Desarrollo de arquitecturas de control en sistemas satelitales multiagente para servicios de observación terrestre
ilustraciones, fotografías, graficas, mapas
- Autores:
-
Rodriguez Pirateque, German Wedge
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/81455
- Palabra clave:
- 520 - Astronomía y ciencias afines::522 - Técnicas, procedimientos, aparatos, equipos, materiales
SATELITES ARTIFICIALES
Artificial satellites
Consenso
Cooperación
Constelación
Cooperación de Satélites
Control en Red
Cubesat
Constellation
Pointing accuracy
Precisión de apuntamiento
Cluster
Consensus
Cooperation
New Space
Satellite Consensus
Network Control
Pointing Precision
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_7d021961c31f2009e1157062d168895a |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/81455 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Desarrollo de arquitecturas de control en sistemas satelitales multiagente para servicios de observación terrestre |
dc.title.translated.eng.fl_str_mv |
Development of control architectures in multi-agent satellite systems for Earth observation services |
title |
Desarrollo de arquitecturas de control en sistemas satelitales multiagente para servicios de observación terrestre |
spellingShingle |
Desarrollo de arquitecturas de control en sistemas satelitales multiagente para servicios de observación terrestre 520 - Astronomía y ciencias afines::522 - Técnicas, procedimientos, aparatos, equipos, materiales SATELITES ARTIFICIALES Artificial satellites Consenso Cooperación Constelación Cooperación de Satélites Control en Red Cubesat Constellation Pointing accuracy Precisión de apuntamiento Cluster Consensus Cooperation New Space Satellite Consensus Network Control Pointing Precision |
title_short |
Desarrollo de arquitecturas de control en sistemas satelitales multiagente para servicios de observación terrestre |
title_full |
Desarrollo de arquitecturas de control en sistemas satelitales multiagente para servicios de observación terrestre |
title_fullStr |
Desarrollo de arquitecturas de control en sistemas satelitales multiagente para servicios de observación terrestre |
title_full_unstemmed |
Desarrollo de arquitecturas de control en sistemas satelitales multiagente para servicios de observación terrestre |
title_sort |
Desarrollo de arquitecturas de control en sistemas satelitales multiagente para servicios de observación terrestre |
dc.creator.fl_str_mv |
Rodriguez Pirateque, German Wedge |
dc.contributor.advisor.none.fl_str_mv |
Sofrony Esmeral, Jorge |
dc.contributor.author.none.fl_str_mv |
Rodriguez Pirateque, German Wedge |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación y Desarrollo Aeroespacial (GIDA) Grupo de Investigación en Electrónica y Tecnologías para la Defensa (TESDA) |
dc.subject.ddc.spa.fl_str_mv |
520 - Astronomía y ciencias afines::522 - Técnicas, procedimientos, aparatos, equipos, materiales |
topic |
520 - Astronomía y ciencias afines::522 - Técnicas, procedimientos, aparatos, equipos, materiales SATELITES ARTIFICIALES Artificial satellites Consenso Cooperación Constelación Cooperación de Satélites Control en Red Cubesat Constellation Pointing accuracy Precisión de apuntamiento Cluster Consensus Cooperation New Space Satellite Consensus Network Control Pointing Precision |
dc.subject.lemb.spa.fl_str_mv |
SATELITES ARTIFICIALES |
dc.subject.lemb.eng.fl_str_mv |
Artificial satellites |
dc.subject.proposal.spa.fl_str_mv |
Consenso Cooperación Constelación Cooperación de Satélites Control en Red |
dc.subject.proposal.eng.fl_str_mv |
Cubesat Constellation Pointing accuracy Precisión de apuntamiento Cluster Consensus Cooperation New Space Satellite Consensus Network Control Pointing Precision |
description |
ilustraciones, fotografías, graficas, mapas |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-04-18T15:37:52Z |
dc.date.available.none.fl_str_mv |
2022-04-18T15:37:52Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/81455 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/81455 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
M. F. Abbod, D. A. Linkens, M. Mahfouf, and G. Dounias. Survey on the use of smart and adaptive engineering systems in medicine. Artificial Intelligence in Medicine, 26(3):179–209, 2002. M. Abbott. The Role of Small Satellites in NASA and NOAA Earth Observation Programs. 2000. Agencia Espacial Mexicana. Introducción a los Sistemas Espaciales. pages 1–54, Mexico, 2013. Secretaría de comunicaciones y trasportes. K. Ahmadi Dastgerdi, F. Pazooki, and J. Roshanian. Model Reference Adaptive Control (MRAC) of a Small Satellite in the Presence of Parameters Uncertainties. Scientia Iranica, 0(0):0–0, 2020. U. Ahsun and D. W. Miller. Dynamics and control of electromagnetic satellite formations. PhD thesis, 2007. G. Allende-Alba, O. Montenbruck, J. S. Ardaens, M. Wermuth, and U. Hugentobler. Estimating maneuvers for precise relative orbit determination using GPS. Advances in Space Research, 59(1):45–62, 2017. J. Alvarez and B. Walls. Constellations , Clusters , and Communication Technology : Expanding Small Satellite Access to Space. 2016 M. Alvarez Reyna, J. Pucheta, and J. Fraire. Determinación precisa de posición y orientación relativa en satélites de arquitectura segmentada. Ajea, (4):4–6, 2019 C. Araguz, E. Bou-Balust, and E. Alarcón. Applying autonomy to distributed satellite systems: Trends, challenges, and future prospects. Systems Engineering, 21(5):401–416, 2018 ARMY. United States Army Futures Command, 2020 K. J. Astrom and T. HÄgglund. Advanced PID control, volume 26. 2006 K. J. Astrom and L. Rundqwist. Integrator windup and how to avoid it. pages 1693–1698, 1989 K. J. Astrom and B. Wittenmark. Adaptive Control. Lund Institute of Technology, Mineola, New York, dover publ edition, 1995 S. Bandyopadhyay, G. P. Subramanian, R. Foust, D. Morgan, S.-J. Chung, and F. Hadaegh. A Review of Impending Small Satellite Formation Flying Missions. 53rd AIAA Aerospace Sciences Meeting, (January):1–17, 2015 X. C. Baolin Wu. Satellite Formation Keeping Using Robust Constrained Model Predictive Control. pages 13–18, 2005 A. A. Barakabitze, A. Ahmad, R. Mijumbi, and A. Hines. 5G network slicing using SDN and NFV: A survey of taxonomy, architectures and future challenges. Computer Networks, 167, 2020 C. Barbu, R. Reginatto, A. R. Teel, and L. Zaccarian. Anti-windup for exponentially unstable linear systems with inputs limited in magnitude and rate. Proceedings of the American Control Conference, 2(June):1230–1234, 2000 F. Beer, R. Johnston, and P. Cornwell. Mecánica Vectorial Para Ingenieros ,Dinamica. 2010 G. Belascuen and N. Aguilar. Design, Modeling and Control of a Reaction Wheel Balanced Inverted Pendulum. 2018 IEEE Biennial Congress of Argentina, ARGENCON 2018, (June 2018), 2019 N. Bellini. Magnetic Actuators for Nanosatellite Attitude Control. Technical report, Universita’ Di Bologna Scuola, 2014 G. Bianchini, A. Garulli, and A. Giannitrapani. A class of globally stabilizing feedback controllers for the orbital rendezvous problem. International journal of robust and nonlinear control, 2017 E. Blasch, K. Pham, G. Chen, G. Wang, C. Li, X. Tian, and D. Shen. Distributed QOS Awareness in satellite communication network with optimal routing ( Q u ASOR ). IEEE, pages 1–11, 2014 J. Boada, C. Prieur, S. Tarbouriech, C. Pittet, and C. Charbonnel. Multi-saturation anti-windup structure for satellite control. Proceedings of the 2010 American Control Conference, ACC 2010, (1):5979–5984, 2010 J. Boada, C. Prieur, S. Tarbouriech, C. Pittet, and C. Charbonnel. Anti-windup design for satellite control with microthrusters. AIAA Guidance, Navigation, and Control Conference and Exhibit, (August), 2018 V. Bohlouri, Z. Khodamoradi, S. Hamid, and J. Naini. Spacecraft attitude control using model - based disturbance feedback control strategy. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 9, 2018 M. Brambilla, E. Ferrante, and M. Birattari. Swarm robotics : A review from the swarm engineering perspective. In IRIDIA – Technical Report Series ISSN, volume 7, pages 1–41. 2012 A. Braukhane, M. Arza, M. Bacher, M. Calaprice, H. Fiedler, V. Koehne, H. R. McGuire, and J. J. Rivera. FormSat, a scalable formation flying communication satellite system. IEEE Aerospace Conference Proceedings, (1), 2010 S. C. Burleigh, T. De Cola, S. Morosi, S. Jayousi, E. Cianca, and C. Fuchs. From Connectivity to Advanced Internet Services: A Comprehensive Review of Small Satellites Communications and Networks. Wireless Communications and Mobile Computing, 2019(May), 2019 T. F. Burns and H. Flashner. Adaptive Control Applied to Momentum Unloading Using the Low Earth Orbital Environment. Journal of Guidance, Control, and Dynamics, 15(2), 1992 P. J. Camillo and F. L. Markley. Orbit-averaged behavior of magnetic control laws for momentum unloading. Journal of Guidance, Control, and Dynamics, 3(6):563–568, 1980 P. Campo and M. Morari. Robust Control of Processes Subject to Saturation Nonlinearitues. Computers chem. Engng., 14(4/5):343–358, 1990 Y. Y. Cao, Z. Lin, and D. G. Ward. An antiwindup approach to enlarging domain of attraction for linear systems subject to actuator saturation. IEEE Transactions on Automatic Control, 47(1):140–145, 2002 J. Carnahan. CubeSat Design Specification Rev13. The CubeSat Program, Cal Poly SLO 4, 2014 M. Casasco, G. Saavedra Criado, S.Weikert, J. Eggert, M. Hirth, T. Ott, and H. Su. Pointing error budgeting for high pointing accuracy mission using the pointing error engineering tool. AIAA Guidance, Navigation, and Control (GNC) Conference, pages 1–21, 2013 M. Casasco, S. Salehi, S. Weikert, J. Eggert, M. Hirth, H. Su, and T. Ott. Pointing Error Engineering Framework. Technical Report May, European Space Agency, Paris, France, 2014 S. Castaño. Control I+PD, 2015 Y. Castellanos and G. W. Rodriguez-Pirateque. UAV systems for multipurpose heterogeneous networks : a review of design , development and performance. Aeronautics and Aerospace Open Access Journal Review, 4(3):121–140, 2020 R. Cepeda. Sistema De Control Robusto, Basado En Cuaterniones Para Un Satélite De Órbita Ba, 2010 S. Chávez. Diseño Conceptual de un Simulador de Navegación Aeroespacial y Prototipo Inicial. Technical report, Instituto Nacional de Astrofísica, Óptica y Electrónica, 2012 X. Chen, H. Sun, and J. Zhang. Reaction-wheel momentum dumping by hybrid control of magnetorquers and thrusters. AIAA Guidance, Navigation, and Control Conference, (August 2010), 2010 Z. Chen and Y. Zeng. A Swarm Intelligence Networking Framework for Small Satellite Systems. Communications and Network, 5(September):171–175, 2013 S. Cheng, H. Dong, L. Yu, D. Zhang, and J. Ji. Consensus of Second-order Multi-agent Systems with Directed Networks Using Relative Position Measurements Only. International Journal of Control, Automation and Systems, 17(1):85–93, 2019 S.-J. Chung, U. Ahsun, and J.-J. E. Slotine. Application of Synchronization to Formation Flying Spacecraft: Lagrangian Approach. Journal of Guidance, Control, and Dynamics, 32(2):512–526, 2009 E. Cortes-G, D. Mendoza, and G. W. Rodriguez Pirateque. Design and construction of test benches for small scale aerospace systems. IEEE Andescon, Andescon 2020, pages 52–57, 2020 E. D. Cortés García. Experimentación del control de actitud en un prototipo de CubeSat con ruedas de reacción, 2019 W. Dandan, Z. Qianghui, and Z. H. U. Wei. Adaptive Event-Based Consensus of Multi-Agent Systems with General Linear Dynamics . J Syst Sci Complex, 31:120–129, 2018 E. L. De Angelis, F. Giulietti, A. H. De Ruiter, and G. Avanzini. Spacecraft attitude control using magnetic and mechanical actuation. Journal of Guidance, Control, and Dynamics, 39(3):564–573, 2016 N. C. De Freitas, P. P. Filho, C. D. De Moura, and M. P. Silva. AgentGeo: Multi-Agent System of Satellite Images Mining. IEEE Latin America Transactions, 14(3):1343–1351, 2016 I. del Portillo, B. G. Cameron, and E. F. Crawley. A technical comparison of three low earth orbit satellite constellation systems to provide global broadband. Acta Astronautica, 159(December 2018):123–135, 2019 A. Dessmark, P. Fraigniaud, D. R. Kowalski, and A. Pelc. Deterministic rendezvous in graphs. Algorithmica (New York), 46(1):69–96, 2006 A. V. Doroshin. Attitude Dynamics , Control and Stabilization Of Spacecraft / Satellites. Technical report, 2018 R. Duarte. Modeling and Simulation of the ECOSat-III Attitude Determination and Control System. Technical Report April, Técnico LISBOA, Lisbon, Portugal, 2016 A. M. El-Naggar. DOP prediction over Egypt from SP3 file for long-term. Alexandria Engineering Journal, 51(3):221–228, 2012 A. A. El-samahy and M. A. Shamseldin. Brushless DC motor tracking control using selftuning fuzzy PID control and model reference adaptive control. Ain Shams Engineering Journal, 9(3):341–352, 2018 S. Engelen. Swarm Satellites: Design, Characteristics and Applications, volume 91. 2016 S. Engelen, E. Gill, and C. Verhoeven. On the reliability, availability, and throughput of satellite swarms. IEEE Transactions on Aerospace and Electronic Systems, 50(2):1027–1037, 2014 S. Engelen, E. K. A. Gill, and C. J. M. Verhoeven. Systems engineering challenges for satellite swarms. IEEE Aerospace Conference Proceedings, 2011 ESA-ESTEC. Stars sensors terminology and performance specification. European Cooperation for Sapce Standarization, 60(20C), 2008 C. H. Esparza and R. A. Núñez. Controlador adaptativo PD por modelo de referencia para una mesa vibratoria biaxial basada en el mecanismo biela-manivela. Informacion Tecnologica, 25(2):189–202, 2014 P. A. Ferguson. Distributed Estimation and Control Technologies for Formation Flying Spacecraft. pages 1–120, 2003 D. E. Forero Martinez. Diseño del Bloque de Estimación de un Sistema ADCS para un Pico Satélite de Estándar CubeSat Usando Filtro de Partículas como Técnica de Estimación. Technical report, Universidad Distrital Francisco José de Caldas, Bogotá D.C, 2015 A. Francisco, J. Somma, D. Dra, M. Lorena, T. Presentada, P. Optar, and A. L. Título. Cuaterniones y ángulos de Euler para describir rotaciones en R3, 2018 M. Fugmann and S. Klinkner. An Automated Constellation Design & Mission Analysis Tool for Finding the Cheapest Mission Architecture. SSC20-I-07 Mission Architecture, 34th Annual Small Satellite Conference, I(07):1–12, 2020 A. García Santiago. Diseño de un sistema de control de orientacion utilizando Ruedas de Reacción. Technical report, Universidad Nacional Autónoma de México, México, 2017 J. Garrido Jurado. Diseño de sistemas de control multivariable por desacoplo con controladores PID. PhD thesis, 2012 X. Ge, Q. L. Han, D. Ding, X. M. Zhang, and B. Ning. A survey on recent advances in distributed sampled-data cooperative control of multi-agent systems. Neurocomputing, 275:1684–1701, 2018 M. Gerla and K. Xu. Integrating Mobile Swarms with Large-scale Sensor Networks Using Satellites. IEEE, pages 2816–2820, 2004 F. Giulietti, A. A. Quarta, and P. Tortora. Optimal control laws for momentum-wheel desaturation using magnetorquers. Journal of Guidance, Control, and Dynamics, 29(6):1464–1468, 2006 J. M. Gomes Da Silva and S. Tarbouriech. Anti-windup design with guaranteed regions of stability for discrete-time linear systems. Proceedings of the American Control Conference, 50(1):106–111, 2005 J. M. Gomes da Silva, S. Tarbouriech, Jr., and G. Garcia. Local Stabilization of Linear Systems Under Amplitude and Rate Saturating Actuators. IEEE transactions on automatic control, 48(5):842–847, 2003 G. Goodwin, S. Graebe, and A. Salgado. Basic Control Systems Design. Eshbach’s Handbook of Engineering Fundamentals, Fifth Edition, pages 760–801, 2000 G. C. Goodwin, S. F. Graebe, and M. E. Salgado. Control System Design. Prentice Hall, Valparaiso, Chile, 2000 K. Gordon. A flexible attitude control system for three-axis stabilized nanosatellites. Berlin, 2018 F. Graf, T. Ott, J. P. Lejault, and W. Fichter. Precision pointing estimator design for minimum absolute, window- and stability-time errors, volume 19. IFAC, 2013 M. Grasso, A. Renga, G. Fasano, M. D. Graziano, M. Grassi, and A. Moccia. Design of an endto- end demonstration mission of a Formation-Flying Synthetic Aperture Radar (FF-SAR) based on microsatellites. Advances in Space Research, 2020 A. Guiggiani, I. Kolmanovsky, P. Patrinos, and A. Bemporad. Constrained Model Predictive Control of spacecraft attitude with reaction wheels desaturation. 2015 European Control Conference, ECC 2015, 0(1):1382–1387, 2015 M. M. Gulzar, S. T. H. Rizvi, M. Y. Javed, U. Munir, and H. Asif. Multi-Agent Cooperative Control Consensus: A Comparative Review. Electronics, 7(2):22, 2018 C. Guo, C. Peng, J. Zhang, and D. Peng. A survey on networked control systems subject to limited network resources. 26th Chinese Control and Decision Conference, CCDC 2014, (1):4958–4965, 2014 J. Guo, G. Tao, and Y. Liu. A multivariable MRAC scheme with application to a nonlinear aircraft model. Automatica, 47(4):804–812, 2011 P. Gurfil, J. Herscovitz, and M. Pariente. SSC12-VII-2 The SAMSON Project – Cluster Flight and Geolocation with Three Autonomous Nano-satellites. 2014 S. Guzman and E. Mojica-Nava. La teorıa evolutiva como solucion al control de formacion. Vision Electronica, 9(1):1–5, 2015 C. D. Hall. Spacecraft Attitude Dynamics and Control (AE4313). 2000 Z. M. Han, Z. Y. Lin, M. Y. Fu, and Z. Y. Chen. Distributed coordination in multi-agent systems: a graph Laplacian perspective. Frontiers of Information Technology and Electronic Engineering, 16(6):429–448, 2015 R. Hanus. A new technique for preventing control windup. Journal A, 21(1):15–20, 1980 J. Hespanha, P. Naghshtabrizi, and Y. Xu. A Survey of Recent Results in Networked Control Systems. Proceedings of the IEEE, 95(1):138–162, 2007 M. Hirth, H. Su, T. Ott, M. Casasco, and S. Salehi. The pointing error engineering tool (PEET): from prototype to release version. Technical Report March, European Space Agency 29, Paris, France, 2016 Q. Hu, X. Shao, and L. Guo. Adaptive fault-Tolerant attitude tracking control of spacecraft with prescribed performance. IEEE/ASME Transactions on Mechatronics, 23(1):331–341, 2018 Q. Hu, Y. Shi, and X. Shao. Adaptive fault-tolerant attitude control for satellite reorientation under input saturation. Aerospace Science and Technology, 78:171–182, 2018 Z. Ismail and R. Varatharajoo. A study of reaction wheel configurations for a 3-axis satellite attitude control, 2010 D. Ivanov, U. Monakhova, and M. Ovchinnikov. Nanosatellites swarm deployment using decentralized differential drag-based control with communicational constraints. Acta Astronautica, 159(October 2018):646–657, 2019 D. Izzo and L. Pettazzi. Autonomous and Distributed Motion Planning for Satellite Swarm. Journal of Guidance, Control, and Dynamics, 30(2):449–459, 2007 A. Jahn. Resource management techniques applied to satellite communications networks. pages 1–8, 1998 C. D. Johnson. Nuevos Actores Nuevos Actores. Denver, Colorado, secure wor edition, 2019 P. Kapasouris. Design for performance enhancement in feedback control systems with multiple saturating nonlinearities, 1988 J. T. King, J. Kolbeck, J. S. Kang, M. Sanders, and M. Keidar. Performance analysis of nano-sat scale μCAT electric propulsion for 3U CubeSat attitude control. Acta Astronautica, 178(October 2020):722–732, 2021 S. Knorn, Z. Chen, and R. H. Middleton. Overview: Collective control of multiagent systems. IEEE Transactions on Control of Network Systems, 3(4):334–347, 2015 A. W. Koenig and S. D’Amico. Robust and Safe N-Spacecraft Swarming in Perturbed Near- Circular Orbits. Journal of Guidance, Control, and Dynamics, 41(8):1643–1662, 2018 E. M. C. Kong, D. W. Kwon, S. A. Schweighart, L. M. Elias, R. J. Sedwick, D. W. Miller, and T.-s. Case. Electromagnetic Formation Flight for Multisatellite Arrays. 41(4), 2004 J. R. Kopacz, R. Herschitz, and J. Roney. Small satellites an overview and assessment. Acta Astronautica, 170(January):93–105, 2020 M. V. Kothare, P. J. Campo, M. Morari, and C. N. Nett. A unified framework for the study of anti-windup designs. Automatica, 30(12):1869–1883, 1994 G. Krieger, M. Zink, M. Bachmann, B. Bräutigam, D. Schulze, M. Martone, P. Rizzoli, U. Steinbrecher, J. Walter Antony, F. De Zan, I. Hajnsek, K. Papathanassiou, F. Kugler, M. Rodriguez Cassola, M. Younis, S. Baumgartner, P. López-Dekker, P. Prats, and A. Moreira. TanDEM-X: A radar interferometer with two formation-flying satellites. Acta Astronautica, 89:83–98, 2013 R. Kristiansen, P. J. Nicklasson, and J. T. Gravdahl. Formation modelling and 6DOF spacecraft coordination control. Proceedings of the American Control Conference, pages 4690–4696, 2007 S. Kumar, D. Sahay, S. R. Hegde, S. Sandya, A. K. Jha, and T. C. Mahalingesh. Design and development of 3-axis reaction wheel for STUDSAT-2. IEEE Aerospace Conference Proceedings, 2015-June(Di):1–13, 2015 S. Kumar, D. Sahay, S. R. Hegde, S. Sandya, A. K. Jha, and T. C. Mahalingesh. Design and development of 3-axis reaction wheel for STUDSAT-2. IEEE Aerospace Conference Proceedings, 2015-June(Di):1–13, 2015 U. Kvell, M. Puusepp, F. Kaminski, J. E. Past, K. Palmer, T. A. Grönland, and M. Noorma. Nanosatelliitide orbiidi muutmine mikroelektromehaaniliste külmgaasi tõukemootoritega. Proceedings of the Estonian Academy of Sciences, 63(2S):279–285, 2014 E. Lansard, E. Frayssinhes, and J. L. Palmade. Global design of satellite constellations: A multicriteria performance comparison of classical walker patterns and new design patterns. Acta Astronautica, 42(9):555–564, 1998 W. Larson. Applied Space Systems Engineering. Space tech edition, 2009 W. J. Larson and J. R. Wertz. Space mission analysis and design. United States of America, 1999 K. Lee and F. Malerba. Catch-up cycles and changes in industrial leadership:Windows of opportunity and responses of firms and countries in the evolution of sectoral systems. Research Policy, 46(2):338–351, 2017 T. H. Lee, J. H. Park, D. H. Ji, and H. Y. Jung. Leader-following consensus problem of heterogeneous multi-agent systems with nonlinear dynamics using fuzzy disturbance observer. Complexity, 19(4):20–31, 2014 A. Leeman. Prototype of a 4-Reaction Wheel System for Nanosatellites. 