Efecto del petróleo en microalgas marinas, sobre el crecimiento heterotrófico y la producción de metabolitos extracelulares

La contaminación marina es una gran amenaza para la conservación de los ecosistemas y de su biodiversidad, por lo que se hace necesario realizar estudios enfocados en su recuperación, aplicando tecnologías ambientalmente amigables y de bajo costo como la biorremediación. La biorremediación es el uso...

Full description

Autores:
Puentes, Erika Andrea
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86548
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86548
https://repositorio.unal.edu.co/
Palabra clave:
500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionados
570 - Biología::579 - Historia natural microorganismos, hongos, algas
600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionados
Contaminación, hidrocarburos, biorremediación, metabolitos bioactivos, biosurfactantes, tolerancia,
Pollution, hydrocarbons, bioremediation, biosufactant, tolerance, bioactive metabolites
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_7d89efcee55392e15eabc4de4d88498c
oai_identifier_str oai:repositorio.unal.edu.co:unal/86548
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Efecto del petróleo en microalgas marinas, sobre el crecimiento heterotrófico y la producción de metabolitos extracelulares
dc.title.translated.eng.fl_str_mv Effect of crude oil on marine microalgae, about heterotrophic growth and the production of extracellular metabolites n of extracellular metabolites
title Efecto del petróleo en microalgas marinas, sobre el crecimiento heterotrófico y la producción de metabolitos extracelulares
spellingShingle Efecto del petróleo en microalgas marinas, sobre el crecimiento heterotrófico y la producción de metabolitos extracelulares
500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionados
570 - Biología::579 - Historia natural microorganismos, hongos, algas
600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionados
Contaminación, hidrocarburos, biorremediación, metabolitos bioactivos, biosurfactantes, tolerancia,
Pollution, hydrocarbons, bioremediation, biosufactant, tolerance, bioactive metabolites
title_short Efecto del petróleo en microalgas marinas, sobre el crecimiento heterotrófico y la producción de metabolitos extracelulares
title_full Efecto del petróleo en microalgas marinas, sobre el crecimiento heterotrófico y la producción de metabolitos extracelulares
title_fullStr Efecto del petróleo en microalgas marinas, sobre el crecimiento heterotrófico y la producción de metabolitos extracelulares
title_full_unstemmed Efecto del petróleo en microalgas marinas, sobre el crecimiento heterotrófico y la producción de metabolitos extracelulares
title_sort Efecto del petróleo en microalgas marinas, sobre el crecimiento heterotrófico y la producción de metabolitos extracelulares
dc.creator.fl_str_mv Puentes, Erika Andrea
dc.contributor.advisor.none.fl_str_mv Blandón, Lina
Campos Campos, Néstor Hernando
Patiño, Albert
dc.contributor.author.none.fl_str_mv Puentes, Erika Andrea
dc.contributor.hostingInstitution.none.fl_str_mv Invemar - Instituto de Investigaciones marinas y costeras
dc.contributor.researchgroup.spa.fl_str_mv Fauna Marina Colombiana: Biodiversidad y Usos
dc.subject.ddc.spa.fl_str_mv 500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionados
570 - Biología::579 - Historia natural microorganismos, hongos, algas
600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionados
topic 500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionados
570 - Biología::579 - Historia natural microorganismos, hongos, algas
600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionados
Contaminación, hidrocarburos, biorremediación, metabolitos bioactivos, biosurfactantes, tolerancia,
Pollution, hydrocarbons, bioremediation, biosufactant, tolerance, bioactive metabolites
dc.subject.proposal.none.fl_str_mv Contaminación, hidrocarburos, biorremediación, metabolitos bioactivos, biosurfactantes, tolerancia,
Pollution, hydrocarbons, bioremediation, biosufactant, tolerance, bioactive metabolites
description La contaminación marina es una gran amenaza para la conservación de los ecosistemas y de su biodiversidad, por lo que se hace necesario realizar estudios enfocados en su recuperación, aplicando tecnologías ambientalmente amigables y de bajo costo como la biorremediación. La biorremediación es el uso de organismos, sus células, partes o metabolitos, para recuperar un ambiente contaminado a través de la transformación o degradación de compuestos tóxicos recalcitrantes como los hidrocarburos, en una forma menos tóxica o no tóxica. En este sentido, el uso de microalgas y/o sus componentes, es una alternativa prometedora ya que presentan tolerancia a factores de estrés como los ocasionados por la presencia de petróleo en el entorno, evidenciando la producción de metabolitos como biosurfactantes participantes de la actividad biorremediadora. Este proyecto tuvo como objetivo principal evaluar la respuesta metabólica a la presencia del petróleo, a través de la detección de biosurfactantes extracelulares de microalgas marinas aisladas del Mar Caribe colombiano, en condiciones de luz y oscuridad, empleando herramientas metabolómicas. Para ello, se realizó un screening de tolerancia celular con petróleo en suspensión al 1 %. Se evidencio la producción de un extracto extracelular rico en biosurfactantes, por Nannochloris sp., la cual al ser incubada en oscuridad produjo un extracto con mayor presencia de estos compuestos. Los resultados obtenidos, aportan información científica que contribuye a mejorar el conocimiento del proceso de tolerancia al petróleo que exhiben algunas microalgas marinas (Texto tomado de la fuente)
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-17T21:55:09Z
dc.date.available.none.fl_str_mv 2024-07-17T21:55:09Z
dc.date.issued.none.fl_str_mv 2024-07-16
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86548
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86548
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Almaliti, J., Malloy, K. L., Glukhov, E., Spadafora, C., Gutiérrez, M., & Gerwick, W. H. (2017). Dudawalamides A-D, Antiparasitic Cyclic Depsipeptides from the Marine Cyanobacterium Moorea producens. Journal of Natural Products, 80(6), 1827–1836. https://doi.org/10.1021/acs.jnatprod.7b00034
Ayala, & Dussán. (2018). Bioprospection for petroleum hydrocarbon bioremediating microorganisms in hypersaline environments and barium-resistant microbiota in oil exploitation wastewater. Universidad de los Andes.
Bauer, A., & Minceva, M. (2019). Direct extraction of astaxanthin from the microalgae: Haematococcus pluvialis using liquid-liquid chromatography. RSC Advances, 9(40), 22779–22789. https://doi.org/10.1039/c9ra03263k
Bumbak, F., Cook, S., Zachleder, V., Hauser, S., & Kovar, K. (2011). Best practices in heterotrophic high-cell-density microalgal processes: Achievements, potential and possible limitations. In Applied Microbiology and Biotechnology (Vol. 91, Issue 1, pp. 31–46). https://doi.org/10.1007/s00253-011-3311-6
Bussa, M., Eisen, A., Zollfrank, C., & Röder, H. (2019). Life cycle assessment of microalgae products: State of the art and their potential for the production of polylactid acid. In Journal of Cleaner Production (Vol. 213, pp. 1299–1312). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2018.12.048
Carrera, D., Mateos, A., López, V., & Costas, E. (2010). Microalgae response to petroleum spill: An experimental model analysing physiological and genetic response of Dunaliella tertiolecta (Chlorophyceae) to oil samples from the tanker Prestige. Aquatic Toxicology, 97(2), 151–159. https://doi.org/10.1016/j.aquatox.2009.12.016
Castillo, Mugica V., Roldán T., Olguín P., & Castorena G. (2021). Modification of wettability and reduction of interfacial tension mechanisms involved in the release and enhanced biodegradation of heavy oil by a biosurfactant. Revista Mexicana de Ingeniera Quimica, 20(3). https://doi.org/10.24275/RMIQ/IA2427
Chang, W., Li, Y., Qu, Y., Liu, Y., Zhang, G., Zhao, Y., & Liu, S. (2022). Mixotrophic cultivation of microalgae to enhance the biomass and lipid production with synergistic effect of red light and phytohormone IAA. Renewable Energy, 187, 819–828. https://doi.org/10.1016/j.renene.2022.01.108
Chen, T., Zhao, Q., Wang, L., Xu, Y., & Wei, W. (2017). Comparative Metabolomic Analysis of the Green Microalga Chlorella sorokiniana Cultivated in the Single Culture and a Consortium with Bacteria for Wastewater Remediation. Applied Biochemistry and Biotechnology, 183(3), 1062–1075. https://doi.org/10.1007/s12010-017-2484-6
Chong, J., Wishart, D. S., & Xia, J. (2019). Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Current Protocols in Bioinformatics, 68(1). https://doi.org/10.1002/cpbi.86
Cobos, Castro, & Cerdeira. (2014). Potencial biotecnológico para la producción sustentable de biodisel de microalgas oleaginosas aisladas del Río Itaya, Loreto, Perú. Ecología Aplicada, 13(1–2), 169. https://doi.org/10.21704/rea.v13i1-2.467
Cocci, P., Mosconi, G., Bracchetti, L., Nalocca, J. M., Frapiccini, E., Marini, M., Caprioli, G., Sagratini, G., & Palermo, F. A. (2018). Investigating the potential impact of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) on gene biomarker expression and global DNA methylation in loggerhead sea turtles (Caretta caretta) from the Adriatic Sea. Science of the Total Environment, 619–620, 49–57. https://doi.org/10.1016/j.scitotenv.2017.11.118
Collins, L., Alvarez, D., & Chauhan, A. (2014). Phycoremediation Coupled with Generation of Value-Added Products. In Microbial Biodegradation and Bioremediation (pp. 342–387). Elsevier Inc. https://doi.org/10.1016/B978-0-12-800021-2.00015-7
Darienko, T., & Pröschold, T. (2015). Genetic variability and taxonomic revision of the genus Auxenochlorella (Shihira et Krauss) Kalina et Puncocharova (Trebouxiophyceae, Chlorophyta). Journal of Phycology, 51(2), 394–400. https://doi.org/10.1111/jpy.12279
Dembitsky, V. M. (2022). Hydrobiological Aspects of Fatty Acids: Unique, Rare, and Unusual Fatty Acids Incorporated into Linear and Cyclic Lipopeptides and Their Biological Activity. Hydrobiology, 1(3), 331–432. https://doi.org/10.3390/hydrobiology1030024
Elisângela, M. R., Etiele, G. de M., Cibele, F. de O., Kellen, Z., & Jorge, A. V. C. (2015). Microalgae cultivation for biosurfactant production. African Journal of Microbiology Research, 9(47), 2283–2289. https://doi.org/10.5897/ajmr2015.7634
Fernandes, T., Martel, A., & Cordeiro, N. (2020). Exploring Pavlova pinguis chemical diversity: a potentially novel source of high value compounds. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-019-57188-y
Fernández, J., Flórez, F., Pereira, S., Rábade, T., Laffon, B., & Méndez, J. (2011). Use of three bivalve species for biomonitoring a polluted estuarine environment. Environmental Monitoring and Assessment, 177(1–4), 289–300. https://doi.org/10.1007/s10661-010-1634-x
Gadd, G. M. (2010). Metals, minerals and microbes: Geomicrobiology and bioremediation. In Microbiology (Vol. 156, Issue 3, pp. 609–643). https://doi.org/10.1099/mic.0.037143-0
Giraldo, N. D., Correa, S. M., Arbeláez, A., Figueroa, F. L., Ríos-Estepa, R., & Atehortúa, L. (2021). Reducing self-shading effects in Botryococcus braunii cultures: effect of Mg2+ deficiency on optical and biochemical properties, photosynthesis and lipidomic profile. Bioresources and Bioprocessing, 8(1). https://doi.org/10.1186/s40643-021-00389-z
Guarnieri, M. T., Nag, A., Smolinski, S. L., Darzins, A., Seibert, M., & Pienkos, P. T. (2011). Examination of triacylglycerol biosynthetic pathways via de novo transcriptomic and proteomic analyses in an unsequenced microalga. PLoS ONE, 6(10). https://doi.org/10.1371/journal.pone.0025851
Guillard, R. R. (1975). Culture of phytoplankton for feeding marine invertebrates
Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology, 59(3), 307–321. https://doi.org/10.1093/sysbio/syq010
Halaj, M., Paulovičová, E., Paulovičová, L., Jantová, S., Cepák, V., Lukavský, J., & Capek, P. (2019). Extracellular biopolymers produced by Dictyosphaerium family - Chemical and immunomodulative properties. International Journal of Biological Macromolecules, 121, 1254–1263. https://doi.org/10.1016/j.ijbiomac.2018.10.116
Hamouda, R. A. E. F., Sorour, N. M., & Yeheia, D. S. (2016). Biodegradation of crude oil by Anabaena oryzae, Chlorella kessleri and its consortium under mixotrophic conditions. International Biodeterioration and Biodegradation, 112, 128–134. https://doi.org/10.1016/j.ibiod.2016.05.001
Henley, Hironaka J., Guillou L., Buchheim M., Fawley M., & Fawley K. (2004). Phylogenetic analysis of the Nannochloris like algae and diagnoses of Picochlorum oklahomensis gen. et sp. nov Trebouxiophyceae Chlorophyta. Phycologia, 43(6), 641–652.
Hiraga, Y., Shikano, T., Widianti, T., & Ohkata, K. (2008). Three new glycolipids with cytolytic activity from cultured marine dinoflagellate Heterocapsa circularisquama. Natural Product Research, 22(8), 649–657. https://doi.org/10.1080/14786410701369417
Hossain, Z., Kurihara, H., Hosokawa, M., & Takahashi, K. (2005). Growth inhibition and induction of differentiation and apoptosis mediated by sodium butyrate in Caco-2 cells with algal glycolipids. In Vitro Cell. Dev. Biol.~Animal, 41, 154–159.
Hughes, T. P., Bellwood, D. R., Folke, C., Steneck, R. S., & Wilson, J. (2005). New paradigms for supporting the resilience of marine ecosystems. In Trends in Ecology and Evolution (Vol. 20, Issue 7, pp. 380–386). https://doi.org/10.1016/j.tree.2005.03.022
INVEMAR. (2010). Informe del estado de los ambientes y recursos marinos y costeros en Colombia: año 2009. Serie de publicaciones periódicas. No. 8.
Islam, M. S., & Tanaka, M. (2004). Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: A review and synthesis. In Marine Pollution Bulletin (Vol. 48, Issues 7–8, pp. 624–649). https://doi.org/10.1016/j.marpolbul.2003.12.004
Iwasaki, A., Ohno, O., Sumimoto, S., Matsubara, T., Shimada, S., Sato, T., & Suenaga, K. (2015). Mebamamides A and B, Cyclic Lipopeptides Isolated from the Green Alga Derbesia marina. Journal of Natural Products, 78(4), 901–908. https://doi.org/10.1021/acs.jnatprod.5b00168
Jadeja, Ren, & Zhou. (2012). Chapter 17: Bioremediation with marine algae: A case study of the soda ash industry. In Mason A. (Ed.), Bioremediation: Biotechnology, engineering and environmental management (pp. 449–457). Nova Science Publishers, Inc.
Kandimalla, P., Desi, S., & Vurimindi, H. (2016). Mixotrophic cultivation of microalgae using industrial flue gases for biodiesel production. Environmental Science and Pollution Research, 23(10), 9345–9354. https://doi.org/10.1007/s11356-015-5264-2
Karlapudi, A. P., Venkateswarulu, T. C., Tammineedi, J., Kanumuri, L., Ravuru, B. K., Dirisala, V. ramu, & Kodali, V. P. (2018). Role of biosurfactants in bioremediation of oil pollution-a review. In Petroleum (Vol. 4, Issue 3, pp. 241–249). KeAi Communications Co. https://doi.org/10.1016/j.petlm.2018.03.007
Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772–780. https://doi.org/10.1093/molbev/mst010
Khan, Karmakar, Das, & Hasan Razu, M. (2016). Heterotrophic Growth of Microalgae. www.esciencecentral.org/ebooks
Khaw, Y. S., Khong, N. M. H., Shaharuddin, N. A., & Yusoff, F. M. (2020). A simple 18S rDNA approach for the identification of cultured eukaryotic microalgae with an emphasis on primers. Journal of Microbiological Methods, 172. https://doi.org/10.1016/j.mimet.2020.105890
Kim, W., Park, J. M., Gim, G. H., Jeong, S. H., Kang, C. M., Kim, D. J., & Kim, S. W. (2012). Optimization of culture conditions and comparison of biomass productivity of three green algae. Bioprocess and Biosystems Engineering, 35(1–2), 19–27. https://doi.org/10.1007/s00449-011-0612-1
Kotzé-Hörstmann, L., Cois, A., Johnson, R., Mabasa, L., Shabalala, S., Van Jaarsveld, P. J., & Sadie-Van Gijsen, H. (2022). Characterization and Comparison of the Divergent Metabolic Consequences of High-Sugar and High-Fat Diets in Male Wistar Rats. Frontiers in Physiology, 13. https://doi.org/10.3389/fphys.2022.904366
Krienitz, L., Huss, V. A. R., & Bock, C. (2015). Chlorella: 125 years of the green survivalist. In Trends in Plant Science (Vol. 20, Issue 2, pp. 67–69). Elsevier Ltd. https://doi.org/10.1016/j.tplants.2014.11.005
Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., & Calcott, B. (2017). Partitionfinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34(3), 772–773. https://doi.org/10.1093/molbev/msw260
Liang, Y., Sarkany, N., & Cui, Y. (2009). Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology Letters, 31(7), 1043–1049. https://doi.org/10.1007/s10529-009-9975-7
Lortou, U., Panteris, E., & Gkelis, S. (2022). Uncovering New Diversity of Photosynthetic Microorganisms from the Mediterranean Region. Microorganisms, 10(8). https://doi.org/10.3390/microorganisms10081571
Luesch, H., Yoshida, W. Y., Moore, R. E., & Paul, V. J. (2000). Apramides A-G, novel lipopeptides from the marine cyanobacterium Lyngbya majuscula. Journal of Natural Products, 63(8), 1106–1112. https://doi.org/10.1021/np000078t
Malviya, D., Sahu, P. K., Singh, U. B., Paul, S., Gupta, A., Gupta, A. R., Singh, S., Kumar, M., Paul, D., Rai, J. P., Singh, H. V., & Brahmaprakash, G. P. (2020). Lesson from ecotoxicity: Revisiting the microbial lipopeptides for the management of emerging diseases for crop protection. In International Journal of Environmental Research and Public Health (Vol. 17, Issue 4). MDPI AG. https://doi.org/10.3390/ijerph17041434
Minh, B. Q., Nguyen, M. A. T., & Von Haeseler, A. (2013). Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution, 30(5), 1188–1195. https://doi.org/10.1093/molbev/mst024
Nguyen, L. T., Schmidt, H. A., Von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1), 268–274. https://doi.org/10.1093/molbev/msu300
Nogle, L. M., Okino, T., & Gerwick, W. H. (2001). Antillatoxin B, a neurotoxic lipopeptide from the marine cyanobacterium Lyngbya majuscula. Journal of Natural Products, 64(7), 983–985. https://doi.org/10.1021/np010107f
Olivares, Hugo., Salazar, L., Nájera, M., Godínez, J., & Vega, A. (2018). Lipid metabolism and pro-oxidant/antioxidant balance of Halamphora oceanica from the Gulf of Mexico exposed to water accommodated fraction of Maya crude oil. Ecotoxicology and Environmental Safety, 147, 840–851. https://doi.org/10.1016/j.ecoenv.2017.09.057
Olmos, García de Llasera, & Velasco. (2012). Extraction and analysis of polycyclic aromatic hydrocarbons and benzo[a]pyrene metabolites in microalgae cultures by off-line/on-line methodology based on matrix solid-phase dispersion, solid-phase extraction and high-performance liquid chromatography. Journal of Chromatography A, 1262, 138–147. https://doi.org/10.1016/j.chroma.2012.09.015
Paliwal, C., Mitra, M., Bhayani, K., Bharadwaj, S. V. V., Ghosh, T., Dubey, S., & Mishra, S. (2017). Abiotic stresses as tools for metabolites in microalgae. In Bioresource Technology (Vol. 244, pp. 1216–1226). Elsevier Ltd. https://doi.org/10.1016/j.biortech.2017.05.058
Paniagua, J. de J., Olmos, J., & Morales, E. (2014). Algal and microbial exopolysaccharides: New insights as biosurfactants and bioemulsifiers. In Advances in Food and Nutrition Research (Vol. 73, pp. 221–257). Academic Press Inc. https://doi.org/10.1016/B978-0-12-800268-1.00011-1
Parrish, C. C., Bodennec, G., & Gentien, P. (1998). Haemolytic glycoglyceroliíds from Gymnodinium species. Phytochemistry , 47(5), 783–787.
Patiño, A. D., Montoya-Giraldo, M., Quintero, M., López-Parra, L. L., Blandón, L. M., & Gómez-León, J. (2021). Dereplication of antimicrobial biosurfactants from marine bacteria using molecular networking. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-95788-9
Paul, K., Gaikwad, M., Choudhary, P., Mohan, N., Pai, P., Patil, S. D., Pawar, Y., Chawande, A., Banerjee, A., Nagle, V., Chelliah, M., Sapre, A., & Dasgupta, S. (2022). Year-round sustainable biomass production potential of Nannochloris sp. in outdoor raceway pond enabled through strategic photobiological screening. Photosynthesis Research, 154(3), 303–328. https://doi.org/10.1007/s11120-022-00984-x
Pluskal, T., Castillo, S., Villar-Briones, A., & Orešič, M. (2010). MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 11. https://doi.org/10.1186/1471-2105-11-395
Poddar, N., Sen, R., & Martin, G. J. O. (2018). Glycerol and nitrate utilisation by marine microalgae Nannochloropsis salina and Chlorella sp. and associated bacteria during mixotrophic and heterotrophic growth. Algal Research, 33, 298–309. https://doi.org/10.1016/j.algal.2018.06.002
Priya, M., Gurung, N., Mukherjee, K., & Bose, S. (2014). Microalgae in Removal of Heavy Metal and Organic Pollutants from Soil. In Microbial Biodegradation and Bioremediation (pp. 522–539). Elsevier Inc. https://doi.org/10.1016/B978-0-12-800021-2.00023-6
Reddy, M. M. S., Tiwari, S., & Chauhan, V. S. (2023a). Algal lipids, lipidomics, and biosurfactants. In Algae Materials: Applications Benefitting Health (pp. 313–342). Elsevier. https://doi.org/10.1016/B978-0-443-18816-9.00019-
Revel, M., Châtel, A., & Mouneyrac, C. (2017). Omics tools: New challenges in aquatic nanotoxicology? In Aquatic Toxicology (Vol. 193, pp. 72–85). Elsevier B.V. https://doi.org/10.1016/j.aquatox.2017.10.005
Romero, Lopez, & Costas. (2014). Chapter 10. Selected microalgae for petroleum bioremediation: Towards a bio-depuration based on Von Neumann-like machines. In Velázquez J. & Muñoz S. (Eds.), Bioremediation: Processes, challenges and future prospects. (pp. 211–219). Nova Science Publisher Inc. .
Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3), 539–542. https://doi.org/10.1093/sysbio/sys029
Salvador, L. A., Biggs, J. S., Paul, V. J., & Luesch, H. (2011). Veraguamides A-G, cyclic hexadepsipeptides from a dolastatin 16-producing cyanobacterium Symploca cf. hydnoides from Guam. Journal of Natural Products, 74(5), 917–927. https://doi.org/10.1021/np200076t
Samanta S., Singh O., & Jain R. (2002). Polycyclic aromatic hydrocarbons environmental pollution and bioremediation. Trends in Biotechnology, 20(6), 243–248.
Shishlyannikov, S. M., Nikonova, A. A., Klimenkov, I. V., & Gorshkov, A. G. (2017). Accumulation of petroleum hydrocarbons in intracellular lipid bodies of the freshwater diatom Synedra acus subsp. radians. Environmental Science and Pollution Research, 24(1), 275–283. https://doi.org/10.1007/s11356-016-7782-y
Shukla, S. K., Mangwani, N., Rao, T. S., & Das, S. (2014). Biofilm-Mediated Bioremediation of Polycyclic Aromatic Hydrocarbons. In Microbial Biodegradation and Bioremediation (pp. 204–232). Elsevier Inc. https://doi.org/10.1016/B978-0-12-800021-2.00008-X
Sitachitta, N., Williamson, R. T., & Gerwick, W. H. (2000). Yanucamides A and B, two new depsipeptides from an assemblage of the marine cyanobacteria Lyngbya majuscula and Schizothrix species. Journal of Natural Products, 63(2), 197–200. https://doi.org/10.1021/np990466z
Smith, D. J., & Underwood, G. J. C. (2000). The production of extracellular carbohydrates by estuarine benthic diatoms: The effects of growth phase and light and dark treatment. Journal of Phycology, 36(2), 321–333. https://doi.org/10.1046/j.1529-8817.2000.99148.x
Somogyi, B., Felföldi, T., Solymosi, K., Flieger, K., Márialigeti, K., Böddi, B., & Vörös, L. (2013). One step closer to eliminating the nomenclatural problems of minute coccoid green algae: Pseudochloris wilhelmii, gen. et sp. nov. (Trebouxiophyceae, Chlorophyta). European Journal of Phycology, 48(4), 427–436. https://doi.org/10.1080/09670262.2013.854411
Subashchandrabose, S. R., Krishnan, K., Gratton, E., Megharaj, M., & Naidu, R. (2014). Potential of fluorescence imaging techniques to monitor mutagenic PAH uptake by microalga. Environmental Science and Technology, 48(16), 9152–9160. https://doi.org/10.1021/es500387v
Subramanian, G., Yadav, G., & Sen, R. (2016). Rationally leveraging mixotrophic growth of microalgae in different photobioreactor configurations for reducing the carbon footprint of an algal biorefinery: A techno-economic perspective. RSC Advances, 6(77), 72897–72904. https://doi.org/10.1039/c6ra14611b
Talavera, G., & Castresana, J. (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology, 56(4), 564–577. https://doi.org/10.1080/10635150701472164
Tale, M., Ghosh, S., Kapadnis, B., & Kale, S. (2014). Isolation and characterization of microalgae for biodiesel production from Nisargruna biogas plant effluent. Bioresource Technology, 169, 328–335. https://doi.org/10.1016/j.biortech.2014.06.017
Talero, E., García-Mauriño, S., Ávila-Román, J., Rodríguez-Luna, A., Alcaide, A., & Motilva, V. (2015a). Bioactive compounds isolated from microalgae in chronic inflammation and cancer. In Marine Drugs (Vol. 13, Issue 10, pp. 6152–6209). MDPI AG. https://doi.org/10.3390/md13106152
Temraleeva, A., Krivina, E., & Boldina, O. (2022). Edaphochloris, gen. nov.: a new genus of soil green algae (Trebouxiophyceae, Chlorophyta) with simple morphology. Plant Systematics and Evolution, 308(1). https://doi.org/10.1007/s00606-021-01795-8
Torres, M. A., Barros, M. P., Campos, S. C. G., Pinto, E., Rajamani, S., Sayre, R. T., & Colepicolo, P. (2008). Biochemical biomarkers in algae and marine pollution: A review. Ecotoxicology and Environmental Safety, 71(1), 1–15. https://doi.org/10.1016/j.ecoenv.2008.05.009
Tsuge, K., Matsui, K., & Itaya, M. (2007). Production of the non-ribosomal peptide plipastatin in Bacillus subtilis regulated by three relevant gene blocks assembled in a single movable DNA segment. Journal of Biotechnology, 129(4), 592–603. https://doi.org/10.1016/j.jbiotec.2007.01.033
Velásquez J. (2017). Contaminación de suelos y aguas por hidrocarburos en Colombia. Análisis de la fitorremediación como estrategia biotecnológica de recuperación. Revista de Investigación Agraria y Ambiental, 8(1).
Wang, M., Carver, J. J., Phelan, V. V., Sanchez, L. M., Garg, N., Peng, Y., Nguyen, D. D., Watrous, J., Kapono, C. A., Luzzatto-Knaan, T., Porto, C., Bouslimani, A., Melnik, A. V., Meehan, M. J., Liu, W. T., Crüsemann, M., Boudreau, P. D., Esquenazi, E., Sandoval-Calderón, M., … Bandeira, N. (2016). Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. In Nature Biotechnology (Vol. 34, Issue 8, pp. 828–837). Nature Publishing Group. https://doi.org/10.1038/nbt.3597
Wiklund, S., Johansson, E., Sjöström, L., Mellerowicz, E. J., Edlund, U., Shockcor, J. P., Gottfries, J., Moritz, T., & Trygg, J. (2008). Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Analytical Chemistry, 80(1), 115–122. https://doi.org/10.1021/ac0713510
Willamme, R., Alsafra, Z., Arumugam, R., Eppe, G., Remacle, F., Levine, R. D., & Remacle, C. (2015). Metabolomic analysis of the green microalga Chlamydomonas reinhardtii cultivated under day/night conditions. Journal of Biotechnology, 215, 20–26. https://doi.org/10.1016/j.jbiotec.2015.04.013
Wrasidlo, W., Mielgo, A., Torres, V. A., Barbero, S., Stoletov, K., Suyama, T. L., Klemke, R. L., Gerwick, W. H., Carson, D. A., & Stupack, D. G. (2008). The marine lipopeptide somocystinamide A triggers apoptosis via caspase 8. www.pnas.org/cgi/content/full/
Xaaldi, A., Movafeghi, A., Mohammadi-Nassab, A. D., Abedi, E., & Bahrami, A. (2017). Potential of the green alga Chlorella vulgaris for biodegradation of crude oil hydrocarbons. Marine Pollution Bulletin, 123(1–2), 286–290. https://doi.org/10.1016/j.marpolbul.2017.08.045
Xu, J., Chen, D., Yan, X., Chen, J., & Zhou, C. (2010). Global characterization of the photosynthetic glycerolipids from a marine diatom Stephanodiscus sp. by ultra performance liquid chromatography coupled with electrospray ionization-quadrupole-time of flight mass spectrometry. Analytica Chimica Acta, 663(1), 60–68. https://doi.org/10.1016/j.aca.2010.01.026
Zheng, S., Zhou, Q., Chen, C., Yang, F., Cai, Z., Li, D., Geng, Q., Feng, Y., & Wang, H. (2019). Role of extracellular polymeric substances on the behavior and toxicity of silver nanoparticles and ions to green algae Chlorella vulgaris. Science of the Total Environment, 660, 1182–1190. https://doi.org/10.1016/j.scitotenv.2019.01.067
Zimmermann, J., Jahn, R., & Gemeinholzer, B. (2011). Barcoding diatoms: Evaluation of the V4 subregion on the 18S rRNA gene, including new primers and protocols. Organisms Diversity and Evolution, 11(3), 173–192. https://doi.org/10.1007/s13127-011-0050-6
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 100 paginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional sede Caribe
dc.publisher.program.spa.fl_str_mv Caribe - Caribe - Maestría en Ciencias - Biología
dc.publisher.department.spa.fl_str_mv Centro de estudios en Ciencias del mar-CECIMAR
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv San Andrés Islas
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Caribe
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86548/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86548/2/1010186171.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/86548/3/1010186171.2022.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
21a22bb27b663a66f08e9352e5b408c5
73363ff99b2786df923e05b880d8be3a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090131427033088
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Blandón, Lina15654a57b58cfd2fb21e73b08224c039Campos Campos, Néstor Hernando07b6b37cec1e87c71c366847a7ecae7b600Patiño, Albertef83c78dfe98303f7b54a35f5526a1e1600Puentes, Erika Andreab94e314e5c6d962f6c2f9d75dafcf4cfInvemar - Instituto de Investigaciones marinas y costerasFauna Marina Colombiana: Biodiversidad y Usos2024-07-17T21:55:09Z2024-07-17T21:55:09Z2024-07-16https://repositorio.unal.edu.co/handle/unal/86548Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/La contaminación marina es una gran amenaza para la conservación de los ecosistemas y de su biodiversidad, por lo que se hace necesario realizar estudios enfocados en su recuperación, aplicando tecnologías ambientalmente amigables y de bajo costo como la biorremediación. La biorremediación es el uso de organismos, sus células, partes o metabolitos, para recuperar un ambiente contaminado a través de la transformación o degradación de compuestos tóxicos recalcitrantes como los hidrocarburos, en una forma menos tóxica o no tóxica. En este sentido, el uso de microalgas y/o sus componentes, es una alternativa prometedora ya que presentan tolerancia a factores de estrés como los ocasionados por la presencia de petróleo en el entorno, evidenciando la producción de metabolitos como biosurfactantes participantes de la actividad biorremediadora. Este proyecto tuvo como objetivo principal evaluar la respuesta metabólica a la presencia del petróleo, a través de la detección de biosurfactantes extracelulares de microalgas marinas aisladas del Mar Caribe colombiano, en condiciones de luz y oscuridad, empleando herramientas metabolómicas. Para ello, se realizó un screening de tolerancia celular con petróleo en suspensión al 1 %. Se evidencio la producción de un extracto extracelular rico en biosurfactantes, por Nannochloris sp., la cual al ser incubada en oscuridad produjo un extracto con mayor presencia de estos compuestos. Los resultados obtenidos, aportan información científica que contribuye a mejorar el conocimiento del proceso de tolerancia al petróleo que exhiben algunas microalgas marinas (Texto tomado de la fuente)Marine pollution is a significant threat to ecosystem conservation and its biodiversity. Therefore, it is necessary to carry out studies focused on ecosystem recovery, applying environmentally friendly and low-cost technologies such as bioremediation. Bioremediation is the use of organisms, their cells, parts or metabolites, to remediate a contaminated environment through the transformation or degradation of recalcitrant toxic compounds such as crude oil into a less toxic or non-toxic form. In this sense, using microalgae and /or its components is a promising alternative. Microalgae can be tolerant to stress factors such as oil crude, in response, they can produce metabolites like biosurfactants that participates in the bioremediation activity. The main objective of this project was to evaluate the metabolic response of microalgae isolated from the Colombian Caribbean, exposed to the presence of crude oil, as well as the detection of extracellular biosurfactants, under light and dark conditions, using metabolomic tools. A screening with crude oil in suspension at 1% was carried out, achieving evidence of the production of extracellular extract rich in biosurfactants by a strain Nannochloris sp. The same strain cultured without light, produced this extract in greater quantity. The results provide scientific information that improves the knowledge of the tolerance process to crude oil that some marine microalgae exhibit.MaestríaMagíster en Ciencias - BiologíaComparación de la producción de metabolitos extracelulares entre tratamientos: 1. Tratamiento de exposición a pétroleo: Incubados en luz y oscuridad 2. Grupos control, control abiotico de medio de cultivo con petróleo y control de crecimiento de las microalgas en medio de cultivoBioprospección marinaOtra. Sede Caribe100 paginasapplication/pdfspaUniversidad Nacional sede CaribeCaribe - Caribe - Maestría en Ciencias - BiologíaCentro de estudios en Ciencias del mar-CECIMARFacultad de CienciasSan Andrés IslasUniversidad Nacional de Colombia - Sede Caribe500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionados570 - Biología::579 - Historia natural microorganismos, hongos, algas600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionadosContaminación, hidrocarburos, biorremediación, metabolitos bioactivos, biosurfactantes, tolerancia,Pollution, hydrocarbons, bioremediation, biosufactant, tolerance, bioactive metabolitesEfecto del petróleo en microalgas marinas, sobre el crecimiento heterotrófico y la producción de metabolitos extracelularesEffect of crude oil on marine microalgae, about heterotrophic growth and the production of extracellular metabolites n of extracellular metabolitesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAlmaliti, J., Malloy, K. L., Glukhov, E., Spadafora, C., Gutiérrez, M., & Gerwick, W. H. (2017). Dudawalamides A-D, Antiparasitic Cyclic Depsipeptides from the Marine Cyanobacterium Moorea producens. Journal of Natural Products, 80(6), 1827–1836. https://doi.org/10.1021/acs.jnatprod.7b00034Ayala, & Dussán. (2018). Bioprospection for petroleum hydrocarbon bioremediating microorganisms in hypersaline environments and barium-resistant microbiota in oil exploitation wastewater. Universidad de los Andes.Bauer, A., & Minceva, M. (2019). Direct extraction of astaxanthin from the microalgae: Haematococcus pluvialis using liquid-liquid chromatography. RSC Advances, 9(40), 22779–22789. https://doi.org/10.1039/c9ra03263kBumbak, F., Cook, S., Zachleder, V., Hauser, S., & Kovar, K. (2011). Best practices in heterotrophic high-cell-density microalgal processes: Achievements, potential and possible limitations. In Applied Microbiology and Biotechnology (Vol. 91, Issue 1, pp. 31–46). https://doi.org/10.1007/s00253-011-3311-6Bussa, M., Eisen, A., Zollfrank, C., & Röder, H. (2019). Life cycle assessment of microalgae products: State of the art and their potential for the production of polylactid acid. In Journal of Cleaner Production (Vol. 213, pp. 1299–1312). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2018.12.048Carrera, D., Mateos, A., López, V., & Costas, E. (2010). Microalgae response to petroleum spill: An experimental model analysing physiological and genetic response of Dunaliella tertiolecta (Chlorophyceae) to oil samples from the tanker Prestige. Aquatic Toxicology, 97(2), 151–159. https://doi.org/10.1016/j.aquatox.2009.12.016Castillo, Mugica V., Roldán T., Olguín P., & Castorena G. (2021). Modification of wettability and reduction of interfacial tension mechanisms involved in the release and enhanced biodegradation of heavy oil by a biosurfactant. Revista Mexicana de Ingeniera Quimica, 20(3). https://doi.org/10.24275/RMIQ/IA2427Chang, W., Li, Y., Qu, Y., Liu, Y., Zhang, G., Zhao, Y., & Liu, S. (2022). Mixotrophic cultivation of microalgae to enhance the biomass and lipid production with synergistic effect of red light and phytohormone IAA. Renewable Energy, 187, 819–828. https://doi.org/10.1016/j.renene.2022.01.108Chen, T., Zhao, Q., Wang, L., Xu, Y., & Wei, W. (2017). Comparative Metabolomic Analysis of the Green Microalga Chlorella sorokiniana Cultivated in the Single Culture and a Consortium with Bacteria for Wastewater Remediation. Applied Biochemistry and Biotechnology, 183(3), 1062–1075. https://doi.org/10.1007/s12010-017-2484-6Chong, J., Wishart, D. S., & Xia, J. (2019). Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Current Protocols in Bioinformatics, 68(1). https://doi.org/10.1002/cpbi.86Cobos, Castro, & Cerdeira. (2014). Potencial biotecnológico para la producción sustentable de biodisel de microalgas oleaginosas aisladas del Río Itaya, Loreto, Perú. Ecología Aplicada, 13(1–2), 169. https://doi.org/10.21704/rea.v13i1-2.467Cocci, P., Mosconi, G., Bracchetti, L., Nalocca, J. M., Frapiccini, E., Marini, M., Caprioli, G., Sagratini, G., & Palermo, F. A. (2018). Investigating the potential impact of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) on gene biomarker expression and global DNA methylation in loggerhead sea turtles (Caretta caretta) from the Adriatic Sea. Science of the Total Environment, 619–620, 49–57. https://doi.org/10.1016/j.scitotenv.2017.11.118Collins, L., Alvarez, D., & Chauhan, A. (2014). Phycoremediation Coupled with Generation of Value-Added Products. In Microbial Biodegradation and Bioremediation (pp. 342–387). Elsevier Inc. https://doi.org/10.1016/B978-0-12-800021-2.00015-7Darienko, T., & Pröschold, T. (2015). Genetic variability and taxonomic revision of the genus Auxenochlorella (Shihira et Krauss) Kalina et Puncocharova (Trebouxiophyceae, Chlorophyta). Journal of Phycology, 51(2), 394–400. https://doi.org/10.1111/jpy.12279Dembitsky, V. M. (2022). Hydrobiological Aspects of Fatty Acids: Unique, Rare, and Unusual Fatty Acids Incorporated into Linear and Cyclic Lipopeptides and Their Biological Activity. Hydrobiology, 1(3), 331–432. https://doi.org/10.3390/hydrobiology1030024Elisângela, M. R., Etiele, G. de M., Cibele, F. de O., Kellen, Z., & Jorge, A. V. C. (2015). Microalgae cultivation for biosurfactant production. African Journal of Microbiology Research, 9(47), 2283–2289. https://doi.org/10.5897/ajmr2015.7634Fernandes, T., Martel, A., & Cordeiro, N. (2020). Exploring Pavlova pinguis chemical diversity: a potentially novel source of high value compounds. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-019-57188-yFernández, J., Flórez, F., Pereira, S., Rábade, T., Laffon, B., & Méndez, J. (2011). Use of three bivalve species for biomonitoring a polluted estuarine environment. Environmental Monitoring and Assessment, 177(1–4), 289–300. https://doi.org/10.1007/s10661-010-1634-xGadd, G. M. (2010). Metals, minerals and microbes: Geomicrobiology and bioremediation. In Microbiology (Vol. 156, Issue 3, pp. 609–643). https://doi.org/10.1099/mic.0.037143-0Giraldo, N. D., Correa, S. M., Arbeláez, A., Figueroa, F. L., Ríos-Estepa, R., & Atehortúa, L. (2021). Reducing self-shading effects in Botryococcus braunii cultures: effect of Mg2+ deficiency on optical and biochemical properties, photosynthesis and lipidomic profile. Bioresources and Bioprocessing, 8(1). https://doi.org/10.1186/s40643-021-00389-zGuarnieri, M. T., Nag, A., Smolinski, S. L., Darzins, A., Seibert, M., & Pienkos, P. T. (2011). Examination of triacylglycerol biosynthetic pathways via de novo transcriptomic and proteomic analyses in an unsequenced microalga. PLoS ONE, 6(10). https://doi.org/10.1371/journal.pone.0025851Guillard, R. R. (1975). Culture of phytoplankton for feeding marine invertebratesGuindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology, 59(3), 307–321. https://doi.org/10.1093/sysbio/syq010Halaj, M., Paulovičová, E., Paulovičová, L., Jantová, S., Cepák, V., Lukavský, J., & Capek, P. (2019). Extracellular biopolymers produced by Dictyosphaerium family - Chemical and immunomodulative properties. International Journal of Biological Macromolecules, 121, 1254–1263. https://doi.org/10.1016/j.ijbiomac.2018.10.116Hamouda, R. A. E. F., Sorour, N. M., & Yeheia, D. S. (2016). Biodegradation of crude oil by Anabaena oryzae, Chlorella kessleri and its consortium under mixotrophic conditions. International Biodeterioration and Biodegradation, 112, 128–134. https://doi.org/10.1016/j.ibiod.2016.05.001Henley, Hironaka J., Guillou L., Buchheim M., Fawley M., & Fawley K. (2004). Phylogenetic analysis of the Nannochloris like algae and diagnoses of Picochlorum oklahomensis gen. et sp. nov Trebouxiophyceae Chlorophyta. Phycologia, 43(6), 641–652.Hiraga, Y., Shikano, T., Widianti, T., & Ohkata, K. (2008). Three new glycolipids with cytolytic activity from cultured marine dinoflagellate Heterocapsa circularisquama. Natural Product Research, 22(8), 649–657. https://doi.org/10.1080/14786410701369417Hossain, Z., Kurihara, H., Hosokawa, M., & Takahashi, K. (2005). Growth inhibition and induction of differentiation and apoptosis mediated by sodium butyrate in Caco-2 cells with algal glycolipids. In Vitro Cell. Dev. Biol.~Animal, 41, 154–159.Hughes, T. P., Bellwood, D. R., Folke, C., Steneck, R. S., & Wilson, J. (2005). New paradigms for supporting the resilience of marine ecosystems. In Trends in Ecology and Evolution (Vol. 20, Issue 7, pp. 380–386). https://doi.org/10.1016/j.tree.2005.03.022INVEMAR. (2010). Informe del estado de los ambientes y recursos marinos y costeros en Colombia: año 2009. Serie de publicaciones periódicas. No. 8.Islam, M. S., & Tanaka, M. (2004). Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: A review and synthesis. In Marine Pollution Bulletin (Vol. 48, Issues 7–8, pp. 624–649). https://doi.org/10.1016/j.marpolbul.2003.12.004Iwasaki, A., Ohno, O., Sumimoto, S., Matsubara, T., Shimada, S., Sato, T., & Suenaga, K. (2015). Mebamamides A and B, Cyclic Lipopeptides Isolated from the Green Alga Derbesia marina. Journal of Natural Products, 78(4), 901–908. https://doi.org/10.1021/acs.jnatprod.5b00168Jadeja, Ren, & Zhou. (2012). Chapter 17: Bioremediation with marine algae: A case study of the soda ash industry. In Mason A. (Ed.), Bioremediation: Biotechnology, engineering and environmental management (pp. 449–457). Nova Science Publishers, Inc.Kandimalla, P., Desi, S., & Vurimindi, H. (2016). Mixotrophic cultivation of microalgae using industrial flue gases for biodiesel production. Environmental Science and Pollution Research, 23(10), 9345–9354. https://doi.org/10.1007/s11356-015-5264-2Karlapudi, A. P., Venkateswarulu, T. C., Tammineedi, J., Kanumuri, L., Ravuru, B. K., Dirisala, V. ramu, & Kodali, V. P. (2018). Role of biosurfactants in bioremediation of oil pollution-a review. In Petroleum (Vol. 4, Issue 3, pp. 241–249). KeAi Communications Co. https://doi.org/10.1016/j.petlm.2018.03.007Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772–780. https://doi.org/10.1093/molbev/mst010Khan, Karmakar, Das, & Hasan Razu, M. (2016). Heterotrophic Growth of Microalgae. www.esciencecentral.org/ebooksKhaw, Y. S., Khong, N. M. H., Shaharuddin, N. A., & Yusoff, F. M. (2020). A simple 18S rDNA approach for the identification of cultured eukaryotic microalgae with an emphasis on primers. Journal of Microbiological Methods, 172. https://doi.org/10.1016/j.mimet.2020.105890Kim, W., Park, J. M., Gim, G. H., Jeong, S. H., Kang, C. M., Kim, D. J., & Kim, S. W. (2012). Optimization of culture conditions and comparison of biomass productivity of three green algae. Bioprocess and Biosystems Engineering, 35(1–2), 19–27. https://doi.org/10.1007/s00449-011-0612-1Kotzé-Hörstmann, L., Cois, A., Johnson, R., Mabasa, L., Shabalala, S., Van Jaarsveld, P. J., & Sadie-Van Gijsen, H. (2022). Characterization and Comparison of the Divergent Metabolic Consequences of High-Sugar and High-Fat Diets in Male Wistar Rats. Frontiers in Physiology, 13. https://doi.org/10.3389/fphys.2022.904366Krienitz, L., Huss, V. A. R., & Bock, C. (2015). Chlorella: 125 years of the green survivalist. In Trends in Plant Science (Vol. 20, Issue 2, pp. 67–69). Elsevier Ltd. https://doi.org/10.1016/j.tplants.2014.11.005Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., & Calcott, B. (2017). Partitionfinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34(3), 772–773. https://doi.org/10.1093/molbev/msw260Liang, Y., Sarkany, N., & Cui, Y. (2009). Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology Letters, 31(7), 1043–1049. https://doi.org/10.1007/s10529-009-9975-7Lortou, U., Panteris, E., & Gkelis, S. (2022). Uncovering New Diversity of Photosynthetic Microorganisms from the Mediterranean Region. Microorganisms, 10(8). https://doi.org/10.3390/microorganisms10081571Luesch, H., Yoshida, W. Y., Moore, R. E., & Paul, V. J. (2000). Apramides A-G, novel lipopeptides from the marine cyanobacterium Lyngbya majuscula. Journal of Natural Products, 63(8), 1106–1112. https://doi.org/10.1021/np000078tMalviya, D., Sahu, P. K., Singh, U. B., Paul, S., Gupta, A., Gupta, A. R., Singh, S., Kumar, M., Paul, D., Rai, J. P., Singh, H. V., & Brahmaprakash, G. P. (2020). Lesson from ecotoxicity: Revisiting the microbial lipopeptides for the management of emerging diseases for crop protection. In International Journal of Environmental Research and Public Health (Vol. 17, Issue 4). MDPI AG. https://doi.org/10.3390/ijerph17041434Minh, B. Q., Nguyen, M. A. T., & Von Haeseler, A. (2013). Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution, 30(5), 1188–1195. https://doi.org/10.1093/molbev/mst024Nguyen, L. T., Schmidt, H. A., Von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1), 268–274. https://doi.org/10.1093/molbev/msu300Nogle, L. M., Okino, T., & Gerwick, W. H. (2001). Antillatoxin B, a neurotoxic lipopeptide from the marine cyanobacterium Lyngbya majuscula. Journal of Natural Products, 64(7), 983–985. https://doi.org/10.1021/np010107fOlivares, Hugo., Salazar, L., Nájera, M., Godínez, J., & Vega, A. (2018). Lipid metabolism and pro-oxidant/antioxidant balance of Halamphora oceanica from the Gulf of Mexico exposed to water accommodated fraction of Maya crude oil. Ecotoxicology and Environmental Safety, 147, 840–851. https://doi.org/10.1016/j.ecoenv.2017.09.057Olmos, García de Llasera, & Velasco. (2012). Extraction and analysis of polycyclic aromatic hydrocarbons and benzo[a]pyrene metabolites in microalgae cultures by off-line/on-line methodology based on matrix solid-phase dispersion, solid-phase extraction and high-performance liquid chromatography. Journal of Chromatography A, 1262, 138–147. https://doi.org/10.1016/j.chroma.2012.09.015Paliwal, C., Mitra, M., Bhayani, K., Bharadwaj, S. V. V., Ghosh, T., Dubey, S., & Mishra, S. (2017). Abiotic stresses as tools for metabolites in microalgae. In Bioresource Technology (Vol. 244, pp. 1216–1226). Elsevier Ltd. https://doi.org/10.1016/j.biortech.2017.05.058Paniagua, J. de J., Olmos, J., & Morales, E. (2014). Algal and microbial exopolysaccharides: New insights as biosurfactants and bioemulsifiers. In Advances in Food and Nutrition Research (Vol. 73, pp. 221–257). Academic Press Inc. https://doi.org/10.1016/B978-0-12-800268-1.00011-1Parrish, C. C., Bodennec, G., & Gentien, P. (1998). Haemolytic glycoglyceroliíds from Gymnodinium species. Phytochemistry , 47(5), 783–787.Patiño, A. D., Montoya-Giraldo, M., Quintero, M., López-Parra, L. L., Blandón, L. M., & Gómez-León, J. (2021). Dereplication of antimicrobial biosurfactants from marine bacteria using molecular networking. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-95788-9Paul, K., Gaikwad, M., Choudhary, P., Mohan, N., Pai, P., Patil, S. D., Pawar, Y., Chawande, A., Banerjee, A., Nagle, V., Chelliah, M., Sapre, A., & Dasgupta, S. (2022). Year-round sustainable biomass production potential of Nannochloris sp. in outdoor raceway pond enabled through strategic photobiological screening. Photosynthesis Research, 154(3), 303–328. https://doi.org/10.1007/s11120-022-00984-xPluskal, T., Castillo, S., Villar-Briones, A., & Orešič, M. (2010). MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 11. https://doi.org/10.1186/1471-2105-11-395Poddar, N., Sen, R., & Martin, G. J. O. (2018). Glycerol and nitrate utilisation by marine microalgae Nannochloropsis salina and Chlorella sp. and associated bacteria during mixotrophic and heterotrophic growth. Algal Research, 33, 298–309. https://doi.org/10.1016/j.algal.2018.06.002Priya, M., Gurung, N., Mukherjee, K., & Bose, S. (2014). Microalgae in Removal of Heavy Metal and Organic Pollutants from Soil. In Microbial Biodegradation and Bioremediation (pp. 522–539). Elsevier Inc. https://doi.org/10.1016/B978-0-12-800021-2.00023-6Reddy, M. M. S., Tiwari, S., & Chauhan, V. S. (2023a). Algal lipids, lipidomics, and biosurfactants. In Algae Materials: Applications Benefitting Health (pp. 313–342). Elsevier. https://doi.org/10.1016/B978-0-443-18816-9.00019-Revel, M., Châtel, A., & Mouneyrac, C. (2017). Omics tools: New challenges in aquatic nanotoxicology? In Aquatic Toxicology (Vol. 193, pp. 72–85). Elsevier B.V. https://doi.org/10.1016/j.aquatox.2017.10.005Romero, Lopez, & Costas. (2014). Chapter 10. Selected microalgae for petroleum bioremediation: Towards a bio-depuration based on Von Neumann-like machines. In Velázquez J. & Muñoz S. (Eds.), Bioremediation: Processes, challenges and future prospects. (pp. 211–219). Nova Science Publisher Inc. .Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3), 539–542. https://doi.org/10.1093/sysbio/sys029Salvador, L. A., Biggs, J. S., Paul, V. J., & Luesch, H. (2011). Veraguamides A-G, cyclic hexadepsipeptides from a dolastatin 16-producing cyanobacterium Symploca cf. hydnoides from Guam. Journal of Natural Products, 74(5), 917–927. https://doi.org/10.1021/np200076tSamanta S., Singh O., & Jain R. (2002). Polycyclic aromatic hydrocarbons environmental pollution and bioremediation. Trends in Biotechnology, 20(6), 243–248.Shishlyannikov, S. M., Nikonova, A. A., Klimenkov, I. V., & Gorshkov, A. G. (2017). Accumulation of petroleum hydrocarbons in intracellular lipid bodies of the freshwater diatom Synedra acus subsp. radians. Environmental Science and Pollution Research, 24(1), 275–283. https://doi.org/10.1007/s11356-016-7782-yShukla, S. K., Mangwani, N., Rao, T. S., & Das, S. (2014). Biofilm-Mediated Bioremediation of Polycyclic Aromatic Hydrocarbons. In Microbial Biodegradation and Bioremediation (pp. 204–232). Elsevier Inc. https://doi.org/10.1016/B978-0-12-800021-2.00008-XSitachitta, N., Williamson, R. T., & Gerwick, W. H. (2000). Yanucamides A and B, two new depsipeptides from an assemblage of the marine cyanobacteria Lyngbya majuscula and Schizothrix species. Journal of Natural Products, 63(2), 197–200. https://doi.org/10.1021/np990466zSmith, D. J., & Underwood, G. J. C. (2000). The production of extracellular carbohydrates by estuarine benthic diatoms: The effects of growth phase and light and dark treatment. Journal of Phycology, 36(2), 321–333. https://doi.org/10.1046/j.1529-8817.2000.99148.xSomogyi, B., Felföldi, T., Solymosi, K., Flieger, K., Márialigeti, K., Böddi, B., & Vörös, L. (2013). One step closer to eliminating the nomenclatural problems of minute coccoid green algae: Pseudochloris wilhelmii, gen. et sp. nov. (Trebouxiophyceae, Chlorophyta). European Journal of Phycology, 48(4), 427–436. https://doi.org/10.1080/09670262.2013.854411Subashchandrabose, S. R., Krishnan, K., Gratton, E., Megharaj, M., & Naidu, R. (2014). Potential of fluorescence imaging techniques to monitor mutagenic PAH uptake by microalga. Environmental Science and Technology, 48(16), 9152–9160. https://doi.org/10.1021/es500387vSubramanian, G., Yadav, G., & Sen, R. (2016). Rationally leveraging mixotrophic growth of microalgae in different photobioreactor configurations for reducing the carbon footprint of an algal biorefinery: A techno-economic perspective. RSC Advances, 6(77), 72897–72904. https://doi.org/10.1039/c6ra14611bTalavera, G., & Castresana, J. (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology, 56(4), 564–577. https://doi.org/10.1080/10635150701472164Tale, M., Ghosh, S., Kapadnis, B., & Kale, S. (2014). Isolation and characterization of microalgae for biodiesel production from Nisargruna biogas plant effluent. Bioresource Technology, 169, 328–335. https://doi.org/10.1016/j.biortech.2014.06.017Talero, E., García-Mauriño, S., Ávila-Román, J., Rodríguez-Luna, A., Alcaide, A., & Motilva, V. (2015a). Bioactive compounds isolated from microalgae in chronic inflammation and cancer. In Marine Drugs (Vol. 13, Issue 10, pp. 6152–6209). MDPI AG. https://doi.org/10.3390/md13106152Temraleeva, A., Krivina, E., & Boldina, O. (2022). Edaphochloris, gen. nov.: a new genus of soil green algae (Trebouxiophyceae, Chlorophyta) with simple morphology. Plant Systematics and Evolution, 308(1). https://doi.org/10.1007/s00606-021-01795-8Torres, M. A., Barros, M. P., Campos, S. C. G., Pinto, E., Rajamani, S., Sayre, R. T., & Colepicolo, P. (2008). Biochemical biomarkers in algae and marine pollution: A review. Ecotoxicology and Environmental Safety, 71(1), 1–15. https://doi.org/10.1016/j.ecoenv.2008.05.009Tsuge, K., Matsui, K., & Itaya, M. (2007). Production of the non-ribosomal peptide plipastatin in Bacillus subtilis regulated by three relevant gene blocks assembled in a single movable DNA segment. Journal of Biotechnology, 129(4), 592–603. https://doi.org/10.1016/j.jbiotec.2007.01.033Velásquez J. (2017). Contaminación de suelos y aguas por hidrocarburos en Colombia. Análisis de la fitorremediación como estrategia biotecnológica de recuperación. Revista de Investigación Agraria y Ambiental, 8(1).Wang, M., Carver, J. J., Phelan, V. V., Sanchez, L. M., Garg, N., Peng, Y., Nguyen, D. D., Watrous, J., Kapono, C. A., Luzzatto-Knaan, T., Porto, C., Bouslimani, A., Melnik, A. V., Meehan, M. J., Liu, W. T., Crüsemann, M., Boudreau, P. D., Esquenazi, E., Sandoval-Calderón, M., … Bandeira, N. (2016). Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. In Nature Biotechnology (Vol. 34, Issue 8, pp. 828–837). Nature Publishing Group. https://doi.org/10.1038/nbt.3597Wiklund, S., Johansson, E., Sjöström, L., Mellerowicz, E. J., Edlund, U., Shockcor, J. P., Gottfries, J., Moritz, T., & Trygg, J. (2008). Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Analytical Chemistry, 80(1), 115–122. https://doi.org/10.1021/ac0713510Willamme, R., Alsafra, Z., Arumugam, R., Eppe, G., Remacle, F., Levine, R. D., & Remacle, C. (2015). Metabolomic analysis of the green microalga Chlamydomonas reinhardtii cultivated under day/night conditions. Journal of Biotechnology, 215, 20–26. https://doi.org/10.1016/j.jbiotec.2015.04.013Wrasidlo, W., Mielgo, A., Torres, V. A., Barbero, S., Stoletov, K., Suyama, T. L., Klemke, R. L., Gerwick, W. H., Carson, D. A., & Stupack, D. G. (2008). The marine lipopeptide somocystinamide A triggers apoptosis via caspase 8. www.pnas.org/cgi/content/full/Xaaldi, A., Movafeghi, A., Mohammadi-Nassab, A. D., Abedi, E., & Bahrami, A. (2017). Potential of the green alga Chlorella vulgaris for biodegradation of crude oil hydrocarbons. Marine Pollution Bulletin, 123(1–2), 286–290. https://doi.org/10.1016/j.marpolbul.2017.08.045Xu, J., Chen, D., Yan, X., Chen, J., & Zhou, C. (2010). Global characterization of the photosynthetic glycerolipids from a marine diatom Stephanodiscus sp. by ultra performance liquid chromatography coupled with electrospray ionization-quadrupole-time of flight mass spectrometry. Analytica Chimica Acta, 663(1), 60–68. https://doi.org/10.1016/j.aca.2010.01.026Zheng, S., Zhou, Q., Chen, C., Yang, F., Cai, Z., Li, D., Geng, Q., Feng, Y., & Wang, H. (2019). Role of extracellular polymeric substances on the behavior and toxicity of silver nanoparticles and ions to green algae Chlorella vulgaris. Science of the Total Environment, 660, 1182–1190. https://doi.org/10.1016/j.scitotenv.2019.01.067Zimmermann, J., Jahn, R., & Gemeinholzer, B. (2011). Barcoding diatoms: Evaluation of the V4 subregion on the 18S rRNA gene, including new primers and protocols. Organisms Diversity and Evolution, 11(3), 173–192. https://doi.org/10.1007/s13127-011-0050-6EstudiantesLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86548/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1010186171.2022.pdf1010186171.2022.pdfTesis de maestría en Ciencias Biologíaapplication/pdf2995666https://repositorio.unal.edu.co/bitstream/unal/86548/2/1010186171.2022.pdf21a22bb27b663a66f08e9352e5b408c5MD52THUMBNAIL1010186171.2022.pdf.jpg1010186171.2022.pdf.jpgGenerated Thumbnailimage/jpeg4511https://repositorio.unal.edu.co/bitstream/unal/86548/3/1010186171.2022.pdf.jpg73363ff99b2786df923e05b880d8be3aMD53unal/86548oai:repositorio.unal.edu.co:unal/865482024-07-17 23:05:55.959Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=