Correcciones a la acreción por agujeros negros en gravedad cuántica de Einstein

Ilustraciones a color

Autores:
Zuluaga Giraldo, Fabián Humberto
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83326
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83326
https://repositorio.unal.edu.co/
Palabra clave:
530 - Física::539 - Física moderna
Agujeros negros de Kerr
Colapso gravitacional
Teoria cuantica
Gravedad
Gravitación Cuántica
Seguridad Asintótica
Relatividad General
Agujeros Negros
Tipo Schwarzschild
de Sitter
anti de-Sitter
Acreción
Propiedades Térmicas
Quantum Gravity
Asymptotic Safety
General Relativity
Black Holes
Schwarzschild
Accretion, Stability
Thermal properties
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_7d8461cd9077c371d9bce14f48493815
oai_identifier_str oai:repositorio.unal.edu.co:unal/83326
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Correcciones a la acreción por agujeros negros en gravedad cuántica de Einstein
dc.title.translated.eng.fl_str_mv Corrections to the accretion onto black holes in Einstein quantum gravity
title Correcciones a la acreción por agujeros negros en gravedad cuántica de Einstein
spellingShingle Correcciones a la acreción por agujeros negros en gravedad cuántica de Einstein
530 - Física::539 - Física moderna
Agujeros negros de Kerr
Colapso gravitacional
Teoria cuantica
Gravedad
Gravitación Cuántica
Seguridad Asintótica
Relatividad General
Agujeros Negros
Tipo Schwarzschild
de Sitter
anti de-Sitter
Acreción
Propiedades Térmicas
Quantum Gravity
Asymptotic Safety
General Relativity
Black Holes
Schwarzschild
Accretion, Stability
Thermal properties
title_short Correcciones a la acreción por agujeros negros en gravedad cuántica de Einstein
title_full Correcciones a la acreción por agujeros negros en gravedad cuántica de Einstein
title_fullStr Correcciones a la acreción por agujeros negros en gravedad cuántica de Einstein
title_full_unstemmed Correcciones a la acreción por agujeros negros en gravedad cuántica de Einstein
title_sort Correcciones a la acreción por agujeros negros en gravedad cuántica de Einstein
dc.creator.fl_str_mv Zuluaga Giraldo, Fabián Humberto
dc.contributor.advisor.none.fl_str_mv Sánchez Duque, Luis Alberto
dc.contributor.author.none.fl_str_mv Zuluaga Giraldo, Fabián Humberto
dc.subject.ddc.spa.fl_str_mv 530 - Física::539 - Física moderna
topic 530 - Física::539 - Física moderna
Agujeros negros de Kerr
Colapso gravitacional
Teoria cuantica
Gravedad
Gravitación Cuántica
Seguridad Asintótica
Relatividad General
Agujeros Negros
Tipo Schwarzschild
de Sitter
anti de-Sitter
Acreción
Propiedades Térmicas
Quantum Gravity
Asymptotic Safety
General Relativity
Black Holes
Schwarzschild
Accretion, Stability
Thermal properties
dc.subject.lemb.spa.fl_str_mv Agujeros negros de Kerr
Colapso gravitacional
Teoria cuantica
Gravedad
dc.subject.proposal.spa.fl_str_mv Gravitación Cuántica
Seguridad Asintótica
Relatividad General
Agujeros Negros
Tipo Schwarzschild
de Sitter
anti de-Sitter
Acreción
Propiedades Térmicas
dc.subject.proposal.eng.fl_str_mv Quantum Gravity
Asymptotic Safety
General Relativity
Black Holes
Schwarzschild
Accretion, Stability
Thermal properties
description Ilustraciones a color
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-10-26
dc.date.accessioned.none.fl_str_mv 2023-02-06T19:06:47Z
dc.date.available.none.fl_str_mv 2023-02-06T19:06:47Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83326
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83326
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv LaReferencia
dc.relation.references.spa.fl_str_mv G. ’t Hooft and M. Veltman, “An algorithm for the poles at dimension four in the dimensional regularization procedure,” Nuclear Physics B, vol. 62, p. 444–460, 1973.
S. Deser and P. Nieuwenhuizen, “One-loop divergences of quantized einstein-maxwell fields,” Physical Review D, vol. 10, p. 2, 1974.
S. Deser, H. Tsao, and P. Nieuwenhuizen, “One-loop divergences of the einstein-yangmills system,” Physical Review D, vol. 10, no. 10, p. 3337–3342, 1974.
S. Deser, H. S. Tsao, and P. Nieuwenhuizen, “Nonrenormalizability of einstein-yangmills interactions at the one-loop level,” Physics Letters B, vol. 50, no. 4, p. 491–493, 1974.
S. Weinberg, “Infrared photons and gravitons,” Physical Review, vol. 140, p. 2, 1965.
R. Utiyama and S. Bryce, “Renormalization of a classical gravitational field interacting with quantized matter fields,” Journal of Mathematical Physics, vol. 3, p. 608, 1962.
M. Reuter, “Nonperturbative evolution equation for quantum gravity,” Phys. Rev. D, vol. 57, 1998.
S. W. Hawking and W. Israel, General Relativity, an Einstein Centenary Survey. Cambride University Press, 1979.
S. de Haro, D. Dennis, G. ’t Hooft, and E. Verlinde, “Forty years of string theory reflecting on the foundations,” Foundations of Physics, vol. 43, 2013.
J. Maldacena, A. Strominger, and E. Witten, “Black hole entropy in m-theory,” Journal of High Energy Physics, vol. 12, 1997.
H. Ooguri, A. Strominger, and C. Vafa, “Black hole attractors and the topological string,” Phys. Review D, vol. 70, 2004.
A. Strominger, “Black hole entropy from near-horizon microstates,” Journal of High Energy Physics, vol. 2, 1998.
M. Guica, T. Hartman, W. Song, and A. Strominger, “The kerr/cft correspondence,” Phys. Review D, vol. 80, 2009.
A. Castro, A. Maloney, and A. Strominger, “Hidden conformal symmetry of the kerr black hole,” Phys. Review D, vol. 82, 2010.
B. Zwiebach, A First Course in String Theory. Cambridge University Press, 2004.
J. Maldacena, “The illusion of gravity,” Scientific American, vol. 293, pp. 55–63, 2005.
S. Hawking, “Information loss in black holes,” Phys. Review D, vol. 72, 2005.
A.M.Polyakov, “Quantum geometry of bosonic strings,” Physics Letters B, vol. 103, no. 3, pp. 207–210, 1981.
M. Green and J. Schwarz, “Anomaly cancellations in supersymmetric d = 10 gauge theory and superstring theory,” Physics Letters B, vol. 149, no. 1-3, 1984
P. Candelas, G. Horowitz, A. Strominger, and E.Witten, “Vacuum configurations for superstrings,” Nucl. Phys.B, vol. 258, no. 46, pp. 46–74, 1985.
N. Seiberg and E. Witten, “String theory and noncommutative geometry,” JHEP, vol. 9, no. 32, 1999.
J. Polchinski, String Theory. Cambridge Monographs on Mathematical Physics (Vol 1,2). Cambridge University Press, 2005.
B. Katrin, B. Melanie, and S. John, String theory and M-theory: A modern introduction. Cambridge University Press, 2007.
J. Barrett and L. Crane, “A lorentzian signature model for quantum general relativity,” Classical and Quantum Gravity, vol. 17, pp. 3101–3118, 2000.
C. Rovelli, Quantum Gravity. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2004.
A. Ashtekar, “New variables for classical and quantum gravity,” Phys. Rev. Lett., vol. 57, 1986.
A. Ashtekar, “New hamiltonian formulation of general relativity,” Phys. Rev. D, vol. 36, 1987.
A. Ashtekar, J. Baez, A. Corichi, and K. Krasnov, “Quantum geometry and black hole entropy,” Physics Review Letters, vol. 80, no. 5, pp. 904–907, 1998.
C. Rovelli, “Loop quantum gravity,” Living Rev. Relativ., vol. 1, no. 1, 1987.
A. Perez, “Spin foam models for quantum gravity,” Class. Quantum Gravity, vol. 20, 2003.
J. Baez, “An introduction to spin foam models of quantum gravity and bf theory,” Lecture Notes in Phyiscs, vol. 543, pp. 25–94, 2000.
J. Ambjorn, A. Goerlich, J. Jurkiewicz, and R. Loll, “Nonperturbative lorentzian path integral for gravity,” Phys. Reports, vol. 519 (4-5), pp. 127–210, 2012.
C. Rovelli, “Black hole entropy from loop quantum gravity,” Physics Review Letters, vol. 77, pp. 3288–3291, 2006.
M. H. Ansari, “Generic degeneracy and entropy in loop quantum gravity,” Nucl. Phys. B, vol. 795, no. 3, pp. 635–644, 2008.
M. H. Ansari, “Spectroscopy of a canonically quantized horizon,” Nucl. Phys. B, vol. 783, no. 3, pp. 179–212, 2007.
C. Rovelli and F. Vidotto, “Planck stars,” International Journal of Modern Physics D., vol. 23, no. 12, 2014.
P. Hořava, “Quantum gravity at a lifshitz point,” Phys. Rev. D, vol. 79, no. 8, 2009.
P. Hořava, “Spectral dimension of the universe in quantum gravity at a lifshitz point,” Phys. Rev. Lett, vol. 102, 2009.
C. Charmousis, G. Niz, A. Padilla, and P. Saffin, “Strong coupling in horava gravity,” Journal of High Energy Physics, vol. 08, no. 70, 2009.
D. Blas, O. Pujolas, and S. Sibiryakov, “On the extra mode and inconsistency of horava gravity,” Journal of High Energy Physics, vol. 10, no. 29, 2009.
E. Kiritsis and G. Kofinas, “Hořava–lifshitz cosmology,” Nucl. Phys. B, vol. 821,no. 467, 2009.
K. Koyama and F. Arroja, “Pathological behaviour of the scalar graviton in hořavalifshitz gravity,” Journal of High Energy Physics, vol. 3, 2010.
G. Cognola, R. Myrzakulov, L. Sebastiani, S. Vagnozzi, and S. Zerbini, “Covariant horava-like and mimetic horndeski gravity: cosmological solutions and perturbations,” Class. Quantum Gravity, vol. 33, no. 467, 2016.
A. Wang, “Hořava gravity at a lifshitz point: A progress report,” International Journal of Modern Physics D, vol. 26, no. 7, 2017.
R. Loll, J. Ambjørn, and J. Jurkiewicz, “The universe from scratch,” Physics reports, vol. 279-360, pp. 103–117, 2006.
F. Markopoulou and L. Smolin, “Gauge fixing in causal dynamical triangulation,” Nucl.Phys. B, vol. 739, pp. 120–130, 2006.
J. Ambjørn, J. Jurkiewicz, and R. Loll, “The self-organizing quantum universe,” Scientific America, pp. 42–49, 2008.
J. Ambjørn, J. Jurkiewicz, and R. Loll, “The self-organizing quantum universe,” Int.J.Mod.Phys.D, vol. 17, pp. 2015–2020, 2009.
J. Ambjørn and J. Jurkiewicz, “Four-dimensional simplicial quantum gravity,” Phys. Lett. B, vol. 278, no. 1-2, pp. 42–50, 1998.
J. Ambjørn, J. Jurkiewicz, and R. Loll, “Emergence of a 4d world from causal quantum gravity,” Phys. Rev. Lett, 2004.
L. Bombelli, J. Lee, D. Meyer, and R. D. Sorkin, “Space-time as a causal set,” Phys. Rev. Lett, vol. 59, no. 521, 1987.
J. Myrheim, “Statistical geometry,” CERN pre print, vol. TH.2538, 1978.
R. Yang, “Quantum gravity corrections to accretion onto a schwarzschild black hole,” Phys. Rev. D, vol. 92, 2015.
L. D. Sosapanta, Efectos cuánticos gravitacionales sobre la estabilidad de la acreción hacia un agujero negro de Schwarzschild - Tesis de Maestría, Escuela de Física, Universidad Nacional de Colombia – Sede Medellín. 2018.
M. Reuter and F. Saueressig, “Renormalization group flow of quantum gravity in the einstein-hilbert truncation,” Phys. Rev. D, vol. 65, 2002.
D. Benedetti, P. Machado, and F. Saueressig, “Asymptotic safety in higher-derivative gravity,” Mod. Phys. Lett. A, vol. 24, 2009.
M. Niedermaier and M. Reuter, “The asymptotic safety scenario in quantum gravity - an introduction,” Classical and Quantum Gravity, vol. 24, 2007.
S. Weinberg, The Quantum Theory of Fields -Volume I: Foundations. Cambridge University Press, 1995.
A. O. Barut and J. Krauss, “Nonperturbative quantum electrodynamics: The lamb shift,” Found of Phys, vol. 13, no. 189, p. 1344, 1983.
P. A. M. Dirac, “The relativistic electron wave equation,” Europhysics, vol. 8, no. 1, 1977.
I. Acikgoz, A. O. Barut, J. Krauss, and N. Ünal, “Self quantum electrodynamics without infinities. a new calculation of vacumm polarization,” Phys. Let A, vol. 198, no. 126, pp. 1344„ 1995.
A. O. Barut and J. F. V. Huele, “Quantum electrodynamics based on self-energy: Lamb shift and spontaneous emission without field quantization,” Phys. Rev. A, vol. 32, p. 3187, 1985.
A. Salam, “Divergent integrals in renormalizable field theories,” Physical Review, vol. 84, no. 3, p. 426–431, 1951.
F. J. Dyson, “The radiation theories of tomonaga, schwinger, and feynman,” Physics Review, vol. 75, p. 486, 1949.
M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory. Addison- Wesley Publishing Company, 1995.
A. Salam, “Overlapping divergences and the s-matrix,” Physical Review, vol. 82, no. 2, p. 217–227, 1951.
P. T. Matthews and A. Salam, “Renormalization,” Physical Review, vol. 94, no. 1, p. 185–191, 1954.
N. N. Bogoliubow and O. Parasiuk, “Über die multiplikation der kausalfunktionen in der quantentheorie der felder,” Acta Mathematica, vol. 97, no. 0, p. 227–266, 1957.
K. Hepp, “Proof of the bogoliubov-parasiuk theorem on renormalization,” Communications in Mathematical Physics, vol. 2, no. 1, p. 301–326, 1966.
W. Zimmermann, “Convergence of bogoliubov’s method of renormalization in momentum space,” Communications in Mathematical Physics, vol. 15, no. 3, p. 208, 1969.
S. Mandelstam, “Determination of the pion-nucleon scattering amplitude from dispersion relations and unitarity,” General Theory. Physical Review, vol. 112, no. 4, p. 1344–1360, 1958.
A. Guijosa, Notas de Clases de Teoría Cuántica de Campos. Universidad Autónoma de México.
M. Gell-Mann and F. E. Low, “Quantum electrodynamics at small distances,” Physical Review, vol. 95, no. 5, p. 1300–1312, 1954.
E. C. Stückelberg and A. Petermann, “La normalization des constantes dans la theorie des quanta,” Helv Phys, vol. 26, pp. 499–520, 1953.
L. P. Kadanoff, “Scaling laws for ising models near tc,” Physics Physique Fizika, vol. 2, pp. 263–272, 1963.
K. Falls, Asymptotic Safety and Black Holes. Thesis Submitted for the degree of Doctor of Philosophy. University of Sussex, 2012.
K. G. Wilson and M. E. Fisher, “Critical exponents in 3.99 dimensions,” Physical Review Letters, vol. 28, no. 4, p. 240–243, 1972.
K. G. Wilson, “Feynman-graph expansion for critical exponents,” Physical Review Letters, vol. 28, no. 9, p. 548–551, 1972.
G. Hooft and M. Veltman, “Regularization and renormalization of gauge fields,” Nuclear Physics B, vol. 44, no. 1, p. 189–213, 1972.
C. G. Bollini and J. J. Giambiagi, “Lowest order “divergent” graphs in v-dimensional space,” Physics Letters B, vol. 40, no. 5, p. 566–568, 1972.
K. G. Wilson, “Renormalization group and critical phenomena. i. renormalization group and the kadanoff scaling picture,” Phys. Rev B, vol. 4, pp. 3174–3184, 1971.
K. Wilson and J. Kogut, “The renormalization group and the expansion,” Phys. Rept, vol. 12, pp. 75–200, 1974.
K. G. Wilson, “The renormalization group: Critical phenomena and the kondo problem,” Reviews of Modern Physics, vol. 47, no. 4, p. 773–840, 1975.
S. Weinberg, The Quantum Theory of Fields -Volume II: Modern Applications. Cambridge University Press, 1996.
C. Wetterich, “Average action and the renormalization group equations,” Nuclear Physics B, vol. 352, pp. 529–584, 1991.
J. Berges, N. Tetradis, and C. Wetterich, “Non-perturbative renormalization flow in quantum field theory and statistical physics,” Phys. Report, vol. 363, pp. 223–386, 2002.
V. Mukhanov and S. Winitzki, An Introduction to Quantum Effects in Gravity. Cambridge University Press, 2007.
C. Wetterich, “Exact evolution equation for the effective potential,” Phys. Letters B, vol. 301, pp. 90–94, 1993.
D. A. R. Torres, Solución de Schwarzschild corregida por medio de Asymptotic Safety - Tesis de pregrado en Física - Universidad de los Andes. 2019.
L. F. Abbot, “Introduction to the background field method,” Acta Phys. Pol. B, vol. 13 (CERN-TH-3113), pp. 33–50, 1981.
V. N. Popov and L. Faddeev, “Feynman diagrams for the yang-mills field,” hysics Letters B, vol. 25, pp. 29–30, 1967.
D. V. Vassilevich, “Heat-kernel expansion: user’s manual.,” JHEP, vol. 9, no. 32, 2003.
S. W. Hawking and G. F. R. Ellis, The large scale strucrure of the space-time. Cambridge University Press, 1974.
R. M. Wald, General Relativity. Chicago Press, 1974.
C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation. Princeton University Press, 1977
B. Koch and F. Saueressig, “Black holes within asymptotic safety,” Int. Journ. Mod. Phys. A., vol. 29, 2014.
E. A. Larrañaga, Agujeros Negros Clásicos. AshCat Publishers, 2009.
C. Gonzalez and B. Koch, “Improved reissner–nordström–(a)ds black hole in asymptotic safety,” International Journal of Modern Physics A, vol. 31, 2016.
D. F. Litim, “Optimized renormalization group flows,” Phys. Rev. D, vol. 64, 2001.
D. F. Litim, “Fixed points of quantum gravity,” Phys. Rev. Lett, vol. 92, 2004.
B. Koch and I. Ramirez, “Exact renormalization group with optimal scale and its application to cosmology,” Class.Quant.Grav., vol. 28, 2011.
C. Contreras, B. Koch, and P. Rioseco, “Black hole solution for scale-dependent gravitational couplings and the corresponding coupling flow,” Class.Quant.Grav., vol. 30, 2013.
B. Koch and F. Saueressig, “Structural aspects of asymptotically safe black hole,” Class. Quant. Grav., vol. 31, 2013.
Y.-F. Cai and D. Easson, “Black holes in an asymptotically safe gravity theory with higher derivatives,” JCAP, vol. 9, no. 2, 2010.
A. Bonano, “Astrophysical implications of the asymptotic safety scenario in quantum gravity,” Proceedings of Science, vol. 112, no. 784, 2008.
M. Reuter and H. Weyer, “On the possibility of quantum gravity effects at astrophysical scales,” International Journal of Modern Physics D, vol. 15, no. 12, pp. 2011–2028, 2006.
M. Reuter and H. Weyer, “Quantum gravity at astrophysical distances?,” Phys.Rev.D, vol. 69, 2004.
T. Padmanabhan, “Theoretical astrophysics-galaxies and cosmology vol iii,” Cambridge University Press, 2002.
F. Combes, P. Boiss´e, A. Mazure, and A. Blanchard, “Galaxies and cosmology,” Springer, New York, 2002.
M. Reuter and H. Weyer, “Renormalization group improved gravitational actions: A brans-dicke approach,” Journal of Cosmology and Astroparticle Physics JCAP, vol. 97, 2004.
A. Eichhorn and A. Held, “Image features of spinning regular black holes based on a locality principle,” Eur. Phys. J. C., vol. 81, no. 933, 2021.
Y. Zhang, M. Zhou, and C. Bambi, “Iron line spectroscopy of black holes in asymptotically safe gravity,” Eur. Phys. C, vol. 78, no. 316, 2018.
T. Johannsen and D. Psaltis, “Testing the no-hair theorem with observations in the electromagnetic spectrum. iv. relativistically broadened iron lines,” Astrophys. J., vol. 773, no. 57, 2013.
C. Bambi, “Testing the space-time geometry around black hole candidates with the analysis of the broad k����� iron line,” Phys. Rev. D, vol. 87, 2013.
C. Bambi, A. Cardenas-Avendano, T. Dauser, J. Garcia, and S. Nampalliwar, “Testing the kerr black hole hypothesis using x-ray reflection spectroscopy,” Astrophys. J., 2017.
C. Bambi, “Astrophysical black holes: A compact pedagogical review,” Annalen der Physik, vol. 530, 2018.
B. Zhou, A. B. Abdikamalov, D. Ayzenberg, C. Bambi, S. Nampalliwar, and A. Tripathi, “Shining x-rays on asymptotically safe quantum gravity,” JCAP, vol. 2021, 2021.
I. Novikov and K. Thorne, “Astrophysics of black holes ed. by c. dewitt, b. dewitt,” Gordon Breach, New York, 1973.
F. H. Zuluaga and L. A. Sánchez, “Black holes in asymptotic safety with higher derivatives: accretion and stability analysis,” Chinese Physics C, vol. 45, 2021.
F. H. Zuluaga and L. A. Sánchez, “Accretion disk around a schwarzschild black hole in asymptotic safety,” Eur. Phys. J. C, vol. 81, 2021.
E.Chaverra and O. Sarbach, “Radial accretion flows on static spherically symmetric black holes,” Class, Quant. Grav, vol. 32, 2015.
E.Chaverra, M. Morales, and O. Sarbach, “Quasi-normal acoustic oscillations in the michel flow,” Phys. Rev. D, vol. 91, 2015.
E. Chaverra, P. Mach, and O. Sarbach, “Michel accretion of a polytropic fluid with adiabatic index 5=3: global flows versus homoclinic orbits,” Class, Quant. Grav, vol. 33, 2016.
A. Ahmed and M. Faizal, “Cyclic and heteroclinic flows near general static spherically symmetric black holes,” Eur. Phys. J. C, vol. 76, no. 280, 2016.
A. Ahmed, M. Azreg-Ainou, and S.Bahamonde, “Astrophysical flows near f(t) gravity black holes,” Eur. Phys. J. C, vol. 76, no. 269, 2016.
M. Farooq, A. Ahmed, and R.-J. Yang, “Accretion on high derivative asymptotically safe black holes,” Chinese Physics C, vol. 44, 2020.
J. Petterson, J. Silk, and J. Ostriker, “Variations on a spherically symmetrical accretion flow,” Mon. Not. R. Astron. Soc, vol. 191, p. 571, 1980.
T. Naskar, N. Chakravarty, J. K. Bhattacharjee, and A. K. Ray., “Acoustic perturbations on steady spherical accretion in schwarzschild geometry,” Phys. Review D, vol. 76, 2007.
D. Ananda, S. Bhattacharya, and T. Das, “Acoustic geometry through perturbation of mass accretion rate: radial flow in static spacetimes,” General Relativity and Gravitation, vol. 47, no. 96, 2015.
G. Abbas and A. Ditta, “Matter accretion onto a conformal gravity black hole,” The European Physical Journal C, vol. 80, no. 12, 2020.
A. Jawad and M. U. Shanzad, “Effects of thermal fluctuations on non-minimal regular magnetic black hole,” Eur. Phys. J. C, vol. 77, no. 515, 2017.
M. Hobson, G. Efstathiou, and A. Lasenby, “General relativity. an introduction for physicists,” Cambridge University Press, 2006.
T. Harko, Z. Kovács, and F. Lobo, “Thin accretion disks in stationary axisymmetric wormhole spacetimes,” Phys. Rev. D, vol. 79, 2009.
Z. Kovács and T. Harko, “Can accretion disk properties observationally distinguish black holes from naked singularities?,” Phys. Rev. D, vol. 82, 2010.
D. Pérez, G. Romero, and S. P. Bergliaffa, “Accretion disks around black holes in modified strong gravity,” Astronomy and Astrophysics, vol. 551, no. A4, 2013.
D. Pérez, F. L. Armengol, and G. Romero, “Accretion disks around black holes in scalar-tensor-vector gravity,” Phys. Rev. D, vol. 95, 2013.
D. Page and K. S. Thorne, “Disk-accretion onto a black hole. time-averaged structure of accretion disk,” AstroPhys. J, vol. 191, no. 499, 1974.
N. Shakura and R. Sunyaev, “Black holes in binary systems. observational appearance,” AA, vol. 24, no. 377, 1973.
P. Joshi, D. Malafarina, and R. Narayan, “Distinguishing black holes from naked singularities through their accretion disc properties,” Class. Quantum Gravity, vol. 31, 2014.
K. Falls, C. King, D. Litim, K. Nikolakopoulos, and C.Rahmede, “Asymptotic safety of quantum gravity beyond ricci scalars,” Phys. Rev. D, vol. 97, 2018.
J. Bardeen, W. Press, and S. Teukolsky, “Rotating black holes: locally nonrotating frames, energy extraction, and scalar synchrotron radiation,” Astrophys. J, vol. 178, no. 347, 1972.
J. Steiner, J. McClintock, J. Orosz, R. Remillard, C. Bailyn, M. Kolehmainen, and O. Straub, “The low-spin black hole in lmc x-3,” Astrophys. J, vol. 793, no. 2, 2014.
J. Orosz, J. Steiner, J. McClintock, M. Buxton, C. Bailyn, D. Steeghsa, A. Guberman, and M. Torres, “The mass of the black hole in lmc x-3,” Astrophys. J, vol. 794, no. 153, 2014.
G. Bhuvana, D. Radhika, V. Agrawal, S. Mandal, and A. Nandi, “Broad-band ’spectrotemporal’ features of extragalactic black hole binaries lmc x-1 and lmc x-3: an astrosat perspective,” M.N.R.A.S., vol. 501, no. 4, 2021.
J. Steiner, J. McClintock, R. Remillard, L. Gou, S. Yamada, and R. Narayan, “The constant inner-disk radius of lmc x-3: a basis for measuring black hole spin.,” Astrophys. J, vol. 718, no. 2, 2010.
O. Straub, M. Bursa, A. S¸adowski, J. Steiner, M. Abramowicz, W. Klu´zniak, J. Mc- Clintock, R. Narayan, and R. Remillard, “Testing slim-disk models on the thermal spectra of lmc x-3,” Astron. Astrophys, vol. 533, no. 2, 2011.
A. Held, R. Gold, and A. Eichhorn, “Asymptotic safety casts its shadow,” JCAP, vol. 6, no. 29, 2019.
J. Cembranos, A. de la Cruz-Dombriz, and P. J. Romero, “Kerr-newman black holes in f(r) theories,” I. J of Geometric Methods in Modern Phys, vol. 11, p. 588, 2011.
M. Guo and P. C. Li, “Innermost stable circular orbit and shadow of the 4d einstein– gauss–bonnet black hole,” Eur. Phys. J. C, vol. 80, p. 588, 2020.
A. Dasgupta, “Measuring quantum gravity,” Can. J. Phys, vol. 96, pp. 366–378, 2018.
F.Alfaro, H. Quevedo, and P. Sanchez, “Comparison of vacuum static quadrupolar metrics,” R. Soc. Op. Sci., vol. 5, 2018.
Orellana and et all, “Structure of neutron stars in r-squared gravity,” General Relativity and Gravitation, vol. 45, pp. 771–783, 2013.
F. L. López and G. E. Romero, “Neutron stars in scalar-tensor-vector gravity,” General Relativity and Gravitation, vol. 49, pp. 1–15, 2017.
T. Harko, Z. Kovács, and F. Lobo, “Electromagnetic signatures of thin accretion disks in wormhole geometries,” Phys. Rev. D, vol. 78, 2008.
D. Torres, “Accretion disc onto a static non-baryonic compact object,” Nucl. Phys. B, vol. 626, no. 377, 2002.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xi, 142 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias - Doctorado en Ciencias - Física
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83326/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83326/4/75108126.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/83326/3/75108126.2022.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
dcf4b62e00545e49a97029cd11ff9f06
4baa9ed7d97f0d47ae50620b722d0032
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089258306109440
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sánchez Duque, Luis Albertoccedb8bb62944749d906393257c76237600Zuluaga Giraldo, Fabián Humberto89d79944ea68efe57712535212103d202023-02-06T19:06:47Z2023-02-06T19:06:47Z2022-10-26https://repositorio.unal.edu.co/handle/unal/83326Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones a colorEsta tesis tuvo como objetivo identificar posibles efectos cuántico-gravitacionales al estudiar sistemas astrofísicos, en el contexto de un marco teórico estructurado idealizado para someter al escrutinio de la naturaleza el proceso de acreción (captura de materia por un objeto compacto central) por agujeros negros, de forma que éste ofrezca indicios de como construir caminos para validar la propuesta a teoría cuántica de la gravitación llamada Seguridad Asintótica (AS); también conocida como Gravedad Cuántica de Einstein (EQG). En adelante, en este trabajo, deberá entenderse por Seguridad Asintótica un programa en teoría cuántica de campos que tiene como objetivo explorar implicaciones del denominado grupo de renormalización funcional que gobierna la dependencia con la escala de energía de los parámetros de un modelo de interacciones fundamentales, igualmente referidos como constantes de acoplamiento. Para la gravedad, en el contexto de esta propuesta, es fundamental la existencia de puntos fijos no triviales tanto en el infra-rojo (IR) como en el ultra-violeta (UV), a los cuales deben converger un número finito de parámetros (constantes de Newton, cosmológica, etc) que caracterizan la interacción gravitacional, de forma a garantizar que la teoría sea renormalizable por métodos no perturbativos. En astrofísica, cuando la materia cae hacia un agujero negro siguiendo una trayectoria en forma de espiral se forma una estructura denominada disco de acreción. En la descripción de la dinámica gravitacional de estos discos juegan un papel fundamental los denominados coeficientes métricos del modelo de gravitacion; que informan sobre la curvatura del espacio-tiempo en la vecindad, en este caso, del agujero negro. La conjetura AS predice la modificación de esos coeficientes, dando lugar a las llamadas métricas AS mejoradas; modificaciones que describen efectos cuántico-gravitacionales que deberían generar cambios, potencialmente medibles, en la dinámica de estos discos. Ejemplo, las observaciones realizadas por el Event Horizon Telescope (EHT). Este instrumento fue diseñado para observar fenómenos que pueden ocurrir en la vecindad del horizonte, un radio del orden del radio de Schwarzschild. La medición de esos efectos permitiría confrontar la teoría con los datos observacionales, de tal manera que esta pueda ser descartada o seguir siendo considerada como una propuesta teórica viable. En esta tesis se estudia la dinámica de la acreción esféricamente simétrica hacia un agujero negro de Schwarzschild AS mejorado resolviendo las ecuaciones obtenidas usando la gravitacion a lá Einstein (campo metrico, tensor energia-momento, hidrodinamica, etc.), y recurriendo a la técnica de sistemas dinámicos vía formulación basada en un hamiltoniano propio para la física del sistema astrofísico. Un resultado notable que se obtuvo es que la acreción isotérmica de materia ultra-relativística es posible y que se da tanto en régimen subsónico como supersónico. Este resultado es opuesto al obtenido por otros investigadores x quienes concluyen que la acreción isotérmica ultra-relativística no es posible en su enfoque de seguridad asintótica con derivadas de orden superior. En el mismo marco de esta tesis se estudian los efectos sobre la estabilidad de la acreción. El analisis indica que ésta resulta poco alterada por los efectos cuántico-gravitacionales en comparación con la conocida estabilidad en GR. Un análisis similar se hizo para el estudio de efectos cuántico-gravitacionales sobre la acreción hacia agujero negro de AS mejorado de Schwarzschild-de Sitter, y para la geometría denominada Schwarzschild anti-de-Sitter. Adicionalmente, y por primera vez en el contexto de la hipótesis AS, se hace el estudio de los efectos cuántico-gravitacionales sobre las propiedades térmicas observables de la materia en acreción en forma de disco delgado hacia un agujero negro de Schwarzschild mejorado. Debido al fenómeno de anti-apantallamiento de la interacción gravitacional a energías planckianas, es de esperarse que el radio de la órbita interna más estable (ISCO) del disco de acreción sea mayor que en el caso relativista. Se encontró, por el contrario, que el efecto cuántico-gravitacional sobre el momento angular de las partículas en el disco juega un papel fundamental haciendo que la ISCO, de hecho, disminuya forzando que las propiedades térmicas del disco sean modificadas en comparación con la predicción de la GR: mayor flujo de energía, mayor temperatura, mayor luminosidad y mayor eficiencia de la acreción. En particular, se mostró que discos de acreción alrededor de agujeros negros que rotan muy lentamente, como la fuente astrofisca conocida como Black Hole Candidate (BHC) Large Magellanic Cloud (LMC) X–3, puedan considerarse como descritos, consistentemente, por la hipótesis AS. (Texto tomado de la fuente)This thesis aimed to identify possible quantum-gravitational effects by studying astro-physical systems, in the context of an idealized structured theoretical framework to leading the accretion process (capture of matter by the central compact object) by black holes, to the scrutiny of nature, so that it offers indications of how to build paths to validate theoretical proposal to quantum field theory of gravitation called Asymptotic Safety (AS); also known as Einstein Quantum Gravity (EQG). From now on, in this work, Asymptotic Safety should be understood as a program in quantum field theory that aims to explore the implications of the so-called functional renormalization group; that governs the dependency with the xi energy scale of a model parameters of fundamental interactions, also known as coupling constants. To gravity, in the context of this proposal, the existence of non- fixed points in both the infrared (IR) and the ultraviolet (UV) is fundamental, in which the constants (Newton, cosmological, etc) that characterize the fundamental interactions assume specific values towards which they trend to, in order to guarantee that the theoty is renormalizable by non-perturbative methods. In astrophysics, as matter falls towards a black hole, it follows a spiral path, forming a structure called an accretion disk. In the description of the gravitational dynamics of these disks, the so-called metric coefficients of the model of gravitation play a fundamental role; that tells about the curvature of space-time in the vicinity, in this case, of the black hole. The AS conjecture predicts that these coefficients are modified by way of describing quantumgravitational effects which will generate potentially measurable changes in the dynamics of these disks. Example, the observations made by the Event Horizon Telescope (EHT). This instrument was designed to observe phenomena that can occur in the vicinity of the horizon, a radius of the order of the horizon radius. The measurement of these effects would allow the theory to be confronted with the observational data, in such a way that the quantum gravity model can be discarded or continued to be considered as a viable theoretical proposal. In this thesis, the dynamics of spherically symmetric accretion towards a improved Schwarzschild black hole are studied by solving the equations obtained using Einsteinian gravitation (metric field, energy-momentum tensor, hydrodynamics, etc.), and using the Hamiltonian dynamical system via formulation based on a Hamiltonian suitable to describe the physics of the astrophysical system. A remarkable result was obtained in which the isothermal accretion of ultra relativistic matter is shown to be really possible, and that it occurs in both subsonic and supersonic regimes. Such a result is opposed to the one obtained in former researches that included higher order derivatives reaching to the conclusion that ultrarelativistic isothermal accretion of matter is not possible in their AS approach. In the same framework of this thesis, the effects on the stability of the accretion process are studied. Such analysis indicates that it is a little altered by quantum-gravitational effects as compared to the known stability in GR. A similar analysis was performed for the study of quantumgravitational effects on accretion towards improved Schwarzschild-de Sitter black holes, and to the so-called anti-de-Sitter geometry. Additionally, and for the first time in the context of the AS hypothesis, the study of the quantum-gravitational effects on the observable thermal properties of matter accreting in the form of a thin disk towards a Schwarzschild black hole is made. Although due to the anti-screaning phenomenon of the gravitational interaction, it is expected that the radius of the innermost stable circular orbit (ISCO) of the accretion disk is greater than in the relativistic case. Otherwise, it was found that the quantum-gravitational effect on the an- xii gular momentum of the particles in the disk plays a fundamental role driving the ISCO to decrease, forcing the thermal properties of the disk to be modified as compared to the GR prediction: higher energy flux, higher temperature, higher luminosity and higher accretion efficiency. In particular, it was shown that accretion disks around very slowly rotating black holes, such as the astrophysical source known as the Black Hole Candidate (BHC) Large Magellanic Cloud (LMC) X–3, can be considered as consistently described by the AS hypothesis.DoctoradoDoctor en Ciencias - FísicaGravitación cuánticaÁrea Curricular en Físicaxi, 142 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias - Doctorado en Ciencias - FísicaFacultad de CienciasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín530 - Física::539 - Física modernaAgujeros negros de KerrColapso gravitacionalTeoria cuanticaGravedadGravitación CuánticaSeguridad AsintóticaRelatividad GeneralAgujeros NegrosTipo Schwarzschildde Sitteranti de-SitterAcreciónPropiedades TérmicasQuantum GravityAsymptotic SafetyGeneral RelativityBlack HolesSchwarzschildAccretion, StabilityThermal propertiesCorrecciones a la acreción por agujeros negros en gravedad cuántica de EinsteinCorrections to the accretion onto black holes in Einstein quantum gravityTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDLaReferenciaG. ’t Hooft and M. Veltman, “An algorithm for the poles at dimension four in the dimensional regularization procedure,” Nuclear Physics B, vol. 62, p. 444–460, 1973.S. Deser and P. Nieuwenhuizen, “One-loop divergences of quantized einstein-maxwell fields,” Physical Review D, vol. 10, p. 2, 1974.S. Deser, H. Tsao, and P. Nieuwenhuizen, “One-loop divergences of the einstein-yangmills system,” Physical Review D, vol. 10, no. 10, p. 3337–3342, 1974.S. Deser, H. S. Tsao, and P. Nieuwenhuizen, “Nonrenormalizability of einstein-yangmills interactions at the one-loop level,” Physics Letters B, vol. 50, no. 4, p. 491–493, 1974.S. Weinberg, “Infrared photons and gravitons,” Physical Review, vol. 140, p. 2, 1965.R. Utiyama and S. Bryce, “Renormalization of a classical gravitational field interacting with quantized matter fields,” Journal of Mathematical Physics, vol. 3, p. 608, 1962.M. Reuter, “Nonperturbative evolution equation for quantum gravity,” Phys. Rev. D, vol. 57, 1998.S. W. Hawking and W. Israel, General Relativity, an Einstein Centenary Survey. Cambride University Press, 1979.S. de Haro, D. Dennis, G. ’t Hooft, and E. Verlinde, “Forty years of string theory reflecting on the foundations,” Foundations of Physics, vol. 43, 2013.J. Maldacena, A. Strominger, and E. Witten, “Black hole entropy in m-theory,” Journal of High Energy Physics, vol. 12, 1997.H. Ooguri, A. Strominger, and C. Vafa, “Black hole attractors and the topological string,” Phys. Review D, vol. 70, 2004.A. Strominger, “Black hole entropy from near-horizon microstates,” Journal of High Energy Physics, vol. 2, 1998.M. Guica, T. Hartman, W. Song, and A. Strominger, “The kerr/cft correspondence,” Phys. Review D, vol. 80, 2009.A. Castro, A. Maloney, and A. Strominger, “Hidden conformal symmetry of the kerr black hole,” Phys. Review D, vol. 82, 2010.B. Zwiebach, A First Course in String Theory. Cambridge University Press, 2004.J. Maldacena, “The illusion of gravity,” Scientific American, vol. 293, pp. 55–63, 2005.S. Hawking, “Information loss in black holes,” Phys. Review D, vol. 72, 2005.A.M.Polyakov, “Quantum geometry of bosonic strings,” Physics Letters B, vol. 103, no. 3, pp. 207–210, 1981.M. Green and J. Schwarz, “Anomaly cancellations in supersymmetric d = 10 gauge theory and superstring theory,” Physics Letters B, vol. 149, no. 1-3, 1984P. Candelas, G. Horowitz, A. Strominger, and E.Witten, “Vacuum configurations for superstrings,” Nucl. Phys.B, vol. 258, no. 46, pp. 46–74, 1985.N. Seiberg and E. Witten, “String theory and noncommutative geometry,” JHEP, vol. 9, no. 32, 1999.J. Polchinski, String Theory. Cambridge Monographs on Mathematical Physics (Vol 1,2). Cambridge University Press, 2005.B. Katrin, B. Melanie, and S. John, String theory and M-theory: A modern introduction. Cambridge University Press, 2007.J. Barrett and L. Crane, “A lorentzian signature model for quantum general relativity,” Classical and Quantum Gravity, vol. 17, pp. 3101–3118, 2000.C. Rovelli, Quantum Gravity. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2004.A. Ashtekar, “New variables for classical and quantum gravity,” Phys. Rev. Lett., vol. 57, 1986.A. Ashtekar, “New hamiltonian formulation of general relativity,” Phys. Rev. D, vol. 36, 1987.A. Ashtekar, J. Baez, A. Corichi, and K. Krasnov, “Quantum geometry and black hole entropy,” Physics Review Letters, vol. 80, no. 5, pp. 904–907, 1998.C. Rovelli, “Loop quantum gravity,” Living Rev. Relativ., vol. 1, no. 1, 1987.A. Perez, “Spin foam models for quantum gravity,” Class. Quantum Gravity, vol. 20, 2003.J. Baez, “An introduction to spin foam models of quantum gravity and bf theory,” Lecture Notes in Phyiscs, vol. 543, pp. 25–94, 2000.J. Ambjorn, A. Goerlich, J. Jurkiewicz, and R. Loll, “Nonperturbative lorentzian path integral for gravity,” Phys. Reports, vol. 519 (4-5), pp. 127–210, 2012.C. Rovelli, “Black hole entropy from loop quantum gravity,” Physics Review Letters, vol. 77, pp. 3288–3291, 2006.M. H. Ansari, “Generic degeneracy and entropy in loop quantum gravity,” Nucl. Phys. B, vol. 795, no. 3, pp. 635–644, 2008.M. H. Ansari, “Spectroscopy of a canonically quantized horizon,” Nucl. Phys. B, vol. 783, no. 3, pp. 179–212, 2007.C. Rovelli and F. Vidotto, “Planck stars,” International Journal of Modern Physics D., vol. 23, no. 12, 2014.P. Hořava, “Quantum gravity at a lifshitz point,” Phys. Rev. D, vol. 79, no. 8, 2009.P. Hořava, “Spectral dimension of the universe in quantum gravity at a lifshitz point,” Phys. Rev. Lett, vol. 102, 2009.C. Charmousis, G. Niz, A. Padilla, and P. Saffin, “Strong coupling in horava gravity,” Journal of High Energy Physics, vol. 08, no. 70, 2009.D. Blas, O. Pujolas, and S. Sibiryakov, “On the extra mode and inconsistency of horava gravity,” Journal of High Energy Physics, vol. 10, no. 29, 2009.E. Kiritsis and G. Kofinas, “Hořava–lifshitz cosmology,” Nucl. Phys. B, vol. 821,no. 467, 2009.K. Koyama and F. Arroja, “Pathological behaviour of the scalar graviton in hořavalifshitz gravity,” Journal of High Energy Physics, vol. 3, 2010.G. Cognola, R. Myrzakulov, L. Sebastiani, S. Vagnozzi, and S. Zerbini, “Covariant horava-like and mimetic horndeski gravity: cosmological solutions and perturbations,” Class. Quantum Gravity, vol. 33, no. 467, 2016.A. Wang, “Hořava gravity at a lifshitz point: A progress report,” International Journal of Modern Physics D, vol. 26, no. 7, 2017.R. Loll, J. Ambjørn, and J. Jurkiewicz, “The universe from scratch,” Physics reports, vol. 279-360, pp. 103–117, 2006.F. Markopoulou and L. Smolin, “Gauge fixing in causal dynamical triangulation,” Nucl.Phys. B, vol. 739, pp. 120–130, 2006.J. Ambjørn, J. Jurkiewicz, and R. Loll, “The self-organizing quantum universe,” Scientific America, pp. 42–49, 2008.J. Ambjørn, J. Jurkiewicz, and R. Loll, “The self-organizing quantum universe,” Int.J.Mod.Phys.D, vol. 17, pp. 2015–2020, 2009.J. Ambjørn and J. Jurkiewicz, “Four-dimensional simplicial quantum gravity,” Phys. Lett. B, vol. 278, no. 1-2, pp. 42–50, 1998.J. Ambjørn, J. Jurkiewicz, and R. Loll, “Emergence of a 4d world from causal quantum gravity,” Phys. Rev. Lett, 2004.L. Bombelli, J. Lee, D. Meyer, and R. D. Sorkin, “Space-time as a causal set,” Phys. Rev. Lett, vol. 59, no. 521, 1987.J. Myrheim, “Statistical geometry,” CERN pre print, vol. TH.2538, 1978.R. Yang, “Quantum gravity corrections to accretion onto a schwarzschild black hole,” Phys. Rev. D, vol. 92, 2015.L. D. Sosapanta, Efectos cuánticos gravitacionales sobre la estabilidad de la acreción hacia un agujero negro de Schwarzschild - Tesis de Maestría, Escuela de Física, Universidad Nacional de Colombia – Sede Medellín. 2018.M. Reuter and F. Saueressig, “Renormalization group flow of quantum gravity in the einstein-hilbert truncation,” Phys. Rev. D, vol. 65, 2002.D. Benedetti, P. Machado, and F. Saueressig, “Asymptotic safety in higher-derivative gravity,” Mod. Phys. Lett. A, vol. 24, 2009.M. Niedermaier and M. Reuter, “The asymptotic safety scenario in quantum gravity - an introduction,” Classical and Quantum Gravity, vol. 24, 2007.S. Weinberg, The Quantum Theory of Fields -Volume I: Foundations. Cambridge University Press, 1995.A. O. Barut and J. Krauss, “Nonperturbative quantum electrodynamics: The lamb shift,” Found of Phys, vol. 13, no. 189, p. 1344, 1983.P. A. M. Dirac, “The relativistic electron wave equation,” Europhysics, vol. 8, no. 1, 1977.I. Acikgoz, A. O. Barut, J. Krauss, and N. Ünal, “Self quantum electrodynamics without infinities. a new calculation of vacumm polarization,” Phys. Let A, vol. 198, no. 126, pp. 1344„ 1995.A. O. Barut and J. F. V. Huele, “Quantum electrodynamics based on self-energy: Lamb shift and spontaneous emission without field quantization,” Phys. Rev. A, vol. 32, p. 3187, 1985.A. Salam, “Divergent integrals in renormalizable field theories,” Physical Review, vol. 84, no. 3, p. 426–431, 1951.F. J. Dyson, “The radiation theories of tomonaga, schwinger, and feynman,” Physics Review, vol. 75, p. 486, 1949.M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory. Addison- Wesley Publishing Company, 1995.A. Salam, “Overlapping divergences and the s-matrix,” Physical Review, vol. 82, no. 2, p. 217–227, 1951.P. T. Matthews and A. Salam, “Renormalization,” Physical Review, vol. 94, no. 1, p. 185–191, 1954.N. N. Bogoliubow and O. Parasiuk, “Über die multiplikation der kausalfunktionen in der quantentheorie der felder,” Acta Mathematica, vol. 97, no. 0, p. 227–266, 1957.K. Hepp, “Proof of the bogoliubov-parasiuk theorem on renormalization,” Communications in Mathematical Physics, vol. 2, no. 1, p. 301–326, 1966.W. Zimmermann, “Convergence of bogoliubov’s method of renormalization in momentum space,” Communications in Mathematical Physics, vol. 15, no. 3, p. 208, 1969.S. Mandelstam, “Determination of the pion-nucleon scattering amplitude from dispersion relations and unitarity,” General Theory. Physical Review, vol. 112, no. 4, p. 1344–1360, 1958.A. Guijosa, Notas de Clases de Teoría Cuántica de Campos. Universidad Autónoma de México.M. Gell-Mann and F. E. Low, “Quantum electrodynamics at small distances,” Physical Review, vol. 95, no. 5, p. 1300–1312, 1954.E. C. Stückelberg and A. Petermann, “La normalization des constantes dans la theorie des quanta,” Helv Phys, vol. 26, pp. 499–520, 1953.L. P. Kadanoff, “Scaling laws for ising models near tc,” Physics Physique Fizika, vol. 2, pp. 263–272, 1963.K. Falls, Asymptotic Safety and Black Holes. Thesis Submitted for the degree of Doctor of Philosophy. University of Sussex, 2012.K. G. Wilson and M. E. Fisher, “Critical exponents in 3.99 dimensions,” Physical Review Letters, vol. 28, no. 4, p. 240–243, 1972.K. G. Wilson, “Feynman-graph expansion for critical exponents,” Physical Review Letters, vol. 28, no. 9, p. 548–551, 1972.G. Hooft and M. Veltman, “Regularization and renormalization of gauge fields,” Nuclear Physics B, vol. 44, no. 1, p. 189–213, 1972.C. G. Bollini and J. J. Giambiagi, “Lowest order “divergent” graphs in v-dimensional space,” Physics Letters B, vol. 40, no. 5, p. 566–568, 1972.K. G. Wilson, “Renormalization group and critical phenomena. i. renormalization group and the kadanoff scaling picture,” Phys. Rev B, vol. 4, pp. 3174–3184, 1971.K. Wilson and J. Kogut, “The renormalization group and the expansion,” Phys. Rept, vol. 12, pp. 75–200, 1974.K. G. Wilson, “The renormalization group: Critical phenomena and the kondo problem,” Reviews of Modern Physics, vol. 47, no. 4, p. 773–840, 1975.S. Weinberg, The Quantum Theory of Fields -Volume II: Modern Applications. Cambridge University Press, 1996.C. Wetterich, “Average action and the renormalization group equations,” Nuclear Physics B, vol. 352, pp. 529–584, 1991.J. Berges, N. Tetradis, and C. Wetterich, “Non-perturbative renormalization flow in quantum field theory and statistical physics,” Phys. Report, vol. 363, pp. 223–386, 2002.V. Mukhanov and S. Winitzki, An Introduction to Quantum Effects in Gravity. Cambridge University Press, 2007.C. Wetterich, “Exact evolution equation for the effective potential,” Phys. Letters B, vol. 301, pp. 90–94, 1993.D. A. R. Torres, Solución de Schwarzschild corregida por medio de Asymptotic Safety - Tesis de pregrado en Física - Universidad de los Andes. 2019.L. F. Abbot, “Introduction to the background field method,” Acta Phys. Pol. B, vol. 13 (CERN-TH-3113), pp. 33–50, 1981.V. N. Popov and L. Faddeev, “Feynman diagrams for the yang-mills field,” hysics Letters B, vol. 25, pp. 29–30, 1967.D. V. Vassilevich, “Heat-kernel expansion: user’s manual.,” JHEP, vol. 9, no. 32, 2003.S. W. Hawking and G. F. R. Ellis, The large scale strucrure of the space-time. Cambridge University Press, 1974.R. M. Wald, General Relativity. Chicago Press, 1974.C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation. Princeton University Press, 1977B. Koch and F. Saueressig, “Black holes within asymptotic safety,” Int. Journ. Mod. Phys. A., vol. 29, 2014.E. A. Larrañaga, Agujeros Negros Clásicos. AshCat Publishers, 2009.C. Gonzalez and B. Koch, “Improved reissner–nordström–(a)ds black hole in asymptotic safety,” International Journal of Modern Physics A, vol. 31, 2016.D. F. Litim, “Optimized renormalization group flows,” Phys. Rev. D, vol. 64, 2001.D. F. Litim, “Fixed points of quantum gravity,” Phys. Rev. Lett, vol. 92, 2004.B. Koch and I. Ramirez, “Exact renormalization group with optimal scale and its application to cosmology,” Class.Quant.Grav., vol. 28, 2011.C. Contreras, B. Koch, and P. Rioseco, “Black hole solution for scale-dependent gravitational couplings and the corresponding coupling flow,” Class.Quant.Grav., vol. 30, 2013.B. Koch and F. Saueressig, “Structural aspects of asymptotically safe black hole,” Class. Quant. Grav., vol. 31, 2013.Y.-F. Cai and D. Easson, “Black holes in an asymptotically safe gravity theory with higher derivatives,” JCAP, vol. 9, no. 2, 2010.A. Bonano, “Astrophysical implications of the asymptotic safety scenario in quantum gravity,” Proceedings of Science, vol. 112, no. 784, 2008.M. Reuter and H. Weyer, “On the possibility of quantum gravity effects at astrophysical scales,” International Journal of Modern Physics D, vol. 15, no. 12, pp. 2011–2028, 2006.M. Reuter and H. Weyer, “Quantum gravity at astrophysical distances?,” Phys.Rev.D, vol. 69, 2004.T. Padmanabhan, “Theoretical astrophysics-galaxies and cosmology vol iii,” Cambridge University Press, 2002.F. Combes, P. Boiss´e, A. Mazure, and A. Blanchard, “Galaxies and cosmology,” Springer, New York, 2002.M. Reuter and H. Weyer, “Renormalization group improved gravitational actions: A brans-dicke approach,” Journal of Cosmology and Astroparticle Physics JCAP, vol. 97, 2004.A. Eichhorn and A. Held, “Image features of spinning regular black holes based on a locality principle,” Eur. Phys. J. C., vol. 81, no. 933, 2021.Y. Zhang, M. Zhou, and C. Bambi, “Iron line spectroscopy of black holes in asymptotically safe gravity,” Eur. Phys. C, vol. 78, no. 316, 2018.T. Johannsen and D. Psaltis, “Testing the no-hair theorem with observations in the electromagnetic spectrum. iv. relativistically broadened iron lines,” Astrophys. J., vol. 773, no. 57, 2013.C. Bambi, “Testing the space-time geometry around black hole candidates with the analysis of the broad k����� iron line,” Phys. Rev. D, vol. 87, 2013.C. Bambi, A. Cardenas-Avendano, T. Dauser, J. Garcia, and S. Nampalliwar, “Testing the kerr black hole hypothesis using x-ray reflection spectroscopy,” Astrophys. J., 2017.C. Bambi, “Astrophysical black holes: A compact pedagogical review,” Annalen der Physik, vol. 530, 2018.B. Zhou, A. B. Abdikamalov, D. Ayzenberg, C. Bambi, S. Nampalliwar, and A. Tripathi, “Shining x-rays on asymptotically safe quantum gravity,” JCAP, vol. 2021, 2021.I. Novikov and K. Thorne, “Astrophysics of black holes ed. by c. dewitt, b. dewitt,” Gordon Breach, New York, 1973.F. H. Zuluaga and L. A. Sánchez, “Black holes in asymptotic safety with higher derivatives: accretion and stability analysis,” Chinese Physics C, vol. 45, 2021.F. H. Zuluaga and L. A. Sánchez, “Accretion disk around a schwarzschild black hole in asymptotic safety,” Eur. Phys. J. C, vol. 81, 2021.E.Chaverra and O. Sarbach, “Radial accretion flows on static spherically symmetric black holes,” Class, Quant. Grav, vol. 32, 2015.E.Chaverra, M. Morales, and O. Sarbach, “Quasi-normal acoustic oscillations in the michel flow,” Phys. Rev. D, vol. 91, 2015.E. Chaverra, P. Mach, and O. Sarbach, “Michel accretion of a polytropic fluid with adiabatic index 5=3: global flows versus homoclinic orbits,” Class, Quant. Grav, vol. 33, 2016.A. Ahmed and M. Faizal, “Cyclic and heteroclinic flows near general static spherically symmetric black holes,” Eur. Phys. J. C, vol. 76, no. 280, 2016.A. Ahmed, M. Azreg-Ainou, and S.Bahamonde, “Astrophysical flows near f(t) gravity black holes,” Eur. Phys. J. C, vol. 76, no. 269, 2016.M. Farooq, A. Ahmed, and R.-J. Yang, “Accretion on high derivative asymptotically safe black holes,” Chinese Physics C, vol. 44, 2020.J. Petterson, J. Silk, and J. Ostriker, “Variations on a spherically symmetrical accretion flow,” Mon. Not. R. Astron. Soc, vol. 191, p. 571, 1980.T. Naskar, N. Chakravarty, J. K. Bhattacharjee, and A. K. Ray., “Acoustic perturbations on steady spherical accretion in schwarzschild geometry,” Phys. Review D, vol. 76, 2007.D. Ananda, S. Bhattacharya, and T. Das, “Acoustic geometry through perturbation of mass accretion rate: radial flow in static spacetimes,” General Relativity and Gravitation, vol. 47, no. 96, 2015.G. Abbas and A. Ditta, “Matter accretion onto a conformal gravity black hole,” The European Physical Journal C, vol. 80, no. 12, 2020.A. Jawad and M. U. Shanzad, “Effects of thermal fluctuations on non-minimal regular magnetic black hole,” Eur. Phys. J. C, vol. 77, no. 515, 2017.M. Hobson, G. Efstathiou, and A. Lasenby, “General relativity. an introduction for physicists,” Cambridge University Press, 2006.T. Harko, Z. Kovács, and F. Lobo, “Thin accretion disks in stationary axisymmetric wormhole spacetimes,” Phys. Rev. D, vol. 79, 2009.Z. Kovács and T. Harko, “Can accretion disk properties observationally distinguish black holes from naked singularities?,” Phys. Rev. D, vol. 82, 2010.D. Pérez, G. Romero, and S. P. Bergliaffa, “Accretion disks around black holes in modified strong gravity,” Astronomy and Astrophysics, vol. 551, no. A4, 2013.D. Pérez, F. L. Armengol, and G. Romero, “Accretion disks around black holes in scalar-tensor-vector gravity,” Phys. Rev. D, vol. 95, 2013.D. Page and K. S. Thorne, “Disk-accretion onto a black hole. time-averaged structure of accretion disk,” AstroPhys. J, vol. 191, no. 499, 1974.N. Shakura and R. Sunyaev, “Black holes in binary systems. observational appearance,” AA, vol. 24, no. 377, 1973.P. Joshi, D. Malafarina, and R. Narayan, “Distinguishing black holes from naked singularities through their accretion disc properties,” Class. Quantum Gravity, vol. 31, 2014.K. Falls, C. King, D. Litim, K. Nikolakopoulos, and C.Rahmede, “Asymptotic safety of quantum gravity beyond ricci scalars,” Phys. Rev. D, vol. 97, 2018.J. Bardeen, W. Press, and S. Teukolsky, “Rotating black holes: locally nonrotating frames, energy extraction, and scalar synchrotron radiation,” Astrophys. J, vol. 178, no. 347, 1972.J. Steiner, J. McClintock, J. Orosz, R. Remillard, C. Bailyn, M. Kolehmainen, and O. Straub, “The low-spin black hole in lmc x-3,” Astrophys. J, vol. 793, no. 2, 2014.J. Orosz, J. Steiner, J. McClintock, M. Buxton, C. Bailyn, D. Steeghsa, A. Guberman, and M. Torres, “The mass of the black hole in lmc x-3,” Astrophys. J, vol. 794, no. 153, 2014.G. Bhuvana, D. Radhika, V. Agrawal, S. Mandal, and A. Nandi, “Broad-band ’spectrotemporal’ features of extragalactic black hole binaries lmc x-1 and lmc x-3: an astrosat perspective,” M.N.R.A.S., vol. 501, no. 4, 2021.J. Steiner, J. McClintock, R. Remillard, L. Gou, S. Yamada, and R. Narayan, “The constant inner-disk radius of lmc x-3: a basis for measuring black hole spin.,” Astrophys. J, vol. 718, no. 2, 2010.O. Straub, M. Bursa, A. S¸adowski, J. Steiner, M. Abramowicz, W. Klu´zniak, J. Mc- Clintock, R. Narayan, and R. Remillard, “Testing slim-disk models on the thermal spectra of lmc x-3,” Astron. Astrophys, vol. 533, no. 2, 2011.A. Held, R. Gold, and A. Eichhorn, “Asymptotic safety casts its shadow,” JCAP, vol. 6, no. 29, 2019.J. Cembranos, A. de la Cruz-Dombriz, and P. J. Romero, “Kerr-newman black holes in f(r) theories,” I. J of Geometric Methods in Modern Phys, vol. 11, p. 588, 2011.M. Guo and P. C. Li, “Innermost stable circular orbit and shadow of the 4d einstein– gauss–bonnet black hole,” Eur. Phys. J. C, vol. 80, p. 588, 2020.A. Dasgupta, “Measuring quantum gravity,” Can. J. Phys, vol. 96, pp. 366–378, 2018.F.Alfaro, H. Quevedo, and P. Sanchez, “Comparison of vacuum static quadrupolar metrics,” R. Soc. Op. Sci., vol. 5, 2018.Orellana and et all, “Structure of neutron stars in r-squared gravity,” General Relativity and Gravitation, vol. 45, pp. 771–783, 2013.F. L. López and G. E. Romero, “Neutron stars in scalar-tensor-vector gravity,” General Relativity and Gravitation, vol. 49, pp. 1–15, 2017.T. Harko, Z. Kovács, and F. Lobo, “Electromagnetic signatures of thin accretion disks in wormhole geometries,” Phys. Rev. D, vol. 78, 2008.D. Torres, “Accretion disc onto a static non-baryonic compact object,” Nucl. Phys. B, vol. 626, no. 377, 2002.EstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83326/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL75108126.2022.pdf75108126.2022.pdfTesis de Doctorado en Ciencias - Físicaapplication/pdf1347101https://repositorio.unal.edu.co/bitstream/unal/83326/4/75108126.2022.pdfdcf4b62e00545e49a97029cd11ff9f06MD54THUMBNAIL75108126.2022.pdf.jpg75108126.2022.pdf.jpgGenerated Thumbnailimage/jpeg4206https://repositorio.unal.edu.co/bitstream/unal/83326/3/75108126.2022.pdf.jpg4baa9ed7d97f0d47ae50620b722d0032MD53unal/83326oai:repositorio.unal.edu.co:unal/833262023-08-29 14:03:32.049Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=