2019 K. Lemmer. Propulsion for CubeSats. Acta Astronautica, 134:231–243, 2017 Y. Leng, C. Yu, W. Zhang, Y. Zhang, X. He, and W. Zhou. Task-oriented hierarchical control architecture for swarm robotic system. Natural Computing, 16(4):579–596, 2017 F. L. Lewis, H. Zhang, K. Hengster-Movric, and A. Das. Cooperative Control of Multi-Agent Systems: Optimal and Adaptive Design Approaches. 2014 J. Li. Satellite Remote Sensing Technologies. Springer, Beijing, China, 2021 S. Li, J. Wang, X. Luo, and X. Guan. A new framework of consensus protocol design for complex multi-agent systems. Systems and Control Letters, 60(1):19–26, 2011 Y. Li, H. Fang, J. Chen, and C. Yu. Distributed Cooperative Fault Detection for Multiagent Systems: A Mixed HH2 Optimization Approach. IEEE Transactions on Industrial Electronics, 65(8):6468–6477, 2018 L. Lin and W. Yan-rong. An analytical method for satellite orbit prediction. Chinese Astronomy and Astrophysics, 30(1):68–74, 2006 G. P. Liu and S. Zhang. A Survey on Formation Control of Small Satellites. Proceedings of the IEEE, 106(3):440–457, 2018 M. W. Lo. Satellite-Constellation Design. Computing in science & engineering, 28(3):58–67, 1999 S. Luo, X. Xu, L. Liu, and G. Feng. Output consensus of heterogeneous linear multi-agent systems with communication, input and output time-delays. Journal of the Franklin Institute, 2020 A. F. Ma, N. N. Dominikovic, A. F. Ma, N. N. Dominikovic, A. F. Ma, and N. N. Dominikovic. Three-Axis Stabilized Earth Orbiting Spacecraft Simulator. Technical report, 2012 Y. Mao, L. Dou, H. Fang, and J. Chen. Flocking of multi-robot systems with connectivity maintenance on directed graphs. Journal of Systems Engineering and Electronics, 25(3):470–482, 2014 R. G. Marsden. Basic Steps in Designing a Space Mission. Technical Report July, ESA, 2002 M. Martin, P. Klupar, S. Kilberg, and J. Winter. TECHSAT 21 and Revolutionizing Space Missions Using Microsatellites. American Institute of Aeronautics and Astronautics, (Fig 1):1–10, 1997 R. Martínez-Díaz. Una Novedosa Plataforma Educacional Levitada Magnéticamente para la Determinación , Control y Simulación de la Actitud de Pequeños Satélites Una Novedosa Plataforma Educacional Levitada Magnéticamente para la Determinación , Control y Simulación de la Act. Technical report, Universidad del Valle, Santiago de Cali, 2020 A. Martinez Tellez. La Mecánica Cuántica, 2009 L. Mazal and P. Gurfil. Acta Astronautica Closed-loop distance-keeping for long-term satellite cluster flight. Acta Astronautica, 94(1):73–82, 2014 J. C. McDowell. The Low Earth Orbit Satellite Population and Impacts of the SpaceX Starlink Constellation. The Astrophysical Journal, 892(2):L36, 2020. M. Mesbahi and M. Egerstedt. Graph theoretic methods in multiagent networks. 2010 H. Min, Z. Guoqiang, and S. Junling. Navigation and coordination control system for formation flying satellites. 2010 International Conference on Computer Application and System Modeling (ECCASM), (Iccasm):95–99, 2010 Y. Mingqi, D. Xurong, and H. Min. Design and simulation for hybrid LEO communication and navigation constellation. CGNCC 2016 - 2016 IEEE Chinese Guidance, Navigation and Control Conference, pages 1665–1669, 2016 O. Montenbruck. Satellite Orbits Models - Models, Methods and Applications. Berlin Heidelberg, 2005 E. Mooij and M. Ellenbroek. Multi-Functional Guidance, Navigation, and Control Simulation Environment. AIAA Modeling and Simulation Technologies Conference and Exhibit, (August):1– 16, 2007 M. H. Moradi, S. Razini, and S. Mahdi Hosseinian. State of art of multiagent systems in power engineering: A review. Renewable and Sustainable Energy Reviews, 58:814–824, 2016 F. Morilla, J. Garrido, and F. Vázquez. Anti-windup coordination strategy for multivariable PID control. ETFA 2009 - 2009 IEEE Conference on Emerging Technologies and Factory Automation, 2009 A. Morin, J. B. Caussin, C. Eloy, and D. Bartolo. Collective motion with anticipation: Flocking, spinning, and swarming. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 91(1):1–5, 2015 R. M. Murray. Recent Research in Cooperative Control of Multivehicle Systems. 129(September 2007):571–583, 2016 B. J. Naasz, M. M. Berry, H. Y. Kim, and C. D. Hall. Integrated orbit and attitude control for a nanosatellite with power constraints. Advances in the Astronautical Sciences, 114(SUPPL.):1–18, 2003 S. Nag, C. K. Gatebe, and T. Hilker. Simulation of Multiangular Remote Sensing Products Using Small Satellite Formations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(2):638–653, 2017. J. Narkiewicz, M. Sochacki, and B. Zakrzewski. Generic Model of a Satellite Attitude Control System. International Journal of Aerospace Engineering, 2020, 2020 NASA. Systems Engineering Handbook. National Aeronautics and Space Administration, nasa cente edition, 2007 NASA. Small Spacecraft Technology State of the Art. Technical Report July, NASA Mission Design Division Staff, California, 2014 W. Navarro. Improving Attitude Determination and Control of Resource-constrained CubeSats Using Unscented Kalman Filtering, 2016 J. P. Nelson and M. J. Balas. Model reference adaptive control of spacecraft attitude for a PNP satellite with unknown time varying input/output delays. SysCon 2012 - 2012 IEEE International Systems Conference, Proceedings, 5(12):618–623, 2012 N. T. Nguyen. Model-reference adaptive control. Number 9783319563923. 2018 M. Nunes, T. Sorensen, and E. Pilger. Cooperative Control of Multiple Small Satellites using the Comprehensive Open-architecture Space Mission Operations System COOPERATIVE CONTROL OF MULTIPLE SMALL OPEN-ARCHITECTURE SPACE MISSION OPERATIONS. Technical Report June, 2014. N. A. Ofodile, M. C. Turner, and J. Sofrony. Alternative approach to anti-windup synthesis for double integrator systems. American Control Conference (ACC), pages 5473–5478, 2016 O. J. Oguntoyinbo. Pid Control of Brushless Dc Motor and Robot Trajectory Planning and Simulation With. 2009 K. K. Oh, M. C. Park, and H. S. Ahn. A survey of multi-agent formation control. Automatica, 53:424–440, 2015 R. Olfati and R. Murray. Consensus Problems in Networks of Agents with Switching Topology and Time-Delays. pages 1–29, 2003 B. R. Olfati-saber, J. A. Fax, and R. M. Murray. Consensus and Cooperation in Networked Multi-Agent Systems. Proceeding of the IEEE, 95(1):215–233, 2007. N. G. Orr, J. K. Eyer, B. P. Larouche, and R. E. Zee. Precision formation flight: The CanX-4 and CanX-5 dual nanosatellite mission. European Space Agency, (Special Publication) ESA SP, (660 SP), 2008 F. Paita. Novel consensus strategies applied to spacecraft formation flight. PhD thesis, Universitat Politècnica de Catalunya, 2017. J. N. Pelton and S. Madry. Handbook of Small Satellites. USA, 2020 C. Pinciroli, M. Birattari, E. Tuci, M. Dorigo, M. D. R. Zapatero, T. Vinko, and D. Izzo. Selforganizing and scalable shape formation for a swarm of pico satellites. Proceedings of the 2008 NASA/ESA Conference on Adaptive Hardware and Systems, AHS 2008, pages 57–61, 2008 C. Pittet, N. Despré, S. Tarbouriech, and C. Prieur. Nonlinear controller design for satellite reaction wheels unloading using anti-windup techniques. AIAA Guidance, Navigation and Control Conference and Exhibit, (August), 2008 D. Platt. A Propulsion System Tailored to Cubesat Application. Conference on Small Satellites 21st Annual AIAA/USU - SSC07-III-7, 44(0):1–9, 2007 A. Poghosyan and A. Golkar. CubeSat evolution : Analyzing CubeSat capabilities for conducting science missions. Progress in Aerospace Sciences, (September):1–25, 2016 G. A. Poveda. Propuesta de órbita geoestacionaria para el satélite artificial FACSAT01, 2017 B. Prescornitoiu and M. Morales. Estudio y diseño de constelaciones de nanosatélites en el marco de las comunicaciones IoT. PhD thesis, Universidad Carlos III de Madrid, 2019 J. Qin, Q. Ma, S. Member, Y. Shi, and S. Member. Recent Advances in Consensus of Multi-Agent Systems : A Brief Survey. IEEE Transactions on Industrial Electronics, 0046(c), 2016 L. Qin, X. He, and D. H. Zhou. A survey of fault diagnosis for swarm systems. Systems Science and Control Engineering, 2(1):13–23, 2014 Z. Qu, G. Zhang, H. Cao, and J. Xie. LEO Satellite Constellation for Internet of Things. IEEE Access, 5(c):18391–18401, 2017 M. Radenkovic and M. Tadi. Multi-agent adaptive consensus of networked systems on directed graphs. International Journal of Adaptive Control and Signal Processing, (May 2015):46–59, 2016 R. Radhakrishnan, W. W. Edmonson, F. Afghah, R. M. Rodriguez-Osorio, F. Pinto, and S. C. Burleigh. Survey of Inter-Satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View. 2016 R. Ramnath. Computation and Asymptotics, volume 53. 2012 C. Ramos and F. Suarez. Diseño de controladores basados en técnicas de control óptimo lqr+i y h2 para un prototipo del péndulo invertido sobre ruedas. Revista Politécnica, 8(15):45–51, 2012 W. Ren. Multi-vehicle consensus with a time-varying reference state. Systems and Control Letters, 56(7-8):474–483, 2007 W. Ren and R. W. Beard. Distributed Consensus in Multi-vehicle Cooperative Control -Theory and Applications. 2008 G.-W. Rodríguez-P, E. Cortes-G, and J. Sofrony. Sustainable design of low-cost modular test platforms as an entrepreneurship for space development in Colombia. 71th International Astronautical Congress (IAC), The CiberSpace Edition, (October):12–14, 2020 G. W. Rodriguez Pirateque, N. Arzola de la Peña, and E. D. Cortes Garcia. Sustainable Design of a NanoSatellite Structure TypeCubeSat as a Modular Platform for Tests. Ciencia y Poder Aéreo, 15(1):108–134, 2020 G. W. Rodriguez-Pirateque, P. J. C. Paez, and J. Sofrony. Satellite Systems for Colombian Space Development with Multi-domain Operations *. Ciencia y Poder Aéreo, 16:46–59, 2021 G. W. Rodriguez-Pirateque, J. Sofrony, and C. Salazar. Control de traslación y consenso de sistemas satelitales multiagente. 2021 G. W. Rodríguez Pirateque and J. Sofrony Esmeral. Revisión de sistemas de control en red como base para sistemas satelitales de pequeña escala. Ciencia y Poder Aéreo, 13(2):90–125, 2018 G.-W. Rodríguez-Pirateque, J. Sofrony Esmeral, E. D. Cortés García, and K. Rueda. Diseño de misión, síntesis de factores operacionales y representaciones del segmento espacial, caso FACSAT y EMFF. Ciencia y Poder Aéreo, 15(2):143–165, 2020 C. W. Roscoe, J. J.Westphal, and E. Mosleh. Overview and GNC design of the CubeSat Proximity Operations Demonstration (CPOD) mission. Acta Astronautica, (October 2017):0–1, 2018 C. Rosso and J. Vieira. Modelo teórico MIMO para un sistema de orientación de 3DOF de un satélite., 2010 M. Sabatini, F. Reali, and G. B. Palmerini. Autonomous behavioral strategy and optimal centralized guidance for on-orbit self assembly. IEEE Aerospace Conference Proceedings, (1), 2009 N. Saeed, A. Elzanaty, H. Almorad, H. Dahrouj, T. Y. Al-Naffouri, and M. S. Alouini. CubeSat Communications: Recent Advances and Future Challenges. IEEE Communications Surveys and Tutorials, 22(3):1839–1862, 2020 R. Sanchez and R. Alonso. Control de Vehículos Espaciales. Revista Iberoamericana de Automática e Informática Industrial, 2(January):6–24, 2010 J. Sanchez de la Vega. Phoenix Cubesat, 2020. P. Sarhadi, A. R. Noei, and A. Khosravi. Model reference adaptive autopilot with anti-windup compensator for an autonomous underwater vehicle: Design and hardware in the loop implementation results. Applied Ocean Research, 62:27–36, 2017 A. Sarlette, R. Sepulchre, and N. E. Leonard. Cooperative attitude synchronization in satellite swarms: A consensus approach. IFAC Proceedings Volumes (IFAC-PapersOnline), 17(PART 1):223–228, 2007 K. Scarritt. Nonlinear model reference adaptive control for satellite attitude tracking. AIAA Guidance, Navigation and Control Conference and Exhibit, (August), 2008 J. Scharnagl, F. Kempf, and K. Schilling. Combining distributed consensus with robust H -control for satellite formation flying. Electronics (Switzerland), 8(3):1–27, 2019 H. Schaub and J. Junkins. Analytical Mechanics of Space Systems, volume 2. AIAA Education Series, Virginia, 2009 K. Schilling. Networked Control of Cooperating Distributed Pico-Satellites. IFAC Proceedings Volumes, 47(3):7960–7964, 2014 K. Schilling. Perspectives for miniaturized, distributed, networked cooperating systems for space exploration. Robotics and Autonomous Systems, 90:118–124, 2017 K. Schilling. Networked Pico-Satellite Distributed System Control Final Report Summary - NETSAT (Networked Pico- Satellite Distributed System Control). Technical report, ZENTRUM FUR TELEMATIK EV, Alemania, 2020 K. Schilling, M. Schmidt, K. Ravandoor, O. Kurz, and S. Busch. Attitude determination for the nano-satellite UWE-2. 17th World Congress The International Federation of Automatic Control, 17(1 PART 1):14036–14041, 2008 J. Schwartz, T. Krenzke, S. Hur-Diaz, M. Ruschmann, and J. Schmidt. The flocking controller: A novel cluster control strategy for space vehicles. AIAA Guidance, Navigation, and Control (GNC) Conference, pages 1–15, 2013 S. A. Schweighart and R. J. Sedwick. Development and analysis of a high fidelity linearized J2 model for satellite formation flying, 2001 J. Sellers. Understanding Space - An Introduction to Astronautics. 2004 M. Shahzad Shaikh, P. Jindal, A. Mali, A. Ansari, and S. Kamble. Design of Mems Based Microthruster - A Study. Materials Today: Proceedings, 5(9):20719–20726, 2018. M. S. Shouman and G. M. E. Bayoumi. Adaptive Robust Control of Satellite Attitude System. International Review of Aerospace Engineering (I.RE.AS.E), 8(February):35–42, 2015 J. Sofrony and M. Turner. Anti-windup design for systems with input quantization. (Cdc):7586– 7591, 2015 J. Sofrony and M. C. Turner. Coprime factor anti-windup for systems with sensor saturation. (45):3813–3818, 2011 J. Sofrony, M. C. Turner, and I. Postlethwaite. Anti-windup synthesis using Riccati equations. IFAC Proceedings Volumes (IFAC-PapersOnline), 16(1):171–176, 2005 J. Sofrony, M. C. Turner, and I. Postlethwaite. Anti-windup synthesis using Riccati equations. International Journal of Control, 80(1):112–128, 2007 T. Soldovieri and T. Viloria. EL ANGULO SOLIDO Y ALGUNAS DE SUS APLICACIONES, 2016 Y. Somov, S. Butyrin, S. Somov, T. Somova, N. Testoyedov, V. Rayevsky, G. Titov, Y. Yakimov, A. Ovchinnikov, and M. Mathylenko. Guidance and adaptive-robust attitude & orbit control of a small information satellite. AIP Conference Proceedings, 1798, 2017 E. Spin. Rotations and Euler angles, 2014. M. W. Spong, S. Hutchinson, and M. Vidyasagar. Robot modeling and control, volume 26. 2006 J. Sun, H. Chen, A. Technologies, and M. Student. A Decentralized and Autonomous Control Architecture for Large - Scale Spacecraft Swarm Using Artificial Potential Field and Bifurcation Dynamics. (January), 2018 S. Tarbouriech and M. Turner. Anti-windup design: an overview of some recent advances and open problems. IET Control Theory Appl., 3(1):1–19, 2009 M. Tariq, T. Bhattacharya, N. Varshney, and D. Rajapan. Fast response Antiwindup PI speed controller of Brushless DC motor drive: Modeling, simulation and implementation on DSP. Journal of Electrical Systems and Information Technology, 3(1):1–13, 2016 A. Theorin. Implementation of an Autotunable Decoupling TITO Controller. Technical Report July, 2007 F. M. Thiel. Adaptive Control of Plants with Input Saturation : An Approach for Performance Improvement. PhD thesis, 2019 D. Tosse and C. Salazar. Diseño del controlador digital para una planta tipo Segway. Technical report, National University of Colombia, 2019 J. F. Trégouët, D. Arzelier, D. Peaucelle, C. Pittet, and L. Zaccarian. Reaction wheels desaturation using magnetorquers and static input allocation. IEEE Transactions on Control Systems Technology, 23(2):525–539, 2015 M. C. Turner. Positive mu modification as an anti-windup mechanism. Systems and Control Letters, 102(March 2017):15–21, 2017 M. C. Turner. Systems & Control Letters Positive μ modification as an anti-windup mechanism. Systems & Control Letters, 102:15–21, 2017 M. C. Turner, G. Herrmann, and I. Postlethwaite. Incorporating robustness requirements into antiwindup design. IEEE Transactions on Automatic Control, 52(10):1842–1855, 2007 M. C. Turner, J. Sofrony, and E. Prempain. Anti-windup for model-reference adaptive control schemes with rate-limits. Systems and Control Letters, 137:104630, 2020 Y. Ulybyshev. Long-Term Formation Keeping of Satellite Constellation Using Lnear-Quadratic Controller. Journal of Guidance, Control, and Dynamics, 132(9):2159–2165, 1998 R. H. Vassar and R. B. Sherwood. Formation keeping for a Pair of Satellites in a Circular Obit. Advances in the Astronautical Sciences, 54(Pt 2):1105, 1983 R. V. Vázquez. Mecánica Orbital y Vehículos Espaciales-Introducción I. Technical report, Universidad de Sevilla, Sevilla, España, 2015 T. Villela, C. A. Costa, A. M. Brandão, F. T. Bueno, and R. Leonardi. Towards the thousandth CubeSat: A statistical overview. International Journal of Aerospace Engineering, 2019 C. Wang, J. Li, N. Jing, J. Wang, and H. Chen. A distributed cooperative dynamic task planning algorithm for multiple satellites based on multi-agent hybrid learning. Chinese Journal of Aeronautics, 24(4):493–505, 2011 F.-Y. Wang. Networked Control Systems, volume 53. 2008 X. Wang and Y. Hong. Finite-Time Consensus for Multi-Agent Networks with Second-Order Agent Dynamics, volume 41. IFAC, 2008 O. L. D. Weck. Attitude Determination and Control ( Adcs ). pages 1–57, 2001 J. Wertz. Spacecraft attitude Determination and Control. 1978 P. F.Weston and I. Postlethwaite. Linear conditioning for systems containing saturating actuators. Automatica, 36(9):1347–1354, 2000 B. Wie. Space Vehicle Dynamics and Control, volume 70. Iowa State University, Virginia, 1952 C. H. Won. Comparative study of various control methods for attitude control of a LEO satellite. Aerospace Science and Technology, 3(5):323–333, 1999 M. Wooldridge. An introduction to Multi-Agent Systems. 2009 Z. P. Wu, Z. H. Guan, and X. Wu. Consensus problem in multi-agent systems with physical position neighbourhood evolving network. Physica A: Statistical Mechanics and its Applications, 379(2):681–690, 2007 S. Xu, X.-w. Wang, and M. Huang. Software-Defined Next-Generation Satellite Networks: Architecture, Challenges, and Solutions. IEEE Access, 4(c), 2016 X. Yang. Low Earth Orbit (LEO) Mega Constellations – Satellite and Terrestrial Integrated Communication Networks. PhD thesis, 2018 Y. Yang. Quaternion based model for momentum biased nadir pointing spacecraft. Aerospace Science and Technology, 14(3):199–202, 2010 Y. Yang. Spacecraft attitude determination and control: Quaternion based method. Annual Reviews in Control, 36(2):198–219, 2012 Y. Yang. Spacecraft Attitude and Reaction Wheel Desaturation Combined Control Method. IEEE Transactions on Aerospace and Electronic Systems, 53(1):286–295, 2017 H.-h. Yeh and A. Sparks. Geometry and Control of Satellite Formations. Proceedings of the American Control Conference, (June):384–388, 2000 Z. Yoon, W. Frese, A. Bukmaier, and K. Brieß. System design of an S-band network of distributed nanosatellites. CEAS Space Journal, 6(1):61–71, 2014 Z. Yoon, Y. Lim, S. Grau, W. Frese, and M. A. Garcia. Orbit deployment and drag control strategy for formation flight while minimizing collision probability and drift. CEAS Space Journal, 12(3):397–410, 2020 L. Zaccarian and A. R. Teel. Modern Anti-windup Synthesis. Princeton University Press, United States of America, 2011 B. Zandbergen. Micropropulsion Systems for Cubesats. In Conference: Von Karman Institute for fluid dynamics, number October, pages 1–38, Brussels, 2014 P. Zetocha, L. Self, R. Wainwright, and R. Burns. Commanding and controlling satellite clusters Margarita Brito and Derek Surka , Princeton Satellite Systems. IEEE Intelligent Systems, pages 10–15, 2002. C. Zhang, J. Wang, R. Sun, D. Zhang, and X. Shao. Multi-spacecraft attitude cooperative control using model-based event-triggered methodology. Advances in Space Research, 62(9):2620–2630, 2018. H. Zhang and P. Gurfil. Cooperative orbital control of multiple satellites via consensus. IEEE Transactions on Aerospace and Electronic Systems, 54(5):2171–2188, 2018 J. Zhou and Q. Wang. Convergence speed in distributed consensus over dynamically switching random networks. Automatica, 45(6):1455–1461, 2009 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xx, 269 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Mecánica y Mecatrónica |
dc.publisher.department.spa.fl_str_mv |
Departamento de Ingeniería Mecánica y Mecatrónica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/81455/3/80056621_2022.pdf https://repositorio.unal.edu.co/bitstream/unal/81455/4/license.txt https://repositorio.unal.edu.co/bitstream/unal/81455/5/80056621_2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
3ba08f657889bf62eecf6ab442fb510f 8153f7789df02f0a4c9e079953658ab2 63b6a0d04117df6ea71d3fc72a980ad7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089844005011456 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sofrony Esmeral, Jorgee64c2a109fa22579af8b1761776daf31600Rodriguez Pirateque, German Wedge2be45b9b410ac30a1c9499f4b9b9538dGrupo de Investigación y Desarrollo Aeroespacial (GIDA)Grupo de Investigación en Electrónica y Tecnologías para la Defensa (TESDA)2022-04-18T15:37:52Z2022-04-18T15:37:52Z2021https://repositorio.unal.edu.co/handle/unal/81455Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, graficas, mapasLas necesidades de apropiación tecnológica y la estructuración de misiones espaciales en el contexto colombiano traen consigo la demanda de servicios y trabajos colaborativos y especializados, para los diferentes segmentos de un sistema espacial, como bien se está identificando en la estructuración del Programa Espacial Colombiano. Frente a estos derroteros, la presente investigación aborda el reto de apropiación del conocimiento en el diseño de misión, el control del segmento espacial y en especial el reto de proponer estrategias de control a sistemas satelitales multiagente, ya que los sistemas convencionales por su costo, centralización y modos de control conservadores, restringen el desempeño individual y grupal para las nuevas alternativas de sistemas en red que se presentan con los satélites de pequeña escala. En este sentido y mediante el uso de la metodología en V, se abordan los procesos de diseño de misión, así como el diseño de controladores individuales y grupales para la orientación y traslación de satélites en misiones de observación terrestre. Lo anterior con el fin de aprovechar la reducción de costos y flexibilidad operacional que brinda el uso de satélites de pequeña escala; a pesar de su limitada capacidad operacional/física, la cual hace necesario disponer de más de un agente para lograr los objetivos de servicio. Esta necesidad inherente, demanda la posibilidad de interconectar agentes en red y explorar arquitecturas de control con estrategias de cooperación, consenso y técnicas robustas de control en red, que permitan afrontar las no linealidades, incertidumbres y errores que limitan su coordinación y cooperación. Según lo expuesto, se definen diferentes arquitecturas de control frente a perturbaciones, limitaciones de actuación e incertidumbres, donde se identifican y caracterizan parámetros de desempeño individual y grupal ante diferentes tipos de misión, comportamientos adaptativos, políticas de consenso y cooperación, en dos etapas: La primera con el análisis, diseño y desarrollo de misiones, modelos y controladores, útiles para la definición del sistema y las arquitecturas de control formuladas; y la segunda mediante la evaluación e integración de algoritmos de control y consenso, validados con el método de Montecarlo y la aplicación de los índices propuestos como métricas de desempeño de la red. Adicionalmente, se incluye el diseño e implementación de una interfaz gráfica para la instrucción y entrenamiento en el diseño de misión y configuración de agentes, como complemento a los controladores y arquitecturas propuestas para la apropiación de tecnologías de control modernas y el manejo de sistemas satelitales de pequeña escala, como medios para la democratización y el despliegue del concepto del New Space en el territorio colombiano. (Texto tomado de la fuente)The needs for technological appropriation and structuration of space missions in the Colombian context bring with them the demand for collaborative and specialized services and works, for the different segments of a space system, as is being well identified in the structuration of the Colombian Space Program. Facing these objectives, this research addresses the challenge of knowledge appropriation in mission design, space segment control, and especially the challenge of proposing control strategies for multi-agent satellite systems, since conventional systems due to their cost, centralization, and conservative control modes, restrict individual and group performance for the new network system alternatives that come with small-scale satellites. In this sense and using the V methodology, the mission design processes are addressed, as well as the design of individual and group controllers for the orientation and translation of satellites in terrestrial observation missions. The foregoing to take advantage of the cost reduction and operational flexibility provided using small-scale satellites; despite its limited operational / physical capacity, which makes it necessary to have more than one agent to achieve service objectives. This inherent need demands the possibility of interconnecting agents in the network and exploring control architectures with cooperation strategies, consensus, and robust network control techniques, which allow facing the non-linearities, uncertainties and errors that limit their coordination and cooperation. According to the above, different control architectures are defined against disturbances, actuation limitations and uncertainties, where individual and group performance parameters are identified and characterized in front of different types of mission, adaptive behaviors, consensus and cooperation policies, in two stages: The first with the analysis, design and development of missions, models and controllers, useful for defining the system and formulated control architectures; and the second through the evaluation and integration of control and consensus algorithms, validated with the Montecarlo method and the application of the indexes proposed as network performance metrics. Further, the design and implementation of a graphical interface for instruction and training in mission design and agent configuration is included, as a complement to the controllers and architectures proposed for the appropriation of modern control technologies and the management of small-scale satellite systems, as means for the democratization and deployment of the New Space concept in Colombian territory.DoctoradoDoctor en IngenieríaIngeniería de Automatización, Control y Mecatrónicaxx, 269 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Mecánica y MecatrónicaDepartamento de Ingeniería Mecánica y MecatrónicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá520 - Astronomía y ciencias afines::522 - Técnicas, procedimientos, aparatos, equipos, materialesSATELITES ARTIFICIALESArtificial satellitesConsensoCooperaciónConstelaciónCooperación de SatélitesControl en RedCubesatConstellationPointing accuracyPrecisión de apuntamientoClusterConsensusCooperationNew SpaceSatellite ConsensusNetwork ControlPointing PrecisionDesarrollo de arquitecturas de control en sistemas satelitales multiagente para servicios de observación terrestreDevelopment of control architectures in multi-agent satellite systems for Earth observation servicesTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDM. F. Abbod, D. A. Linkens, M. Mahfouf, and G. Dounias. Survey on the use of smart and adaptive engineering systems in medicine. Artificial Intelligence in Medicine, 26(3):179–209, 2002.M. Abbott. The Role of Small Satellites in NASA and NOAA Earth Observation Programs. 2000.Agencia Espacial Mexicana. Introducción a los Sistemas Espaciales. pages 1–54, Mexico, 2013. Secretaría de comunicaciones y trasportes.K. Ahmadi Dastgerdi, F. Pazooki, and J. Roshanian. Model Reference Adaptive Control (MRAC) of a Small Satellite in the Presence of Parameters Uncertainties. Scientia Iranica, 0(0):0–0, 2020.U. Ahsun and D. W. Miller. Dynamics and control of electromagnetic satellite formations. PhD thesis, 2007.G. Allende-Alba, O. Montenbruck, J. S. Ardaens, M. Wermuth, and U. Hugentobler. Estimating maneuvers for precise relative orbit determination using GPS. Advances in Space Research, 59(1):45–62, 2017.J. Alvarez and B. Walls. Constellations , Clusters , and Communication Technology : Expanding Small Satellite Access to Space. 2016M. Alvarez Reyna, J. Pucheta, and J. Fraire. Determinación precisa de posición y orientación relativa en satélites de arquitectura segmentada. Ajea, (4):4–6, 2019C. Araguz, E. Bou-Balust, and E. Alarcón. Applying autonomy to distributed satellite systems: Trends, challenges, and future prospects. Systems Engineering, 21(5):401–416, 2018ARMY. United States Army Futures Command, 2020K. J. Astrom and T. HÄgglund. Advanced PID control, volume 26. 2006K. J. Astrom and L. Rundqwist. Integrator windup and how to avoid it. pages 1693–1698, 1989K. J. Astrom and B. Wittenmark. Adaptive Control. Lund Institute of Technology, Mineola, New York, dover publ edition, 1995S. Bandyopadhyay, G. P. Subramanian, R. Foust, D. Morgan, S.-J. Chung, and F. Hadaegh. A Review of Impending Small Satellite Formation Flying Missions. 53rd AIAA Aerospace Sciences Meeting, (January):1–17, 2015X. C. Baolin Wu. Satellite Formation Keeping Using Robust Constrained Model Predictive Control. pages 13–18, 2005A. A. Barakabitze, A. Ahmad, R. Mijumbi, and A. Hines. 5G network slicing using SDN and NFV: A survey of taxonomy, architectures and future challenges. Computer Networks, 167, 2020C. Barbu, R. Reginatto, A. R. Teel, and L. Zaccarian. Anti-windup for exponentially unstable linear systems with inputs limited in magnitude and rate. Proceedings of the American Control Conference, 2(June):1230–1234, 2000F. Beer, R. Johnston, and P. Cornwell. Mecánica Vectorial Para Ingenieros ,Dinamica. 2010G. Belascuen and N. Aguilar. Design, Modeling and Control of a Reaction Wheel Balanced Inverted Pendulum. 2018 IEEE Biennial Congress of Argentina, ARGENCON 2018, (June 2018), 2019N. Bellini. Magnetic Actuators for Nanosatellite Attitude Control. Technical report, Universita’ Di Bologna Scuola, 2014G. Bianchini, A. Garulli, and A. Giannitrapani. A class of globally stabilizing feedback controllers for the orbital rendezvous problem. International journal of robust and nonlinear control, 2017E. Blasch, K. Pham, G. Chen, G. Wang, C. Li, X. Tian, and D. Shen. Distributed QOS Awareness in satellite communication network with optimal routing ( Q u ASOR ). IEEE, pages 1–11, 2014J. Boada, C. Prieur, S. Tarbouriech, C. Pittet, and C. Charbonnel. Multi-saturation anti-windup structure for satellite control. Proceedings of the 2010 American Control Conference, ACC 2010, (1):5979–5984, 2010J. Boada, C. Prieur, S. Tarbouriech, C. Pittet, and C. Charbonnel. Anti-windup design for satellite control with microthrusters. AIAA Guidance, Navigation, and Control Conference and Exhibit, (August), 2018V. Bohlouri, Z. Khodamoradi, S. Hamid, and J. Naini. Spacecraft attitude control using model - based disturbance feedback control strategy. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 9, 2018M. Brambilla, E. Ferrante, and M. Birattari. Swarm robotics : A review from the swarm engineering perspective. In IRIDIA – Technical Report Series ISSN, volume 7, pages 1–41. 2012A. Braukhane, M. Arza, M. Bacher, M. Calaprice, H. Fiedler, V. Koehne, H. R. McGuire, and J. J. Rivera. FormSat, a scalable formation flying communication satellite system. IEEE Aerospace Conference Proceedings, (1), 2010S. C. Burleigh, T. De Cola, S. Morosi, S. Jayousi, E. Cianca, and C. Fuchs. From Connectivity to Advanced Internet Services: A Comprehensive Review of Small Satellites Communications and Networks. Wireless Communications and Mobile Computing, 2019(May), 2019T. F. Burns and H. Flashner. Adaptive Control Applied to Momentum Unloading Using the Low Earth Orbital Environment. Journal of Guidance, Control, and Dynamics, 15(2), 1992P. J. Camillo and F. L. Markley. Orbit-averaged behavior of magnetic control laws for momentum unloading. Journal of Guidance, Control, and Dynamics, 3(6):563–568, 1980P. Campo and M. Morari. Robust Control of Processes Subject to Saturation Nonlinearitues. Computers chem. Engng., 14(4/5):343–358, 1990Y. Y. Cao, Z. Lin, and D. G. Ward. An antiwindup approach to enlarging domain of attraction for linear systems subject to actuator saturation. IEEE Transactions on Automatic Control, 47(1):140–145, 2002J. Carnahan. CubeSat Design Specification Rev13. The CubeSat Program, Cal Poly SLO 4, 2014M. Casasco, G. Saavedra Criado, S.Weikert, J. Eggert, M. Hirth, T. Ott, and H. Su. Pointing error budgeting for high pointing accuracy mission using the pointing error engineering tool. AIAA Guidance, Navigation, and Control (GNC) Conference, pages 1–21, 2013M. Casasco, S. Salehi, S. Weikert, J. Eggert, M. Hirth, H. Su, and T. Ott. Pointing Error Engineering Framework. Technical Report May, European Space Agency, Paris, France, 2014S. Castaño. Control I+PD, 2015Y. Castellanos and G. W. Rodriguez-Pirateque. UAV systems for multipurpose heterogeneous networks : a review of design , development and performance. Aeronautics and Aerospace Open Access Journal Review, 4(3):121–140, 2020R. Cepeda. Sistema De Control Robusto, Basado En Cuaterniones Para Un Satélite De Órbita Ba, 2010S. Chávez. Diseño Conceptual de un Simulador de Navegación Aeroespacial y Prototipo Inicial. Technical report, Instituto Nacional de Astrofísica, Óptica y Electrónica, 2012X. Chen, H. Sun, and J. Zhang. Reaction-wheel momentum dumping by hybrid control of magnetorquers and thrusters. AIAA Guidance, Navigation, and Control Conference, (August 2010), 2010Z. Chen and Y. Zeng. A Swarm Intelligence Networking Framework for Small Satellite Systems. Communications and Network, 5(September):171–175, 2013S. Cheng, H. Dong, L. Yu, D. Zhang, and J. Ji. Consensus of Second-order Multi-agent Systems with Directed Networks Using Relative Position Measurements Only. International Journal of Control, Automation and Systems, 17(1):85–93, 2019S.-J. Chung, U. Ahsun, and J.-J. E. Slotine. Application of Synchronization to Formation Flying Spacecraft: Lagrangian Approach. Journal of Guidance, Control, and Dynamics, 32(2):512–526, 2009E. Cortes-G, D. Mendoza, and G. W. Rodriguez Pirateque. Design and construction of test benches for small scale aerospace systems. IEEE Andescon, Andescon 2020, pages 52–57, 2020E. D. Cortés García. Experimentación del control de actitud en un prototipo de CubeSat con ruedas de reacción, 2019W. Dandan, Z. Qianghui, and Z. H. U. Wei. Adaptive Event-Based Consensus of Multi-Agent Systems with General Linear Dynamics . J Syst Sci Complex, 31:120–129, 2018E. L. De Angelis, F. Giulietti, A. H. De Ruiter, and G. Avanzini. Spacecraft attitude control using magnetic and mechanical actuation. Journal of Guidance, Control, and Dynamics, 39(3):564–573, 2016N. C. De Freitas, P. P. Filho, C. D. De Moura, and M. P. Silva. AgentGeo: Multi-Agent System of Satellite Images Mining. IEEE Latin America Transactions, 14(3):1343–1351, 2016I. del Portillo, B. G. Cameron, and E. F. Crawley. A technical comparison of three low earth orbit satellite constellation systems to provide global broadband. Acta Astronautica, 159(December 2018):123–135, 2019A. Dessmark, P. Fraigniaud, D. R. Kowalski, and A. Pelc. Deterministic rendezvous in graphs. Algorithmica (New York), 46(1):69–96, 2006A. V. Doroshin. Attitude Dynamics , Control and Stabilization Of Spacecraft / Satellites. Technical report, 2018R. Duarte. Modeling and Simulation of the ECOSat-III Attitude Determination and Control System. Technical Report April, Técnico LISBOA, Lisbon, Portugal, 2016A. M. El-Naggar. DOP prediction over Egypt from SP3 file for long-term. Alexandria Engineering Journal, 51(3):221–228, 2012A. A. El-samahy and M. A. Shamseldin. Brushless DC motor tracking control using selftuning fuzzy PID control and model reference adaptive control. Ain Shams Engineering Journal, 9(3):341–352, 2018S. Engelen. Swarm Satellites: Design, Characteristics and Applications, volume 91. 2016S. Engelen, E. Gill, and C. Verhoeven. On the reliability, availability, and throughput of satellite swarms. IEEE Transactions on Aerospace and Electronic Systems, 50(2):1027–1037, 2014S. Engelen, E. K. A. Gill, and C. J. M. Verhoeven. Systems engineering challenges for satellite swarms. IEEE Aerospace Conference Proceedings, 2011ESA-ESTEC. Stars sensors terminology and performance specification. European Cooperation for Sapce Standarization, 60(20C), 2008C. H. Esparza and R. A. Núñez. Controlador adaptativo PD por modelo de referencia para una mesa vibratoria biaxial basada en el mecanismo biela-manivela. Informacion Tecnologica, 25(2):189–202, 2014P. A. Ferguson. Distributed Estimation and Control Technologies for Formation Flying Spacecraft. pages 1–120, 2003D. E. Forero Martinez. Diseño del Bloque de Estimación de un Sistema ADCS para un Pico Satélite de Estándar CubeSat Usando Filtro de Partículas como Técnica de Estimación. Technical report, Universidad Distrital Francisco José de Caldas, Bogotá D.C, 2015A. Francisco, J. Somma, D. Dra, M. Lorena, T. Presentada, P. Optar, and A. L. Título. Cuaterniones y ángulos de Euler para describir rotaciones en R3, 2018M. Fugmann and S. Klinkner. An Automated Constellation Design & Mission Analysis Tool for Finding the Cheapest Mission Architecture. SSC20-I-07 Mission Architecture, 34th Annual Small Satellite Conference, I(07):1–12, 2020A. García Santiago. Diseño de un sistema de control de orientacion utilizando Ruedas de Reacción. Technical report, Universidad Nacional Autónoma de México, México, 2017J. Garrido Jurado. Diseño de sistemas de control multivariable por desacoplo con controladores PID. PhD thesis, 2012X. Ge, Q. L. Han, D. Ding, X. M. Zhang, and B. Ning. A survey on recent advances in distributed sampled-data cooperative control of multi-agent systems. Neurocomputing, 275:1684–1701, 2018M. Gerla and K. Xu. Integrating Mobile Swarms with Large-scale Sensor Networks Using Satellites. IEEE, pages 2816–2820, 2004F. Giulietti, A. A. Quarta, and P. Tortora. Optimal control laws for momentum-wheel desaturation using magnetorquers. Journal of Guidance, Control, and Dynamics, 29(6):1464–1468, 2006J. M. Gomes Da Silva and S. Tarbouriech. Anti-windup design with guaranteed regions of stability for discrete-time linear systems. Proceedings of the American Control Conference, 50(1):106–111, 2005J. M. Gomes da Silva, S. Tarbouriech, Jr., and G. Garcia. Local Stabilization of Linear Systems Under Amplitude and Rate Saturating Actuators. IEEE transactions on automatic control, 48(5):842–847, 2003G. Goodwin, S. Graebe, and A. Salgado. Basic Control Systems Design. Eshbach’s Handbook of Engineering Fundamentals, Fifth Edition, pages 760–801, 2000G. C. Goodwin, S. F. Graebe, and M. E. Salgado. Control System Design. Prentice Hall, Valparaiso, Chile, 2000K. Gordon. A flexible attitude control system for three-axis stabilized nanosatellites. Berlin, 2018F. Graf, T. Ott, J. P. Lejault, and W. Fichter. Precision pointing estimator design for minimum absolute, window- and stability-time errors, volume 19. IFAC, 2013M. Grasso, A. Renga, G. Fasano, M. D. Graziano, M. Grassi, and A. Moccia. Design of an endto- end demonstration mission of a Formation-Flying Synthetic Aperture Radar (FF-SAR) based on microsatellites. Advances in Space Research, 2020A. Guiggiani, I. Kolmanovsky, P. Patrinos, and A. Bemporad. Constrained Model Predictive Control of spacecraft attitude with reaction wheels desaturation. 2015 European Control Conference, ECC 2015, 0(1):1382–1387, 2015M. M. Gulzar, S. T. H. Rizvi, M. Y. Javed, U. Munir, and H. Asif. Multi-Agent Cooperative Control Consensus: A Comparative Review. Electronics, 7(2):22, 2018C. Guo, C. Peng, J. Zhang, and D. Peng. A survey on networked control systems subject to limited network resources. 26th Chinese Control and Decision Conference, CCDC 2014, (1):4958–4965, 2014J. Guo, G. Tao, and Y. Liu. A multivariable MRAC scheme with application to a nonlinear aircraft model. Automatica, 47(4):804–812, 2011P. Gurfil, J. Herscovitz, and M. Pariente. SSC12-VII-2 The SAMSON Project – Cluster Flight and Geolocation with Three Autonomous Nano-satellites. 2014S. Guzman and E. Mojica-Nava. La teorıa evolutiva como solucion al control de formacion. Vision Electronica, 9(1):1–5, 2015C. D. Hall. Spacecraft Attitude Dynamics and Control (AE4313). 2000Z. M. Han, Z. Y. Lin, M. Y. Fu, and Z. Y. Chen. Distributed coordination in multi-agent systems: a graph Laplacian perspective. Frontiers of Information Technology and Electronic Engineering, 16(6):429–448, 2015R. Hanus. A new technique for preventing control windup. Journal A, 21(1):15–20, 1980J. Hespanha, P. Naghshtabrizi, and Y. Xu. A Survey of Recent Results in Networked Control Systems. Proceedings of the IEEE, 95(1):138–162, 2007M. Hirth, H. Su, T. Ott, M. Casasco, and S. Salehi. The pointing error engineering tool (PEET): from prototype to release version. Technical Report March, European Space Agency 29, Paris, France, 2016Q. Hu, X. Shao, and L. Guo. Adaptive fault-Tolerant attitude tracking control of spacecraft with prescribed performance. IEEE/ASME Transactions on Mechatronics, 23(1):331–341, 2018Q. Hu, Y. Shi, and X. Shao. Adaptive fault-tolerant attitude control for satellite reorientation under input saturation. Aerospace Science and Technology, 78:171–182, 2018Z. Ismail and R. Varatharajoo. A study of reaction wheel configurations for a 3-axis satellite attitude control, 2010D. Ivanov, U. Monakhova, and M. Ovchinnikov. Nanosatellites swarm deployment using decentralized differential drag-based control with communicational constraints. Acta Astronautica, 159(October 2018):646–657, 2019D. Izzo and L. Pettazzi. Autonomous and Distributed Motion Planning for Satellite Swarm. Journal of Guidance, Control, and Dynamics, 30(2):449–459, 2007A. Jahn. Resource management techniques applied to satellite communications networks. pages 1–8, 1998C. D. Johnson. Nuevos Actores Nuevos Actores. Denver, Colorado, secure wor edition, 2019P. Kapasouris. Design for performance enhancement in feedback control systems with multiple saturating nonlinearities, 1988J. T. King, J. Kolbeck, J. S. Kang, M. Sanders, and M. Keidar. Performance analysis of nano-sat scale μCAT electric propulsion for 3U CubeSat attitude control. Acta Astronautica, 178(October 2020):722–732, 2021S. Knorn, Z. Chen, and R. H. Middleton. Overview: Collective control of multiagent systems. IEEE Transactions on Control of Network Systems, 3(4):334–347, 2015A. W. Koenig and S. D’Amico. Robust and Safe N-Spacecraft Swarming in Perturbed Near- Circular Orbits. Journal of Guidance, Control, and Dynamics, 41(8):1643–1662, 2018E. M. C. Kong, D. W. Kwon, S. A. Schweighart, L. M. Elias, R. J. Sedwick, D. W. Miller, and T.-s. Case. Electromagnetic Formation Flight for Multisatellite Arrays. 41(4), 2004J. R. Kopacz, R. Herschitz, and J. Roney. Small satellites an overview and assessment. Acta Astronautica, 170(January):93–105, 2020M. V. Kothare, P. J. Campo, M. Morari, and C. N. Nett. A unified framework for the study of anti-windup designs. Automatica, 30(12):1869–1883, 1994G. Krieger, M. Zink, M. Bachmann, B. Bräutigam, D. Schulze, M. Martone, P. Rizzoli, U. Steinbrecher, J. Walter Antony, F. De Zan, I. Hajnsek, K. Papathanassiou, F. Kugler, M. Rodriguez Cassola, M. Younis, S. Baumgartner, P. López-Dekker, P. Prats, and A. Moreira. TanDEM-X: A radar interferometer with two formation-flying satellites. Acta Astronautica, 89:83–98, 2013R. Kristiansen, P. J. Nicklasson, and J. T. Gravdahl. Formation modelling and 6DOF spacecraft coordination control. Proceedings of the American Control Conference, pages 4690–4696, 2007S. Kumar, D. Sahay, S. R. Hegde, S. Sandya, A. K. Jha, and T. C. Mahalingesh. Design and development of 3-axis reaction wheel for STUDSAT-2. IEEE Aerospace Conference Proceedings, 2015-June(Di):1–13, 2015S. Kumar, D. Sahay, S. R. Hegde, S. Sandya, A. K. Jha, and T. C. Mahalingesh. Design and development of 3-axis reaction wheel for STUDSAT-2. IEEE Aerospace Conference Proceedings, 2015-June(Di):1–13, 2015U. Kvell, M. Puusepp, F. Kaminski, J. E. Past, K. Palmer, T. A. Grönland, and M. Noorma. Nanosatelliitide orbiidi muutmine mikroelektromehaaniliste külmgaasi tõukemootoritega. Proceedings of the Estonian Academy of Sciences, 63(2S):279–285, 2014E. Lansard, E. Frayssinhes, and J. L. Palmade. Global design of satellite constellations: A multicriteria performance comparison of classical walker patterns and new design patterns. Acta Astronautica, 42(9):555–564, 1998W. Larson. Applied Space Systems Engineering. Space tech edition, 2009W. J. Larson and J. R. Wertz. Space mission analysis and design. United States of America, 1999K. Lee and F. Malerba. Catch-up cycles and changes in industrial leadership:Windows of opportunity and responses of firms and countries in the evolution of sectoral systems. Research Policy, 46(2):338–351, 2017T. H. Lee, J. H. Park, D. H. Ji, and H. Y. Jung. Leader-following consensus problem of heterogeneous multi-agent systems with nonlinear dynamics using fuzzy disturbance observer. Complexity, 19(4):20–31, 2014A. Leeman. Prototype of a 4-Reaction Wheel System for Nanosatellites. 2019K. Lemmer. Propulsion for CubeSats. Acta Astronautica, 134:231–243, 2017Y. Leng, C. Yu, W. Zhang, Y. Zhang, X. He, and W. Zhou. Task-oriented hierarchical control architecture for swarm robotic system. Natural Computing, 16(4):579–596, 2017F. L. Lewis, H. Zhang, K. Hengster-Movric, and A. Das. Cooperative Control of Multi-Agent Systems: Optimal and Adaptive Design Approaches. 2014J. Li. Satellite Remote Sensing Technologies. Springer, Beijing, China, 2021S. Li, J. Wang, X. Luo, and X. Guan. A new framework of consensus protocol design for complex multi-agent systems. Systems and Control Letters, 60(1):19–26, 2011Y. Li, H. Fang, J. Chen, and C. Yu. Distributed Cooperative Fault Detection for Multiagent Systems: A Mixed HH2 Optimization Approach. IEEE Transactions on Industrial Electronics, 65(8):6468–6477, 2018L. Lin and W. Yan-rong. An analytical method for satellite orbit prediction. Chinese Astronomy and Astrophysics, 30(1):68–74, 2006G. P. Liu and S. Zhang. A Survey on Formation Control of Small Satellites. Proceedings of the IEEE, 106(3):440–457, 2018M. W. Lo. Satellite-Constellation Design. Computing in science & engineering, 28(3):58–67, 1999S. Luo, X. Xu, L. Liu, and G. Feng. Output consensus of heterogeneous linear multi-agent systems with communication, input and output time-delays. Journal of the Franklin Institute, 2020A. F. Ma, N. N. Dominikovic, A. F. Ma, N. N. Dominikovic, A. F. Ma, and N. N. Dominikovic. Three-Axis Stabilized Earth Orbiting Spacecraft Simulator. Technical report, 2012Y. Mao, L. Dou, H. Fang, and J. Chen. Flocking of multi-robot systems with connectivity maintenance on directed graphs. Journal of Systems Engineering and Electronics, 25(3):470–482, 2014R. G. Marsden. Basic Steps in Designing a Space Mission. Technical Report July, ESA, 2002M. Martin, P. Klupar, S. Kilberg, and J. Winter. TECHSAT 21 and Revolutionizing Space Missions Using Microsatellites. American Institute of Aeronautics and Astronautics, (Fig 1):1–10, 1997R. Martínez-Díaz. Una Novedosa Plataforma Educacional Levitada Magnéticamente para la Determinación , Control y Simulación de la Actitud de Pequeños Satélites Una Novedosa Plataforma Educacional Levitada Magnéticamente para la Determinación , Control y Simulación de la Act. Technical report, Universidad del Valle, Santiago de Cali, 2020A. Martinez Tellez. La Mecánica Cuántica, 2009L. Mazal and P. Gurfil. Acta Astronautica Closed-loop distance-keeping for long-term satellite cluster flight. Acta Astronautica, 94(1):73–82, 2014J. C. McDowell. The Low Earth Orbit Satellite Population and Impacts of the SpaceX Starlink Constellation. The Astrophysical Journal, 892(2):L36, 2020.M. Mesbahi and M. Egerstedt. Graph theoretic methods in multiagent networks. 2010H. Min, Z. Guoqiang, and S. Junling. Navigation and coordination control system for formation flying satellites. 2010 International Conference on Computer Application and System Modeling (ECCASM), (Iccasm):95–99, 2010Y. Mingqi, D. Xurong, and H. Min. Design and simulation for hybrid LEO communication and navigation constellation. CGNCC 2016 - 2016 IEEE Chinese Guidance, Navigation and Control Conference, pages 1665–1669, 2016O. Montenbruck. Satellite Orbits Models - Models, Methods and Applications. Berlin Heidelberg, 2005E. Mooij and M. Ellenbroek. Multi-Functional Guidance, Navigation, and Control Simulation Environment. AIAA Modeling and Simulation Technologies Conference and Exhibit, (August):1– 16, 2007M. H. Moradi, S. Razini, and S. Mahdi Hosseinian. State of art of multiagent systems in power engineering: A review. Renewable and Sustainable Energy Reviews, 58:814–824, 2016F. Morilla, J. Garrido, and F. Vázquez. Anti-windup coordination strategy for multivariable PID control. ETFA 2009 - 2009 IEEE Conference on Emerging Technologies and Factory Automation, 2009A. Morin, J. B. Caussin, C. Eloy, and D. Bartolo. Collective motion with anticipation: Flocking, spinning, and swarming. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 91(1):1–5, 2015R. M. Murray. Recent Research in Cooperative Control of Multivehicle Systems. 129(September 2007):571–583, 2016B. J. Naasz, M. M. Berry, H. Y. Kim, and C. D. Hall. Integrated orbit and attitude control for a nanosatellite with power constraints. Advances in the Astronautical Sciences, 114(SUPPL.):1–18, 2003S. Nag, C. K. Gatebe, and T. Hilker. Simulation of Multiangular Remote Sensing Products Using Small Satellite Formations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(2):638–653, 2017.J. Narkiewicz, M. Sochacki, and B. Zakrzewski. Generic Model of a Satellite Attitude Control System. International Journal of Aerospace Engineering, 2020, 2020NASA. Systems Engineering Handbook. National Aeronautics and Space Administration, nasa cente edition, 2007NASA. Small Spacecraft Technology State of the Art. Technical Report July, NASA Mission Design Division Staff, California, 2014W. Navarro. Improving Attitude Determination and Control of Resource-constrained CubeSats Using Unscented Kalman Filtering, 2016J. P. Nelson and M. J. Balas. Model reference adaptive control of spacecraft attitude for a PNP satellite with unknown time varying input/output delays. SysCon 2012 - 2012 IEEE International Systems Conference, Proceedings, 5(12):618–623, 2012N. T. Nguyen. Model-reference adaptive control. Number 9783319563923. 2018M. Nunes, T. Sorensen, and E. Pilger. Cooperative Control of Multiple Small Satellites using the Comprehensive Open-architecture Space Mission Operations System COOPERATIVE CONTROL OF MULTIPLE SMALL OPEN-ARCHITECTURE SPACE MISSION OPERATIONS. Technical Report June, 2014.N. A. Ofodile, M. C. Turner, and J. Sofrony. Alternative approach to anti-windup synthesis for double integrator systems. American Control Conference (ACC), pages 5473–5478, 2016O. J. Oguntoyinbo. Pid Control of Brushless Dc Motor and Robot Trajectory Planning and Simulation With. 2009K. K. Oh, M. C. Park, and H. S. Ahn. A survey of multi-agent formation control. Automatica, 53:424–440, 2015R. Olfati and R. Murray. Consensus Problems in Networks of Agents with Switching Topology and Time-Delays. pages 1–29, 2003B. R. Olfati-saber, J. A. Fax, and R. M. Murray. Consensus and Cooperation in Networked Multi-Agent Systems. Proceeding of the IEEE, 95(1):215–233, 2007.N. G. Orr, J. K. Eyer, B. P. Larouche, and R. E. Zee. Precision formation flight: The CanX-4 and CanX-5 dual nanosatellite mission. European Space Agency, (Special Publication) ESA SP, (660 SP), 2008F. Paita. Novel consensus strategies applied to spacecraft formation flight. PhD thesis, Universitat Politècnica de Catalunya, 2017.J. N. Pelton and S. Madry. Handbook of Small Satellites. USA, 2020C. Pinciroli, M. Birattari, E. Tuci, M. Dorigo, M. D. R. Zapatero, T. Vinko, and D. Izzo. Selforganizing and scalable shape formation for a swarm of pico satellites. Proceedings of the 2008 NASA/ESA Conference on Adaptive Hardware and Systems, AHS 2008, pages 57–61, 2008C. Pittet, N. Despré, S. Tarbouriech, and C. Prieur. Nonlinear controller design for satellite reaction wheels unloading using anti-windup techniques. AIAA Guidance, Navigation and Control Conference and Exhibit, (August), 2008D. Platt. A Propulsion System Tailored to Cubesat Application. Conference on Small Satellites 21st Annual AIAA/USU - SSC07-III-7, 44(0):1–9, 2007A. Poghosyan and A. Golkar. CubeSat evolution : Analyzing CubeSat capabilities for conducting science missions. Progress in Aerospace Sciences, (September):1–25, 2016G. A. Poveda. Propuesta de órbita geoestacionaria para el satélite artificial FACSAT01, 2017B. Prescornitoiu and M. Morales. Estudio y diseño de constelaciones de nanosatélites en el marco de las comunicaciones IoT. PhD thesis, Universidad Carlos III de Madrid, 2019J. Qin, Q. Ma, S. Member, Y. Shi, and S. Member. Recent Advances in Consensus of Multi-Agent Systems : A Brief Survey. IEEE Transactions on Industrial Electronics, 0046(c), 2016L. Qin, X. He, and D. H. Zhou. A survey of fault diagnosis for swarm systems. Systems Science and Control Engineering, 2(1):13–23, 2014Z. Qu, G. Zhang, H. Cao, and J. Xie. LEO Satellite Constellation for Internet of Things. IEEE Access, 5(c):18391–18401, 2017M. Radenkovic and M. Tadi. Multi-agent adaptive consensus of networked systems on directed graphs. International Journal of Adaptive Control and Signal Processing, (May 2015):46–59, 2016R. Radhakrishnan, W. W. Edmonson, F. Afghah, R. M. Rodriguez-Osorio, F. Pinto, and S. C. Burleigh. Survey of Inter-Satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View. 2016R. Ramnath. Computation and Asymptotics, volume 53. 2012C. Ramos and F. Suarez. Diseño de controladores basados en técnicas de control óptimo lqr+i y h2 para un prototipo del péndulo invertido sobre ruedas. Revista Politécnica, 8(15):45–51, 2012W. Ren. Multi-vehicle consensus with a time-varying reference state. Systems and Control Letters, 56(7-8):474–483, 2007W. Ren and R. W. Beard. Distributed Consensus in Multi-vehicle Cooperative Control -Theory and Applications. 2008G.-W. Rodríguez-P, E. Cortes-G, and J. Sofrony. Sustainable design of low-cost modular test platforms as an entrepreneurship for space development in Colombia. 71th International Astronautical Congress (IAC), The CiberSpace Edition, (October):12–14, 2020G. W. Rodriguez Pirateque, N. Arzola de la Peña, and E. D. Cortes Garcia. Sustainable Design of a NanoSatellite Structure TypeCubeSat as a Modular Platform for Tests. Ciencia y Poder Aéreo, 15(1):108–134, 2020G. W. Rodriguez-Pirateque, P. J. C. Paez, and J. Sofrony. Satellite Systems for Colombian Space Development with Multi-domain Operations *. Ciencia y Poder Aéreo, 16:46–59, 2021G. W. Rodriguez-Pirateque, J. Sofrony, and C. Salazar. Control de traslación y consenso de sistemas satelitales multiagente. 2021G. W. Rodríguez Pirateque and J. Sofrony Esmeral. Revisión de sistemas de control en red como base para sistemas satelitales de pequeña escala. Ciencia y Poder Aéreo, 13(2):90–125, 2018G.-W. Rodríguez-Pirateque, J. Sofrony Esmeral, E. D. Cortés García, and K. Rueda. Diseño de misión, síntesis de factores operacionales y representaciones del segmento espacial, caso FACSAT y EMFF. Ciencia y Poder Aéreo, 15(2):143–165, 2020C. W. Roscoe, J. J.Westphal, and E. Mosleh. Overview and GNC design of the CubeSat Proximity Operations Demonstration (CPOD) mission. Acta Astronautica, (October 2017):0–1, 2018C. Rosso and J. Vieira. Modelo teórico MIMO para un sistema de orientación de 3DOF de un satélite., 2010M. Sabatini, F. Reali, and G. B. Palmerini. Autonomous behavioral strategy and optimal centralized guidance for on-orbit self assembly. IEEE Aerospace Conference Proceedings, (1), 2009N. Saeed, A. Elzanaty, H. Almorad, H. Dahrouj, T. Y. Al-Naffouri, and M. S. Alouini. CubeSat Communications: Recent Advances and Future Challenges. IEEE Communications Surveys and Tutorials, 22(3):1839–1862, 2020R. Sanchez and R. Alonso. Control de Vehículos Espaciales. Revista Iberoamericana de Automática e Informática Industrial, 2(January):6–24, 2010J. Sanchez de la Vega. Phoenix Cubesat, 2020.P. Sarhadi, A. R. Noei, and A. Khosravi. Model reference adaptive autopilot with anti-windup compensator for an autonomous underwater vehicle: Design and hardware in the loop implementation results. Applied Ocean Research, 62:27–36, 2017A. Sarlette, R. Sepulchre, and N. E. Leonard. Cooperative attitude synchronization in satellite swarms: A consensus approach. IFAC Proceedings Volumes (IFAC-PapersOnline), 17(PART 1):223–228, 2007K. Scarritt. Nonlinear model reference adaptive control for satellite attitude tracking. AIAA Guidance, Navigation and Control Conference and Exhibit, (August), 2008J. Scharnagl, F. Kempf, and K. Schilling. Combining distributed consensus with robust H -control for satellite formation flying. Electronics (Switzerland), 8(3):1–27, 2019H. Schaub and J. Junkins. Analytical Mechanics of Space Systems, volume 2. AIAA Education Series, Virginia, 2009K. Schilling. Networked Control of Cooperating Distributed Pico-Satellites. IFAC Proceedings Volumes, 47(3):7960–7964, 2014K. Schilling. Perspectives for miniaturized, distributed, networked cooperating systems for space exploration. Robotics and Autonomous Systems, 90:118–124, 2017K. Schilling. Networked Pico-Satellite Distributed System Control Final Report Summary - NETSAT (Networked Pico- Satellite Distributed System Control). Technical report, ZENTRUM FUR TELEMATIK EV, Alemania, 2020K. Schilling, M. Schmidt, K. Ravandoor, O. Kurz, and S. Busch. Attitude determination for the nano-satellite UWE-2. 17th World Congress The International Federation of Automatic Control, 17(1 PART 1):14036–14041, 2008J. Schwartz, T. Krenzke, S. Hur-Diaz, M. Ruschmann, and J. Schmidt. The flocking controller: A novel cluster control strategy for space vehicles. AIAA Guidance, Navigation, and Control (GNC) Conference, pages 1–15, 2013S. A. Schweighart and R. J. Sedwick. Development and analysis of a high fidelity linearized J2 model for satellite formation flying, 2001J. Sellers. Understanding Space - An Introduction to Astronautics. 2004M. Shahzad Shaikh, P. Jindal, A. Mali, A. Ansari, and S. Kamble. Design of Mems Based Microthruster - A Study. Materials Today: Proceedings, 5(9):20719–20726, 2018.M. S. Shouman and G. M. E. Bayoumi. Adaptive Robust Control of Satellite Attitude System. International Review of Aerospace Engineering (I.RE.AS.E), 8(February):35–42, 2015J. Sofrony and M. Turner. Anti-windup design for systems with input quantization. (Cdc):7586– 7591, 2015J. Sofrony and M. C. Turner. Coprime factor anti-windup for systems with sensor saturation. (45):3813–3818, 2011J. Sofrony, M. C. Turner, and I. Postlethwaite. Anti-windup synthesis using Riccati equations. IFAC Proceedings Volumes (IFAC-PapersOnline), 16(1):171–176, 2005J. Sofrony, M. C. Turner, and I. Postlethwaite. Anti-windup synthesis using Riccati equations. International Journal of Control, 80(1):112–128, 2007T. Soldovieri and T. Viloria. EL ANGULO SOLIDO Y ALGUNAS DE SUS APLICACIONES, 2016Y. Somov, S. Butyrin, S. Somov, T. Somova, N. Testoyedov, V. Rayevsky, G. Titov, Y. Yakimov, A. Ovchinnikov, and M. Mathylenko. Guidance and adaptive-robust attitude & orbit control of a small information satellite. AIP Conference Proceedings, 1798, 2017E. Spin. Rotations and Euler angles, 2014.M. W. Spong, S. Hutchinson, and M. Vidyasagar. Robot modeling and control, volume 26. 2006J. Sun, H. Chen, A. Technologies, and M. Student. A Decentralized and Autonomous Control Architecture for Large - Scale Spacecraft Swarm Using Artificial Potential Field and Bifurcation Dynamics. (January), 2018S. Tarbouriech and M. Turner. Anti-windup design: an overview of some recent advances and open problems. IET Control Theory Appl., 3(1):1–19, 2009M. Tariq, T. Bhattacharya, N. Varshney, and D. Rajapan. Fast response Antiwindup PI speed controller of Brushless DC motor drive: Modeling, simulation and implementation on DSP. Journal of Electrical Systems and Information Technology, 3(1):1–13, 2016A. Theorin. Implementation of an Autotunable Decoupling TITO Controller. Technical Report July, 2007F. M. Thiel. Adaptive Control of Plants with Input Saturation : An Approach for Performance Improvement. PhD thesis, 2019D. Tosse and C. Salazar. Diseño del controlador digital para una planta tipo Segway. Technical report, National University of Colombia, 2019J. F. Trégouët, D. Arzelier, D. Peaucelle, C. Pittet, and L. Zaccarian. Reaction wheels desaturation using magnetorquers and static input allocation. IEEE Transactions on Control Systems Technology, 23(2):525–539, 2015M. C. Turner. Positive mu modification as an anti-windup mechanism. Systems and Control Letters, 102(March 2017):15–21, 2017M. C. Turner. Systems & Control Letters Positive μ modification as an anti-windup mechanism. Systems & Control Letters, 102:15–21, 2017M. C. Turner, G. Herrmann, and I. Postlethwaite. Incorporating robustness requirements into antiwindup design. IEEE Transactions on Automatic Control, 52(10):1842–1855, 2007M. C. Turner, J. Sofrony, and E. Prempain. Anti-windup for model-reference adaptive control schemes with rate-limits. Systems and Control Letters, 137:104630, 2020Y. Ulybyshev. Long-Term Formation Keeping of Satellite Constellation Using Lnear-Quadratic Controller. Journal of Guidance, Control, and Dynamics, 132(9):2159–2165, 1998R. H. Vassar and R. B. Sherwood. Formation keeping for a Pair of Satellites in a Circular Obit. Advances in the Astronautical Sciences, 54(Pt 2):1105, 1983R. V. Vázquez. Mecánica Orbital y Vehículos Espaciales-Introducción I. Technical report, Universidad de Sevilla, Sevilla, España, 2015T. Villela, C. A. Costa, A. M. Brandão, F. T. Bueno, and R. Leonardi. Towards the thousandth CubeSat: A statistical overview. International Journal of Aerospace Engineering, 2019C. Wang, J. Li, N. Jing, J. Wang, and H. Chen. A distributed cooperative dynamic task planning algorithm for multiple satellites based on multi-agent hybrid learning. Chinese Journal of Aeronautics, 24(4):493–505, 2011F.-Y. Wang. Networked Control Systems, volume 53. 2008X. Wang and Y. Hong. Finite-Time Consensus for Multi-Agent Networks with Second-Order Agent Dynamics, volume 41. IFAC, 2008O. L. D. Weck. Attitude Determination and Control ( Adcs ). pages 1–57, 2001J. Wertz. Spacecraft attitude Determination and Control. 1978P. F.Weston and I. Postlethwaite. Linear conditioning for systems containing saturating actuators. Automatica, 36(9):1347–1354, 2000B. Wie. Space Vehicle Dynamics and Control, volume 70. Iowa State University, Virginia, 1952C. H. Won. Comparative study of various control methods for attitude control of a LEO satellite. Aerospace Science and Technology, 3(5):323–333, 1999M. Wooldridge. An introduction to Multi-Agent Systems. 2009Z. P. Wu, Z. H. Guan, and X. Wu. Consensus problem in multi-agent systems with physical position neighbourhood evolving network. Physica A: Statistical Mechanics and its Applications, 379(2):681–690, 2007S. Xu, X.-w. Wang, and M. Huang. Software-Defined Next-Generation Satellite Networks: Architecture, Challenges, and Solutions. IEEE Access, 4(c), 2016X. Yang. Low Earth Orbit (LEO) Mega Constellations – Satellite and Terrestrial Integrated Communication Networks. PhD thesis, 2018Y. Yang. Quaternion based model for momentum biased nadir pointing spacecraft. Aerospace Science and Technology, 14(3):199–202, 2010Y. Yang. Spacecraft attitude determination and control: Quaternion based method. Annual Reviews in Control, 36(2):198–219, 2012Y. Yang. Spacecraft Attitude and Reaction Wheel Desaturation Combined Control Method. IEEE Transactions on Aerospace and Electronic Systems, 53(1):286–295, 2017H.-h. Yeh and A. Sparks. Geometry and Control of Satellite Formations. Proceedings of the American Control Conference, (June):384–388, 2000Z. Yoon, W. Frese, A. Bukmaier, and K. Brieß. System design of an S-band network of distributed nanosatellites. CEAS Space Journal, 6(1):61–71, 2014Z. Yoon, Y. Lim, S. Grau, W. Frese, and M. A. Garcia. Orbit deployment and drag control strategy for formation flight while minimizing collision probability and drift. CEAS Space Journal, 12(3):397–410, 2020L. Zaccarian and A. R. Teel. Modern Anti-windup Synthesis. Princeton University Press, United States of America, 2011B. Zandbergen. Micropropulsion Systems for Cubesats. In Conference: Von Karman Institute for fluid dynamics, number October, pages 1–38, Brussels, 2014P. Zetocha, L. Self, R. Wainwright, and R. Burns. Commanding and controlling satellite clusters Margarita Brito and Derek Surka , Princeton Satellite Systems. IEEE Intelligent Systems, pages 10–15, 2002.C. Zhang, J. Wang, R. Sun, D. Zhang, and X. Shao. Multi-spacecraft attitude cooperative control using model-based event-triggered methodology. Advances in Space Research, 62(9):2620–2630, 2018.H. Zhang and P. Gurfil. Cooperative orbital control of multiple satellites via consensus. IEEE Transactions on Aerospace and Electronic Systems, 54(5):2171–2188, 2018J. Zhou and Q. Wang. Convergence speed in distributed consensus over dynamically switching random networks. Automatica, 45(6):1455–1461, 2009Fuerza Aérea ColombianaInvestigadoresPúblico generalResponsables políticosORIGINAL80056621_2022.pdf80056621_2022.pdfTesis de Doctorado en Ingenieríaapplication/pdf41587581https://repositorio.unal.edu.co/bitstream/unal/81455/3/80056621_2022.pdf3ba08f657889bf62eecf6ab442fb510fMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81455/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL80056621_2022.pdf.jpg80056621_2022.pdf.jpgGenerated Thumbnailimage/jpeg4763https://repositorio.unal.edu.co/bitstream/unal/81455/5/80056621_2022.pdf.jpg63b6a0d04117df6ea71d3fc72a980ad7MD55unal/81455oai:repositorio.unal.edu.co:unal/814552023-08-04 23:04:20.533Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |