muciniphila, Faecalibacterium prausnitzii, the genera Bifidobacterium, Lactobacillus and Roseburia has been reported. The loss of biodiversity is associated with the development of different pathologies such as obesity, diabetes, behavioral disorders, inflammatory and neurodegenerative processes. The application of prebiotics, probiotics, synbiotics and fecal matter transplantation (FMT), point to the recovery of intestinal eubiosis as adjuvants in the treatment of different pathologies.MaestríaMagister en Ciencias QuímicaEnterobacterias, marcadores patogénicos y predictivos69 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - QuímicaFacultad de CienciasBogotá,ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::547 - Química orgánica570 - Biología::572 - Bioquímica610 - Medicina y salud::612 - Fisiología humana570 - Biología::579 - Historia natural microorganismos, hongos, algas540 - Química y ciencias afines::546 - Química inorgánicaAntibacterianosAnti-Bacterial AgentsMicrobiota intestinalEubiosisDisbiosisObesidadDiabetesEnfermedades inflamatorias intestinalesEnfermedades neurodegenerativasGut microbiotaDysbiosisLeaky gutObesityDiabetesInflammatory bowel diseasesNeurodegenerative diseasesLa microbiota intestinal y la disbiosis, relaciones metabólicas a nivel patológico y en la salud.The gut microbiota and dysbiosis, metabolic relationships at the pathological level and in healthTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbbasi, S., & Masoumi, S. (2020). Next-generation sequencing (NGS). International Journal of Advanced Science and Technology, 29(3). https://doi.org/10.1007/978-981-16-1037-0_23Adlerberth, I., & Wold, A. E. (2009). Establishment of the gut microbiota in Western infants. Acta Pædiatrica, 98(2), 229–238. https://doi.org/10.1111/J.1651-2227.2008.01060.XAit-Belgnaoui, A., Durand, H., Cartier, C., Chaumaz, G., Eutamene, H., Ferrier, L., Houdeau, E.,Fioramonti, J., Bueno, L., & Theodorou, V. (2012). Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology, 37(11). https://doi.org/10.1016/j.psyneuen.2012.03.024Alam, M. T., Amos, G. C. A., Murphy, A. R. J., Murch, S., Wellington, E. M. H., & Arasaradnam, R. P. (2020). Microbial imbalance in inflammatory bowel disease patients at different taxonomic levels. Gut Pathogens, 12(1). https://doi.org/10.1186/s13099-019-0341-6Alex, S., Lichtenstein, L., Dijk, W., Mensink, R. P., Tan, N. S., & Kersten, S. (2014). ANGPTL4 is produced by entero-endocrine cells in the human intestinal tract. Histochemistry and Cell Biology, 141(4). https://doi.org/10.1007/s00418-013-1157-yÁlvarez, J., Fernández Real, J. M., Guarner, F., Gueimonde, M., Rodríguez, J. M., Saenz de Pipaon, M., & Sanz, Y. (2021). Gut microbes and health. Gastroenterologia y Hepatologia, 44(7), 519– 535. https://doi.org/10.1016/J.GASTROHEP.2021.01.009Amar, J., Chabo, C., Waget, A., Klopp, P., Vachoux, C., Bermúdez-Humarán, L. G., Smirnova, N., Bergé, M., Sulpice, T., Lahtinen, S., Ouwehand, A., Langella, P., Rautonen, N., Sansonetti, P. J., & Burcelin, R. (2011). Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: Molecular mechanisms and probiotic treatment. EMBO Molecular Medicine, 3(9). https://doi.org/10.1002/emmm.201100159Aminov, R. I., Walker, A. W., Duncan, S. H., Harmsen, H. J. M., Welling, G. W., & Flint, H. J. (2006). Molecular diversity, cultivation, and improved detection by fluorescent in situ hybridization of a dominant group of human gut bacteria related to Roseburia spp. or Eubacterium rectale. Applied and Environmental Microbiology, 72(9). https://doi.org/10.1128/AEM.00701-06Aoki, R., Kamikado, K., Suda, W., Takii, H., Mikami, Y., Suganuma, N., Hattori, M., & Koga, Y. (2017). A proliferative probiotic Bifidobacterium strain in the gut ameliorates progression of metabolic disorders via microbiota modulation and acetate elevation. Scientific Reports, 7. https://doi.org/10.1038/srep43522Archer, A. C., Muthukumar, S. P., & Halami, P. M. (2021). Lactobacillus fermentum MCC2759 and MCC2760 Alleviate Inflammation and Intestinal Function in High-Fat Diet-Fed and Streptozotocin-Induced Diabetic Rats. Probiotics and Antimicrobial Proteins, 13(4). https://doi.org/10.1007/s12602-021-09744-0Aroniadis, O. C., & Brandt, L. J. (2013). Fecal microbiota transplantation: Past, present and future. In Current Opinion in Gastroenterology (Vol. 29, Issue 1). https://doi.org/10.1097/MOG.0b013e32835a4b3eBabakhani, S., & Hosseini, F. (2019). Gut Microbiota: An Effective Factor in the Human Brain and Behavior. The Neuroscience Journal of Shefaye Khatam, 7(1), 106–118. https://doi.org/10.29252/SHEFA.7.1.106Bäckhed, F., Ding, H., Wang, T., Hooper, L. V., Gou, Y. K., Nagy, A., Semenkovich, C. F., & Gordon, J. I. (2004). The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences of the United States of America, 101(44). https://doi.org/10.1073/pnas.0407076101Bäckhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., & Gordon, J. I. (2005). Host-bacterial mutualism in the human intestine. In Science (Vol. 307, Issue 5717). https://doi.org/10.1126/science.1104816Bastard, J. P., Maachi, M., Van Nhieu, J. T., Jardel, C., Bruckert, E., Grimaldi, A., Robert, J. J., Capeau, J., & Hainque, B. (2002). Adipose tissue IL-6 content correlates with resistance to insulin activation of glucose uptake both in vivo and in vitro. Journal of Clinical Endocrinology and Metabolism, 87(5). https://doi.org/10.1210/jcem.87.5.8450Batterham, R. L., Cowley, M. A., Small, C. J., Herzog, H., Cohen, M. A., Dakin, C. L., Wren, A. M., Brynes, A. E., Low, M. J., Ghatei, M. A., Cone, R. D., & Bloom, S. R. (2002). Gut hormone PYY3-36 physiologically inhibits food intake. Nature 2002 418:6898, 418(6898), 650–654. https://doi.org/10.1038/nature00887Belizário, J. E., Faintuch, J., Belizário, J. E., & Faintuch, J. (2018). doi: 10.1007/978-3-319-74932- 7_13 ++. Experientia Supplementum, 109Beltrán Martín, A. (2017). Microbiota Intestinal Y Diabetes. 1–20. http://147.96.70.122/Web/TFG/TFG/Memoria/ALBA GARCIA ALONSO.pdfBercik, P., Denou, E., Collins, J., Jackson, W., Lu, J., Jury, J., Deng, Y., Blennerhassett, P., MacRi, J., McCoy, K. D., Verdu, E. F., & Collins, S. M. (2011). The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology, 141(2). https://doi.org/10.1053/j.gastro.2011.04.052Blaak, E. E., Canfora, E. E., Theis, S., Frost, G., Groen, A. K., Mithieux, G., Nauta, A., Scott, K., Stahl, B., van Harsselaar, J., van Tol, R., Vaughan, E. E., & Verbeke, K. (2020). Short chain fatty acids in human gut and metabolic health. In Beneficial Microbes (Vol. 11, Issue 5). https://doi.org/10.3920/BM2020.0057Bozkurt, H. S., & Kara, B. (2020). A new treatment for ulcerative colitis: Intracolonic Bifidobacterium and xyloglucan application. European Journal of Inflammation, 18. https://doi.org/10.1177/2058739220942626Brahe, L. K., Astrup, A., & Larsen, L. H. (2016). Can we prevent obesity-Related metabolic diseases by dietary modulation of the gut microbiota? In Advances in Nutrition (Vol. 7, Issue 1). https://doi.org/10.3945/an.115.010587Braniste, V., Al-Asmakh, M., Kowal, C., Anuar, F., Abbaspour, A., Tóth, M., Korecka, A., Bakocevic, N., Guan, N. L., Kundu, P., Gulyás, B., Halldin, C., Hultenby, K., Nilsson, H., Hebert, H., Volpe, B. T., Diamond, B., & Pettersson, S. (2014). The gut microbiota influences blood-brain barrier permeability in mice. Science Translational Medicine, 6(263). https://doi.org/10.1126/scitranslmed.3009759Bravo, J. A., Forsythe, P., Chew, M. V., Escaravage, E., Savignac, H. M., Dinan, T. G., Bienenstock, J., & Cryan, J. F. (2011). Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences of the United States of America, 108(38). https://doi.org/10.1073/pnas.1102999108Brown, J., Wang, H., Hajishengallis, G. N., & Martin, M. (2011). TLR-signaling networks: An integration of adaptor molecules, kinases, and cross-talk. Journal of Dental Research, 90(4).Burokas, A., Arboleya, S., Moloney, R. D., Peterson, V. L., Murphy, K., Clarke, G., Stanton, C., Dinan, T. G., & Cryan, J. F. (2017). Targeting the Microbiota-Gut-Brain Axis: Prebiotics Have Anxiolytic and Antidepressant-like Effects and Reverse the Impact of Chronic Stress in Mice. Biological Psychiatry, 82(7). https://doi.org/10.1016/j.biopsych.2016.12.031Candela, M., Biagi, E., Soverini, M., Consolandi, C., Quercia, S., Severgnini, M., Peano, C., Turroni, S., Rampelli, S., Pozzilli, P., Pianesi, M., Fallucca, F., & Brigidi, P. (2016). Modulation of gut microbiota dysbioses in type 2 diabetic patients by macrobiotic Ma-Pi 2 diet. British Journal of Nutrition, 116(1). https://doi.org/10.1017/S0007114516001045Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M., Knauf, C., Bastelica, D., Neyrinck, A. M., Fava, F., Tuohy, K. M., Chabo, C., Waget, A., Delmée, E., Cousin, B., Sulpice, T., Chamontin, B., Ferrières, J., Tanti, J. F., Gibson, G. R., Casteilla, L., … Burcelin, R. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56(7). https://doi.org/10.2337/db06-1491Cani, P. D., Neyrinck, A. M., Fava, F., Knauf, C., Burcelin, R. G., Tuohy, K. M., Gibson, G. R., & Delzenne, N. M. (2007). Selective increases of bifidobacteria in gut microflora improve highfat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia, 50(11). https://doi.org/10.1007/s00125-007-0791-0Cani, P. D., Possemiers, S., Van De Wiele, T., Guiot, Y., Everard, A., Rottier, O., Geurts, L., Naslain, D., Neyrinck, A., Lambert, D. M., Muccioli, G. G., & Delzenne, N. M. (2009). Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut, 58(8). https://doi.org/10.1136/gut.2008.165886Cani, P., & Delzenne, N. (2009). The Role of the Gut Microbiota in Energy Metabolism and Metabolic Disease. Current Pharmaceutical Design, 15(13). https://doi.org/10.2174/138161209788168164Caputi, V., Marsilio, I., Filpa, V., Cerantola, S., Orso, G., Bistoletti, M., Paccagnella, N., De Martin, S., Montopoli, M., Dall’Acqua, S., Crema, F., Di Gangi, I. M., Galuppini, F., Lante, I., Bogialli, S., Rugge, M., Debetto, P., Giaroni, C., & Giron, M. C. (2017). Antibiotic-induced dysbiosis of the microbiota impairs gut neuromuscular function in juvenile mice. British Journal of Pharmacology, 174(20). https://doi.org/10.1111/bph.13965Chávez-Carbajal, A., Pizano-Zárate, M. L., Hernández-Quiroz, F., Ortiz-Luna, G. F., MoralesHernández, R. M., De Sales-Millán, A., Hernández-Trejo, M., García-Vite, A., Beltrán-Lagunes, L., Hoyo-Vadillo, C., & García-Mena, J. (2020). Characterization of the gut microbiota of individuals at different T2D stages reveals a complex relationship with the host. Microorganisms, 8(1). https://doi.org/10.3390/microorganisms8010094Chen, Y., Xiao, N., Chen, Y., Chen, X., Zhong, C., Cheng, Y., Du, B., & Li, P. (2021). Semen Sojae Praeparatum alters depression-like behaviors in chronic unpredictable mild stress rats via intestinal microbiota. Food Research International, 150. https://doi.org/10.1016/j.foodres.2021.110808Chiang, J. Y. L., & Ferrell, J. M. (2020). Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy. American Journal of Physiology - Gastrointestinal and Liver Physiology, 318(3). https://doi.org/10.1152/ajpgi.00223.2019Chimerel, C., Emery, E., Summers, D. K., Keyser, U., Gribble, F. M., & Reimann, F. (2014). Bacterial Metabolite Indole Modulates Incretin Secretion from Intestinal Enteroendocrine L Cells. Cell Reports, 9(4). https://doi.org/10.1016/j.celrep.2014.10.032Clarke, G., Sandhu, K. V., Griffin, B. T., Dinan, T. G., Cryan, J. F., & Hyland, N. P. (2019). Gut Reactions: Breaking Down Xenobiotic–Microbiome Interactions. Pharmacological Reviews, 71(2), 198–224. https://doi.org/10.1124/PR.118.015768Clooney, A. G., Eckenberger, J., Laserna-Mendieta, E., Sexton, K. A., Bernstein, M. T., Vagianos, K., Sargent, M., Ryan, F. J., Moran, C., Sheehan, D., Sleator, R. D., Targownik, L. E., Bernstein, C. N., Shanahan, F., & Claesson, M. J. (2021). Ranking microbiome variance in inflammatory bowel disease: A large longitudinal intercontinental study. Gut, 70(3). https://doi.org/10.1136/gutjnl-2020-321106Cornejo-Pareja, I., Muñoz-Garach, A., Clemente-Postigo, M., & Tinahones, F. J. (2019). Importance of gut microbiota in obesity. European Journal of Clinical Nutrition, 72, 26–37. https://doi.org/10.1038/s41430-018-0306-8Creely, S. J., McTernan, P. G., Kusminski, C. M., Fisher, F. M., Da Silva, N. F., Khanolkar, M., Evans, M., Harte, A. L., & Kumar, S. (2007). Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. American Journal of Physiology - Endocrinology and Metabolism, 292(3). https://doi.org/10.1152/ajpendo.00302.2006Cummings, J. H., Beatty, E. R., Kingman, S. M., Bingham, S. A., & Englyst, H. N. (1996). Digestion and physiological properties of resistant starch in the human large bowel. British Journal of Nutrition, 75(5). https://doi.org/10.1079/bjn19960177Cummings, J. H., Macfarlane, G. T., & Englyst, H. N. (2001). Prebiotic digestion and fermentation. American Journal of Clinical Nutrition, 73(2 SUPPL.). https://doi.org/10.1093/ajcn/73.2.415sDalile, B., Vervliet, B., Bergonzelli, G., Verbeke, K., & Van Oudenhove, L. (2020). Colon-delivered short-chain fatty acids attenuate the cortisol response to psychosocial stress in healthy men: a randomized, placebo-controlled trial. Neuropsychopharmacology, 45(13). https://doi.org/10.1038/s41386-020-0732-xDam, B., Misra, A., & Banerjee, S. (2019). Role of Gut Microbiota in Combating Oxidative Stress. Oxidative Stress in Microbial Diseases, 43–82. https://doi.org/10.1007/978-981-13-8763-0_4De Mello, V. D., Paananen, J., Lindström, J., Lankinen, M. A., Shi, L., Kuusisto, J., Pihlajamäki, J., Auriola, S., Lehtonen, M., Rolandsson, O., Bergdahl, I. A., Nordin, E., Ilanne-Parikka, P., Keinänen-Kiukaanniemi, S., Landberg, R., Eriksson, J. G., Tuomilehto, J., Hanhineva, K., & Uusitupa, M. (2017). Indolepropionic acid and novel lipid metabolites are associated with a lower risk of type 2 diabetes in the Finnish Diabetes Prevention Study. Scientific Reports, 7. https://doi.org/10.1038/srep46337De Santis, S., Cavalcanti, E., Mastronardi, M., Jirillo, E., & Chieppa, M. (2015). Nutritional keys for intestinal barrier modulation. In Frontiers in Immunology (Vol. 6, Issue DEC). https://doi.org/10.3389/fimmu.2015.00612Den Besten, G., Van Eunen, K., Groen, A. K., Venema, K., Reijngoud, D. J., & Bakker, B. M. (2013). The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research, 54(9), 2325. https://doi.org/10.1194/JLR.R036012Dong, S., Zhu, M., Wang, K., Zhao, X., Hu, L., Jing, W., Lu, H., & Wang, S. (2021). Dihydromyricetin improves DSS-induced colitis in mice via modulation of fecal-bacteria-related bile acid metabolism. Pharmacological Research, 171. https://doi.org/10.1016/j.phrs.2021.105767Drake, H. L., Hu, S. I., & Wood, H. G. (1981). Purification of five components from Clostridium thermoaceticum which catalyze synthesis of acetate from pyruvate and methyltetrahydrofolate. Properties of phosphotransacetylase. Journal of Biological Chemistry, 256(21).Duan, M., Wang, Y., Zhang, Q., Zou, R., Guo, M., & Zheng, H. (2021). Characteristics of gut microbiota in people with obesity. PLoS ONE, 16(8 August). https://doi.org/10.1371/journal.pone.0255446Duncan, S. H., Belenguer, A., Holtrop, G., Johnstone, A. M., Flint, H. J., & Lobley, G. E. (2007). Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Applied and Environmental Microbiology, 73(4). https://doi.org/10.1128/AEM.02340-06Duncan, S. H., Louis, P., & Flint, H. J. (2004). Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Applied and Environmental Microbiology, 70(10), 5810–5817. https://doi.org/10.1128/AEM.70.10.5810-5817.2004Erny, D., De Angelis, A. L. H., Jaitin, D., Wieghofer, P., Staszewski, O., David, E., Keren-Shaul, H., Mahlakoiv, T., Jakobshagen, K., Buch, T., Schwierzeck, V., Utermöhlen, O., Chun, E., Garrett, W. S., Mccoy, K. D., Diefenbach, A., Staeheli, P., Stecher, B., Amit, I., & Prinz, M. (2015). Host microbiota constantly control maturation and function of microglia in the CNS. Nature Neuroscience, 18(7). https://doi.org/10.1038/nn.4030Escobar, J. S., Klotz, B., Valdes, B. E., & Agudelo, G. M. (2015). The gut microbiota of Colombians differs from that of Americans, Europeans and Asians. BMC Microbiology, 14(1). https://doi.org/10.1186/s12866-014-0311-6Fan, Y., & Pedersen, O. (2020). Gut microbiota in human metabolic health and disease. Nature Reviews Microbiology 2020 19:1, 19(1), 55–71. https://doi.org/10.1038/s41579-020-0433-9Fasano, A. (2012). Leaky gut and autoimmune diseases. Clinical Reviews in Allergy and Immunology, 42(1). https://doi.org/10.1007/s12016-011-8291-xFernández Real, J. M., Moreno-Navarrete, J. M., & Manco, M. (2019). Iron influences on the GutBrain axis and development of type 2 diabetes. In Critical Reviews in Food Science and Nutrition (Vol. 59, Issue 3). https://doi.org/10.1080/10408398.2017.1376616Fiorucci, S., Carino, A., Baldoni, M., Santucci, L., Costanzi, E., Graziosi, L., Distrutti, E., & Biagioli, M. (2021). Bile Acid Signaling in Inflammatory Bowel Diseases. In Digestive Diseases and Sciences (Vol. 66, Issue 3). https://doi.org/10.1007/s10620-020-06715-3Flint, A., Raben, A., Rehfeld, J. F., Holst, J. J., & Astrup, A. (2000). The effect of glucagon-like peptide-1 on energy expenditure and substrate metabolism in humans. International Journal of Obesity, 24(3). https://doi.org/10.1038/sj.ijo.0801126Fujimori, S., Tatsuguchi, A., Gudis, K., Kishida, T., Mitsui, K., Ehara, A., Kobayashi, T., Sekita, Y., Seo, T., & Sakamoto, C. (2007). High dose probiotic and prebiotic cotherapy for remission induction of active Crohn’s disease. Journal of Gastroenterology and Hepatology (Australia), 22(8). https://doi.org/10.1111/j.1440-1746.2006.04535.xFülling, C., Dinan, T. G., & Cryan, J. F. (2019a). Gut Microbe to Brain Signaling: What Happens in Vagus…. In Neuron (Vol. 101, Issue 6). https://doi.org/10.1016/j.neuron.2019.02.008Fülling, C., Dinan, T. G., & Cryan, J. F. (2019b). Gut Microbe to Brain Signaling: What Happens in Vagus…. Neuron, 101(6), 998–1002. https://doi.org/10.1016/J.NEURON.2019.02.008Gareau, M., Silva, M., & Perdue, M. (2008). Pathophysiological Mechanisms of Stress-Induced Intestina Damage. Current Molecular Medicine, 8(4), 274–281. https://doi.org/10.2174/156652408784533760Generoso, J. S., Giridharan, V. V., Lee, J., Macedo, D., & Barichello, T. (2021). The role of the microbiota-gut-brain axis in neuropsychiatric disorders. In Revista brasileira de psiquiatria (Sao Paulo, Brazil : 1999) (Vol. 43, Issue 3). https://doi.org/10.1590/1516-4446-2020-0987Gonzalez-Santana, A., & Diaz Heijtz, R. (2020). Bacterial Peptidoglycans from Microbiota in Neurodevelopment and Behavior. In Trends in Molecular Medicine (Vol. 26, Issue 8). https://doi.org/10.1016/j.molmed.2020.05.003Gózd-Barszczewska, A., Kozioł-Montewka, M., Barszczewski, P., Młodzińska, A., & Humińska, K. (2017). Gut microbiome as a biomarker of cardiometabolic disorders. Annals of Agricultural and Environmental Medicine, 24(3). https://doi.org/10.26444/aaem/75456Grab, D. J., Perides, G., Dumler, J. S., Kim, K. J., Park, J., Kim, Y. V., Nikolskaia, O., Choi, K. S., Stins, M. F., & Kim, K. S. (2005). Borrelia burgdorferi, host-derived proteases, and the bloodbrain barrier. Infection and Immunity, 73(2). https://doi.org/10.1128/IAI.73.2.1014-1022.2005Guarner, F., & Malagelada, J. R. (2003). Gut flora in health and disease. The Lancet, 361(9356), 512–519. https://doi.org/10.1016/S0140-6736(03)12489-0Guo, J., Han, X., Tan, H., Huang, W., You, Y., & Zhan, J. (2019). Blueberry Extract Improves Obesity through Regulation of the Gut Microbiota and Bile Acids via Pathways Involving FXR and TGR5. IScience, 19. https://doi.org/10.1016/j.isci.2019.08.020Gurung, M., Li, Z., You, H., Rodrigues, R., Jump, D. B., Morgun, A., & Shulzhenko, N. (2020). Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine, 51. https://doi.org/10.1016/J.EBIOM.2019.11.051/ATTACHMENT/CB942F49-C906-4922-A160- AC1B2D24B8E7/MMC1.XLSXHaileselassie, Y., Fischbach, M. A., Sonnenburg, J. L., & Habtezion, A. (2020). Clinical and Translational Report Dysbiosis-Induced Secondary Bile Acid Deficiency Clinical and Translational Report Dysbiosis-Induced Secondary Bile Acid Deficiency Promotes Intestinal Inflammation. Cell Host and Microbe, 0(0).Harpreet Kaur, Svetlana Golovko, Mikhail Y. Golovko, Surjeet Singh, D. C. D. and C. K. C. (2022). Erratum to “Effects of Probiotic Supplementation on Short Chain Fatty Acids in the AppNL–G– F Mouse Model of Alzheimer’s Disease.” Journal of Alzheimer’s Disease, 86(2). https://doi.org/10.3233/jad-229001Hetzel, M., Brock, M., Selmer, T., Pierik, A. J., Golding, B. T., & Buckel, W. (2003). Acryloyl-CoA reductase from Clostridium propionicum: An enzyme complex of propionyl-CoA dehydrogenase and electron-transferring flavoprotein. European Journal of Biochemistry, 270(5). https://doi.org/10.1046/j.1432-1033.2003.03450.xHill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). Expert consensus document: The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology and Hepatology, 11(8). https://doi.org/10.1038/nrgastro.2014.66Hoentjen, F., Welling, G. W., Harmsen, H. J. M., Zhang, X., Snart, J., Tannock, G. W., Lien, K., Churchill, T. A., Lupicki, M., & Dieleman, L. A. (2005). Reduction of colitis by prebiotics in HLAB27 transgenic rats is associated with microflora changes and immunomodulation. Inflammatory Bowel Diseases, 11(11). https://doi.org/10.1097/01.MIB.0000183421.02316.d5Holmes, E., Li, J. V., Marchesi, J. R., & Nicholson, J. K. (2012). Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. In Cell Metabolism (Vol. 16, Issue 5). https://doi.org/10.1016/j.cmet.2012.10.007Hou, M., Xu, G., Ran, M., Luo, W., & Wang, H. (2021). APOE-ε4 Carrier Status and Gut Microbiota Dysbiosis in Patients With Alzheimer Disease. Frontiers in Neuroscience, 15. https://doi.org/10.3389/fnins.2021.619051Houser, M. C., & Tansey, M. G. (2017). The gut-brain axis: Is intestinal inflammation a silent driver of Parkinson’s disease pathogenesis? In npj Parkinson’s Disease (Vol. 3, Issue 1). https://doi.org/10.1038/s41531-016-0002-0Hsiao, E. Y., McBride, S. W., Hsien, S., Sharon, G., Hyde, E. R., McCue, T., Codelli, J. A., Chow, J., Reisman, S. E., Petrosino, J. F., Patterson, P. H., & Mazmanian, S. K. (2013). Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell, 155(7), 1451–1463. https://doi.org/10.1016/J.CELL.2013.11.024/ATTACHMENT/3C2F31F8-0226-47B8-A48EAB542B8C7423/MMC2.ZIPI., P., V., B., J., H., S., G., & A., H. (2017). Gut microbiome associated with cognitive and brain structural outcomes in apolipoprotein E4 variant. Journal of Cerebral Blood Flow and Metabolism, 37(1 Supplement 1).Jaganathan, R., Ravindran, R., & Dhanasekaran, S. (2018). Emerging Role of Adipocytokines in Type 2 Diabetes as Mediators of Insulin Resistance and Cardiovascular Disease. In Canadian Journal of Diabetes (Vol. 42, Issue 4). https://doi.org/10.1016/j.jcjd.2017.10.040Jan, G., Belzacq, A. S., Haouzi, D., Rouault, A., Métivier, D., Kroemer, G., & Brenner, C. (2002). Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids acting on mitochondria. Cell Death and Differentiation, 9(2). https://doi.org/10.1038/sj.cdd.4400935Jandhyala, S. M., Talukdar, R., Subramanyam, C., Vuyyuru, H., Sasikala, M., & Reddy, D. N. (2015). Role of the normal gut microbiota. World Journal of Gastroenterology, 21(29). https://doi.org/10.3748/wjg.v21.i29.8787Jang, H. M., Lee, K. E., Lee, H. J., & Kim, D. H. (2018). Immobilization stress-induced Escherichia coli causes anxiety by inducing NF-κB activation through gut microbiota disturbance. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-31764-0Janssen, A. W. F., & Kersten, S. (2017). Potential mediators linking gut bacteria to metabolic health: a critical view. In Journal of Physiology (Vol. 595, Issue 2). https://doi.org/10.1113/JP272476Jumpertz, R., Le, D. S., Turnbaugh, P. J., Trinidad, C., Bogardus, C., Gordon, J. I., & Krakoff, J. (2011). Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. American Journal of Clinical Nutrition, 94(1). https://doi.org/10.3945/ajcn.110.010132Jung, D., Fantin, A. C., Scheurer, U., Fried, M., & Kullak-Ublick, G. A. (2004). Human ileal bile acid transporter gene ASBT (SLC10A2) is transactivated by the glucocorticoid receptor. Gut, 53(1). https://doi.org/10.1136/gut.53.1.78Kalia, L. V., & Lang, A. E. (2015). Parkinson’s disease. The Lancet, 386(9996), 896–912. https://doi.org/10.1016/S0140-6736(14)61393-3Kaur, H., Nookala, S., Singh, S., Mukundan, S., Nagamoto-Combs, K., & Combs, C. K. (2021). Sexdependent effects of intestinal microbiome manipulation in a mouse model of alzheimer’s disease. Cells, 10(9). https://doi.org/10.3390/cells10092370Khanna, S., Vazquez-Baeza, Y., González, A., Weiss, S., Schmidt, B., Muñiz-Pedrogo, D. A., Rainey, J. F., Kammer, P., Nelson, H., Sadowsky, M., Khoruts, A., Farrugia, S. L., Knight, R.,Pardi, D. S., & Kashyap, P. C. (2017). Changes in microbial ecology after fecal microbiota transplantation for recurrent C. difficile infection affected by underlying inflammatory bowel disease. Microbiome, 5(1). https://doi.org/10.1186/S40168-017-0269-3Kieler, I. N., Kamal, S. S., Vitger, A. D., Nielsen, D. S., Lauridsen, C., & Bjornvad, C. R. (2017). Gut microbiota composition may relate to weight loss rate in obese pet dogs. Veterinary Medicine and Science, 3(4). https://doi.org/10.1002/vms3.80Kilinçarslan, S., & Evrensel, A. (2020). Efecto del trasplante de microbiota fecal sobre los síntomas psiquiátricos de los pacientes con enfermedad intestinal inflamatoria: estudio experimental. Actas Españolas de Psiquiatría, ISSN 1139-9287, Vol. 48, No . 1, 2020, Págs. 1-7, 48(1).Koh, A., De Vadder, F., Kovatcheva-Datchary, P., & Bäckhed, F. (2016). From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. In Cell (Vol. 165, Issue 6). https://doi.org/10.1016/j.cell.2016.05.041LeBlanc, J. G., Milani, C., de Giori, G. S., Sesma, F., van Sinderen, D., & Ventura, M. (2013). Bacteria as vitamin suppliers to their host: A gut microbiota perspective. In Current Opinion in Biotechnology (Vol. 24, Issue 2). https://doi.org/10.1016/j.copbio.2012.08.005Li, N., Zhan, S., Tian, Z., Liu, C., Xie, Z., Zhang, S., Chen, M., Zeng, Z., & Zhuang, X. (2021). Alterations in Bile Acid Metabolism Associated with Inflammatory Bowel Disease. In Inflammatory Bowel Diseases (Vol. 27, Issue 9). https://doi.org/10.1093/ibd/izaa342Li, Q., Chang, Y., Zhang, K., Chen, H., Tao, S., & Zhang, Z. (2020). Implication of the gut microbiome composition of type 2 diabetic patients from northern China. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-62224-3Li, X., Li, Z., He, Y., Li, P., Zhou, H., & Zeng, N. (2020). Regional distribution of Christensenellaceae and its associations with metabolic syndrome based on a population-level analysis. PeerJ, 8. https://doi.org/10.7717/peerj.9591Lin, H. V., Frassetto, A., Kowalik, E. J., Nawrocki, A. R., Lu, M. M., Kosinski, J. R., Hubert, J. A., Szeto, D., Yao, X., Forrest, G., & Marsh, D. J. (2012). Butyrate and Propionate Protect against Diet-Induced Obesity and Regulate Gut Hormones via Free Fatty Acid Receptor 3-Independent Mechanisms. PLoS ONE, 7(4), e35240. https://doi.org/10.1371/JOURNAL.PONE.0035240Liu, B. N., Liu, X. T., Liang, Z. H., & Wang, J. H. (2021). Gut microbiota in obesity. World Journal of Gastroenterology, 27(25), 3837. https://doi.org/10.3748/WJG.V27.I25.3837Liu, Y., Sanderson, D., Mian, M. F., McVey Neufeld, K. A., & Forsythe, P. (2021). Loss of vagal integrity disrupts immune components of the microbiota-gut-brain axis and inhibits the effect of Lactobacillus rhamnosus on behavior and the corticosterone stress response. Neuropharmacology, 195. https://doi.org/10.1016/j.neuropharm.2021.108682Louis, P., Duncan, S. H., McCrae, S. I., Millar, J., Jackson, M. S., & Flint, H. J. (2004). Restricted Distribution of the Butyrate Kinase Pathway among Butyrate-Producing Bacteria from the Human Colon. Journal of Bacteriology, 186(7). https://doi.org/10.1128/JB.186.7.2099- 2106.2004Louis, P., & Flint, H. J. (2009). Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiology Letters, 294(1). https://doi.org/10.1111/j.1574-6968.2009.01514.xLouis, P., & Flint, H. J. (2017). Formation of propionate and butyrate by the human colonic microbiota. Environmental Microbiology, 19(1), 29–41. https://doi.org/10.1111/1462- 2920.13589Luck, B., Engevik, M. A., Ganesh, B. P., Lackey, E. P., Lin, T., Balderas, M., Major, A., Runge, J., Luna, R. A., Sillitoe, R. V., & Versalovic, J. (2020). Bifidobacteria shape host neural circuits during postnatal development by promoting synapse formation and microglial function. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-64173-3Lukovac, S., Belzer, C., Pellis, L., Keijser, B. J., de Vos, W. M., Montijn, R. C., & Roeselers, G. (2014). Differential modulation by Akkermansia muciniphila and faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids. MBio, 5(4). https://doi.org/10.1128/mBio.01438-14Macfarlane, S., & Macfarlane, G. T. (2003). Regulation of short-chain fatty acid production. Proceedings of the Nutrition Society, 62(1), 67–72. https://doi.org/10.1079/pns2002207Macfarlane, S., & Macfarlane, G. T. (2006). Composition and metabolic activities of bacterial biofilms colonizing food residues in the human gut. Applied and Environmental Microbiology, 72(9). https://doi.org/10.1128/AEM.00754-06Madan, A., Thompson, D., Fowler, J. C., Ajami, N. J., Salas, R., Frueh, B. C., Bradshaw, M. R., Weinstein, B. L., Oldham, J. M., & Petrosino, J. F. (2020). The gut microbiota is associated with psychiatric symptom severity and treatment outcome among individuals with serious mental illness. Journal of Affective Disorders, 264, 98–106. https://doi.org/10.1016/J.JAD.2019.12.020Mäger, I., Roberts, T. C., Wood, M. J. A., & El Andaloussi, S. (2014). From gut to brain: Bioencapsulated therapeutic protein reduces amyloid load upon oral delivery. In Molecular Therapy (Vol. 22, Issue 3). https://doi.org/10.1038/mt.2014.13Magnúsdóttir, S., Ravcheev, D., De Crécy-Lagard, V., & Thiele, I. (2015). Systematic genome assessment of B-vitamin biosynthesis suggests cooperation among gut microbes. Frontiers in Genetics, 6(MAR). https://doi.org/10.3389/fgene.2015.00148Mancabelli, L., Tarracchini, C., Milani, C., Lugli, G. A., Fontana, F., Turroni, F., van Sinderen, D., & Ventura, M. (2020). Multi-population cohort meta-analysis of human intestinal microbiota in early life reveals the existence of infant community state types (ICSTs). Computational and Structural Biotechnology Journal, 18. https://doi.org/10.1016/j.csbj.2020.08.028Mandard, S., Zandbergen, F., Nguan, S. T., Escher, P., Patsouris, D., Koenig, W., Kleemann, R., Bakker, A., Veenman, F., Wahli, W., Müller, M., & Kersten, S. (2004). The direct peroxisome proliferator-activated receptor target fasting-induced adipose factor (FIAF/PGAR/ANGPTL4) is present in blood plasma as a truncated protein that is increased by fenofibrate treatment. Journal of Biological Chemistry, 279(33). https://doi.org/10.1074/jbc.M403058200Mangiola, F., Ianiro, G., Franceschi, F., Fagiuoli, S., Gasbarrini, G., & Gasbarrini, A. (2016). Gut microbiota in autism and mood disorders. In World Journal of Gastroenterology (Vol. 22, Issue 1). https://doi.org/10.3748/wjg.v22.i1.361Marques, T. M., Wall, R., Ross, R. P., Fitzgerald, G. F., Ryan, C. A., & Stanton, C. (2010). Programming infant gut microbiota: influence of dietary and environmental factors. Current Opinion in Biotechnology, 21(2), 149–156. https://doi.org/10.1016/J.COPBIO.2010.03.020Martin-Gallausiaux, C., Marinelli, L., Blottière, H. M., Larraufie, P., & Lapaque, N. (2021). SCFA: mechanisms and functional importance in the gut. Proceedings of the Nutrition Society, 80(1). https://doi.org/10.1017/s0029665120006916Martin, R., Makino, H., Yavuz, A. C., Ben-Amor, K., Roelofs, M., Ishikawa, E., Kubota, H., Swinkels, S., Sakai, T., Oishi, K., Kushiro, A., & Knol, J. (2016). Early-Life events, including mode of delivery and type of feeding, siblings and gender, shape the developing gut microbiota. PLoS ONE, 11(6). https://doi.org/10.1371/journal.pone.0158498Mccartney, A. L., Wenzhi, W., & Tannock, G. W. (1996). Molecular analysis of the composition of the bifidobacterial and lactobacillus microflora of humans. Applied and Environmental Microbiology, 62(12). https://doi.org/10.1128/aem.62.12.4608-4613.1996McCreath, K. J., Espada, S., Gálvez, B. G., Benito, M., De Molina, A., Sepúlveda, P., & Cervera, A. M. (2015). Targeted disruption of the SUCNR1 metabolic receptor leads to dichotomous effects on obesity. Diabetes, 64(4). https://doi.org/10.2337/db14-0346Mcvey Neufeld, K. A., Mao, Y. K., Bienenstock, J., Foster, J. A., & Kunze, W. A. (2013). The microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the mouse. Neurogastroenterology and Motility, 25(2). https://doi.org/10.1111/nmo.12049Medvecky, M., Cejkova, D., Polansky, O., Karasova, D., Kubasova, T., Cizek, A., & Rychlik, I. (2018). Whole genome sequencing and function prediction of 133 gut anaerobes isolated from chicken caecum in pure cultures. BMC Genomics, 19(1). https://doi.org/10.1186/s12864-018-4959-4Mentella, M. C., Scaldaferri, F., Pizzoferrato, M., Gasbarrini, A., & Miggiano, G. A. D. (2020). Nutrition, IBD and Gut Microbiota: A Review. Nutrients, 12(4). https://doi.org/10.3390/NU12040944Miller, T. L., & Wolin, M. J. (1996). Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Applied and Environmental Microbiology, 62(5), 1589. https://doi.org/10.1128/AEM.62.5.1589-1592.1996Million, M., Maraninchi, M., Henry, M., Armougom, F., Richet, H., Carrieri, P., Valero, R., Raccah, D., Vialettes, B., & Raoult, D. (2012). Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. International Journal of Obesity, 36(6). https://doi.org/10.1038/ijo.2011.153Mitev, K., & Taleski, V. (2019). Association between the gut microbiota and obesity. Open Access Macedonian Journal of Medical Sciences, 7(12), 2050–2056. https://doi.org/10.3889/oamjms.2019.586Mizrahi-Man, O., Davenport, E. R., & Gilad, Y. (2013). Taxonomic Classification of Bacterial 16S rRNA Genes Using Short Sequencing Reads: Evaluation of Effective Study Designs. PLoS ONE, 8(1). https://doi.org/10.1371/journal.pone.0053608Morais, L. H., Schreiber, H. L., & Mazmanian, S. K. (2021). The gut microbiota–brain axis in behaviour and brain disorders. Nature Reviews Microbiology, 19(4), 241–255. https://doi.org/10.1038/s41579-020-00460-0Moreno-Indias, I., Cardona, F., Tinahones, F. J., & Queipo-Ortuño, M. I. (2014). Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Frontiers in Microbiology, 5(APR). https://doi.org/10.3389/FMICB.2014.00190Morris, G., Berk, M., Carvalho, A., Caso, J. R., Sanz, Y., Walder, K., & Maes, M. (2017). The Role of the Microbial Metabolites Including Tryptophan Catabolites and Short Chain Fatty Acids in the Pathophysiology of Immune-Inflammatory and Neuroimmune Disease. In Molecular Neurobiology (Vol. 54, Issue 6). https://doi.org/10.1007/s12035-016-0004-2Morrow, L. E., Kollef, M. H., & Casale, T. B. (2010). Probiotic prophylaxis of ventilator-associated pneumonia: A blinded, randomized, controlled trial. American Journal of Respiratory and Critical Care Medicine, 182(8). https://doi.org/10.1164/rccm.200912-1853OCMorshedi, M., Saghafi-Asl, M., & Hosseinifard, E. S. (2020). The potential therapeutic effects of the gut microbiome manipulation by synbiotic containing-Lactobacillus plantarum on neuropsychological performance of diabetic rats. Journal of Translational Medicine, 18(1). https://doi.org/10.1186/s12967-019-02169-yNagpal, R., Wang, S., Ahmadi, S., Hayes, J., Gagliano, J., Subashchandrabose, S., Kitzman, D. W., Becton, T., Read, R., & Yadav, H. (2018). Human-origin probiotic cocktail increases short-chain fatty acid production via modulation of mice and human gut microbiome. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-30114-4Nakkarach, A., Foo, H. L., Song, A. A. L., Mutalib, N. E. A., Nitisinprasert, S., & Withayagiat, U. (2021). Anti-cancer and anti-inflammatory effects elicited by short chain fatty acids produced by Escherichia coli isolated from healthy human gut microbiota. Microbial Cell Factories, 20(1). https://doi.org/10.1186/s12934-020-01477-zNeimark, E., Chen, F., Li, X., Magid, M. S., Alasio, T. M., Frankenberg, T., Sinha, J., Dawson, P. A., & Shneider, B. L. (2006). c-Fos Is a Critical Mediator of Inflammatory-Mediated Repression of the Apical Sodium-Dependent Bile Acid Transporter. Gastroenterology, 131(2). https://doi.org/10.1053/j.gastro.2006.05.002Nelson, K. E., Weinstock, G. M., Highlander, S. K., Worley, K. C., Creasy, H. H., Wortman, J. R., Rusch, D. B., Mitreva, M., Sodergren, E., Chinwalla, A. T., Feldgarden, M., Gevers, D., Haas, B. J., Madupu, R., Ward, D. V., Birren, B. W., Gibbs, R. A., Methe, B., Petrosino, J. F., … Zhu, D. (2010). A catalog of reference genomes from the human microbiome. Science, 328(5981). https://doi.org/10.1126/science.1183605Nicholson, J. K., Holmes, E., Kinross, J., Burcelin, R., Gibson, G., Jia, W., & Pettersson, S. (2012). Host-gut microbiota metabolic interactions. Science, 336(6086), 1262–1267. https://doi.org/10.1126/SCIENCE.1223813Nishida, A., Inoue, R., Inatomi, O., Bamba, S., Naito, Y., & Andoh, A. (2018). Gut microbiota in the pathogenesis of inflammatory bowel disease. In Clinical Journal of Gastroenterology (Vol. 11, Issue 1). https://doi.org/10.1007/s12328-017-0813-5Odenwald, M. A., & Turner, J. R. (2013). Intestinal Permeability Defects: Is It Time to Treat? Clinical Gastroenterology and Hepatology, 11(9). https://doi.org/10.1016/j.cgh.2013.07.001Onyszkiewicz, M., Gawrys-Kopczynska, M., Konopelski, P., Aleksandrowicz, M., Sawicka, A., Koźniewska, E., Samborowska, E., & Ufnal, M. (2019). Butyric acid, a gut bacteria metabolite, lowers arterial blood pressure via colon-vagus nerve signaling and GPR41/43 receptors. Pflugers Archiv European Journal of Physiology, 471(11–12). https://doi.org/10.1007/s00424- 019-02322-yOróstica, L., García, P., Vera, C., García, V., Romero, C., & Vega, M. (2018). Effect of TNF-α on molecules related to the insulin action in endometrial cells exposed to hyperandrogenic and hyperinsulinic conditions characteristics of polycystic ovary syndrome. Reproductive Sciences, 25(7). https://doi.org/10.1177/1933719117732157Ouellette, A. J. (2011). Paneth cell α-defensins in enteric innate immunity. In Cellular and Molecular Life Sciences (Vol. 68, Issue 13). https://doi.org/10.1007/s00018-011-0714-6Pabst, O., & Slack, E. (2020). IgA and the intestinal microbiota: the importance of being specific. In Mucosal Immunology (Vol. 13, Issue 1). https://doi.org/10.1038/s41385-019-0227-4Pachikian, B. D., Druart, C., Catry, E., Bindels, L. B., Neyrinck, A. M., Larondelle, Y., Cani, P. D., & Delzenne, N. M. (2018). Implication of trans-11,trans-13 conjugated linoleic acid in the development of hepatic steatosis. PLoS ONE, 13(2). https://doi.org/10.1371/journal.pone.0192447Paiva, I. H. R., Duarte-Silva, E., & Peixoto, C. A. (2020). The role of prebiotics in cognition, anxiety, and depression. In European Neuropsychopharmacology (Vol. 34). https://doi.org/10.1016/j.euroneuro.2020.03.006Parks, D. H., Chuvochina, M., Waite, D. W., Rinke, C., Skarshewski, A., Chaumeil, P. A., & Hugenholtz, P. (2018). A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nature Biotechnology, 36(10), 996. https://doi.org/10.1038/nbt.4229Pascual, V., Pozuelo, M., Borruel, N., Casellas, F., Campos, D., Santiago, A., Martinez, X., Varela, E., Sarrabayrouse, G., Machiels, K., Vermeire, S., Sokol, H., Guarner, F., & Manichanh, C. (2017). A microbial signature for Crohn’s disease. Gut, 66(5). https://doi.org/10.1136/gutjnl2016-313235Pekkala, S., Munukka, E., Kong, L., Pöllänen, E., Autio, R., Roos, C., Wiklund, P., FischerPosovszky, P., Wabitsch, M., Alen, M., Huovinen, P., & Cheng, S. (2015). Toll-like receptor 5 in obesity: The role of gut microbiota and adipose tissue inflammation. Obesity, 23(3). https://doi.org/10.1002/oby.20993Peredo-Lovillo, A., Romero-Luna, H. E., & Jiménez-Fernández, M. (2020). Health promoting microbial metabolites produced by gut microbiota after prebiotics metabolism. In Food Research International (Vol. 136). https://doi.org/10.1016/j.foodres.2020.109473Pistollato, F., Cano, S. S., Elio, I., Vergara, M. M., Giampieri, F., & Battino, M. (2016). Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutrition Reviews, 74(10). https://doi.org/10.1093/nutrit/nuw023Plovier, H., Everard, A., Druart, C., Depommier, C., Van Hul, M., Geurts, L., Chilloux, J., Ottman, N., Duparc, T., Lichtenstein, L., Myridakis, A., Delzenne, N. M., Klievink, J., Bhattacharjee, A., Van Der Ark, K. C. H., Aalvink, S., Martinez, L. O., Dumas, M. E., Maiter, D., … Cani, P. D. (2017). A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nature Medicine, 23(1). https://doi.org/10.1038/nm.4236Qiang, X., Liotta, A. S., Shiloach, J., Gutierrez, J. C., Wang, H., Ochani, M., Ochani, K., Yang, H., Rabin, A., Leroith, D., Lesniak, M. A., Böhm, M., Maaser, C., Kannengiesser, K., Donowitz, M., Rabizadeh, S., Czura, C. J., Tracey, K. J., Westlake, M., … Roth, J. (2017). New melanocortinlike peptide of E. coli can suppress inflammation via the mammalian melanocortin-1 receptor (MC1R): Possible endocrine-like function for microbes of the gut. Npj Biofilms and Microbiomes, 3(1). https://doi.org/10.1038/s41522-017-0039-9Ragsdale, S. W., & Pierce, E. (2008). Acetogenesis and the Wood-Ljungdahl Pathway of CO2 Fixation. Biochimica et Biophysica Acta, 1784(12), 1873. https://doi.org/10.1016/J.BBAPAP.2008.08.012Reichardt, N., Duncan, S. H., Young, P., Belenguer, A., McWilliam Leitch, C., Scott, K. P., Flint, H. J., & Louis, P. (2014). Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME Journal, 8(6). https://doi.org/10.1038/ismej.2014.14Rodríguez, J. M., Murphy, K., Stanton, C., Ross, R. P., Kober, O. I., Juge, N., Avershina, E., Rudi, K., Narbad, A., Jenmalm, M. C., Marchesi, J. R., & Collado, M. C. (2015). The composition of the gut microbiota throughout life, with an emphasis on early life. Microbial Ecology in Health & Disease, 26(0). https://doi.org/10.3402/MEHD.V26.26050Romanitsa, A. I., Nemchenko, U. M., Pogodina, A. V., Grigorova, E. V., Belkova, N. L., Voropaeva, N. M., Grigoryeva, E. A., Savelkaeva, M. V., & Rychkova, L. V. (2021). Associations of clinical features of functional bowel disorders with gut microbiota characteristics in adolescents: A pilot study. Acta Biomedica Scientifica, 6(6). https://doi.org/10.29413/ABS.2021-6.6-2.8Rosado, E. L., & Crovesy, L. (2019). Gut microbiota modulation with probiotic or symbiotic in weight loss in women with obesity. Obes. Facts, 12.Rüb, A. M., Tsakmaklis, A., Gräfe, S. K., Simon, M. C., Vehreschild, M. J. G. T., & Wuethrich, I. (2021). Biomarkers of human gut microbiota diversity and dysbiosis. In Biomarkers in Medicine (Vol. 15, Issue 2). https://doi.org/10.2217/bmm-2020-0353Ryan, J. J., Monteagudo-Mera, A., Contractor, N., & Gibson, G. R. (2021). Impact of 2′-fucosyllactose on gut microbiota composition in adults with chronic gastrointestinal conditions: Batch culture fermentation model and pilot clinical trial findings. Nutrients, 13(3). https://doi.org/10.3390/nu13030938Sakakibara, S., Yamauchi, T., Oshima, Y., Tsukamoto, Y., & Kadowaki, T. (2006). Acetic acid activates hepatic AMPK and reduces hyperglycemia in diabetic KK-A(y) mice. Biochemical and Biophysical Research Communications, 344(2). https://doi.org/10.1016/j.bbrc.2006.03.176Saltiel, A. R., & Olefsky, J. M. (2017). Inflammatory mechanisms linking obesity and metabolic disease. In Journal of Clinical Investigation (Vol. 127, Issue 1). https://doi.org/10.1172/JCI92035Sampson, T. R., Challis, C., Jain, N., Moiseyenko, A., Ladinsky, M. S., Shastri, G. G., Thron, T., Needham, B. D., Horvath, I., Debelius, J. W., Janssen, S., Knight, R., Wittung-Stafshede, P., Gradinaru, V., Chapman, M., & Mazmanian, S. K. (2020). A gut bacterial amyloid promotes asynuclein aggregation and motor impairment in mice. ELife, 9. https://doi.org/10.7554/eLife.53111Sankarasubramanian, J., Ahmad, R., Avuthu, N., Singh, A. B., & Guda, C. (2020). Gut Microbiota and Metabolic Specificity in Ulcerative Colitis and Crohn’s Disease. In Frontiers in Medicine (Vol. 7). https://doi.org/10.3389/fmed.2020.606298Schaupp, A., & Ljungdahl, L. G. (1974). Purification and properties of acetate kinase from Clostridium thermoaceticum. Archives of Microbiology, 100(1). https://doi.org/10.1007/BF00446312Scheperjans, F., Aho, V., Pereira, P. A. B., Koskinen, K., Paulin, L., Pekkonen, E., Haapaniemi, E., Kaakkola, S., Eerola-Rautio, J., Pohja, M., Kinnunen, E., Murros, K., & Auvinen, P. (2015). Gut microbiota are related to Parkinson’s disease and clinical phenotype. Movement Disorders, 30(3). https://doi.org/10.1002/mds.26069Scott, K. P., Martin, J. C., Campbell, G., Mayer, C. D., & Flint, H. J. (2006). Whole-genome transcription profiling reveals genes up-regulated by growth on fucose in the human gut bacterium “Roseburia inulinivorans.” Journal of Bacteriology, 188(12). https://doi.org/10.1128/JB.00137-06Seekatz, A. M., Schnizlein, M. K., Koenigsknecht, M. J., Baker, J. R., Hasler, W. L., Bleske, B. E., Young, V. B., & Sun, D. (2019). Spatial and Temporal Analysis of the Stomach and SmallIntestinal Microbiota in Fasted Healthy Humans. MSphere, 4(2). https://doi.org/10.1128/msphere.00126-19Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biology, 12(6). https://doi.org/10.1186/gb-2011-12-6-r60Sgritta, M., Dooling, S. W., Buffington, S. A., Momin, E. N., Francis, M. B., Britton, R. A., & CostaMattioli, M. (2019). Mechanisms underlying microbial-mediated changes in social behavior in mouse models of Autism Spectrum Disorder. Neuron, 101(2), 246Shi, J., Xie, Q., Yue, Y., Chen, Q., Zhao, L., Evivie, S. E., Li, B., & Huo, G. (2021). Gut microbiota modulation and anti-inflammatory properties of mixed lactobacilli in dextran sodium sulfateinduced colitis in mice. Food and Function, 12(11). https://doi.org/10.1039/d1fo00317hSlatko, B. E., Gardner, A. F., & Ausubel, F. M. (2018). Overview of Next-Generation Sequencing Technologies. Current Protocols in Molecular Biology, 122(1). https://doi.org/10.1002/cpmb.59Śliżewska, K., Markowiak-Kopeć, P., & Śliżewska, W. (2020). The Role of Probiotics in Cancer Prevention. Cancers 2021, Vol. 13, Page 20, 13(1), 20. https://doi.org/10.3390/CANCERS13010020Smith, C., Berzins, K., Rodrigues, D. M., Sousa, A. J., Sherman, P. M., Barrett, K. E., & Gareau, M. G. (2013). Tu1979 Probiotics Can Normalize the Gut-Brain Axis in Immunodeficient Mice. Gastroenterology, 144(5). https://doi.org/10.1016/s0016-5085(13)63335-1Sun, L., Ma, L., Zhang, H., Cao, Y., Wang, C., Hou, N., Huang, N., von Deneen, K. M., Zhao, C., Shi, Y., Pan, Y., Wang, M., Ji, G., & Nie, Y. (2019). FTO deficiency reduces anxiety- and depression-like behaviors in mice via alterations in gut microbiota. Theranostics, 9(3). https://doi.org/10.7150/thno.31562Sun, N., Hu, H., Wang, F., Li, L., Zhu, W., Shen, Y., Xiu, J., & Xu, Q. (2021). Antibiotic-induced microbiome depletion in adult mice disrupts blood-brain barrier and facilitates brain infiltration of monocytes after bone-marrow transplantation. Brain, Behavior, and Immunity, 92. https://doi.org/10.1016/j.bbi.2020.11.032Tabasi, M., Eybpoosh, S., Siadat, S. D., Elyasinia, F., Soroush, A., & Bouzari, S. (2021). Modulation of the Gut Microbiota and Serum Biomarkers After Laparoscopic Sleeve Gastrectomy: a 1-Year Follow-Up Study. Obesity Surgery, 31(5). https://doi.org/10.1007/s11695-020-05139-2Tan, M. J., Teo, Z., Sng, M. K., Zhu, P., & Tan, N. S. (2012). Emerging roles of angiopoietin-like 4 in human cancer. In Molecular Cancer Research (Vol. 10, Issue 6). https://doi.org/10.1158/1541- 7786.MCR-11-0519Tennoune, N., Chan, P., Breton, J., Legrand, R., Chabane, Y. N., Akkermann, K., Järv, A., Ouelaa, W., Takagi, K., Ghouzali, I., Francois, M., Lucas, N., Bole-Feysot, C., Pestel-Caron, M., do Rego, J. C., Vaudry, D., Harro, J., Dé, E., Déchelotte, P., & Fetissov, S. O. (2014). Bacterial ClpB heat-shock protein, an antigen-mimetic of the anorexigenic peptide α-MSH, at the origin of eating disorders. Translational Psychiatry, 4. https://doi.org/10.1038/tp.2014.98Thursby, E., & Juge, N. (2017). Introduction to the human gut microbiota. In Biochemical Journal (Vol. 474, Issue 11). https://doi.org/10.1042/BCJ20160510Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., & Gordon, J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444(7122), 1027–1031. https://doi.org/10.1038/nature05414Valdes, A. M., Walter, J., Segal, E., & Spector, T. D. (2018). Role of the gut microbiota in nutrition and health. BMJ, 361, 36–44. https://doi.org/10.1136/BMJ.K2179Valdovinos-Díaz, M. (2013). Intestinal microbiota in digestive disorders. Probiotics, prebiotics and symbiotics. Revista de Gastroenterologia de Mexico, 78. https://doi.org/10.1016/j.rgmx.2013.06.008Vancamelbeke, M., & Vermeire, S. (2017). The intestinal barrier: a fundamental role in health and disease. Expert Review of Gastroenterology & Hepatology, 11(9), 821.Vascellari, S., Palmas, V., Melis, M., Pisanu, S., Cusano, R., Uva, P., Perra, D., Madau, V., Sarchioto, M., Oppo, V., Simola, N., Morelli, M., Santoru, M. L., Atzori, L., Melis, M., Cossu, G., & Manzin, A. (2020). Gut Microbiota and Metabolome Alterations Associated with Parkinson’s Disease. MSystems, 5(5). https://doi.org/10.1128/msystems.00561-20Venema, K. (2010). Role of gut microbiota in the control of energy and carbohydrate metabolism. Current Opinion in Clinical Nutrition and Metabolic Care, 13(4), 432–438. https://doi.org/10.1097/MCO.0B013E32833A8B60Verhaar, B. J. H., Hendriksen, H. M. A., de Leeuw, F. A., Doorduijn, A. S., van Leeuwenstijn, M., Teunissen, C. E., Barkhof, F., Scheltens, P., Kraaij, R., van Duijn, C. M., Nieuwdorp, M., Muller, M., & van der Flier, W. M. (2022). Gut Microbiota Composition Is Related to AD PathologVerhaar, B. J. H., Hendriksen, H. M. A., de Leeuw, F. A., Doorduijn, A. S., van Leeuwenstijn, M., Teunissen, C. E., Barkhof, F., Scheltens, P., Kraaij, R., van Duijn, C. M., Nieuwdorp, M., Muller, M., &. Frontiers in Immunology, 12. https://doi.org/10.3389/FIMMU.2021.794519/FULLVirtue, A. T., McCright, S. J., Wright, J. M., Jimenez, M. T., Mowel, W. K., Kotzin, J. J., Joannas, L., Basavappa, M. G., Spencer, S. P., Clark, M. L., Eisennagel, S. H., Williams, A., Levy, M., Manne, S., Henrickson, S. E., John Wherry, E., Thaiss, C. A., Elinav, E., & Henao-Mejia, J. (2019). The gut microbiota regulates white adipose tissue inflammation and obesity via a family of microRNAs. Science Translational Medicine, 11(496). https://doi.org/10.1126/scitranslmed.aav1892Vital, M., Howe, A. C., & Tiedje, J. M. (2014). Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. MBio, 5(2). https://doi.org/10.1128/MBIO.00889-14Wang, H. X., & Wang, Y. P. (2016). Gut Microbiota-brain Axis. Chinese Medical Journal, 129(19), 2373. https://doi.org/10.4103/0366-6999.190667Wang, J., Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., Liang, S., Zhang, W., Guan, Y., Shen, D., Peng, Y., Zhang, D., Jie, Z., Wu, W., Qin, Y., Xue, W., Li, J., Han, L., … Wang, J. (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490(7418). https://doi.org/10.1038/nature11450Wells, J. E., & Hylemon, P. B. (2000). Identification and characterization of a bile acid 7alphadehydroxylation operon in Clostridium sp. strain TO-931, a highly active 7alphadehydroxylating strain isolated from human feces. Applied and Environmental Microbiology, 66(3), 1107–1113. https://doi.org/10.1128/AEM.66.3.1107-1113.2000Wu, H., Tremaroli, V., Schmidt, C., Lundqvist, A., Olsson, L. M., Krämer, M., Gummesson, A., Perkins, R., Bergström, G., & Bäckhed, F. (2020). The Gut Microbiota in Prediabetes and Diabetes: A Population-Based Cross-Sectional Study. Cell Metabolism, 32(3). https://doi.org/10.1016/j.cmet.2020.06.011Xu, L., Ma, C., Huang, X., Yang, W., Chen, L., Bilotta, A. J., Yao, S., & Cong, Y. (2018). Microbiota metabolites short-chain fatty acid butyrate conditions intestinal epithelial cells to promote development of Treg cells and T cell IL-10 production. The Journal of Immunology, 200(1 Supplement).Yadav, H., Lee, J. H., Lloyd, J., Walter, P., & Rane, S. G. (2013). Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion. Journal of Biological Chemistry, 288(35). https://doi.org/10.1074/jbc.M113.452516Yamashiro, Y. (2018). Gut Microbiota in Health and Disease. In Annals of Nutrition and Metabolism (Vol. 71, Issues 3–4). https://doi.org/10.1159/000481627Yan, L., Yang, C., & Tang, J. (2013). Disruption of the intestinal mucosal barrier in Candida albicans infections. In Microbiological Research (Vol. 168, Issue 7). https://doi.org/10.1016/j.micres.2013.02.008Yang, L. L., Millischer, V., Rodin, S., MacFabe, D. F., Villaescusa, J. C., & Lavebratt, C. (2020). Enteric short-chain fatty acids promote proliferation of human neural progenitor cells. Journal of Neurochemistry, 154(6). https://doi.org/10.1111/jnc.14928Yoshii, K., Hosomi, K., Sawane, K., & Kunisawa, J. (2019). Metabolism of dietary and microbial vitamin b family in the regulation of host immunity. In Frontiers in Nutrition (Vol. 6). https://doi.org/10.3389/fnut.2019.00048Yuille, S., Reichardt, N., Panda, S., Dunbar, H., & Mulder, I. E. (2018). Human gut bacteria as potent class I histone deacetylase inhibitors in vitro through production of butyric acid and valeric acid. PLoS ONE, 13(7). https://doi.org/10.1371/journal.pone.0201073Zhang, Q., Zou, R., Guo, M., Duan, M., Li, Q., & Zheng, H. (2021). Comparison of gut microbiota between adults with autism spectrum disorder and obese adults. PeerJ, 9. https://doi.org/10.7717/peerj.10946Zhao, J., Wang, L., Cheng, S., Zhang, Y., Yang, M., Fang, R., Li, H., Man, C., & Jiang, Y. (2022). A Potential Synbiotic Strategy for the Prevention of Type 2 Diabetes: Lactobacillus paracasei JY062 and Exopolysaccharide Isolated from Lactobacillus plantarum JY039. Nutrients, 14(2). https://doi.org/10.3390/nu14020377Zheng, Z., Lyu, W., Ren, Y., Li, X., Zhao, S., Yang, H., & Xiao, Y. (2021). Allobaculum Involves in the Modulation of Intestinal ANGPTLT4 Expression in Mice Treated by High-Fat Diet. Frontiers in Nutrition, 8. https://doi.org/10.3389/fnut.2021.690138Zhou, H., Tai, J., Xu, H., Lu, X., & Meng, D. (2019). Xanthoceraside could ameliorate Alzheimer’s disease symptoms of rats by affecting the gut microbiota composition and modulating the endogenous metabolite levels. Frontiers in Pharmacology, 10. https://doi.org/10.3389/fphar.2019.01035Zhou, Y., He, Y., Liu, L., Zhou, W., Wang, P., Hu, H., Nie, Y., & Chen, Y. (2021). Alterations in Gut Microbial Communities Across Anatomical Locations in Inflammatory Bowel Diseases. Frontiers in Nutrition, 8. https://doi.org/10.3389/fnut.2021.615064Zhuang, X., Liu, C., Zhan, S., Tian, Z., Li, N., Mao, R., Zeng, Z., & Chen, M. (2021). Gut Microbiota Profile in Pediatric Patients With Inflammatory Bowel Disease: A Systematic Review. In Frontiers in Pediatrics (Vol. 9). https://doi.org/10.3389/fped.2021.626232Público generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83775/5/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD55ORIGINAL1022932886.2023.pdf1022932886.2023.pdfTesis de Maestría en Ciencias - Químicaapplication/pdf1153434https://repositorio.unal.edu.co/bitstream/unal/83775/6/1022932886.2023.pdfcb177d96b7520c21217482d67ecca227MD56THUMBNAIL1022932886.2023.pdf.jpg1022932886.2023.pdf.jpgGenerated Thumbnailimage/jpeg3802https://repositorio.unal.edu.co/bitstream/unal/83775/7/1022932886.2023.pdf.jpg6a64187400df81b10422248baf6f449aMD57unal/83775oai:repositorio.unal.edu.co:unal/837752024-08-04 23:10:25.687Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |