Magnesium-based bioresorbable cellular metal as bone substitute

The design and development of an osteoinductive environment to reconstruct and treat large bone defects is still a challenge. Biodegradable porous metals have been proposed to bridge healthy parts of the tissue when the lesion overcomes the bone self-healing capacity. Mg-based scaffolds promise to a...

Full description

Autores:
Posada Pérez, Viviana Marcela
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79575
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79575
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Magnesio
Materiales biomédicos
Magnesium
controlled degradation
biodegradable implant
porous magnesium
ion-enhanced Gibbsian segregation
Directed plasma nanosynthesis
nanostructured surface
nanostructured surface
implante biodegradable
magnesio poroso
superficie nanostructurada
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_7cc23d65d9d55bd4ae9a1209ec94eaa8
oai_identifier_str oai:repositorio.unal.edu.co:unal/79575
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Magnesium-based bioresorbable cellular metal as bone substitute
dc.title.translated.spa.fl_str_mv Metal celular bioabsorbible a base de magnesio como sustituto óseo
title Magnesium-based bioresorbable cellular metal as bone substitute
spellingShingle Magnesium-based bioresorbable cellular metal as bone substitute
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Magnesio
Materiales biomédicos
Magnesium
controlled degradation
biodegradable implant
porous magnesium
ion-enhanced Gibbsian segregation
Directed plasma nanosynthesis
nanostructured surface
nanostructured surface
implante biodegradable
magnesio poroso
superficie nanostructurada
title_short Magnesium-based bioresorbable cellular metal as bone substitute
title_full Magnesium-based bioresorbable cellular metal as bone substitute
title_fullStr Magnesium-based bioresorbable cellular metal as bone substitute
title_full_unstemmed Magnesium-based bioresorbable cellular metal as bone substitute
title_sort Magnesium-based bioresorbable cellular metal as bone substitute
dc.creator.fl_str_mv Posada Pérez, Viviana Marcela
dc.contributor.advisor.none.fl_str_mv Ramírez Patiño, Juan Fernando
Fernández Morales, Gloria Patricia
dc.contributor.author.none.fl_str_mv Posada Pérez, Viviana Marcela
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Biomecánica e Ingeniería de Rehabilitación (GI-BIR)
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Magnesio
Materiales biomédicos
Magnesium
controlled degradation
biodegradable implant
porous magnesium
ion-enhanced Gibbsian segregation
Directed plasma nanosynthesis
nanostructured surface
nanostructured surface
implante biodegradable
magnesio poroso
superficie nanostructurada
dc.subject.lemb.none.fl_str_mv Magnesio
Materiales biomédicos
dc.subject.proposal.eng.fl_str_mv Magnesium
controlled degradation
biodegradable implant
porous magnesium
ion-enhanced Gibbsian segregation
Directed plasma nanosynthesis
nanostructured surface
nanostructured surface
dc.subject.proposal.spa.fl_str_mv implante biodegradable
magnesio poroso
superficie nanostructurada
description The design and development of an osteoinductive environment to reconstruct and treat large bone defects is still a challenge. Biodegradable porous metals have been proposed to bridge healthy parts of the tissue when the lesion overcomes the bone self-healing capacity. Mg-based scaffolds promise to assist in this bridging process, providing the mechanical properties and adapting to the new requirements such as weight and geometry as the healing time advances. Moreover, the porous condition guides the tissue and blood vessels' growth, and the release of Mg2+ accelerates the healing process. However, the Mg support is limited by its rapid degradation, which hinders the appropriate integration with the tissue. Additionally, the degradation is again accelerated in the porous condition, and the complex geometry limits the application of current protection methods. The present thesis aims to create an open-porous Mg-based scaffold for bone tissue engineering, focused on enhanced corrosion resistance and biocompatibility. Porous Mg materials were then fabricated in various geometrical configurations: random pores, truncated octahedron, and diamond unit cells. The control over the degradation of the material was achieved by modifying the first nanometers of the surface, avoiding changes in the architecture of the structures, and preserving the bulk properties of the material such as open porosity and lightweight. The nanometric modification was created via low-energy Ar+ irradiation, which developed well-ordered nanostructures on the surface, followed by Al-rich nanoclusters' accumulation. The creation of the Al-rich nanoclusters accelerated the passivation kinetics of the porous Mg, enhancing the apatite nucleation ability when immersing the materials in physiological fluids. Moreover, the apatite formation ability was conditioned to the concentration of Al on the near-surface, which offered surfaces for different biological purposes by tailoring the CaP ratio. Superior properties regarding in vitro biodegradation and biocompatibility were obtained on hydroxylapatite tailored surfaces, such as decreased weight loss, conservation of the strut size during the immersion time, and decreased H2 and Mg2+ release. Furthermore, higher cell density was adhered to and proliferated on the DPNS surfaces indicating outstanding biocompatibility. The increase in biocompatibility was also supported by the formation of focal adhesion points and increased osteogenic potential, and the immune response modulation of the cells seeded on the modified surfaces. Finally, the material was tested in vivo, demonstrating steady corrosion and improved porous structure stability after 8 weeks of implantation in Wistar rats.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-05-31T16:47:48Z
dc.date.available.none.fl_str_mv 2021-05-31T16:47:48Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79575
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79575
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] E. Roddy, M.R. DeBaun, A. Daoud-Gray, Y.P. Yang, M.J. Gardner, Treatment of critical-sized bone defects: clinical and tissue engineering perspectives, Eur. J. Orthop. Surg. Traumatol. 28 (2018) 351–362. https://doi.org/10.1007/s00590-017-2063-0.
[2] S. van Gaalen, M. Kruyt, G. Meijer, A. Mistry, A. Mikos, J. van den Beucken, J. Jansen, K. de Groot, R. Cancedda, C. Olivo, M. Yaszemski, W. Dhert, Chapter 19 - Tissue engineering of bone, in: Academic Press, Burlington, 2008: pp. 559–610. http://www.sciencedirect.com/science/article/pii/B9780123708694000197 (accessed February 9, 2016).
[3] T.X. Song, Y.L. Hu, Z.M. He, Y. Cui, Q. Ding, Z.Y. Qiu, Clinical applications of the mineralized collagen, in: Miner. Collagen Bone Graft Substitutes, Elsevier, 2019: pp. 167–232. https://doi.org/10.1016/B978-0-08-102717-2.00005-9.
[4] W. Wang, K.W.K. Yeung, Bone grafts and biomaterials substitutes for bone defect repair: A review, (2017). https://doi.org/10.1016/j.bioactmat.2017.05.007.
[5] S. Wu, X. Liu, K.W.K.K. Yeung, C. Liu, X. Yang, Biomimetic porous scaffolds for bone tissue engineering, Mater. Sci. Eng. R Reports. 80 (2014) 1–36. https://doi.org/10.1016/j.mser.2014.04.001.
[6] A. Nauth, E. Schemitsch, B. Norris, Z. Nollin, J.T. Watson, Critical-Size Bone Defects, J. Orthop. Trauma. 32 (2018) S7–S11. https://doi.org/10.1097/BOT.0000000000001115.
[7] S.K. Jaganathan, M. Prasath Mani, M. Ayyar, R. Rathanasamy, Biomimetic electrospun polyurethane matrix composites with tailor made properties for bone tissue engineering scaffolds, Polym. Test. 78 (2019) 105955. https://doi.org/10.1016/j.polymertesting.2019.105955.
[8] H. Zhou, S.B. Bhaduri, 3D printing in the research and development of medical devices, in: Biomater. Transl. Med. A Biomater. Approach, Elsevier, 2018: pp. 269–289. https://doi.org/10.1016/B978-0-12-813477-1.00012-8.
[9] A.H. Yusop, A.A. Bakir, N.A. Shaharom, M.R. Abdul Kadir, H. Hermawan, Porous Biodegradable Metals for Hard Tissue Scaffolds: A Review, Int. J. Biomater. 2012 (2012) 1–10. https://doi.org/10.1155/2012/641430.
[10] H. Ding, H. Pan, X. Xu, R. Tang, Toward a Detailed Understanding of Magnesium Ions on Hydroxyapatite Crystallization Inhibition, Cryst. Growth Des. 14 (2014) 763–769. https://doi.org/10.1021/cg401619s.
[11] E. O’Neill, G. Awale, L. Daneshmandi, O. Umerah, K.W.-H. Lo, The roles of ions on bone regeneration, Drug Discov. Today. 23 (2018) 879–890. https://doi.org/10.1016/J.DRUDIS.2018.01.049.
[12] Y. Zhang, J. Xu, Y.C. Ruan, M.K. Yu, M. O’Laughlin, H. Wise, D. Chen, L. Tian, D. Shi, J. Wang, S. Chen, J.Q. Feng, D.H.K. Chow, X. Xie, L. Zheng, L. Huang, S. Huang, K. Leung, N. Lu, L. Zhao, H. Li, D. Zhao, X. Guo, K. Chan, F. Witte, H.C. Chan, Y. Zheng, L. Qin, Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats, Nat. Med. 22 (2016) 1160–1169. https://doi.org/10.1038/nm.4162.
[13] M. Wang, Y. Yu, K. Dai, Z. Ma, Y. Liu, J. Wang, C. Liu, Improved osteogenesis and angiogenesis of magnesium-doped calcium phosphate cement: Via macrophage immunomodulation, Biomater. Sci. 4 (2016) 1574–1583. https://doi.org/10.1039/c6bm00290k.
[14] B. Li, H. Cao, Y. Zhao, M. Cheng, H. Qin, T. Cheng, Y. Hu, X. Zhang, X. Liu, In vitro and in vivo responses of macrophages to magnesium-doped titanium, Sci. Rep. 7 (2017) 1–12. https://doi.org/10.1038/srep42707.
[15] T.L. Nguyen, M.P. Staiger, G.J. Dias, T.B.F. Woodfield, A Novel Manufacturing Route for Fabrication of Topologically-Ordered Porous Magnesium Scaffolds, Adv. Eng. Mater. 13 (2011) 872–881. https://doi.org/10.1002/adem.201100029.
[16] G. Jia, C. Chen, J. Zhang, Y. Wang, R. Yue, B.J.C. Luthringer - Feyerabend, R. Willumeit-Roemer, H. Zhang, M. Xiong, H. Huang, G. Yuan, F. Feyerabend, In vitro degradation behavior of Mg scaffolds with three-dimensional interconnected porous structures for bone tissue engineering, Corros. Sci. 144 (2018) 301–312. https://doi.org/10.1016/j.corsci.2018.09.001.
[17] Y. Wang, P. Fu, N. Wang, L. Peng, B. Kang, H. Zeng, G. Yuan, W. Ding, Challenges and Solutions for the Additive Manufacturing of Biodegradable Magnesium Implants, Engineering. (2020). https://doi.org/10.1016/j.eng.2020.02.015.
[18] J. M.Rúa, A.A. Zuleta, J. Ramírez, P. Fernández-Morales, Micro-arc oxidation coating on porous magnesium foam and its potential biomedical applications, Surf. Coatings Technol. 360 (2019) 213–221. https://doi.org/10.1016/j.surfcoat.2018.12.106.
[19] S. Julmi, A.-K. Krüger, A.-C. Waselau, A. Meyer-Lindenberg, P. Wriggers, C. Klose, H.J. Maier, Processing and coating of open-pored absorbable magnesium-based bone implants, Mater. Sci. Eng. C. 98 (2019) 1073–1086. https://doi.org/10.1016/j.msec.2018.12.125.
[20] S. Weiner, H.D. Wagner, The material bone: Structure-mechanical function relations, Annu. Rev. Mater. Sci. 28 (1998) 271–298.
[21] M. Yazdimamaghani, M. Razavi, D. Vashaee, L. Tayebi, Microstructural and mechanical study of PCL coated Mg scaffolds, Surf. Eng. 30 (2014) 920–926. https://doi.org/10.1179/1743294414Y.0000000307.
[22] M. Yazdimamaghani, M. Razavi, D. Vashaee, L. Tayebi, Surface modification of biodegradable porous Mg bone scaffold using polycaprolactone/bioactive glass composite, Mater. Sci. Eng. C. 49 (2015) 436–444. https://doi.org/10.1016/j.msec.2015.01.041.
[23] Z. Chen, X. Mao, L. Tan, T. Friis, C. Wu, R. Crawford, Y. Xiao, Osteoimmunomodulatory properties of magnesium scaffolds coated with β-tricalcium phosphate, Biomaterials. 35 (2014) 8553–8565. https://doi.org/10.1016/j.biomaterials.2014.06.038.
[24] Z.Z. Yin, W.C. Qi, R.C. Zeng, X.B. Chen, C.D. Gu, S.K. Guan, Y.F. Zheng, Advances in coatings on biodegradable magnesium alloys, J. Magnes. Alloy. 8 (2020) 42–65. https://doi.org/10.1016/j.jma.2019.09.008.
[25] R.C. Zeng, L.Y. Cui, K. Jiang, R. Liu, B.D. Zhao, Y.F. Zheng, In Vitro Corrosion and Cytocompatibility of a Microarc Oxidation Coating and Poly(l -lactic acid) Composite Coating on Mg-1Li-1Ca Alloy for Orthopedic Implants, ACS Appl. Mater. Interfaces. 8 (2016) 10014–10028. https://doi.org/10.1021/acsami.6b00527.
[26] F. Czerwinski, ed., Magnesium Alloys - Corrosion and Surface Treatments, InTech, 2011. http://www.intechopen.com/books/magnesium-alloys-corrosion-and-surface-treatments (accessed November 3, 2014).
[27] G. Zhang, L. Wu, A. Tang, Y. Ma, G.-L. Song, D. Zheng, B. Jiang, A. Atrens, F. Pan, Active corrosion protection by a smart coating based on a MgAl-layered double hydroxide on a cerium-modified plasma electrolytic oxidation coating on Mg alloy AZ31, Corros. Sci. 139 (2018) 370–382. https://doi.org/10.1016/J.CORSCI.2018.05.010.
[28] J. Liao, M. Hotta, Corrosion products of field-exposed Mg-Al series magnesium alloys, Corros. Sci. 112 (2016) 276–288. https://doi.org/10.1016/j.corsci.2016.07.023.
[29] G. Wu, R. Xu, K. Feng, S. Wu, Z. Wu, G. Sun, G. Zheng, G. Li, P.K. Chu, Retardation of surface corrosion of biodegradable magnesium-based materials by aluminum ion implantation, Appl. Surf. Sci. 258 (2012) 7651–7657. https://doi.org/10.1016/j.apsusc.2012.04.112.
[30] M.C. Delgado, F.R. García-Galvan, I. Llorente, P. Pérez, P. Adeva, S. Feliu, Influence of aluminium enrichment in the near-surface region of commercial twin-roll cast AZ31 alloys on their corrosion behaviour, Corros. Sci. 123 (2017) 182–196. https://doi.org/10.1016/J.CORSCI.2017.04.027.
[31] M.K. Lei, P. Li, H.G. Yang, X.M. Zhu, Wear and corrosion resistance of Al ion implanted AZ31 magnesium alloy, Surf. Coatings Technol. 201 (2007) 5182–5185. https://doi.org/10.1016/J.SURFCOAT.2006.07.091.
[32] D. Dubé, M. Fiset, A. Couture, I. Nakatsugawa, Characterization and performance of laser melted AZ91D and AM60B, Mater. Sci. Eng. A. 299 (2001) 38–45. https://doi.org/10.1016/S0921-5093(00)01414-3.
[33] S. Hao, M. Li, Producing nano-grained and Al-enriched surface microstructure on AZ91 magnesium alloy by high current pulsed electron beam treatment, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 375 (2016) 1–4. https://doi.org/10.1016/j.nimb.2016.03.035.
[34] A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, S. Feliú, Influence of microstructure and composition on the corrosion behaviour of Mg/Al alloys in chloride media, Electrochim. Acta. 53 (2008) 7890–7902. https://doi.org/10.1016/J.ELECTACTA.2008.06.001.
[35] F. Reichel, L.P.H. Jeurgens, E.J. Mittemeijer, Modeling compositional changes in binary solid solutions under ion bombardment: Application to the Ar+ bombardment of MgAl alloys, Phys. Rev. B - Condens. Matter Mater. Phys. 73 (2006). https://doi.org/10.1103/PhysRevB.73.024103.
[37] M.A. Yánez Contreras, C.D. Maldonado Pedroza, K.P. Del Risco Serje, Labor force participation of people aged 60 years old and above in Colombia, Rev. Econ. Del Caribe. (2016) 39–63. https://doi.org/10.14482/ecoca.17.8004.
[38] R. Aziziyeh, M. Amin, M. Habib, J. Garcia Perlaza, K. Szafranski, R.K. McTavish, T. Disher, A. Lüdke, C. Cameron, The burden of osteoporosis in four Latin American countries: Brazil, Mexico, Colombia, and Argentina, J. Med. Econ. 22 (2019) 638–644. https://doi.org/10.1080/13696998.2019.1590843.
[39] Instituto Nacional De Salud, Informe anual red de donación y trasplantes, 2018. https://www.ins.gov.co/Direcciones/RedesSaludPublica/DonacionOrganosYTejidos/Estadisticas/Informe-Anual-Red-Donacion-Trasplantes-2018.pdf.
[40] W.M. Baldwin, C.P. Larsen, R.L. Fairchild, Innate immune responses to transplants: A significant variable with cadaver donors, Immunity. 14 (2001) 369–376. https://doi.org/10.1016/S1074-7613(01)00117-0.
[41] R.A. Navarro, N.C. Reddy, J.M. Weiss, A.J. Yates, F.H. Fu, M. McKee, E.S. Lederman, Orthopaedic Systems Response to and Return from the COVID-19 Pandemic: Lessons for Future Crisis Management, J. Bone Jt. Surg. - Am. Vol. 102 (2020) E75. https://doi.org/10.2106/JBJS.20.00709.
[42] B. Fiani, R. Jenkins, I. Siddiqi, A. Khan, A. Taylor, Socioeconomic Impact of COVID-19 on Spinal Instrumentation Companies in the Era of Decreased Elective Surgery, Cureus. 12 (2020). https://doi.org/10.7759/cureus.9776.
[43] S. Von Euw, Y. Wang, G. Laurent, C. Drouet, F. Babonneau, N. Nassif, T. Azaïs, Bone mineral: new insights into its chemical composition, Sci. Rep. 9 (2019) 1–11. https://doi.org/10.1038/s41598-019-44620-6.
[44] J.L. Shaker, L. Deftos, Calcium and Phosphate Homeostasis, in: Endocr. Reprod. Physiol., Elsevier, 2013: pp. 77-e1. https://doi.org/10.1016/b978-0-323-08704-9.00004-x.
[45] J.D. Black, B.J. Tadros, Bone structure: from cortical to calcium, Orthop. Trauma. 34 (2020) 113–119. https://doi.org/10.1016/j.mporth.2020.03.002.
[46] J.Y. Rho, L. Kuhn-Spearing, P. Zioupos, Mechanical properties and the hierarchical structure of bone, Med. Eng. Phys. 20 (1998) 92–102. https://doi.org/10.1016/S1350-4533(98)00007-1.
[47] F.M. Vanhoenacker, A.L. Baert, C. Faletti, M. Maas, J.L.M.A. Gielen, Imaging of Orthopedic Sports Injuries, Springer Berlin Heidelberg, 2007. https://books.google.com.co/books?id=BjWq_4WqRFEC.
[48] R. Oftadeh, M. Perez-Viloria, J.C. Villa-Camacho, A. Vaziri, A. Nazarian, Biomechanics and Mechanobiology of Trabecular Bone: A Review, J. Biomech. Eng. 137 (2015). https://doi.org/10.1115/1.4029176.
[49] G.S. Baht, L. Vi, B.A. Alman, The Role of the Immune Cells in Fracture Healing, Curr. Osteoporos. Rep. 16 (2018) 138–145. https://doi.org/10.1007/s11914-018-0423-2.
[50] T. Ono, H. Takayanagi, Osteoimmunology in Bone Fracture Healing, Curr. Osteoporos. Rep. 15 (2017) 367–375. https://doi.org/10.1007/s11914-017-0381-0.
[51] A. Dorronsoro, I. Ferrin, J.M. Salcedo, E. Jakobsson, J. Fernández‐Rueda, V. Lang, P. Sepulveda, K. Fechter, D. Pennington, C. Trigueros, Human mesenchymal stromal cells modulate T‐cell responses through TNF‐α‐mediated activation of NF‐κB, Eur. J. Immunol. 44 (2014) 480–488. https://doi.org/10.1002/eji.201343668.
[52] T.A. Einhorn, Bone Regeneration and Repair, J. Bone Jt. Surg. 88 (2006) 469–470. https://doi.org/10.2106/00004623-200602000-00050.
[53] L.J. Kidd, A.S. Stephens, J.S. Kuliwaba, N.L. Fazzalari, A.C.K. Wu, M.R. Forwood, Temporal pattern of gene expression and histology of stress fracture healing, Bone. 46 (2010) 369–378. https://doi.org/10.1016/j.bone.2009.10.009.
[54] N.A. Sims, T.J. Martin, The osteoblast lineage: Its actions and communication mechanisms, in: Princ. Bone Biol., Elsevier, 2019: pp. 89–110. https://doi.org/10.1016/B978-0-12-814841-9.00004-X.
[55] G.K.K. and A.E. Javad Parvizi, High Yield Orthopaedics, Elsevier, 2010. https://doi.org/10.1016/c2009-0-32243-6.
[56] T.A. Franz-Odendaal, B.K. Hall, P.E. Witten, Buried alive: How osteoblasts become osteocytes, Dev. Dyn. 235 (2006) 176–190. https://doi.org/10.1002/dvdy.20603.
[57] M.H.V. Choy, R.M.Y. Wong, S.K.H. Chow, M.C. Li, Y.N. Chim, T.K. Li, W.T. Ho, J.C.Y. Cheng, W.H. Cheung, How much do we know about the role of osteocytes in different phases of fracture healing? A systematic review, J. Orthop. Transl. 21 (2020) 111–121. https://doi.org/10.1016/j.jot.2019.07.005.
[58] B.M. Willie, E.A. Zimmermann, I. Vitienes, R.P. Main, S. V. Komarova, Bone adaptation: Safety factors and load predictability in shaping skeletal form, Bone. 131 (2020) 115114. https://doi.org/10.1016/j.bone.2019.115114.
[59] J.H. Kim, D. Kim, M.G. Lee, Mechanics of Cellular Materials and its Applications, in: Multiscale Simulations Mech. Biol. Mater., John Wiley and Sons, 2013: pp. 411–434. https://doi.org/10.1002/9781118402955.ch22.
[60] L.J. Gibson, The mechanical behaviour of cancellous bone, J. Biomech. 18 (1985) 317–328. https://doi.org/10.1016/0021-9290(85)90287-8.
[61] A. Nouri, Deakin University, Deakin University, Novel metal structures through powder metallurgy for biomedical applications, 2008.
[62] T.S. Keller, Predicting the compressive mechanical behavior of bone, J. Biomech. 27 (1994) 1159–1168. https://doi.org/10.1016/0021-9290(94)90056-6.
[63] J.D. Silva-Henao, R.J. Rueda Esteban, A. Marañon-Leon, J.P. Casas-Rodríguez, Post-yield mechanical properties of bovine trabecular bone – Relationships with bone volume fraction and strain rate, Eng. Fract. Mech. 233 (2020) 107053. https://doi.org/10.1016/j.engfracmech.2020.107053.
[64] H. Leng, M.J. Reyes, X.N. Dong, X. Wang, Effect of age on mechanical properties of the collagen phase in different orientations of human cortical bone, Bone. 55 (2013) 288–291. https://doi.org/10.1016/j.bone.2013.04.006.
[65] L.J. Gibson, M.F. Ashby, Cellular Solids: Structure and Properties, Cambridge University Press, 1999. http://books.google.com.co/books?id=IySUr5sn4N8C.
[66] N. Fratzl-Zelman, A.P. Roschger, A.A. Gourrier, A.M. Weber, A.B.M. Misof, A.N. Loveridge, A.J. Reeve, A.K. Klaushofer, A.P. Fratzl, Á.P. Roschger, Á.B.M. Misof, Á.K. Klaushofer, A. Gourrier, Á.M. Weber, Á.P. Fratzl, M. Weber, E. Schmid, N. Loveridge, Á.J. Reeve, Combination of Nanoindentation and Quantitative Backscattered Electron Imaging Revealed Altered Bone Material Properties Associated with Femoral Neck Fragility, Calcif Tissue Int. 85 (2009) 335–343. https://doi.org/10.1007/s00223-009-9289-8.
[67] M.A.K.L. and W.S. M. A. Wettergreen, B. S. Bucklen, CAD Assembly Process for Bone Replacement Scaffolds in Computer-Aided Tissue Engineering, in: Virtual Prototyp. Bio Manuf. Med. Appl., 2008: pp. 87–112.
[68] R. Dimitriou, E. Tsiridis, P. V. Giannoudis, Current concepts of molecular aspects of bone healing, Injury. 36 (2005) 1392–1404. https://doi.org/10.1016/j.injury.2005.07.019.
[69] C.W. Schlickewei, H. Kleinertz, D.M. Thiesen, K. Mader, M. Priemel, K.H. Frosch, J. Keller, Current and future concepts for the treatment of impaired fracture healing, Int. J. Mol. Sci. 20 (2019). https://doi.org/10.3390/ijms20225805.
[70] F. Barrère, C.A. van Blitterswijk, K. de Groot, Bone regeneration: Molecular and cellular interactions with calcium phosphate ceramics, Int. J. Nanomedicine. 1 (2006) 317–332.
[71] R. Langer, J.P. Vacanti, Tissue Engineering, n.d. http://science.sciencemag.org/ (accessed June 13, 2020).
[72] K. Alvarez, H. Nakajima, Metallic scaffolds for bone regeneration, Materials (Basel). 2 (2009) 790–832. https://doi.org/10.3390/ma2030790.
[73] N. Abbasi, S. Hamlet, R.M. Love, N.T. Nguyen, Porous scaffolds for bone regeneration, J. Sci. Adv. Mater. Devices. 5 (2020) 1–9. https://doi.org/10.1016/j.jsamd.2020.01.007.
[74] K.A. Hing, Bioceramic bone graft substitutes: Influence of porosity and chemistry, Int. J. Appl. Ceram. Technol. 2 (2005) 184–199. https://doi.org/10.1111/j.1744-7402.2005.02020.x.
[75] X. Xiao, W. Wang, D. Liu, H. Zhang, P. Gao, L. Geng, Y. Yuan, J. Lu, Z. Wang, The promotion of angiogenesis induced by three-dimensional porous beta-tricalcium phosphate scaffold with different interconnection sizes via activation of PI3K/Akt pathways, Sci. Rep. 5 (2015) 1–11. https://doi.org/10.1038/srep09409.
[76] C.M. Murphy, F.J. O’Brien, Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds, Cell Adhes. Migr. 4 (2010) 377–381. https://doi.org/10.4161/cam.4.3.11747.
[77] L. Chu, G. Jiang, X.-L. Hu, T.D. James, X.-P. He, Y. Li, T. Tang, Biodegradable macroporous scaffold with nano-crystal surface microstructure for highly effective osteogenesis and vascularization, J. Mater. Chem. B. 6 (2018) 1658–1667. https://doi.org/10.1039/C7TB03353B.
[78] Z. Chen, X. Yan, S. Yin, L. Liu, X. Liu, G. Zhao, W. Ma, W. Qi, Z. Ren, H. Liao, M. Liu, D. Cai, H. Fang, Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth, Mater. Sci. Eng. C. 106 (2020) 110289. https://doi.org/10.1016/j.msec.2019.110289.
[79] P. Ouyang, H. Dong, X. He, X. Cai, Y. Wang, J. Li, H. Li, Z. Jin, Hydromechanical mechanism behind the effect of pore size of porous titanium scaffolds on osteoblast response and bone ingrowth, Mater. Des. 183 (2019) 108151. https://doi.org/10.1016/j.matdes.2019.108151.
[80] S. Ray, U. Thormann, M. Eichelroth, M. Budak, C. Biehl, M. Rupp, U. Sommer, T. El Khassawna, F.I. Alagboso, M. Kampschulte, M. Rohnke, A. Henß, K. Peppler, V. Linke, P. Quadbeck, A. Voigt, F. Stenger, D. Karl, R. Schnettler, C. Heiss, K.S. Lips, V. Alt, Strontium and bisphosphonate coated iron foam scaffolds for osteoporotic fracture defect healing, Biomaterials. 157 (2018) 1–16. https://doi.org/10.1016/j.biomaterials.2017.11.049.
[81] M.Q. Cheng, T. Wahafu, G.F. Jiang, W. Liu, Y.Q. Qiao, X.C. Peng, T. Cheng, X.L. Zhang, G. He, X.Y. Liu, A novel open-porous magnesium scaffold with controllable microstructures and properties for bone regeneration, Sci. Rep. 6 (2016) 24134. https://doi.org/10.1038/srep24134.
[82] M.H. Kang, H. Lee, T.S. Jang, Y.J. Seong, H.E. Kim, Y.H. Koh, J. Song, H. Do Jung, Biomimetic porous Mg with tunable mechanical properties and biodegradation rates for bone regeneration, Acta Materialia Inc., 2019. https://doi.org/10.1016/j.actbio.2018.11.045.
[83] E. Dayaghi, H.R. Bakhsheshi-Rad, E. Hamzah, A. Akhavan-Farid, A.F. Ismail, M. Aziz, E. Abdolahi, Magnesium-zinc scaffold loaded with tetracycline for tissue engineering application: In vitro cell biology and antibacterial activity assessment, Mater. Sci. Eng. C. 102 (2019) 53–65. https://doi.org/10.1016/j.msec.2019.04.010.
[84] N. Taniguchi, S. Fujibayashi, M. Takemoto, K. Sasaki, B. Otsuki, T. Nakamura, T. Matsushita, T. Kokubo, S. Matsuda, Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment, Mater. Sci. Eng. C. 59 (2016) 690–701. https://doi.org/10.1016/j.msec.2015.10.069.
[85] S. Kujala, J. Ryhänen, A. Danilov, J. Tuukkanen, Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel–titanium bone graft substitute, Biomaterials. 24 (2003) 4691–4697. https://doi.org/10.1016/S0142-9612(03)00359-4.
[86] S. Limmahakhun, A. Oloyede, K. Sitthiseripratip, Y. Xiao, C. Yan, 3D-printed cellular structures for bone biomimetic implants, Addit. Manuf. 15 (2017) 93–101. https://doi.org/10.1016/j.addma.2017.03.010.
[87] C.M. Murphy, M.G. Haugh, F.J. O’Brien, The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering, Biomaterials. 31 (2010) 461–466. https://doi.org/10.1016/j.biomaterials.2009.09.063.
[88] B.B. Mandal, S.C. Kundu, Osteogenic and adipogenic differentiation of rat bone marrow cells on non-mulberry and mulberry silk gland fibroin 3D scaffolds, Biomaterials. 30 (2009) 5019–5030. https://doi.org/10.1016/j.biomaterials.2009.05.064.
[89] Y. Kuboki, Q. Jin, H. Takita, Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and chondrogenesis., J. Bone Joint Surg. Am. 83 A Suppl 1 (2001). https://doi.org/10.2106/00004623-200100002-00005.
[90] T. Lou, X. Wang, G. Song, Z. Gu, Z. Yang, Structure and properties of PLLA/β-TCP nanocomposite scaffolds for bone tissue engineering, J. Mater. Sci. Mater. Med. 26 (2015) 34. https://doi.org/10.1007/s10856-014-5366-2.
[91] S. Pina, R.F. Canadas, G. Jiménez, M. Perán, J.A. Marchal, R.L. Reis, J.M. Oliveira, Biofunctional Ionic-Doped Calcium Phosphates: Silk Fibroin Composites for Bone Tissue Engineering Scaffolding, Cells Tissues Organs. 204 (2017) 150–163. https://doi.org/10.1159/000469703.
[92] M. Mauri, T. Elli, G. Caviglia, G. Uboldi, M. Azzi, RAWGraphs: A Visualisation Platform to Create Open Outputs, in: Proc. 12th Biannu. Conf. Ital. SIGCHI Chapter - CHItaly ’17, ACM Press, New York, New York, USA, 2017: pp. 1–5. https://doi.org/10.1145/3125571.3125585.
[93] T. Maconachie, M. Leary, B. Lozanovski, X. Zhang, M. Qian, O. Faruque, M. Brandt, SLM lattice structures: Properties, performance, applications and challenges, Mater. Des. 183 (2019) 108137. https://doi.org/10.1016/j.matdes.2019.108137.
[94] C. Yan, L. Hao, A. Hussein, P. Young, D. Raymont, Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting, Mater. Des. 55 (2014) 533–541. https://doi.org/10.1016/j.matdes.2013.10.027.
[95] B.S. Bucklen, W.A. Wettergreen, E. Yuksel, M.A.K. Liebschner, Bone-derived CAD library for assembly of scaffolds in computer-aided tissue engineering, Virtual Phys. Prototyp. 3 (2008) 13–23. https://doi.org/10.1080/17452750801911352.
[96] M.A. Wettergreen, B.S. Bucklen, B. Starly, E. Yuksel, W. Sun, M.A.K. Liebschner, Creation of a unit block library of architectures for use in assembled scaffold engineering, Comput. Des. 37 (2005) 1141–1149. https://doi.org/10.1016/j.cad.2005.02.005.
[97] C.K. Chua, K.F. Leong, C.M. Cheah, S.W. Chua, Development of a Tissue Engineering Scaffold Structure Library for Rapid Prototyping. Part 1: Investigation and Classification, Int J Adv Manuf Technol. 21 (2003) 291–301. https://link.springer.com/content/pdf/10.1007%2Fs001700300034.pdf (accessed August 9, 2017).
[98] C.K. Chua, K.F. Leong, C.M. Cheah, S.W. Chua, Development of a Tissue Engineering Scaffold Structure Library for Rapid Prototyping. Part 2: Parametric Library and Assembly Program, 2003.
[99] N. Chantarapanich, P. Puttawibul, S. Sucharitpwatskul, P. Jeamwatthanachai, S. Inglam, K. Sitthiseripratip, Scaffold Library for Tissue Engineering: A Geometric Evaluation, Comput. Math. Methods Med. 2012 (2012) 1–14. https://doi.org/10.1155/2012/407805.
[100] M.J. Wenninger, Polyhedron models, Cambridge University Press, 2015. https://doi.org/10.1017/CBO9780511569746.
[101] J. Wieding, A. Wolf, R. Bader, Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone, J. Mech. Behav. Biomed. Mater. 37 (2014) 56–68. https://doi.org/10.1016/j.jmbbm.2014.05.002.
[102] G. Bini, F. Bini, R. Bedini, A. Marinozzi, F. Marinozzi, A topological look at human trabecular bone tissue, Math. Biosci. 288 (2017) 159–165. https://doi.org/10.1016/j.mbs.2017.03.009.
[103] V.M. Posada, C. Orozco, J. Ramírez, P. Fernandez-Morales, Human bone inspired design of an Mg alloy-based foam, 2018. https://doi.org/10.4028/www.scientific.net/MSF.933.291.
[104] L.J. Gibson, Biomechanics of cellular solids, J. Biomech. 38 (2005) 377–399. https://doi.org/10.1016/j.jbiomech.2004.09.027.
[105] P.K. Zysset, M.S. Ominsky, S.A. Goldstein, A novel 3D microstructural model for trabecular bone: I. The relationship between fabric and elasticity, Comput. Methods Biomech. Biomed. Engin. 1 (1998) 321–331. https://doi.org/10.1080/01495739808936710.
[106] S.M. Ahmadi, G. Campoli, S. Amin Yavari, B. Sajadi, R. Wauthle, J. Schrooten, H. Weinans, A.A. Zadpoor, Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells, J. Mech. Behav. Biomed. Mater. 34 (2014) 106–115. https://doi.org/10.1016/j.jmbbm.2014.02.003.
[107] P. Heinl, L. Müller, C. Körner, R.F. Singer, F.A. Müller, Cellular Ti–6Al–4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting, Acta Biomater. 4 (2008) 1536–1544. https://doi.org/10.1016/j.actbio.2008.03.013.
[108] N. Reznikov, H. Chase, Y. Ben Zvi, V. Tarle, M. Singer, V. Brumfeld, R. Shahar, S. Weiner, Inter-trabecular angle: A parameter of trabecular bone architecture in the human proximal femur that reveals underlying topological motifs, Acta Biomater. 44 (2016) 65–72. https://doi.org/10.1016/j.actbio.2016.08.040.
[109] A. Ataee, Y. Li, D. Fraser, G. Song, C. Wen, Anisotropic Ti-6Al-4V gyroid scaffolds manufactured by electron beam melting (EBM) for bone implant applications, Mater. Des. 137 (2018) 345–354. https://doi.org/10.1016/j.matdes.2017.10.040.
[110] A.A. Zadpoor, Bone tissue regeneration: the role of scaffold geometry, Biomater. Sci. 3 (2015) 231–245. https://doi.org/10.1039/C4BM00291A.
[111] Y. Qin, P. Wen, H. Guo, D. Xia, Y. Zheng, L. Jauer, R. Poprawe, M. Voshage, J.H. Schleifenbaum, Additive manufacturing of biodegradable metals: Current research status and future perspectives, Acta Biomater. 98 (2019) 3–22. https://doi.org/10.1016/j.actbio.2019.04.046.
[112] R. Karunakaran, S. Ortgies, A. Tamayol, F. Bobaru, M.P. Sealy, Additive manufacturing of magnesium alloys, Bioact. Mater. 5 (2020) 44–54. https://doi.org/10.1016/j.bioactmat.2019.12.004.
[113] M. Joner, P. Ruppelt, P. Zumstein, C. Lapointe-Corriveau, G. Leclerc, A. Bulin, M.I. Castellanos, E. Wittchow, M. Haude, R. Waksman, Preclinical evaluation of degradation kinetics and elemental mapping of first- and second-generation bioresorbable magnesium scaffolds, EuroIntervention. 14 (2018) e1040–e1048. https://doi.org/10.4244/eij-d-17-00708.
[114] R. Biber, J. Pauser, M. Geßlein, H.J. Bail, Magnesium-Based Absorbable Metal Screws for Intra-Articular Fracture Fixation., Case Rep. Orthop. 2016 (2016) 9673174. https://doi.org/10.1155/2016/9673174.
[115] U&i Corporation - Driving beyond the innovations, (n.d.). http://www.youic.com/sub02/list.php?ca_id=10 (accessed October 25, 2020).
[116] G. Papanikolaou, K. Pantopoulos, Iron metabolism and toxicity, Toxicol. Appl. Pharmacol. 202 (2005) 199–211. https://doi.org/10.1016/j.taap.2004.06.021.
[117] P. Sharma, P.M. Pandey, Corrosion behaviour of the porous iron scaffold in simulated body fluid for biodegradable implant application, Mater. Sci. Eng. C. 99 (2019) 838–852. https://doi.org/10.1016/j.msec.2019.01.114.
[118] D. Carluccio, C. Xu, J. Venezuela, Y. Cao, D. Kent, M. Bermingham, A.G. Demir, B. Previtali, Q. Ye, M. Dargusch, Additively manufactured iron-manganese for biodegradable porous load-bearing bone scaffold applications, Acta Biomater. 103 (2020) 346–360. https://doi.org/10.1016/j.actbio.2019.12.018.
[119] P. Sharma, P.M. Pandey, A novel manufacturing route for the fabrication of topologically-ordered open-cell porous iron scaffold, Mater. Lett. 222 (2018) 160–163. https://doi.org/10.1016/J.MATLET.2018.03.206.
[120] R. Alavi, A. Trenggono, S. Champagne, H. Hermawan, Investigation on Mechanical Behavior of Biodegradable Iron Foams under Different Compression Test Conditions, Metals (Basel). 7 (2017) 202. https://doi.org/10.3390/met7060202.
[121] I. Cockerill, Y. Su, S. Sinha, Y.X. Qin, Y. Zheng, M.L. Young, D. Zhu, Porous zinc scaffolds for bone tissue engineering applications: A novel additive manufacturing and casting approach, Mater. Sci. Eng. C. 110 (2020) 110738. https://doi.org/10.1016/j.msec.2020.110738.
[122] J. Nriagu, Zinc deficiency in human health, in: Encycl. Environ. Heal., Elsevier, 2019: pp. 489–499. https://doi.org/10.1016/B978-0-12-409548-9.11433-2.
[123] P.K. Bowen, E.R. Shearier, S. Zhao, R.J. Guillory, F. Zhao, J. Goldman, J.W. Drelich, Biodegradable Metals for Cardiovascular Stents: From Clinical Concerns to Recent Zn-Alloys, Adv. Healthc. Mater. 5 (2016) 1121–1140. https://doi.org/10.1002/adhm.201501019.
[124] J. Venezuela, M.S. Dargusch, The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review, Acta Biomater. 87 (2019) 1–40. https://doi.org/10.1016/j.actbio.2019.01.035.
[125] S.M. Glasdam, S. Glasdam, G.H. Peters, The Importance of Magnesium in the Human Body: A Systematic Literature Review, in: Adv. Clin. Chem., Academic Press Inc., 2016: pp. 169–193. https://doi.org/10.1016/bs.acc.2015.10.002.
[126] N.-E.L. Saris, E. Mervaala, H. Karppanen, J.A. Khawaja, A. Lewenstam, Magnesium: An update on physiological, clinical and analytical aspects, Clin. Chim. Acta. 294 (2000) 1–26. https://doi.org/10.1016/S0009-8981(99)00258-2.
[127] J.-L. Wang, J.-K. Xu, C. Hopkins, D. Ho-Kiu Chow, L. Qin, Biodegradable Magnesium-Based Implants in Orthopedics-A General Review and Perspectives, (2020). https://doi.org/10.1002/advs.201902443.
[128] S. Castiglioni, A. Cazzaniga, W. Albisetti, J.A.M. Maier, Magnesium and Osteoporosis: Current State of Knowledge and Future Research Directions, Nutrients. 5 (2013) 3022–3033. https://doi.org/10.3390/nu5083022.
[129] R.K. Rude, H.E. Gruber, Magnesium deficiency and osteoporosis: Animal and human observations, J. Nutr. Biochem. 15 (2004) 710–716. https://doi.org/10.1016/j.jnutbio.2004.08.001.
[130] T.A. Grünewald, H. Rennhofer, B. Hesse, M. Burghammer, S.E. Stanzl-Tschegg, M. Cotte, J.F. Löffler, A.M. Weinberg, H.C. Lichtenegger, Magnesium from bioresorbable implants: Distribution and impact on the nano- and mineral structure of bone, Biomaterials. 76 (2016) 250–260. https://doi.org/10.1016/j.biomaterials.2015.10.054.
[131] J. Wang, J. Xu, B. Song, D.H. Chow, P. Shu-hang Yung, L. Qin, Magnesium (Mg) based interference screws developed for promoting tendon graft incorporation in bone tunnel in rabbits, Acta Biomater. 63 (2017) 393–410. https://doi.org/10.1016/j.actbio.2017.09.018.
[132] M. Yazdimamaghani, M. Razavi, D. Vashaee, K. Moharamzadeh, A.R. Boccaccini, L. Tayebi, Porous magnesium-based scaffolds for tissue engineering, Mater. Sci. Eng. C. 71 (2017) 1253–1266. https://doi.org/10.1016/j.msec.2016.11.027.
[133] Y. Yan, Y. Kang, D. Li, K. Yu, T. Xiao, Q. Wang, Y. Deng, H. Fang, D. Jiang, Y. Zhang, Microstructure, Mechanical Properties and Corrosion Behavior of Porous Mg-6 wt.% Zn Scaffolds for Bone Tissue Engineering, J. Mater. Eng. Perform. 27 (2018) 970–984. https://doi.org/10.1007/s11665-018-3189-x.
[134] Z.S. Seyedraoufi, S. Mirdamadi, Synthesis, microstructure and mechanical properties of porous MgZn scaffolds, J. Mech. Behav. Biomed. Mater. 21 (2013) 1–8. https://doi.org/10.1016/j.jmbbm.2013.01.023.
[135] X.N. Gu, W.R. Zhou, Y.F. Zheng, Y. Liu, Y.X. Li, Degradation and cytotoxicity of lotus-type porous pure magnesium as potential tissue engineering scaffold material, Mater. Lett. 64 (2010) 1871–1874. https://doi.org/10.1016/j.matlet.2010.06.015.
[136] Y. Li, J. Zhou, P. Pavanram, M.A. Leeflang, L.I. Fockaert, B. Pouran, N. Tümer, K.-U. Schröder, J.M.C. Mol, H. Weinans, H. Jahr, A.A. Zadpoor, Additively manufactured biodegradable porous magnesium, Acta Biomater. 67 (2018) 378–392. https://doi.org/10.1016/j.actbio.2017.12.008.
[137] M.P. Staiger, I. Kolbeinsson, N.T. Kirkland, T. Nguyen, G. Dias, T.B.F. Woodfield, Synthesis of topologically-ordered open-cell porous magnesium, Mater. Lett. 64 (2010) 2572–2574. https://doi.org/10.1016/j.matlet.2010.08.049.
[138] X.X. Wang, Z. Li, Y. Huang, K. Wang, X.X. Wang, F. Han, Processing of magnesium foams by weakly corrosive and highly flexible space holder materials, Mater. Des. 64 (2014) 324–329. https://doi.org/10.1016/j.matdes.2014.07.049.
[139] S. Dutta, K. Bavya Devi, M. Roy, Processing and degradation behavior of porous magnesium scaffold for biomedical applications, Adv. Powder Technol. 28 (2017) 3204–3212. https://doi.org/10.1016/J.APT.2017.09.024.
[140] D. YANG, C. SEO, B.-Y. HUR, D. YANG, C. SEO, B.-Y. HUR, Mg Alloy Foam Fabrication via Melt Foaming Method, 材料科学与技术. 24 (2009) 302–304. https://www.jmst.org/CN/abstract/abstract8161.shtml (accessed October 27, 2020).
[141] V.M. Posada, J.F. Ramirez, J.P. Allain, A.S. Shetty, P. Fernández-Morales, Synthesis and properties of Mg-based foams by infiltration casting without protective cover gas, J. Mater. Eng. Perform. (2020). https://doi.org/10.1007/s11665-020-04566-7.
[142] M. Ali, M. Elsherif, A.E. Salih, A. Ul-Hamid, M.A. Hussein, S. Park, A.K. Yetisen, H. Butt, Surface modification and cytotoxicity of Mg-based bio-alloys: An overview of recent advances, J. Alloys Compd. 825 (2020) 154140. https://doi.org/10.1016/j.jallcom.2020.154140
[143] N. Sezer, Z. Evis, S.M. Kayhan, A. Tahmasebifar, M. Koç, Review of magnesium-based biomaterials and their applications, J. Magnes. Alloy. 6 (2018) 23–43. https://doi.org/10.1016/J.JMA.2018.02.003.
[144] N. Sezer, Z. Evis, M. Koç, Additive manufacturing of biodegradable magnesium implants and scaffolds: Review of the recent advances and research trends, J. Magnes. Alloy. (2020). https://doi.org/10.1016/j.jma.2020.09.014.
[145] J. Chen, L. Tan, X. Yu, I.P. Etim, M. Ibrahim, K. Yang, Mechanical properties of magnesium alloys for medical application: A review, J. Mech. Behav. Biomed. Mater. 87 (2018) 68–79. https://doi.org/10.1016/J.JMBBM.2018.07.022.
[146] R.B. Heimann, Magnesium alloys for biomedical application: Advanced corrosion control through surface coating, Surf. Coatings Technol. (2020) 126521. https://doi.org/10.1016/j.surfcoat.2020.126521.
[147] S. Heise, S. Virtanen, A.R. Boccaccini, Tackling Mg alloy corrosion by natural polymer coatings-A review, J. Biomed. Mater. Res. Part A. 104 (2016) 2628–2641. https://doi.org/10.1002/jbm.a.35776.
[148] V. Hernández-Montes, C.P. Betancur-Henao, J.F. Santa-Marín, Titanium dioxide coatings on magnesium alloys for biomaterials: A review, DYNA. 84 (2017) 261–270. https://doi.org/10.15446/dyna.v84n200.59664.
[149] Y. Ding, C. Wen, P. Hodgson, Y. Li, Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: a review, J. Mater. Chem. B. 2 (2014) 1912–1933. https://doi.org/10.1039/C3TB21746A.
[150] M. Esmaily, J.E. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thomas, L.G. Johansson, Fundamentals and advances in magnesium alloy corrosion, Prog. Mater. Sci. 89 (2017) 92–193. https://doi.org/10.1016/J.PMATSCI.2017.04.011.
[151] F. Cao, G.-L. Song, A. Atrens, Corrosion and passivation of magnesium alloys, Corros. Sci. 111 (2016) 835–845. https://doi.org/10.1016/J.CORSCI.2016.05.041.
[152] D. Zhao, F. Witte, F. Lu, J. Wang, J. Li, L. Qin, Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective, Biomaterials. (2016). https://doi.org/10.1016/j.biomaterials.2016.10.017.
[153] N. Jasmawati, S. Fatihhi, A. Putra, A. Syahrom, M. Harun, A. Öchsner, M. Abdul Kadir, Mg-based porous metals as cancellous bone analogous material: A review, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 231 (2017) 544–556. https://doi.org/10.1177/1464420715624449.
[154] A. Vahidgolpayegani, C. Wen, P. Hodgson, Y. Li, Production methods and characterization of porous Mg and Mg alloys for biomedical applications, Met. Foam Bone. (2017) 25–82. https://doi.org/10.1016/B978-0-08-101289-5.00002-0.
[155] Y. Liu, B. Rath, M. Tingart, J. Eschweiler, Role of implants surface modification in osseointegration: A systematic review, J. Biomed. Mater. Res. Part A. 108 (2020) 470–484. https://doi.org/10.1002/jbm.a.36829.
[156] R. Walter, M.B. Kannan, Y. He, A. Sandham, Effect of surface roughness on the in vitro degradation behaviour of a biodegradable magnesium-based alloy, Appl. Surf. Sci. 279 (2013) 343–348. https://doi.org/10.1016/j.apsusc.2013.04.096.
[157] S. Virtanen, Biodegradable Mg and Mg alloys: Corrosion and biocompatibility, in: Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., Elsevier, 2011: pp. 1600–1608. https://doi.org/10.1016/j.mseb.2011.05.028.
[158] X.-N. Gu, S.-S. Li, X.-M. Li, Y.-B. Fan, Magnesium based degradable biomaterials: A review, Front. Mater. Sci. 8 (2014) 200–218. https://doi.org/10.1007/s11706-014-0253-9.
[159] F. Peng, D. Wang, D. Zhang, B. Yan, H. Cao, Y. Qiao, X. Liu, PEO/Mg–Zn–Al LDH Composite Coating on Mg Alloy as a Zn/Mg Ion-Release Platform with Multifunctions: Enhanced Corrosion Resistance, Osteogenic, and Antibacterial Activities, ACS Biomater. Sci. Eng. 4 (2018) 4112–4121. https://doi.org/10.1021/acsbiomaterials.8b01184.
[160] Y. Xin, T. Hu, P.K. Chu, In vitro studies of biomedical magnesium alloys in a simulated physiological environment: A review, Acta Biomater. 7 (2011) 1452–1459. https://doi.org/10.1016/j.actbio.2010.12.004.
[161] R. ZENG, J. ZHANG, W. HUANG, W. DIETZEL, K.U. KAINER, C. BLAWERT, W. KE, Review of studies on corrosion of magnesium alloys, Trans. Nonferrous Met. Soc. China. 16 (2006) s763–s771. https://doi.org/10.1016/S1003-6326(06)60297-5.
[162] J.E. Gray-Munro, M. Strong, The mechanism of deposition of calcium phosphate coatings from solution onto magnesium alloy AZ31, J. Biomed. Mater. Res. Part A. 90A (2009) 339–350. https://doi.org/10.1002/jbm.a.32107.
[163] Z. Wen, C. Wu, C. Dai, F. Yang, Corrosion behaviors of Mg and its alloys with different Al contents in a modified simulated body fluid, J. Alloys Compd. 488 (2009) 392–399. https://doi.org/10.1016/j.jallcom.2009.08.147.
[164] D. Mei, S. V. Lamaka, X. Lu, M.L. Zheludkevich, Selecting medium for corrosion testing of bioabsorbable magnesium and other metals – A critical review, Corros. Sci. 171 (2020) 108722. https://doi.org/10.1016/j.corsci.2020.108722.
[165] W.D. Mueller, M. Lucia Nascimento, M.F. Lorenzo De Mele, Critical discussion of the results from different corrosion studies of Mg and Mg alloys for biomaterial applications, Acta Biomater. 6 (2010) 1749–1755. https://doi.org/10.1016/j.actbio.2009.12.048.
[166] C. Schille, M. Braun, H.P. Wendel, L. Scheideler, N. Hort, H.P. Reichel, E. Schweizer, J. Geis-Gerstorfer, Corrosion of experimental magnesium alloys in blood and PBS: A gravimetric and microscopic evaluation, in: Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., Elsevier, 2011: pp. 1797–1801. https://doi.org/10.1016/j.mseb.2011.04.007.
[167] A. Carangelo, A. Acquesta, T. Monetta, Durability of AZ31 magnesium biodegradable alloys polydopamine aided. Part 2: Ageing in Hank’s solution, J. Magnes. Alloy. 7 (2019) 218–226. https://doi.org/10.1016/J.JMA.2019.04.003.
[168] V. Wagener, S. Virtanen, Protective layer formation on magnesium in cell culture medium, Mater. Sci. Eng. C. 63 (2016) 341–351. https://doi.org/10.1016/j.msec.2016.03.003.
[169] M. Yazdimamaghani, M. Razavi, D. Vashaee, L. Tayebi, Development and degradation behavior of magnesium scaffolds coated with polycaprolactone for bone tissue engineering, Mater. Lett. 132 (2014) 106–110. https://doi.org/10.1016/j.matlet.2014.06.036.
[170] M.-H.H. Kang, H. Lee, T.-S.S. Jang, Y.-J.J. Seong, H.-E.E. Kim, Y.-H.H. Koh, J. Song, H.-D. Do Jung, Biomimetic porous Mg with tunable mechanical properties and biodegradation rates for bone regeneration, Acta Biomater. 84 (2019) 453–467. https://doi.org/10.1016/j.actbio.2018.11.045.
[171] X. Lu, Y. Leng, Theoretical analysis of calcium phosphate precipitation in simulated body fluid, Biomaterials. 26 (2005) 1097–1108. https://doi.org/10.1016/j.biomaterials.2004.05.034.
[172] H. Zhuang, Y. Han, A. Feng, Preparation, mechanical properties and in vitro biodegradation of porous magnesium scaffolds, Mater. Sci. Eng. C. 28 (2008) 1462–1466. https://doi.org/10.1016/j.msec.2008.04.001.
[173] A.P. Md Saad, R.A. Abdul Rahim, M.N. Harun, H. Basri, J. Abdullah, M.R. Abdul Kadir, A. Syahrom, The influence of flow rates on the dynamic degradation behaviour of porous magnesium under a simulated environment of human cancellous bone, Mater. Des. 122 (2017) 268–279. https://doi.org/10.1016/j.matdes.2017.03.029.
[174] Y. Li, H. Jahr, X.-Y. Zhang, M.A. Leeflang, W. Li, B. Pouran, F.D. Tichelaar, H. Weinans, J. Zhou, A.A. Zadpoor, Biodegradation-affected fatigue behavior of additively manufactured porous magnesium, Addit. Manuf. 28 (2019) 299–311. https://doi.org/10.1016/j.addma.2019.05.013.
[175] W.C. Kim, K.H. Han, J.G. Kim, S.J. Yang, H.K. Seok, H.S. Han, Y.Y. Kim, Effect of surface area on corrosion properties of magnesium for biomaterials, Met. Mater. Int. 19 (2013) 1131–1137. https://doi.org/10.1007/s12540-013-5032-0.
[176] A.P. Md Saad, N. Jasmawati, M.N. Harun, M.R. Abdul Kadir, H. Nur, H. Hermawan, A. Syahrom, Dynamic degradation of porous magnesium under a simulated environment of human cancellous bone, Corros. Sci. 112 (2016) 495–506. https://doi.org/10.1016/j.corsci.2016.08.017.
[177] N.T. Kirkland, N. Birbilis, M.P. Staiger, Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations, Acta Biomater. 8 (2012) 925–936. https://doi.org/10.1016/j.actbio.2011.11.014.
[178] S. Singh, P. Vashisth, A. Shrivastav, N. Bhatnagar, Synthesis and characterization of a novel open cellular Mg-based scaffold for tissue engineering application, J. Mech. Behav. Biomed. Mater. 94 (2019) 54–62. https://doi.org/10.1016/j.jmbbm.2019.02.010.
[179] W. Yu, H. Zhao, Z. Ding, Z. Zhang, B. Sun, J. Shen, S. Chen, B. Zhang, K. Yang, M. Liu, D. Chen, Y. He, In vitro and in vivo evaluation of MgF2 coated AZ31 magnesium alloy porous scaffolds for bone regeneration, Colloids Surfaces B Biointerfaces. 149 (2017) 330–340. https://doi.org/10.1016/j.colsurfb.2016.10.037.
[180] R.M. Twyman, ATOMIC EMISSION SPECTROMETRY | Principles and Instrumentation, in: Encycl. Anal. Sci., Elsevier, 2005: pp. 190–198. https://doi.org/10.1016/B0-12-369397-7/00029-7.
[181] Z.S.S. Seyedraoufi, S. Mirdamadi, Effects of pulse electrodeposition parameters and alkali treatment on the properties of nano hydroxyapatite coating on porous Mg–Zn scaffold for bone tissue engineering application, Mater. Chem. Phys. 148 (2014) 519–527. https://doi.org/10.1016/j.matchemphys.2014.06.067.
[182] S. Toghyani, M. Khodaei, M. Razavi, Magnesium scaffolds with two novel biomimetic designs and MgF2 coating for bone tissue engineering, Surf. Coatings Technol. 395 (2020) 125929. https://doi.org/10.1016/j.surfcoat.2020.125929.
[183] G. Jiang, G. He, A new approach to the fabrication of porous magnesium with well-controlled 3D pore structure for orthopedic applications, Mater. Sci. Eng. C. 43 (2014) 317–320. https://doi.org/10.1016/j.msec.2014.07.033.
[184] F.-W. Bach, D. Bormann, R. Kucharski, A. Meyer-Lindenberg, Magnesium sponges as a bioabsorbable material – attributes and challenges, Int. J. Mater. Res. 98 (2007) 609–612. https://doi.org/10.3139/146.101514.
[185] S. Jiang, S. Cai, Y. Lin, X. Bao, R. Ling, D. Xie, J. Sun, J. Wei, G. Xu, Effect of alkali/acid pretreatment on the topography and corrosion resistance of as-deposited CaP coating on magnesium alloys, J. Alloys Compd. 793 (2019) 202–211. https://doi.org/10.1016/J.JALLCOM.2019.04.198.
[186] M. Diez, M.H. Kang, S.M. Kim, H.E. Kim, J. Song, Hydroxyapatite (HA)/poly-l-lactic acid (PLLA) dual coating on magnesium alloy under deformation for biomedical applications, J. Mater. Sci. Mater. Med. 27 (2016) 1–9. https://doi.org/10.1007/s10856-015-5643-8.
[187] M.-H. Kang, H.-D. Jung, S.-W. Kim, S.-M. Lee, H.-E. Kim, Y. Estrin, Y.-H. Koh, Production and bio-corrosion resistance of porous magnesium with hydroxyapatite coating for biomedical applications, Mater. Lett. 108 (2013) 122–124. https://doi.org/10.1016/j.matlet.2013.06.096.
[188] G. Barati Darband, M. Aliofkhazraei, P. Hamghalam, N. Valizade, Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications, J. Magnes. Alloy. 5 (2017) 74–132. https://doi.org/10.1016/j.jma.2017.02.004.
[189] R. Chaharmahali, A. Fattah-alhosseini, K. Babaei, Surface characterization and corrosion behavior of calcium phosphate (Ca-P) base composite layer on Mg and its alloys using plasma electrolytic oxidation (PEO): A review, J. Magnes. Alloy. (2020). https://doi.org/10.1016/j.jma.2020.07.004.
[190] A. Kopp, T. Derra, M. Müther, L. Jauer, J.H. Schleifenbaum, M. Voshage, O. Jung, R. Smeets, N. Kröger, Influence of design and postprocessing parameters on the degradation behavior and mechanical properties of additively manufactured magnesium scaffolds, Acta Biomater. 98 (2019) 23–35. https://doi.org/10.1016/j.actbio.2019.04.012.
[191] T. Yuan, J. Yu, J. Cao, F. Gao, Y. Zhu, Y. Cheng, W. Cui, Fabrication of a Delaying Biodegradable Magnesium Alloy-Based Esophageal Stent via Coating Elastic Polymer, Materials (Basel). 9 (2016) 384. https://doi.org/10.3390/ma9050384.
[192] P. Shi, B. Niu, S. E, Y. Chen, Q. Li, Preparation and characterization of PLA coating and PLA/MAO composite coatings on AZ31 magnesium alloy for improvement of corrosion resistance, Surf. Coatings Technol. 262 (2015) 26–32. https://doi.org/10.1016/j.surfcoat.2014.11.069.
[193] M. Yazdimamaghani, M. Razavi, D. Vashaee, V.R. Pothineni, S. Assefa, G.A. Köhler, J. Rajadas, L. Tayebi, In vitro analysis of Mg scaffolds coated with polymer/hydrogel/ceramic composite layers, Surf. Coatings Technol. 301 (2016) 126–132. https://doi.org/10.1016/j.surfcoat.2016.01.017.
[194] V.M. Posada, A. Civantos, J. Ramírez, P. Fernández-Morales, J.P. Allain, Tailoring adaptive bioresorbable Mg-based scaffolds with directed plasma nanosynthesis for enhanced osseointegration and tunable resorption, Appl. Surf. Sci. 550 (2021) 149388. https://doi.org/10.1016/j.apsusc.2021.149388.
[195] N. Angrisani, J. Reifenrath, F. Zimmermann, R. Eifler, A. Meyer-Lindenberg, K. Vano-Herrera, C. Vogt, Biocompatibility and degradation of LAE442-based magnesium alloys after implantation of up to 3.5 years in a rabbit model, Acta Biomater. 44 (2016) 355–365. https://doi.org/10.1016/J.ACTBIO.2016.08.002.
[196] G. Song, A. Atrens, D. StJohn, An Hydrogen Evolution Method for the Estimation of the Corrosion Rate of Magnesium Alloys, Magnes. Technol. 2001. (2013) 254–262. https://doi.org/10.1002/9781118805497.ch44.
[197] H. Saleh, T. Weling, J. Seidel, M. Schmidtchen, R. Kawalla, F.O.R.L. Mertens, H.-P. Vogt, An XPS Study of Native Oxide and Isothermal Oxidation Kinetics at 300 °C of AZ31 Twin Roll Cast Magnesium Alloy, Oxid. Met. 81 (2014) 529–548. https://doi.org/10.1007/s11085-013-9466-z.
[198] G. Wu, K. Dash, M.L. Galano, K.A.Q. O’Reilly, Oxidation studies of Al alloys: Part II Al-Mg alloy, Corros. Sci. 155 (2019) 97–108. https://doi.org/10.1016/j.corsci.2019.04.018.
[199] B. Wang, P. Huang, C. Ou, K. Li, B. Yan, W. Lu, In Vitro Corrosion and Cytocompatibility of ZK60 Magnesium Alloy Coated with Hydroxyapatite by a Simple Chemical Conversion Process for Orthopedic Applications, Int. J. Mol. Sci. 14 (2013) 23614–23628. https://doi.org/10.3390/ijms141223614.
[200] A. Gökhan Demir, V. Furlan, N. Lecis, B. Previtali, Laser surface structuring of AZ31 Mg alloy for controlled wettability, Biointerphases. 9 (2014) 029009. https://doi.org/10.1116/1.4868240.
[201] Ri-Sheng Li, Influence of bombardment-induced Gibbsian segregation on alloy sputtering, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 82 (1993) 283–290. https://doi.org/10.1016/0168-583X(93)96030-G.
[202] S. Mathieu, C. Rapin, J. Hazan, P. Steinmetz, Corrosion behaviour of high pressure die-cast and semi-solid cast AZ91D alloys, Corros. Sci. 44 (2002) 2737–2756. https://doi.org/10.1016/S0010-938X(02)00075-6.
[203] B. Gao, S. Hao, J. Zou, T. Grosdidier, L. Jiang, J. Zhou, C. Dong, High current pulsed electron beam treatment of AZ31 Mg alloy, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 23 (2005) 1548–1553. https://doi.org/10.1116/1.2049299.
[204] G. Bo, H. Yi, Z. Wenfeng, T. Ganfeng, Surface Modification of Mg Alloys AZ31 and ZK60-1Y by High Current Pulsed Electron Beam, Spec. Issues Magnes. Alloy. (2011). https://doi.org/10.5772/16808.
[205] G.T. Bo Gao a, Shengzhi Hao, Jianxin Zou, Wenyuan Wu, C.D. B, Effect of high current pulsed electron beam treatment on surface microstructure and wear and corrosion resistance of an AZ91HP magnesium alloy, Surf. Coatings Technol. 201 (2007) 6297–6303. https://doi.org/10.1016/J.SURFCOAT.2006.11.036.
[206] X. Zhang, K. Zhang, J. Zou, P. Yan, L. Song, Y. Liu, Surface microstructure modifications and in-vitro corrosion resistance improvement of a WE43 Mg alloy treated by pulsed electron beams, Vacuum. 173 (2020) 109132. https://doi.org/10.1016/j.vacuum.2019.109132.
[207] S. Feliu, A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, Correlation between the surface chemistry and the atmospheric corrosion of AZ31, AZ80 and AZ91D magnesium alloys, Appl. Surf. Sci. 255 (2009) 4102–4108. https://doi.org/10.1016/J.APSUSC.2008.10.095.
[208] W.J.E.M. Habraken, J. Tao, L.J. Brylka, H. Friedrich, L. Bertinetti, A.S. Schenk, A. Verch, V. Dmitrovic, P.H.H. Bomans, P.M. Frederik, J. Laven, P. van der Schoot, B. Aichmayer, G. de With, J.J. DeYoreo, N.A.J.M. Sommerdijk, Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate, Nat. Commun. 4 (2013) 1507. https://doi.org/10.1038/ncomms2490.
[209] G.S. Frankel, A. Samaniego, N. Birbilis, Evolution of hydrogen at dissolving magnesium surfaces, Corros. Sci. 70 (2013) 104–111. https://doi.org/10.1016/J.CORSCI.2013.01.017.
[210] F. Barrere, C.. van Blitterswijk, K. de Groot, P. Layrolle, Nucleation of biomimetic Ca–P coatings on Ti6Al4V from a SBF×5 solution: influence of magnesium, Biomaterials. 23 (2002) 2211–2220. https://doi.org/10.1016/S0142-9612(01)00354-4.
[211] M. Tomozawa, S. Hiromoto, Growth mechanism of hydroxyapatite-coatings formed on pure magnesium and corrosion behavior of the coated magnesium, Appl. Surf. Sci. 257 (2011) 8253–8257. https://doi.org/10.1016/j.apsusc.2011.04.087.
[212] S. Feliu, I. Llorente, Corrosion product layers on magnesium alloys AZ31 and AZ61: Surface chemistry and protective ability, Appl. Surf. Sci. 347 (2015) 736–746. https://doi.org/10.1016/J.APSUSC.2015.04.189.
[213] Y.F. Zhang, B. Hinton, G. Wallace, X. Liu, M. Forsyth, On corrosion behaviour of magnesium alloy AZ31 in simulated body fluids and influence of ionic liquid pretreatments, Corros. Eng. Sci. Technol. 47 (2012) 374–382. https://doi.org/10.1179/1743278212Y.0000000032.
[214] T.L. Nguyen, A. Blanquet, M.P. Staiger, G.J. Dias, T.B.F. Woodfield, On the role of surface roughness in the corrosion of pure magnesium in vitro, J. Biomed. Mater. Res. - Part B Appl. Biomater. 100 (2012) 1310–1318. https://doi.org/10.1002/jbm.b.32697.
[215] R.B. Alvarez, H.J. Martin, M.F. Horstemeyer, M.Q. Chandler, N. Williams, P.T. Wang, A. Ruiz, Corrosion relationships as a function of time and surface roughness on a structural AE44 magnesium alloy, Corros. Sci. 52 (2010) 1635–1648. https://doi.org/10.1016/j.corsci.2010.01.018.
[216] A.F. Cipriano, A. Sallee, R.-G.G. Guan, Z.-Y.Y. Zhao, M. Tayoba, J. Sanchez, H. Liu, Investigation of magnesium–zinc–calcium alloys and bone marrow derived mesenchymal stem cell response in direct culture, Acta Biomater. 12 (2015) 298–321. https://doi.org/10.1016/j.actbio.2014.10.018.
[217] J. Fischer, M.H. Prosenc, M. Wolff, N. Hort, R. Willumeit, F. Feyerabend, Interference of magnesium corrosion with tetrazolium-based cytotoxicity assays☆, Acta Biomater. 6 (2010) 1813–1823. https://doi.org/10.1016/j.actbio.2009.10.020.
[218] A. Burmester, R. Willumeit-Römer, F. Feyerabend, R. Willumeit‐Römer, F. Feyerabend, Behavior of bone cells in contact with magnesium implant material, J. Biomed. Mater. Res. - Part B Appl. Biomater. 105 (2017) 165–179. https://doi.org/10.1002/jbm.b.33542.
[219] R. Xin, B. Li, L. Li, Q. Liu, Influence of texture on corrosion rate of AZ31 Mg alloy in 3.5 wt.% NaCl, Mater. Des. 32 (2011) 4548–4552. https://doi.org/10.1016/J.MATDES.2011.04.031.
[220] J. Fischer, D. Pröfrock, N. Hort, R. Willumeit, F. Feyerabend, Improved cytotoxicity testing of magnesium materials, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 176 (2011) 830–834. https://doi.org/10.1016/j.mseb.2011.04.008.
[221] D.-T. Chou, D. Hong, P. Saha, J. Ferrero, B. Lee, Z. Tan, Z. Dong, P.N. Kumta, In vitro and in vivo corrosion, cytocompatibility and mechanical properties of biodegradable Mg–Y–Ca–Zr alloys as implant materials, Acta Biomater. 9 (2013) 8518–8533. https://doi.org/10.1016/j.actbio.2013.06.025.
[222] R. Willumeit, A. Möhring, F. Feyerabend, Optimization of Cell Adhesion on Mg Based Implant Materials by Pre-Incubation under Cell Culture Conditions, Int. J. Mol. Sci. 15 (2014) 7639–7650. https://doi.org/10.3390/ijms15057639.
[223] E. Ferna  Ndez, F.J. Gil, M.P. Ginebra, F.C.M. Driessens, J.A. Planell, S.M. Best, Calcium phosphate bone cements for clinical applications Part II: Precipitate formation during setting reactions, J. Mater. Sci. Mater. Med. 10 (1999) 177–183. https://doi.org/10.1023/A:1008989525461.
[224] M. Gawlik, B. Wiese, V. Desharnais, T. Ebel, R. Willumeit-Römer, M.M. Gawlik, B. Wiese, V. Desharnais, T. Ebel, R. Willumeit-Römer, The Effect of Surface Treatments on the Degradation of Biomedical Mg Alloys—A Review Paper, Materials (Basel). 11 (2018) 2561. https://doi.org/10.3390/ma11122561.
[225] X. Zhang, G. Wu, X. Peng, L. Li, H. Feng, B. Gao, K. Huo, P.K. Chu, Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion, Sci. Rep. 5 (2015) 17399. https://doi.org/10.1038/srep17399.
[226] K. DAS, S. BOSE, A. BANDYOPADHYAY, Surface modifications and cell–materials interactions with anodized Ti, Acta Biomater. 3 (2007) 573–585. https://doi.org/10.1016/j.actbio.2006.12.003.
[227] A. Pardo, M.C. Merino, A.E. Coy, R. Arrabal, F. Viejo, E. Matykina, Corrosion behaviour of magnesium/aluminium alloys in 3.5 wt.% NaCl, Corros. Sci. 50 (2008) 823–834. https://doi.org/10.1016/j.corsci.2007.11.005.
[228] B. Carlson, J. Jones, The Metallurgical Aspects of the Corrosion Behaviour of Cast Mg--Al Alloys, Light Met. Process. Appl. (1993) 833–847.
[229] Y. Lu, P. Wan, B. Zhang, L. Tan, K. Yang, J. Lin, Research on the corrosion resistance and formation of double-layer calcium phosphate coating on AZ31 obtained at varied temperatures, Mater. Sci. Eng. C. 43 (2014) 264–271. https://doi.org/10.1016/j.msec.2014.06.039.
[230] S.-H. Kwon, T.-J. Lee, J. Park, J.-E. Hwang, M. Jin, H.-K. Jang, N.S. Hwang, B.-S. Kim, Modulation of BMP-2-induced chondrogenic versus osteogenic differentiation of human mesenchymal stem cells by cell-specific extracellular matrices, Tissue Eng. Part A. 19 (2013) 49–58. https://doi.org/10.1089/ten.TEA.2012.0245.
[231] F. Geng, L.L. Tan, X.X. Jin, J.Y. Yang, K. Yang, The preparation, cytocompatibility, and in vitro biodegradation study of pure β-TCP on magnesium, J. Mater. Sci. Mater. Med. 20 (2009) 1149–1157. https://doi.org/10.1007/s10856-008-3669-x.
[232] R. Harrison, D. Maradze, S. Lyons, Y. Zheng, Y. Liu, Corrosion of magnesium and magnesium–calcium alloy in biologically-simulated environment, Prog. Nat. Sci. Mater. Int. 24 (2014) 539–546. https://doi.org/10.1016/J.PNSC.2014.08.010.
[233] N.A. Agha, R. Willumeit-Römer, D. Laipple, B. Luthringer, F. Feyerabend, The Degradation Interface of Magnesium Based Alloys in Direct Contact with Human Primary Osteoblast Cells, PLoS One. 11 (2016) e0157874. https://doi.org/10.1371/journal.pone.0157874.
[234] A. Yamamoto, S. Hiromoto, Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro, Mater. Sci. Eng. C. 29 (2009) 1559–1568. https://doi.org/10.1016/j.msec.2008.12.015.
[235] F. Seuss, S. Seuss, M.C. Turhan, B. Fabry, S. Virtanen, Corrosion of Mg alloy AZ91D in the presence of living cells, J. Biomed. Mater. Res. - Part B Appl. Biomater. 99B (2011) 276–281. https://doi.org/10.1002/jbm.b.31896.
[236] S. Yoshizawa, A. Brown, A. Barchowsky, C. Sfeir, Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation, Acta Biomater. 10 (2014) 2834–2842. https://doi.org/10.1016/j.actbio.2014.02.002.
[237] R.W. Li, N.T. Kirkland, J. Truong, J. Wang, P.N. Smith, N. Birbilis, D.R. Nisbet, The influence of biodegradable magnesium alloys on the osteogenic differentiation of human mesenchymal stem cells, J. Biomed. Mater. Res. Part A. 102 (2014) n/a-n/a. https://doi.org/10.1002/jbm.a.35111.
[238] W. Huang, B. Carlsen, G. Rudkin, M. Berry, K. Ishida, D.T. Yamaguchi, T.A. Miller, Osteopontin is a negative regulator of proliferation and differentiation in MC3T3-E1 pre-osteoblastic cells, Bone. 34 (2004) 799–808. https://doi.org/10.1016/j.bone.2003.11.027.
[239] J.-A. Kim, J. Lim, R. Naren, H. Yun, E.K. Park, Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo, Acta Biomater. 44 (2016) 155–167. https://doi.org/10.1016/j.actbio.2016.08.039.
[240] M. Bessa-Gonçalves, A.M. Silva, J.P. Brás, H. Helmholz, B.J.C. Luthringer-Feyerabend, R. Willumeit-Römer, M.A. Barbosa, S.G. Santos, Fibrinogen and magnesium combination biomaterials modulate macrophage phenotype, NF-kB signaling and crosstalk with mesenchymal stem/stromal cells, Acta Biomater. 114 (2020) 471–484. https://doi.org/10.1016/j.actbio.2020.07.028.
[241] F. Alvarez, R.M. Lozano Puerto, B. Pérez-Maceda, C.A. Grillo, M. Fernández Lorenzo de Mele, Time-Lapse Evaluation of Interactions Between Biodegradable Mg Particles and Cells, Microsc. Microanal. 22 (2016) 1–12. https://doi.org/10.1017/S1431927615015597.
[242] A. Mantovani, S.K. Biswas, M.R. Galdiero, A. Sica, M. Locati, Macrophage plasticity and polarization in tissue repair and remodelling, J. Pathol. 229 (2013) 176–185. https://doi.org/10.1002/path.4133.
[243] G.E. Glass, J.K. Chan, A. Freidin, M. Feldmann, N.J. Horwood, J. Nanchahal, TNF- promotes fracture repair by augmenting the recruitment and differentiation of muscle-derived stromal cells, Proc. Natl. Acad. Sci. 108 (2011) 1585–1590. https://doi.org/10.1073/pnas.1018501108.
[244] W.L. Chan, E. Chason, Making waves: Kinetic processes controlling surface evolution during low energy ion sputtering, J. Appl. Phys. 101 (2007) 121301. https://doi.org/10.1063/1.2749198.
[245] O.D. Acevedo Rueda, Desarrollo de un metal celular ordenado con recubrimiento continuo como alternativa aplicable a elementos de fijación ósea, Universidad Nacional de Colombia , 2019. http://bdigital.unal.edu.co/75011/ (accessed October 5, 2020).
[246] M. Doube, M.M. Kłosowski, I. Arganda-Carreras, F.P. Cordelières, R.P. Dougherty, J.S. Jackson, B. Schmid, J.R. Hutchinson, S.J. Shefelbine, BoneJ: Free and extensible bone image analysis in ImageJ, Bone. 47 (2010) 1076–1079. https://doi.org/10.1016/J.BONE.2010.08.023.
[247] C. Colosi, M. Costantini, A. Barbetta, R. Pecci, R. Bedini, M. Dentini, Morphological Comparison of PVA Scaffolds Obtained by Gas Foaming and Microfluidic Foaming Techniques, Langmuir. 29 (2013) 82–91. https://doi.org/10.1021/la303788z.
[248] L. Wu, F. Pan, M. Yang, R. Cheng, An investigation of second phases in as-cast AZ31 magnesium alloys with different Sr contents, J. Mater. Sci. 48 (2013) 5456–5469. https://doi.org/10.1007/s10853-013-7339-0.
[249] J. Tao, Y. Zhang, F. Fan, Q. Chen, Microstructural Evolution and Mechanical Properties of AZ31 Magnesium Alloy Prepared by Casting-solid Extrusion Forging During Partial Remelting, Def. Technol. 9 (2013) 146–152. https://doi.org/10.1016/j.dt.2013.09.013.
[250] L. Bourgeois, B.C. Muddle, J.F. Nie, The crystal structure of the equilibrium Φ phase in Mg-Zn-Al casting alloys, Acta Mater. 49 (2001) 2701–2711. https://doi.org/10.1016/S1359-6454(01)00162-8.
[251] Michael Ashby, Tony Evans, NA Fleck, J.W. Hutchinson, H.N.G. Wadley, L. J. Gibson, Properties of metal foams, in: Met. Foam. A Des. Guid., Elsevier, 2000: pp. 42–48.
[252] X.N. Gu, W.R. Zhou, Y.F. Zheng, Y. Cheng, S.C. Wei, S.P. Zhong, T.F. Xi, L.J. Chen, Corrosion fatigue behaviors of two biomedical Mg alloys - AZ91D and WE43 - In simulated body fluid, Acta Biomater. 6 (2010) 4605–4613. https://doi.org/10.1016/j.actbio.2010.07.026.
[253] C. Miura, Y. Shimizu, Y. Imai, T. Mukai, A. Yamamoto, Y. Sano, N. Ikeo, S. Isozaki, T. Takahashi, M. Oikawa, H. Kumamoto, M. Tachi, In vivo corrosion behaviour of magnesium alloy in association with surrounding tissue response in rats, Biomed. Mater. 11 (2016) 025001. https://doi.org/10.1088/1748-6041/11/2/025001.
[254] Y. Jang, B. Collins, J. Sankar, Y. Yun, Effect of biologically relevant ions on the corrosion products formed on alloy AZ31B: An improved understanding of magnesium corrosion, Acta Biomater. 9 (2013) 8761–8770. https://doi.org/10.1016/j.actbio.2013.03.026.
[255] F. Tamimi, Z. Sheikh, J. Barralet, Dicalcium phosphate cements: Brushite and monetite, Acta Biomater. 8 (2012) 474–487. https://doi.org/10.1016/j.actbio.2011.08.005.
[256] F. Witte, N. Hort, C. Vogt, S. Cohen, K.U. Kainer, R. Willumeit, F. Feyerabend, Degradable biomaterials based on magnesium corrosion, Curr. Opin. Solid State Mater. Sci. 12 (2008) 63–72. https://doi.org/10.1016/j.cossms.2009.04.001.
[257] F. Witte, J. Fischer, J. Nellesen, H.-A. Crostack, V. Kaese, A. Pisch, F. Beckmann, H. Windhagen, In vitro and in vivo corrosion measurements of magnesium alloys, Biomaterials. 27 (2006) 1013–1018. https://doi.org/10.1016/j.biomaterials.2005.07.037.
[258] D. Zhao, T. Wang, W. Hoagland, D. Benson, Z. Dong, S. Chen, D.-T. Chou, D. Hong, J. Wu, P.N. Kumta, W.R. Heineman, Visual H2 sensor for monitoring biodegradation of magnesium implants in vivo, Acta Biomater. 45 (2016) 399–409. https://doi.org/10.1016/J.ACTBIO.2016.08.049.
[259] N.I. Zainal Abidin, B. Rolfe, H. Owen, J. Malisano, D. Martin, J. Hofstetter, P.J. Uggowitzer, A. Atrens, The in vivo and in vitro corrosion of high-purity magnesium and magnesium alloys WZ21 and AZ91, Corros. Sci. 75 (2013) 354–366. https://doi.org/10.1016/J.CORSCI.2013.06.019.
[260] J. Wang, L. Cui, Y. Ren, Y. Zou, J. Ma, C. Wang, Z. Zheng, X. Chen, R. Zeng, Y. Zheng, In vitro and in vivo biodegradation and biocompatibility of an MMT/BSA composite coating upon magnesium alloy AZ31, J. Mater. Sci. Technol. 47 (2020) 52–67. https://doi.org/10.1016/j.jmst.2020.02.006.
[261] I. Heinonen, J. Kemppainen, K. Kaskinoro, H. Langberg, J. Knuuti, R. Boushel, M. Kjaer, K.K. Kalliokoski, Bone blood flow and metabolism in humans: Effect of muscular exercise and other physiological perturbations, J. Bone Miner. Res. 28 (2013) 1068–1074. https://doi.org/10.1002/jbmr.1833.
[262] J. Walker, S. Shadanbaz, N.T. Kirkland, E. Stace, T. Woodfield, M.P. Staiger, G.J. Dias, Magnesium alloys: Predicting in vivo corrosion with in vitro immersion testing, J. Biomed. Mater. Res. - Part B Appl. Biomater. 100 B (2012) 1134–1141. https://doi.org/10.1002/jbm.b.32680.
[263] S.E. Harandi, P.C. Banerjee, C.D. Easton, R.K. Singh Raman, Influence of bovine serum albumin in Hanks’ solution on the corrosion and stress corrosion cracking of a magnesium alloy, Mater. Sci. Eng. C. 80 (2017) 335–345. https://doi.org/10.1016/j.msec.2017.06.002.
[264] M.F. Ulum, W. Caesarendra, R. Alavi, H. Hermawan, M.F. Ulum, W. Caesarendra, R. Alavi, H. Hermawan, In-Vivo Corrosion Characterization and Assessment of Absorbable Metal Implants, Coatings. 9 (2019) 282. https://doi.org/10.3390/coatings9050282.
[265] H. Wu, C. Zhang, T. Lou, B. Chen, R. Yi, W. Wang, R. Zhang, M. Zuo, H. Xu, P. Han, S. Zhang, J. Ni, X. Zhang, Crevice corrosion – A newly observed mechanism of degradation in biomedical magnesium, Acta Biomater. 98 (2019) 152–159. https://doi.org/10.1016/j.actbio.2019.06.013.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 186 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Doctorado en Ingeniería - Ingeniería Mecánica y Mecatrónica
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Mecánica
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79575/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79575/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79575/4/1038407092.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/79575/5/1038407092.2021.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
4460e5956bc1d1639be9ae6146a50347
3b6371996129ad8136ff9b6848a17f7c
c489c2a4e99f9ed40abb0c5eb52334bf
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089923807936512
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ramírez Patiño, Juan Fernando069795e173fc573dbe842cf4713e1ddeFernández Morales, Gloria Patriciaa6f63794a7b958f715b081b7b867201cPosada Pérez, Viviana Marcela9c937d4be4b69937a233701ecec04c9eGrupo de Investigación en Biomecánica e Ingeniería de Rehabilitación (GI-BIR)2021-05-31T16:47:48Z2021-05-31T16:47:48Z2021https://repositorio.unal.edu.co/handle/unal/79575Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/The design and development of an osteoinductive environment to reconstruct and treat large bone defects is still a challenge. Biodegradable porous metals have been proposed to bridge healthy parts of the tissue when the lesion overcomes the bone self-healing capacity. Mg-based scaffolds promise to assist in this bridging process, providing the mechanical properties and adapting to the new requirements such as weight and geometry as the healing time advances. Moreover, the porous condition guides the tissue and blood vessels' growth, and the release of Mg2+ accelerates the healing process. However, the Mg support is limited by its rapid degradation, which hinders the appropriate integration with the tissue. Additionally, the degradation is again accelerated in the porous condition, and the complex geometry limits the application of current protection methods. The present thesis aims to create an open-porous Mg-based scaffold for bone tissue engineering, focused on enhanced corrosion resistance and biocompatibility. Porous Mg materials were then fabricated in various geometrical configurations: random pores, truncated octahedron, and diamond unit cells. The control over the degradation of the material was achieved by modifying the first nanometers of the surface, avoiding changes in the architecture of the structures, and preserving the bulk properties of the material such as open porosity and lightweight. The nanometric modification was created via low-energy Ar+ irradiation, which developed well-ordered nanostructures on the surface, followed by Al-rich nanoclusters' accumulation. The creation of the Al-rich nanoclusters accelerated the passivation kinetics of the porous Mg, enhancing the apatite nucleation ability when immersing the materials in physiological fluids. Moreover, the apatite formation ability was conditioned to the concentration of Al on the near-surface, which offered surfaces for different biological purposes by tailoring the CaP ratio. Superior properties regarding in vitro biodegradation and biocompatibility were obtained on hydroxylapatite tailored surfaces, such as decreased weight loss, conservation of the strut size during the immersion time, and decreased H2 and Mg2+ release. Furthermore, higher cell density was adhered to and proliferated on the DPNS surfaces indicating outstanding biocompatibility. The increase in biocompatibility was also supported by the formation of focal adhesion points and increased osteogenic potential, and the immune response modulation of the cells seeded on the modified surfaces. Finally, the material was tested in vivo, demonstrating steady corrosion and improved porous structure stability after 8 weeks of implantation in Wistar rats.El diseño y desarrollo de un entorno osteoinductivo para reconstruir y tratar grandes defectos óseos sigue siendo un desafío. Los metales porosos biodegradables se han propuesto para conectar partes sanas del tejido cuando le lesión supera la capacidad autoreparadora del hueso. Los scaffolds de Mg prometen ayudar en este proceso de soporte, proporcionando las propiedades mecánicas y adaptándose a los nuevos requisitos, como el peso y la geometría, a medida que avanza el tiempo de curación. Además, la condición porosa guiaría el crecimiento del tejido y de los vasos sanguíneos, y la liberación de Mg2 + aceleraría el proceso de curación. Sin embargo, las funciones de soporte del Mg están limitadas por su rápida degradación, lo que dificulta la integración con el tejido. Además, el proceso de corrosión se acelera con la condición de porosidad, y la geometría compleja limita la aplicación de los métodos de protección actuales. La presente tesis tiene como objetivo crear un andamio basado en Mg de poros abiertos para reemplazo de hueso, centrado en una mayor resistencia a la corrosión y biocompatibilidad. Para este propósito, se fabricaron materiales porosos de Mg en varias configuraciones geométricas: poros aleatorios, octaedro truncado y celdas unitarias de diamante. El control sobre la degradación del material se logró modificando los primeros nanómetros de la superficie, para evitar transformaciones en la arquitectura del material y conservar de propiedades volumétricas como la porosidad abierta y el peso ligero. La modificación nanométrica se creó mediante irradiación de baja energía con Ar+, lo que desarrolló nanoestructuras ordenadas en la superficie, seguidas de la acumulación de nanoclusters ricos en Al. La creación de nanoclusters ricos en Al aceleró la cinética de pasivación del scaffold de Mg, mejorando su capacidad de nucleación de apatita al sumergir los materiales en fluidos fisiológicos. Además, dicha capacidad de formación de apatita estaba condicionada a la concentración de Al en la superficie, lo que ofrece superficies para diferentes propósitos biológicos al adaptar la proporción de CaP. Se obtuvieron propiedades mejoradas en cuanto a biodegradación y biocompatibilidad in vitro en superficies irradiadas que formaron una relación Ca:P similar a la hidroxiapatita. Estas propiedades incluyen menor pérdida de peso, conservación del tamaño del strut durante el tiempo de inmersión y disminución de la liberación de H2 y Mg2+. Además, se adhirió y proliferó una mayor densidad celular en las superficies de DPNS, lo que indica una mejora sobresaliente también en la biocompatibilidad, que, además, está respaldada por la formación de puntos de adhesión focales y el aumento del potencial osteogénico y la modulación de la respuesta inmune de las células adheridas a la superficie modificada de Mg. Finalmente, el material se evaluó in vivo, demostrando una corrosión constante y una estabilidad mejorada de la estructura porosa después de 8 semanas de implantación en ratas Wistar.DoctoradoDoctora en Ingeniería Mecánica y MecatrónicaBiomecánicaBiomateriales186 páginasapplication/pdfengUniversidad Nacional de Colombia - Sede MedellínMedellín - Minas - Doctorado en Ingeniería - Ingeniería Mecánica y MecatrónicaDepartamento de Ingeniería MecánicaFacultad de MinasMedellínUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaMagnesioMateriales biomédicosMagnesiumcontrolled degradationbiodegradable implantporous magnesiumion-enhanced Gibbsian segregationDirected plasma nanosynthesisnanostructured surfacenanostructured surfaceimplante biodegradablemagnesio porososuperficie nanostructuradaMagnesium-based bioresorbable cellular metal as bone substituteMetal celular bioabsorbible a base de magnesio como sustituto óseoTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Text[1] E. Roddy, M.R. DeBaun, A. Daoud-Gray, Y.P. Yang, M.J. Gardner, Treatment of critical-sized bone defects: clinical and tissue engineering perspectives, Eur. J. Orthop. Surg. Traumatol. 28 (2018) 351–362. https://doi.org/10.1007/s00590-017-2063-0.[2] S. van Gaalen, M. Kruyt, G. Meijer, A. Mistry, A. Mikos, J. van den Beucken, J. Jansen, K. de Groot, R. Cancedda, C. Olivo, M. Yaszemski, W. Dhert, Chapter 19 - Tissue engineering of bone, in: Academic Press, Burlington, 2008: pp. 559–610. http://www.sciencedirect.com/science/article/pii/B9780123708694000197 (accessed February 9, 2016).[3] T.X. Song, Y.L. Hu, Z.M. He, Y. Cui, Q. Ding, Z.Y. Qiu, Clinical applications of the mineralized collagen, in: Miner. Collagen Bone Graft Substitutes, Elsevier, 2019: pp. 167–232. https://doi.org/10.1016/B978-0-08-102717-2.00005-9.[4] W. Wang, K.W.K. Yeung, Bone grafts and biomaterials substitutes for bone defect repair: A review, (2017). https://doi.org/10.1016/j.bioactmat.2017.05.007.[5] S. Wu, X. Liu, K.W.K.K. Yeung, C. Liu, X. Yang, Biomimetic porous scaffolds for bone tissue engineering, Mater. Sci. Eng. R Reports. 80 (2014) 1–36. https://doi.org/10.1016/j.mser.2014.04.001.[6] A. Nauth, E. Schemitsch, B. Norris, Z. Nollin, J.T. Watson, Critical-Size Bone Defects, J. Orthop. Trauma. 32 (2018) S7–S11. https://doi.org/10.1097/BOT.0000000000001115.[7] S.K. Jaganathan, M. Prasath Mani, M. Ayyar, R. Rathanasamy, Biomimetic electrospun polyurethane matrix composites with tailor made properties for bone tissue engineering scaffolds, Polym. Test. 78 (2019) 105955. https://doi.org/10.1016/j.polymertesting.2019.105955.[8] H. Zhou, S.B. Bhaduri, 3D printing in the research and development of medical devices, in: Biomater. Transl. Med. A Biomater. Approach, Elsevier, 2018: pp. 269–289. https://doi.org/10.1016/B978-0-12-813477-1.00012-8.[9] A.H. Yusop, A.A. Bakir, N.A. Shaharom, M.R. Abdul Kadir, H. Hermawan, Porous Biodegradable Metals for Hard Tissue Scaffolds: A Review, Int. J. Biomater. 2012 (2012) 1–10. https://doi.org/10.1155/2012/641430.[10] H. Ding, H. Pan, X. Xu, R. Tang, Toward a Detailed Understanding of Magnesium Ions on Hydroxyapatite Crystallization Inhibition, Cryst. Growth Des. 14 (2014) 763–769. https://doi.org/10.1021/cg401619s.[11] E. O’Neill, G. Awale, L. Daneshmandi, O. Umerah, K.W.-H. Lo, The roles of ions on bone regeneration, Drug Discov. Today. 23 (2018) 879–890. https://doi.org/10.1016/J.DRUDIS.2018.01.049.[12] Y. Zhang, J. Xu, Y.C. Ruan, M.K. Yu, M. O’Laughlin, H. Wise, D. Chen, L. Tian, D. Shi, J. Wang, S. Chen, J.Q. Feng, D.H.K. Chow, X. Xie, L. Zheng, L. Huang, S. Huang, K. Leung, N. Lu, L. Zhao, H. Li, D. Zhao, X. Guo, K. Chan, F. Witte, H.C. Chan, Y. Zheng, L. Qin, Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats, Nat. Med. 22 (2016) 1160–1169. https://doi.org/10.1038/nm.4162.[13] M. Wang, Y. Yu, K. Dai, Z. Ma, Y. Liu, J. Wang, C. Liu, Improved osteogenesis and angiogenesis of magnesium-doped calcium phosphate cement: Via macrophage immunomodulation, Biomater. Sci. 4 (2016) 1574–1583. https://doi.org/10.1039/c6bm00290k.[14] B. Li, H. Cao, Y. Zhao, M. Cheng, H. Qin, T. Cheng, Y. Hu, X. Zhang, X. Liu, In vitro and in vivo responses of macrophages to magnesium-doped titanium, Sci. Rep. 7 (2017) 1–12. https://doi.org/10.1038/srep42707.[15] T.L. Nguyen, M.P. Staiger, G.J. Dias, T.B.F. Woodfield, A Novel Manufacturing Route for Fabrication of Topologically-Ordered Porous Magnesium Scaffolds, Adv. Eng. Mater. 13 (2011) 872–881. https://doi.org/10.1002/adem.201100029.[16] G. Jia, C. Chen, J. Zhang, Y. Wang, R. Yue, B.J.C. Luthringer - Feyerabend, R. Willumeit-Roemer, H. Zhang, M. Xiong, H. Huang, G. Yuan, F. Feyerabend, In vitro degradation behavior of Mg scaffolds with three-dimensional interconnected porous structures for bone tissue engineering, Corros. Sci. 144 (2018) 301–312. https://doi.org/10.1016/j.corsci.2018.09.001.[17] Y. Wang, P. Fu, N. Wang, L. Peng, B. Kang, H. Zeng, G. Yuan, W. Ding, Challenges and Solutions for the Additive Manufacturing of Biodegradable Magnesium Implants, Engineering. (2020). https://doi.org/10.1016/j.eng.2020.02.015.[18] J. M.Rúa, A.A. Zuleta, J. Ramírez, P. Fernández-Morales, Micro-arc oxidation coating on porous magnesium foam and its potential biomedical applications, Surf. Coatings Technol. 360 (2019) 213–221. https://doi.org/10.1016/j.surfcoat.2018.12.106.[19] S. Julmi, A.-K. Krüger, A.-C. Waselau, A. Meyer-Lindenberg, P. Wriggers, C. Klose, H.J. Maier, Processing and coating of open-pored absorbable magnesium-based bone implants, Mater. Sci. Eng. C. 98 (2019) 1073–1086. https://doi.org/10.1016/j.msec.2018.12.125.[20] S. Weiner, H.D. Wagner, The material bone: Structure-mechanical function relations, Annu. Rev. Mater. Sci. 28 (1998) 271–298.[21] M. Yazdimamaghani, M. Razavi, D. Vashaee, L. Tayebi, Microstructural and mechanical study of PCL coated Mg scaffolds, Surf. Eng. 30 (2014) 920–926. https://doi.org/10.1179/1743294414Y.0000000307.[22] M. Yazdimamaghani, M. Razavi, D. Vashaee, L. Tayebi, Surface modification of biodegradable porous Mg bone scaffold using polycaprolactone/bioactive glass composite, Mater. Sci. Eng. C. 49 (2015) 436–444. https://doi.org/10.1016/j.msec.2015.01.041.[23] Z. Chen, X. Mao, L. Tan, T. Friis, C. Wu, R. Crawford, Y. Xiao, Osteoimmunomodulatory properties of magnesium scaffolds coated with β-tricalcium phosphate, Biomaterials. 35 (2014) 8553–8565. https://doi.org/10.1016/j.biomaterials.2014.06.038.[24] Z.Z. Yin, W.C. Qi, R.C. Zeng, X.B. Chen, C.D. Gu, S.K. Guan, Y.F. Zheng, Advances in coatings on biodegradable magnesium alloys, J. Magnes. Alloy. 8 (2020) 42–65. https://doi.org/10.1016/j.jma.2019.09.008.[25] R.C. Zeng, L.Y. Cui, K. Jiang, R. Liu, B.D. Zhao, Y.F. Zheng, In Vitro Corrosion and Cytocompatibility of a Microarc Oxidation Coating and Poly(l -lactic acid) Composite Coating on Mg-1Li-1Ca Alloy for Orthopedic Implants, ACS Appl. Mater. Interfaces. 8 (2016) 10014–10028. https://doi.org/10.1021/acsami.6b00527.[26] F. Czerwinski, ed., Magnesium Alloys - Corrosion and Surface Treatments, InTech, 2011. http://www.intechopen.com/books/magnesium-alloys-corrosion-and-surface-treatments (accessed November 3, 2014).[27] G. Zhang, L. Wu, A. Tang, Y. Ma, G.-L. Song, D. Zheng, B. Jiang, A. Atrens, F. Pan, Active corrosion protection by a smart coating based on a MgAl-layered double hydroxide on a cerium-modified plasma electrolytic oxidation coating on Mg alloy AZ31, Corros. Sci. 139 (2018) 370–382. https://doi.org/10.1016/J.CORSCI.2018.05.010.[28] J. Liao, M. Hotta, Corrosion products of field-exposed Mg-Al series magnesium alloys, Corros. Sci. 112 (2016) 276–288. https://doi.org/10.1016/j.corsci.2016.07.023.[29] G. Wu, R. Xu, K. Feng, S. Wu, Z. Wu, G. Sun, G. Zheng, G. Li, P.K. Chu, Retardation of surface corrosion of biodegradable magnesium-based materials by aluminum ion implantation, Appl. Surf. Sci. 258 (2012) 7651–7657. https://doi.org/10.1016/j.apsusc.2012.04.112.[30] M.C. Delgado, F.R. García-Galvan, I. Llorente, P. Pérez, P. Adeva, S. Feliu, Influence of aluminium enrichment in the near-surface region of commercial twin-roll cast AZ31 alloys on their corrosion behaviour, Corros. Sci. 123 (2017) 182–196. https://doi.org/10.1016/J.CORSCI.2017.04.027.[31] M.K. Lei, P. Li, H.G. Yang, X.M. Zhu, Wear and corrosion resistance of Al ion implanted AZ31 magnesium alloy, Surf. Coatings Technol. 201 (2007) 5182–5185. https://doi.org/10.1016/J.SURFCOAT.2006.07.091.[32] D. Dubé, M. Fiset, A. Couture, I. Nakatsugawa, Characterization and performance of laser melted AZ91D and AM60B, Mater. Sci. Eng. A. 299 (2001) 38–45. https://doi.org/10.1016/S0921-5093(00)01414-3.[33] S. Hao, M. Li, Producing nano-grained and Al-enriched surface microstructure on AZ91 magnesium alloy by high current pulsed electron beam treatment, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 375 (2016) 1–4. https://doi.org/10.1016/j.nimb.2016.03.035.[34] A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, S. Feliú, Influence of microstructure and composition on the corrosion behaviour of Mg/Al alloys in chloride media, Electrochim. Acta. 53 (2008) 7890–7902. https://doi.org/10.1016/J.ELECTACTA.2008.06.001.[35] F. Reichel, L.P.H. Jeurgens, E.J. Mittemeijer, Modeling compositional changes in binary solid solutions under ion bombardment: Application to the Ar+ bombardment of MgAl alloys, Phys. Rev. B - Condens. Matter Mater. Phys. 73 (2006). https://doi.org/10.1103/PhysRevB.73.024103.[37] M.A. Yánez Contreras, C.D. Maldonado Pedroza, K.P. Del Risco Serje, Labor force participation of people aged 60 years old and above in Colombia, Rev. Econ. Del Caribe. (2016) 39–63. https://doi.org/10.14482/ecoca.17.8004.[38] R. Aziziyeh, M. Amin, M. Habib, J. Garcia Perlaza, K. Szafranski, R.K. McTavish, T. Disher, A. Lüdke, C. Cameron, The burden of osteoporosis in four Latin American countries: Brazil, Mexico, Colombia, and Argentina, J. Med. Econ. 22 (2019) 638–644. https://doi.org/10.1080/13696998.2019.1590843.[39] Instituto Nacional De Salud, Informe anual red de donación y trasplantes, 2018. https://www.ins.gov.co/Direcciones/RedesSaludPublica/DonacionOrganosYTejidos/Estadisticas/Informe-Anual-Red-Donacion-Trasplantes-2018.pdf.[40] W.M. Baldwin, C.P. Larsen, R.L. Fairchild, Innate immune responses to transplants: A significant variable with cadaver donors, Immunity. 14 (2001) 369–376. https://doi.org/10.1016/S1074-7613(01)00117-0.[41] R.A. Navarro, N.C. Reddy, J.M. Weiss, A.J. Yates, F.H. Fu, M. McKee, E.S. Lederman, Orthopaedic Systems Response to and Return from the COVID-19 Pandemic: Lessons for Future Crisis Management, J. Bone Jt. Surg. - Am. Vol. 102 (2020) E75. https://doi.org/10.2106/JBJS.20.00709.[42] B. Fiani, R. Jenkins, I. Siddiqi, A. Khan, A. Taylor, Socioeconomic Impact of COVID-19 on Spinal Instrumentation Companies in the Era of Decreased Elective Surgery, Cureus. 12 (2020). https://doi.org/10.7759/cureus.9776.[43] S. Von Euw, Y. Wang, G. Laurent, C. Drouet, F. Babonneau, N. Nassif, T. Azaïs, Bone mineral: new insights into its chemical composition, Sci. Rep. 9 (2019) 1–11. https://doi.org/10.1038/s41598-019-44620-6.[44] J.L. Shaker, L. Deftos, Calcium and Phosphate Homeostasis, in: Endocr. Reprod. Physiol., Elsevier, 2013: pp. 77-e1. https://doi.org/10.1016/b978-0-323-08704-9.00004-x.[45] J.D. Black, B.J. Tadros, Bone structure: from cortical to calcium, Orthop. Trauma. 34 (2020) 113–119. https://doi.org/10.1016/j.mporth.2020.03.002.[46] J.Y. Rho, L. Kuhn-Spearing, P. Zioupos, Mechanical properties and the hierarchical structure of bone, Med. Eng. Phys. 20 (1998) 92–102. https://doi.org/10.1016/S1350-4533(98)00007-1.[47] F.M. Vanhoenacker, A.L. Baert, C. Faletti, M. Maas, J.L.M.A. Gielen, Imaging of Orthopedic Sports Injuries, Springer Berlin Heidelberg, 2007. https://books.google.com.co/books?id=BjWq_4WqRFEC.[48] R. Oftadeh, M. Perez-Viloria, J.C. Villa-Camacho, A. Vaziri, A. Nazarian, Biomechanics and Mechanobiology of Trabecular Bone: A Review, J. Biomech. Eng. 137 (2015). https://doi.org/10.1115/1.4029176.[49] G.S. Baht, L. Vi, B.A. Alman, The Role of the Immune Cells in Fracture Healing, Curr. Osteoporos. Rep. 16 (2018) 138–145. https://doi.org/10.1007/s11914-018-0423-2.[50] T. Ono, H. Takayanagi, Osteoimmunology in Bone Fracture Healing, Curr. Osteoporos. Rep. 15 (2017) 367–375. https://doi.org/10.1007/s11914-017-0381-0.[51] A. Dorronsoro, I. Ferrin, J.M. Salcedo, E. Jakobsson, J. Fernández‐Rueda, V. Lang, P. Sepulveda, K. Fechter, D. Pennington, C. Trigueros, Human mesenchymal stromal cells modulate T‐cell responses through TNF‐α‐mediated activation of NF‐κB, Eur. J. Immunol. 44 (2014) 480–488. https://doi.org/10.1002/eji.201343668.[52] T.A. Einhorn, Bone Regeneration and Repair, J. Bone Jt. Surg. 88 (2006) 469–470. https://doi.org/10.2106/00004623-200602000-00050.[53] L.J. Kidd, A.S. Stephens, J.S. Kuliwaba, N.L. Fazzalari, A.C.K. Wu, M.R. Forwood, Temporal pattern of gene expression and histology of stress fracture healing, Bone. 46 (2010) 369–378. https://doi.org/10.1016/j.bone.2009.10.009.[54] N.A. Sims, T.J. Martin, The osteoblast lineage: Its actions and communication mechanisms, in: Princ. Bone Biol., Elsevier, 2019: pp. 89–110. https://doi.org/10.1016/B978-0-12-814841-9.00004-X.[55] G.K.K. and A.E. Javad Parvizi, High Yield Orthopaedics, Elsevier, 2010. https://doi.org/10.1016/c2009-0-32243-6.[56] T.A. Franz-Odendaal, B.K. Hall, P.E. Witten, Buried alive: How osteoblasts become osteocytes, Dev. Dyn. 235 (2006) 176–190. https://doi.org/10.1002/dvdy.20603.[57] M.H.V. Choy, R.M.Y. Wong, S.K.H. Chow, M.C. Li, Y.N. Chim, T.K. Li, W.T. Ho, J.C.Y. Cheng, W.H. Cheung, How much do we know about the role of osteocytes in different phases of fracture healing? A systematic review, J. Orthop. Transl. 21 (2020) 111–121. https://doi.org/10.1016/j.jot.2019.07.005.[58] B.M. Willie, E.A. Zimmermann, I. Vitienes, R.P. Main, S. V. Komarova, Bone adaptation: Safety factors and load predictability in shaping skeletal form, Bone. 131 (2020) 115114. https://doi.org/10.1016/j.bone.2019.115114.[59] J.H. Kim, D. Kim, M.G. Lee, Mechanics of Cellular Materials and its Applications, in: Multiscale Simulations Mech. Biol. Mater., John Wiley and Sons, 2013: pp. 411–434. https://doi.org/10.1002/9781118402955.ch22.[60] L.J. Gibson, The mechanical behaviour of cancellous bone, J. Biomech. 18 (1985) 317–328. https://doi.org/10.1016/0021-9290(85)90287-8.[61] A. Nouri, Deakin University, Deakin University, Novel metal structures through powder metallurgy for biomedical applications, 2008.[62] T.S. Keller, Predicting the compressive mechanical behavior of bone, J. Biomech. 27 (1994) 1159–1168. https://doi.org/10.1016/0021-9290(94)90056-6.[63] J.D. Silva-Henao, R.J. Rueda Esteban, A. Marañon-Leon, J.P. Casas-Rodríguez, Post-yield mechanical properties of bovine trabecular bone – Relationships with bone volume fraction and strain rate, Eng. Fract. Mech. 233 (2020) 107053. https://doi.org/10.1016/j.engfracmech.2020.107053.[64] H. Leng, M.J. Reyes, X.N. Dong, X. Wang, Effect of age on mechanical properties of the collagen phase in different orientations of human cortical bone, Bone. 55 (2013) 288–291. https://doi.org/10.1016/j.bone.2013.04.006.[65] L.J. Gibson, M.F. Ashby, Cellular Solids: Structure and Properties, Cambridge University Press, 1999. http://books.google.com.co/books?id=IySUr5sn4N8C.[66] N. Fratzl-Zelman, A.P. Roschger, A.A. Gourrier, A.M. Weber, A.B.M. Misof, A.N. Loveridge, A.J. Reeve, A.K. Klaushofer, A.P. Fratzl, Á.P. Roschger, Á.B.M. Misof, Á.K. Klaushofer, A. Gourrier, Á.M. Weber, Á.P. Fratzl, M. Weber, E. Schmid, N. Loveridge, Á.J. Reeve, Combination of Nanoindentation and Quantitative Backscattered Electron Imaging Revealed Altered Bone Material Properties Associated with Femoral Neck Fragility, Calcif Tissue Int. 85 (2009) 335–343. https://doi.org/10.1007/s00223-009-9289-8.[67] M.A.K.L. and W.S. M. A. Wettergreen, B. S. Bucklen, CAD Assembly Process for Bone Replacement Scaffolds in Computer-Aided Tissue Engineering, in: Virtual Prototyp. Bio Manuf. Med. Appl., 2008: pp. 87–112.[68] R. Dimitriou, E. Tsiridis, P. V. Giannoudis, Current concepts of molecular aspects of bone healing, Injury. 36 (2005) 1392–1404. https://doi.org/10.1016/j.injury.2005.07.019.[69] C.W. Schlickewei, H. Kleinertz, D.M. Thiesen, K. Mader, M. Priemel, K.H. Frosch, J. Keller, Current and future concepts for the treatment of impaired fracture healing, Int. J. Mol. Sci. 20 (2019). https://doi.org/10.3390/ijms20225805.[70] F. Barrère, C.A. van Blitterswijk, K. de Groot, Bone regeneration: Molecular and cellular interactions with calcium phosphate ceramics, Int. J. Nanomedicine. 1 (2006) 317–332.[71] R. Langer, J.P. Vacanti, Tissue Engineering, n.d. http://science.sciencemag.org/ (accessed June 13, 2020).[72] K. Alvarez, H. Nakajima, Metallic scaffolds for bone regeneration, Materials (Basel). 2 (2009) 790–832. https://doi.org/10.3390/ma2030790.[73] N. Abbasi, S. Hamlet, R.M. Love, N.T. Nguyen, Porous scaffolds for bone regeneration, J. Sci. Adv. Mater. Devices. 5 (2020) 1–9. https://doi.org/10.1016/j.jsamd.2020.01.007.[74] K.A. Hing, Bioceramic bone graft substitutes: Influence of porosity and chemistry, Int. J. Appl. Ceram. Technol. 2 (2005) 184–199. https://doi.org/10.1111/j.1744-7402.2005.02020.x.[75] X. Xiao, W. Wang, D. Liu, H. Zhang, P. Gao, L. Geng, Y. Yuan, J. Lu, Z. Wang, The promotion of angiogenesis induced by three-dimensional porous beta-tricalcium phosphate scaffold with different interconnection sizes via activation of PI3K/Akt pathways, Sci. Rep. 5 (2015) 1–11. https://doi.org/10.1038/srep09409.[76] C.M. Murphy, F.J. O’Brien, Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds, Cell Adhes. Migr. 4 (2010) 377–381. https://doi.org/10.4161/cam.4.3.11747.[77] L. Chu, G. Jiang, X.-L. Hu, T.D. James, X.-P. He, Y. Li, T. Tang, Biodegradable macroporous scaffold with nano-crystal surface microstructure for highly effective osteogenesis and vascularization, J. Mater. Chem. B. 6 (2018) 1658–1667. https://doi.org/10.1039/C7TB03353B.[78] Z. Chen, X. Yan, S. Yin, L. Liu, X. Liu, G. Zhao, W. Ma, W. Qi, Z. Ren, H. Liao, M. Liu, D. Cai, H. Fang, Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth, Mater. Sci. Eng. C. 106 (2020) 110289. https://doi.org/10.1016/j.msec.2019.110289.[79] P. Ouyang, H. Dong, X. He, X. Cai, Y. Wang, J. Li, H. Li, Z. Jin, Hydromechanical mechanism behind the effect of pore size of porous titanium scaffolds on osteoblast response and bone ingrowth, Mater. Des. 183 (2019) 108151. https://doi.org/10.1016/j.matdes.2019.108151.[80] S. Ray, U. Thormann, M. Eichelroth, M. Budak, C. Biehl, M. Rupp, U. Sommer, T. El Khassawna, F.I. Alagboso, M. Kampschulte, M. Rohnke, A. Henß, K. Peppler, V. Linke, P. Quadbeck, A. Voigt, F. Stenger, D. Karl, R. Schnettler, C. Heiss, K.S. Lips, V. Alt, Strontium and bisphosphonate coated iron foam scaffolds for osteoporotic fracture defect healing, Biomaterials. 157 (2018) 1–16. https://doi.org/10.1016/j.biomaterials.2017.11.049.[81] M.Q. Cheng, T. Wahafu, G.F. Jiang, W. Liu, Y.Q. Qiao, X.C. Peng, T. Cheng, X.L. Zhang, G. He, X.Y. Liu, A novel open-porous magnesium scaffold with controllable microstructures and properties for bone regeneration, Sci. Rep. 6 (2016) 24134. https://doi.org/10.1038/srep24134.[82] M.H. Kang, H. Lee, T.S. Jang, Y.J. Seong, H.E. Kim, Y.H. Koh, J. Song, H. Do Jung, Biomimetic porous Mg with tunable mechanical properties and biodegradation rates for bone regeneration, Acta Materialia Inc., 2019. https://doi.org/10.1016/j.actbio.2018.11.045.[83] E. Dayaghi, H.R. Bakhsheshi-Rad, E. Hamzah, A. Akhavan-Farid, A.F. Ismail, M. Aziz, E. Abdolahi, Magnesium-zinc scaffold loaded with tetracycline for tissue engineering application: In vitro cell biology and antibacterial activity assessment, Mater. Sci. Eng. C. 102 (2019) 53–65. https://doi.org/10.1016/j.msec.2019.04.010.[84] N. Taniguchi, S. Fujibayashi, M. Takemoto, K. Sasaki, B. Otsuki, T. Nakamura, T. Matsushita, T. Kokubo, S. Matsuda, Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment, Mater. Sci. Eng. C. 59 (2016) 690–701. https://doi.org/10.1016/j.msec.2015.10.069.[85] S. Kujala, J. Ryhänen, A. Danilov, J. Tuukkanen, Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel–titanium bone graft substitute, Biomaterials. 24 (2003) 4691–4697. https://doi.org/10.1016/S0142-9612(03)00359-4.[86] S. Limmahakhun, A. Oloyede, K. Sitthiseripratip, Y. Xiao, C. Yan, 3D-printed cellular structures for bone biomimetic implants, Addit. Manuf. 15 (2017) 93–101. https://doi.org/10.1016/j.addma.2017.03.010.[87] C.M. Murphy, M.G. Haugh, F.J. O’Brien, The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering, Biomaterials. 31 (2010) 461–466. https://doi.org/10.1016/j.biomaterials.2009.09.063.[88] B.B. Mandal, S.C. Kundu, Osteogenic and adipogenic differentiation of rat bone marrow cells on non-mulberry and mulberry silk gland fibroin 3D scaffolds, Biomaterials. 30 (2009) 5019–5030. https://doi.org/10.1016/j.biomaterials.2009.05.064.[89] Y. Kuboki, Q. Jin, H. Takita, Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and chondrogenesis., J. Bone Joint Surg. Am. 83 A Suppl 1 (2001). https://doi.org/10.2106/00004623-200100002-00005.[90] T. Lou, X. Wang, G. Song, Z. Gu, Z. Yang, Structure and properties of PLLA/β-TCP nanocomposite scaffolds for bone tissue engineering, J. Mater. Sci. Mater. Med. 26 (2015) 34. https://doi.org/10.1007/s10856-014-5366-2.[91] S. Pina, R.F. Canadas, G. Jiménez, M. Perán, J.A. Marchal, R.L. Reis, J.M. Oliveira, Biofunctional Ionic-Doped Calcium Phosphates: Silk Fibroin Composites for Bone Tissue Engineering Scaffolding, Cells Tissues Organs. 204 (2017) 150–163. https://doi.org/10.1159/000469703.[92] M. Mauri, T. Elli, G. Caviglia, G. Uboldi, M. Azzi, RAWGraphs: A Visualisation Platform to Create Open Outputs, in: Proc. 12th Biannu. Conf. Ital. SIGCHI Chapter - CHItaly ’17, ACM Press, New York, New York, USA, 2017: pp. 1–5. https://doi.org/10.1145/3125571.3125585.[93] T. Maconachie, M. Leary, B. Lozanovski, X. Zhang, M. Qian, O. Faruque, M. Brandt, SLM lattice structures: Properties, performance, applications and challenges, Mater. Des. 183 (2019) 108137. https://doi.org/10.1016/j.matdes.2019.108137.[94] C. Yan, L. Hao, A. Hussein, P. Young, D. Raymont, Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting, Mater. Des. 55 (2014) 533–541. https://doi.org/10.1016/j.matdes.2013.10.027.[95] B.S. Bucklen, W.A. Wettergreen, E. Yuksel, M.A.K. Liebschner, Bone-derived CAD library for assembly of scaffolds in computer-aided tissue engineering, Virtual Phys. Prototyp. 3 (2008) 13–23. https://doi.org/10.1080/17452750801911352.[96] M.A. Wettergreen, B.S. Bucklen, B. Starly, E. Yuksel, W. Sun, M.A.K. Liebschner, Creation of a unit block library of architectures for use in assembled scaffold engineering, Comput. Des. 37 (2005) 1141–1149. https://doi.org/10.1016/j.cad.2005.02.005.[97] C.K. Chua, K.F. Leong, C.M. Cheah, S.W. Chua, Development of a Tissue Engineering Scaffold Structure Library for Rapid Prototyping. Part 1: Investigation and Classification, Int J Adv Manuf Technol. 21 (2003) 291–301. https://link.springer.com/content/pdf/10.1007%2Fs001700300034.pdf (accessed August 9, 2017).[98] C.K. Chua, K.F. Leong, C.M. Cheah, S.W. Chua, Development of a Tissue Engineering Scaffold Structure Library for Rapid Prototyping. Part 2: Parametric Library and Assembly Program, 2003.[99] N. Chantarapanich, P. Puttawibul, S. Sucharitpwatskul, P. Jeamwatthanachai, S. Inglam, K. Sitthiseripratip, Scaffold Library for Tissue Engineering: A Geometric Evaluation, Comput. Math. Methods Med. 2012 (2012) 1–14. https://doi.org/10.1155/2012/407805.[100] M.J. Wenninger, Polyhedron models, Cambridge University Press, 2015. https://doi.org/10.1017/CBO9780511569746.[101] J. Wieding, A. Wolf, R. Bader, Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone, J. Mech. Behav. Biomed. Mater. 37 (2014) 56–68. https://doi.org/10.1016/j.jmbbm.2014.05.002.[102] G. Bini, F. Bini, R. Bedini, A. Marinozzi, F. Marinozzi, A topological look at human trabecular bone tissue, Math. Biosci. 288 (2017) 159–165. https://doi.org/10.1016/j.mbs.2017.03.009.[103] V.M. Posada, C. Orozco, J. Ramírez, P. Fernandez-Morales, Human bone inspired design of an Mg alloy-based foam, 2018. https://doi.org/10.4028/www.scientific.net/MSF.933.291.[104] L.J. Gibson, Biomechanics of cellular solids, J. Biomech. 38 (2005) 377–399. https://doi.org/10.1016/j.jbiomech.2004.09.027.[105] P.K. Zysset, M.S. Ominsky, S.A. Goldstein, A novel 3D microstructural model for trabecular bone: I. The relationship between fabric and elasticity, Comput. Methods Biomech. Biomed. Engin. 1 (1998) 321–331. https://doi.org/10.1080/01495739808936710.[106] S.M. Ahmadi, G. Campoli, S. Amin Yavari, B. Sajadi, R. Wauthle, J. Schrooten, H. Weinans, A.A. Zadpoor, Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells, J. Mech. Behav. Biomed. Mater. 34 (2014) 106–115. https://doi.org/10.1016/j.jmbbm.2014.02.003.[107] P. Heinl, L. Müller, C. Körner, R.F. Singer, F.A. Müller, Cellular Ti–6Al–4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting, Acta Biomater. 4 (2008) 1536–1544. https://doi.org/10.1016/j.actbio.2008.03.013.[108] N. Reznikov, H. Chase, Y. Ben Zvi, V. Tarle, M. Singer, V. Brumfeld, R. Shahar, S. Weiner, Inter-trabecular angle: A parameter of trabecular bone architecture in the human proximal femur that reveals underlying topological motifs, Acta Biomater. 44 (2016) 65–72. https://doi.org/10.1016/j.actbio.2016.08.040.[109] A. Ataee, Y. Li, D. Fraser, G. Song, C. Wen, Anisotropic Ti-6Al-4V gyroid scaffolds manufactured by electron beam melting (EBM) for bone implant applications, Mater. Des. 137 (2018) 345–354. https://doi.org/10.1016/j.matdes.2017.10.040.[110] A.A. Zadpoor, Bone tissue regeneration: the role of scaffold geometry, Biomater. Sci. 3 (2015) 231–245. https://doi.org/10.1039/C4BM00291A.[111] Y. Qin, P. Wen, H. Guo, D. Xia, Y. Zheng, L. Jauer, R. Poprawe, M. Voshage, J.H. Schleifenbaum, Additive manufacturing of biodegradable metals: Current research status and future perspectives, Acta Biomater. 98 (2019) 3–22. https://doi.org/10.1016/j.actbio.2019.04.046.[112] R. Karunakaran, S. Ortgies, A. Tamayol, F. Bobaru, M.P. Sealy, Additive manufacturing of magnesium alloys, Bioact. Mater. 5 (2020) 44–54. https://doi.org/10.1016/j.bioactmat.2019.12.004.[113] M. Joner, P. Ruppelt, P. Zumstein, C. Lapointe-Corriveau, G. Leclerc, A. Bulin, M.I. Castellanos, E. Wittchow, M. Haude, R. Waksman, Preclinical evaluation of degradation kinetics and elemental mapping of first- and second-generation bioresorbable magnesium scaffolds, EuroIntervention. 14 (2018) e1040–e1048. https://doi.org/10.4244/eij-d-17-00708.[114] R. Biber, J. Pauser, M. Geßlein, H.J. Bail, Magnesium-Based Absorbable Metal Screws for Intra-Articular Fracture Fixation., Case Rep. Orthop. 2016 (2016) 9673174. https://doi.org/10.1155/2016/9673174.[115] U&i Corporation - Driving beyond the innovations, (n.d.). http://www.youic.com/sub02/list.php?ca_id=10 (accessed October 25, 2020).[116] G. Papanikolaou, K. Pantopoulos, Iron metabolism and toxicity, Toxicol. Appl. Pharmacol. 202 (2005) 199–211. https://doi.org/10.1016/j.taap.2004.06.021.[117] P. Sharma, P.M. Pandey, Corrosion behaviour of the porous iron scaffold in simulated body fluid for biodegradable implant application, Mater. Sci. Eng. C. 99 (2019) 838–852. https://doi.org/10.1016/j.msec.2019.01.114.[118] D. Carluccio, C. Xu, J. Venezuela, Y. Cao, D. Kent, M. Bermingham, A.G. Demir, B. Previtali, Q. Ye, M. Dargusch, Additively manufactured iron-manganese for biodegradable porous load-bearing bone scaffold applications, Acta Biomater. 103 (2020) 346–360. https://doi.org/10.1016/j.actbio.2019.12.018.[119] P. Sharma, P.M. Pandey, A novel manufacturing route for the fabrication of topologically-ordered open-cell porous iron scaffold, Mater. Lett. 222 (2018) 160–163. https://doi.org/10.1016/J.MATLET.2018.03.206.[120] R. Alavi, A. Trenggono, S. Champagne, H. Hermawan, Investigation on Mechanical Behavior of Biodegradable Iron Foams under Different Compression Test Conditions, Metals (Basel). 7 (2017) 202. https://doi.org/10.3390/met7060202.[121] I. Cockerill, Y. Su, S. Sinha, Y.X. Qin, Y. Zheng, M.L. Young, D. Zhu, Porous zinc scaffolds for bone tissue engineering applications: A novel additive manufacturing and casting approach, Mater. Sci. Eng. C. 110 (2020) 110738. https://doi.org/10.1016/j.msec.2020.110738.[122] J. Nriagu, Zinc deficiency in human health, in: Encycl. Environ. Heal., Elsevier, 2019: pp. 489–499. https://doi.org/10.1016/B978-0-12-409548-9.11433-2.[123] P.K. Bowen, E.R. Shearier, S. Zhao, R.J. Guillory, F. Zhao, J. Goldman, J.W. Drelich, Biodegradable Metals for Cardiovascular Stents: From Clinical Concerns to Recent Zn-Alloys, Adv. Healthc. Mater. 5 (2016) 1121–1140. https://doi.org/10.1002/adhm.201501019.[124] J. Venezuela, M.S. Dargusch, The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review, Acta Biomater. 87 (2019) 1–40. https://doi.org/10.1016/j.actbio.2019.01.035.[125] S.M. Glasdam, S. Glasdam, G.H. Peters, The Importance of Magnesium in the Human Body: A Systematic Literature Review, in: Adv. Clin. Chem., Academic Press Inc., 2016: pp. 169–193. https://doi.org/10.1016/bs.acc.2015.10.002.[126] N.-E.L. Saris, E. Mervaala, H. Karppanen, J.A. Khawaja, A. Lewenstam, Magnesium: An update on physiological, clinical and analytical aspects, Clin. Chim. Acta. 294 (2000) 1–26. https://doi.org/10.1016/S0009-8981(99)00258-2.[127] J.-L. Wang, J.-K. Xu, C. Hopkins, D. Ho-Kiu Chow, L. Qin, Biodegradable Magnesium-Based Implants in Orthopedics-A General Review and Perspectives, (2020). https://doi.org/10.1002/advs.201902443.[128] S. Castiglioni, A. Cazzaniga, W. Albisetti, J.A.M. Maier, Magnesium and Osteoporosis: Current State of Knowledge and Future Research Directions, Nutrients. 5 (2013) 3022–3033. https://doi.org/10.3390/nu5083022.[129] R.K. Rude, H.E. Gruber, Magnesium deficiency and osteoporosis: Animal and human observations, J. Nutr. Biochem. 15 (2004) 710–716. https://doi.org/10.1016/j.jnutbio.2004.08.001.[130] T.A. Grünewald, H. Rennhofer, B. Hesse, M. Burghammer, S.E. Stanzl-Tschegg, M. Cotte, J.F. Löffler, A.M. Weinberg, H.C. Lichtenegger, Magnesium from bioresorbable implants: Distribution and impact on the nano- and mineral structure of bone, Biomaterials. 76 (2016) 250–260. https://doi.org/10.1016/j.biomaterials.2015.10.054.[131] J. Wang, J. Xu, B. Song, D.H. Chow, P. Shu-hang Yung, L. Qin, Magnesium (Mg) based interference screws developed for promoting tendon graft incorporation in bone tunnel in rabbits, Acta Biomater. 63 (2017) 393–410. https://doi.org/10.1016/j.actbio.2017.09.018.[132] M. Yazdimamaghani, M. Razavi, D. Vashaee, K. Moharamzadeh, A.R. Boccaccini, L. Tayebi, Porous magnesium-based scaffolds for tissue engineering, Mater. Sci. Eng. C. 71 (2017) 1253–1266. https://doi.org/10.1016/j.msec.2016.11.027.[133] Y. Yan, Y. Kang, D. Li, K. Yu, T. Xiao, Q. Wang, Y. Deng, H. Fang, D. Jiang, Y. Zhang, Microstructure, Mechanical Properties and Corrosion Behavior of Porous Mg-6 wt.% Zn Scaffolds for Bone Tissue Engineering, J. Mater. Eng. Perform. 27 (2018) 970–984. https://doi.org/10.1007/s11665-018-3189-x.[134] Z.S. Seyedraoufi, S. Mirdamadi, Synthesis, microstructure and mechanical properties of porous MgZn scaffolds, J. Mech. Behav. Biomed. Mater. 21 (2013) 1–8. https://doi.org/10.1016/j.jmbbm.2013.01.023.[135] X.N. Gu, W.R. Zhou, Y.F. Zheng, Y. Liu, Y.X. Li, Degradation and cytotoxicity of lotus-type porous pure magnesium as potential tissue engineering scaffold material, Mater. Lett. 64 (2010) 1871–1874. https://doi.org/10.1016/j.matlet.2010.06.015.[136] Y. Li, J. Zhou, P. Pavanram, M.A. Leeflang, L.I. Fockaert, B. Pouran, N. Tümer, K.-U. Schröder, J.M.C. Mol, H. Weinans, H. Jahr, A.A. Zadpoor, Additively manufactured biodegradable porous magnesium, Acta Biomater. 67 (2018) 378–392. https://doi.org/10.1016/j.actbio.2017.12.008.[137] M.P. Staiger, I. Kolbeinsson, N.T. Kirkland, T. Nguyen, G. Dias, T.B.F. Woodfield, Synthesis of topologically-ordered open-cell porous magnesium, Mater. Lett. 64 (2010) 2572–2574. https://doi.org/10.1016/j.matlet.2010.08.049.[138] X.X. Wang, Z. Li, Y. Huang, K. Wang, X.X. Wang, F. Han, Processing of magnesium foams by weakly corrosive and highly flexible space holder materials, Mater. Des. 64 (2014) 324–329. https://doi.org/10.1016/j.matdes.2014.07.049.[139] S. Dutta, K. Bavya Devi, M. Roy, Processing and degradation behavior of porous magnesium scaffold for biomedical applications, Adv. Powder Technol. 28 (2017) 3204–3212. https://doi.org/10.1016/J.APT.2017.09.024.[140] D. YANG, C. SEO, B.-Y. HUR, D. YANG, C. SEO, B.-Y. HUR, Mg Alloy Foam Fabrication via Melt Foaming Method, 材料科学与技术. 24 (2009) 302–304. https://www.jmst.org/CN/abstract/abstract8161.shtml (accessed October 27, 2020).[141] V.M. Posada, J.F. Ramirez, J.P. Allain, A.S. Shetty, P. Fernández-Morales, Synthesis and properties of Mg-based foams by infiltration casting without protective cover gas, J. Mater. Eng. Perform. (2020). https://doi.org/10.1007/s11665-020-04566-7.[142] M. Ali, M. Elsherif, A.E. Salih, A. Ul-Hamid, M.A. Hussein, S. Park, A.K. Yetisen, H. Butt, Surface modification and cytotoxicity of Mg-based bio-alloys: An overview of recent advances, J. Alloys Compd. 825 (2020) 154140. https://doi.org/10.1016/j.jallcom.2020.154140[143] N. Sezer, Z. Evis, S.M. Kayhan, A. Tahmasebifar, M. Koç, Review of magnesium-based biomaterials and their applications, J. Magnes. Alloy. 6 (2018) 23–43. https://doi.org/10.1016/J.JMA.2018.02.003.[144] N. Sezer, Z. Evis, M. Koç, Additive manufacturing of biodegradable magnesium implants and scaffolds: Review of the recent advances and research trends, J. Magnes. Alloy. (2020). https://doi.org/10.1016/j.jma.2020.09.014.[145] J. Chen, L. Tan, X. Yu, I.P. Etim, M. Ibrahim, K. Yang, Mechanical properties of magnesium alloys for medical application: A review, J. Mech. Behav. Biomed. Mater. 87 (2018) 68–79. https://doi.org/10.1016/J.JMBBM.2018.07.022.[146] R.B. Heimann, Magnesium alloys for biomedical application: Advanced corrosion control through surface coating, Surf. Coatings Technol. (2020) 126521. https://doi.org/10.1016/j.surfcoat.2020.126521.[147] S. Heise, S. Virtanen, A.R. Boccaccini, Tackling Mg alloy corrosion by natural polymer coatings-A review, J. Biomed. Mater. Res. Part A. 104 (2016) 2628–2641. https://doi.org/10.1002/jbm.a.35776.[148] V. Hernández-Montes, C.P. Betancur-Henao, J.F. Santa-Marín, Titanium dioxide coatings on magnesium alloys for biomaterials: A review, DYNA. 84 (2017) 261–270. https://doi.org/10.15446/dyna.v84n200.59664.[149] Y. Ding, C. Wen, P. Hodgson, Y. Li, Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: a review, J. Mater. Chem. B. 2 (2014) 1912–1933. https://doi.org/10.1039/C3TB21746A.[150] M. Esmaily, J.E. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thomas, L.G. Johansson, Fundamentals and advances in magnesium alloy corrosion, Prog. Mater. Sci. 89 (2017) 92–193. https://doi.org/10.1016/J.PMATSCI.2017.04.011.[151] F. Cao, G.-L. Song, A. Atrens, Corrosion and passivation of magnesium alloys, Corros. Sci. 111 (2016) 835–845. https://doi.org/10.1016/J.CORSCI.2016.05.041.[152] D. Zhao, F. Witte, F. Lu, J. Wang, J. Li, L. Qin, Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective, Biomaterials. (2016). https://doi.org/10.1016/j.biomaterials.2016.10.017.[153] N. Jasmawati, S. Fatihhi, A. Putra, A. Syahrom, M. Harun, A. Öchsner, M. Abdul Kadir, Mg-based porous metals as cancellous bone analogous material: A review, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 231 (2017) 544–556. https://doi.org/10.1177/1464420715624449.[154] A. Vahidgolpayegani, C. Wen, P. Hodgson, Y. Li, Production methods and characterization of porous Mg and Mg alloys for biomedical applications, Met. Foam Bone. (2017) 25–82. https://doi.org/10.1016/B978-0-08-101289-5.00002-0.[155] Y. Liu, B. Rath, M. Tingart, J. Eschweiler, Role of implants surface modification in osseointegration: A systematic review, J. Biomed. Mater. Res. Part A. 108 (2020) 470–484. https://doi.org/10.1002/jbm.a.36829.[156] R. Walter, M.B. Kannan, Y. He, A. Sandham, Effect of surface roughness on the in vitro degradation behaviour of a biodegradable magnesium-based alloy, Appl. Surf. Sci. 279 (2013) 343–348. https://doi.org/10.1016/j.apsusc.2013.04.096.[157] S. Virtanen, Biodegradable Mg and Mg alloys: Corrosion and biocompatibility, in: Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., Elsevier, 2011: pp. 1600–1608. https://doi.org/10.1016/j.mseb.2011.05.028.[158] X.-N. Gu, S.-S. Li, X.-M. Li, Y.-B. Fan, Magnesium based degradable biomaterials: A review, Front. Mater. Sci. 8 (2014) 200–218. https://doi.org/10.1007/s11706-014-0253-9.[159] F. Peng, D. Wang, D. Zhang, B. Yan, H. Cao, Y. Qiao, X. Liu, PEO/Mg–Zn–Al LDH Composite Coating on Mg Alloy as a Zn/Mg Ion-Release Platform with Multifunctions: Enhanced Corrosion Resistance, Osteogenic, and Antibacterial Activities, ACS Biomater. Sci. Eng. 4 (2018) 4112–4121. https://doi.org/10.1021/acsbiomaterials.8b01184.[160] Y. Xin, T. Hu, P.K. Chu, In vitro studies of biomedical magnesium alloys in a simulated physiological environment: A review, Acta Biomater. 7 (2011) 1452–1459. https://doi.org/10.1016/j.actbio.2010.12.004.[161] R. ZENG, J. ZHANG, W. HUANG, W. DIETZEL, K.U. KAINER, C. BLAWERT, W. KE, Review of studies on corrosion of magnesium alloys, Trans. Nonferrous Met. Soc. China. 16 (2006) s763–s771. https://doi.org/10.1016/S1003-6326(06)60297-5.[162] J.E. Gray-Munro, M. Strong, The mechanism of deposition of calcium phosphate coatings from solution onto magnesium alloy AZ31, J. Biomed. Mater. Res. Part A. 90A (2009) 339–350. https://doi.org/10.1002/jbm.a.32107.[163] Z. Wen, C. Wu, C. Dai, F. Yang, Corrosion behaviors of Mg and its alloys with different Al contents in a modified simulated body fluid, J. Alloys Compd. 488 (2009) 392–399. https://doi.org/10.1016/j.jallcom.2009.08.147.[164] D. Mei, S. V. Lamaka, X. Lu, M.L. Zheludkevich, Selecting medium for corrosion testing of bioabsorbable magnesium and other metals – A critical review, Corros. Sci. 171 (2020) 108722. https://doi.org/10.1016/j.corsci.2020.108722.[165] W.D. Mueller, M. Lucia Nascimento, M.F. Lorenzo De Mele, Critical discussion of the results from different corrosion studies of Mg and Mg alloys for biomaterial applications, Acta Biomater. 6 (2010) 1749–1755. https://doi.org/10.1016/j.actbio.2009.12.048.[166] C. Schille, M. Braun, H.P. Wendel, L. Scheideler, N. Hort, H.P. Reichel, E. Schweizer, J. Geis-Gerstorfer, Corrosion of experimental magnesium alloys in blood and PBS: A gravimetric and microscopic evaluation, in: Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., Elsevier, 2011: pp. 1797–1801. https://doi.org/10.1016/j.mseb.2011.04.007.[167] A. Carangelo, A. Acquesta, T. Monetta, Durability of AZ31 magnesium biodegradable alloys polydopamine aided. Part 2: Ageing in Hank’s solution, J. Magnes. Alloy. 7 (2019) 218–226. https://doi.org/10.1016/J.JMA.2019.04.003.[168] V. Wagener, S. Virtanen, Protective layer formation on magnesium in cell culture medium, Mater. Sci. Eng. C. 63 (2016) 341–351. https://doi.org/10.1016/j.msec.2016.03.003.[169] M. Yazdimamaghani, M. Razavi, D. Vashaee, L. Tayebi, Development and degradation behavior of magnesium scaffolds coated with polycaprolactone for bone tissue engineering, Mater. Lett. 132 (2014) 106–110. https://doi.org/10.1016/j.matlet.2014.06.036.[170] M.-H.H. Kang, H. Lee, T.-S.S. Jang, Y.-J.J. Seong, H.-E.E. Kim, Y.-H.H. Koh, J. Song, H.-D. Do Jung, Biomimetic porous Mg with tunable mechanical properties and biodegradation rates for bone regeneration, Acta Biomater. 84 (2019) 453–467. https://doi.org/10.1016/j.actbio.2018.11.045.[171] X. Lu, Y. Leng, Theoretical analysis of calcium phosphate precipitation in simulated body fluid, Biomaterials. 26 (2005) 1097–1108. https://doi.org/10.1016/j.biomaterials.2004.05.034.[172] H. Zhuang, Y. Han, A. Feng, Preparation, mechanical properties and in vitro biodegradation of porous magnesium scaffolds, Mater. Sci. Eng. C. 28 (2008) 1462–1466. https://doi.org/10.1016/j.msec.2008.04.001.[173] A.P. Md Saad, R.A. Abdul Rahim, M.N. Harun, H. Basri, J. Abdullah, M.R. Abdul Kadir, A. Syahrom, The influence of flow rates on the dynamic degradation behaviour of porous magnesium under a simulated environment of human cancellous bone, Mater. Des. 122 (2017) 268–279. https://doi.org/10.1016/j.matdes.2017.03.029.[174] Y. Li, H. Jahr, X.-Y. Zhang, M.A. Leeflang, W. Li, B. Pouran, F.D. Tichelaar, H. Weinans, J. Zhou, A.A. Zadpoor, Biodegradation-affected fatigue behavior of additively manufactured porous magnesium, Addit. Manuf. 28 (2019) 299–311. https://doi.org/10.1016/j.addma.2019.05.013.[175] W.C. Kim, K.H. Han, J.G. Kim, S.J. Yang, H.K. Seok, H.S. Han, Y.Y. Kim, Effect of surface area on corrosion properties of magnesium for biomaterials, Met. Mater. Int. 19 (2013) 1131–1137. https://doi.org/10.1007/s12540-013-5032-0.[176] A.P. Md Saad, N. Jasmawati, M.N. Harun, M.R. Abdul Kadir, H. Nur, H. Hermawan, A. Syahrom, Dynamic degradation of porous magnesium under a simulated environment of human cancellous bone, Corros. Sci. 112 (2016) 495–506. https://doi.org/10.1016/j.corsci.2016.08.017.[177] N.T. Kirkland, N. Birbilis, M.P. Staiger, Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations, Acta Biomater. 8 (2012) 925–936. https://doi.org/10.1016/j.actbio.2011.11.014.[178] S. Singh, P. Vashisth, A. Shrivastav, N. Bhatnagar, Synthesis and characterization of a novel open cellular Mg-based scaffold for tissue engineering application, J. Mech. Behav. Biomed. Mater. 94 (2019) 54–62. https://doi.org/10.1016/j.jmbbm.2019.02.010.[179] W. Yu, H. Zhao, Z. Ding, Z. Zhang, B. Sun, J. Shen, S. Chen, B. Zhang, K. Yang, M. Liu, D. Chen, Y. He, In vitro and in vivo evaluation of MgF2 coated AZ31 magnesium alloy porous scaffolds for bone regeneration, Colloids Surfaces B Biointerfaces. 149 (2017) 330–340. https://doi.org/10.1016/j.colsurfb.2016.10.037.[180] R.M. Twyman, ATOMIC EMISSION SPECTROMETRY | Principles and Instrumentation, in: Encycl. Anal. Sci., Elsevier, 2005: pp. 190–198. https://doi.org/10.1016/B0-12-369397-7/00029-7.[181] Z.S.S. Seyedraoufi, S. Mirdamadi, Effects of pulse electrodeposition parameters and alkali treatment on the properties of nano hydroxyapatite coating on porous Mg–Zn scaffold for bone tissue engineering application, Mater. Chem. Phys. 148 (2014) 519–527. https://doi.org/10.1016/j.matchemphys.2014.06.067.[182] S. Toghyani, M. Khodaei, M. Razavi, Magnesium scaffolds with two novel biomimetic designs and MgF2 coating for bone tissue engineering, Surf. Coatings Technol. 395 (2020) 125929. https://doi.org/10.1016/j.surfcoat.2020.125929.[183] G. Jiang, G. He, A new approach to the fabrication of porous magnesium with well-controlled 3D pore structure for orthopedic applications, Mater. Sci. Eng. C. 43 (2014) 317–320. https://doi.org/10.1016/j.msec.2014.07.033.[184] F.-W. Bach, D. Bormann, R. Kucharski, A. Meyer-Lindenberg, Magnesium sponges as a bioabsorbable material – attributes and challenges, Int. J. Mater. Res. 98 (2007) 609–612. https://doi.org/10.3139/146.101514.[185] S. Jiang, S. Cai, Y. Lin, X. Bao, R. Ling, D. Xie, J. Sun, J. Wei, G. Xu, Effect of alkali/acid pretreatment on the topography and corrosion resistance of as-deposited CaP coating on magnesium alloys, J. Alloys Compd. 793 (2019) 202–211. https://doi.org/10.1016/J.JALLCOM.2019.04.198.[186] M. Diez, M.H. Kang, S.M. Kim, H.E. Kim, J. Song, Hydroxyapatite (HA)/poly-l-lactic acid (PLLA) dual coating on magnesium alloy under deformation for biomedical applications, J. Mater. Sci. Mater. Med. 27 (2016) 1–9. https://doi.org/10.1007/s10856-015-5643-8.[187] M.-H. Kang, H.-D. Jung, S.-W. Kim, S.-M. Lee, H.-E. Kim, Y. Estrin, Y.-H. Koh, Production and bio-corrosion resistance of porous magnesium with hydroxyapatite coating for biomedical applications, Mater. Lett. 108 (2013) 122–124. https://doi.org/10.1016/j.matlet.2013.06.096.[188] G. Barati Darband, M. Aliofkhazraei, P. Hamghalam, N. Valizade, Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications, J. Magnes. Alloy. 5 (2017) 74–132. https://doi.org/10.1016/j.jma.2017.02.004.[189] R. Chaharmahali, A. Fattah-alhosseini, K. Babaei, Surface characterization and corrosion behavior of calcium phosphate (Ca-P) base composite layer on Mg and its alloys using plasma electrolytic oxidation (PEO): A review, J. Magnes. Alloy. (2020). https://doi.org/10.1016/j.jma.2020.07.004.[190] A. Kopp, T. Derra, M. Müther, L. Jauer, J.H. Schleifenbaum, M. Voshage, O. Jung, R. Smeets, N. Kröger, Influence of design and postprocessing parameters on the degradation behavior and mechanical properties of additively manufactured magnesium scaffolds, Acta Biomater. 98 (2019) 23–35. https://doi.org/10.1016/j.actbio.2019.04.012.[191] T. Yuan, J. Yu, J. Cao, F. Gao, Y. Zhu, Y. Cheng, W. Cui, Fabrication of a Delaying Biodegradable Magnesium Alloy-Based Esophageal Stent via Coating Elastic Polymer, Materials (Basel). 9 (2016) 384. https://doi.org/10.3390/ma9050384.[192] P. Shi, B. Niu, S. E, Y. Chen, Q. Li, Preparation and characterization of PLA coating and PLA/MAO composite coatings on AZ31 magnesium alloy for improvement of corrosion resistance, Surf. Coatings Technol. 262 (2015) 26–32. https://doi.org/10.1016/j.surfcoat.2014.11.069.[193] M. Yazdimamaghani, M. Razavi, D. Vashaee, V.R. Pothineni, S. Assefa, G.A. Köhler, J. Rajadas, L. Tayebi, In vitro analysis of Mg scaffolds coated with polymer/hydrogel/ceramic composite layers, Surf. Coatings Technol. 301 (2016) 126–132. https://doi.org/10.1016/j.surfcoat.2016.01.017.[194] V.M. Posada, A. Civantos, J. Ramírez, P. Fernández-Morales, J.P. Allain, Tailoring adaptive bioresorbable Mg-based scaffolds with directed plasma nanosynthesis for enhanced osseointegration and tunable resorption, Appl. Surf. Sci. 550 (2021) 149388. https://doi.org/10.1016/j.apsusc.2021.149388.[195] N. Angrisani, J. Reifenrath, F. Zimmermann, R. Eifler, A. Meyer-Lindenberg, K. Vano-Herrera, C. Vogt, Biocompatibility and degradation of LAE442-based magnesium alloys after implantation of up to 3.5 years in a rabbit model, Acta Biomater. 44 (2016) 355–365. https://doi.org/10.1016/J.ACTBIO.2016.08.002.[196] G. Song, A. Atrens, D. StJohn, An Hydrogen Evolution Method for the Estimation of the Corrosion Rate of Magnesium Alloys, Magnes. Technol. 2001. (2013) 254–262. https://doi.org/10.1002/9781118805497.ch44.[197] H. Saleh, T. Weling, J. Seidel, M. Schmidtchen, R. Kawalla, F.O.R.L. Mertens, H.-P. Vogt, An XPS Study of Native Oxide and Isothermal Oxidation Kinetics at 300 °C of AZ31 Twin Roll Cast Magnesium Alloy, Oxid. Met. 81 (2014) 529–548. https://doi.org/10.1007/s11085-013-9466-z.[198] G. Wu, K. Dash, M.L. Galano, K.A.Q. O’Reilly, Oxidation studies of Al alloys: Part II Al-Mg alloy, Corros. Sci. 155 (2019) 97–108. https://doi.org/10.1016/j.corsci.2019.04.018.[199] B. Wang, P. Huang, C. Ou, K. Li, B. Yan, W. Lu, In Vitro Corrosion and Cytocompatibility of ZK60 Magnesium Alloy Coated with Hydroxyapatite by a Simple Chemical Conversion Process for Orthopedic Applications, Int. J. Mol. Sci. 14 (2013) 23614–23628. https://doi.org/10.3390/ijms141223614.[200] A. Gökhan Demir, V. Furlan, N. Lecis, B. Previtali, Laser surface structuring of AZ31 Mg alloy for controlled wettability, Biointerphases. 9 (2014) 029009. https://doi.org/10.1116/1.4868240.[201] Ri-Sheng Li, Influence of bombardment-induced Gibbsian segregation on alloy sputtering, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 82 (1993) 283–290. https://doi.org/10.1016/0168-583X(93)96030-G.[202] S. Mathieu, C. Rapin, J. Hazan, P. Steinmetz, Corrosion behaviour of high pressure die-cast and semi-solid cast AZ91D alloys, Corros. Sci. 44 (2002) 2737–2756. https://doi.org/10.1016/S0010-938X(02)00075-6.[203] B. Gao, S. Hao, J. Zou, T. Grosdidier, L. Jiang, J. Zhou, C. Dong, High current pulsed electron beam treatment of AZ31 Mg alloy, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 23 (2005) 1548–1553. https://doi.org/10.1116/1.2049299.[204] G. Bo, H. Yi, Z. Wenfeng, T. Ganfeng, Surface Modification of Mg Alloys AZ31 and ZK60-1Y by High Current Pulsed Electron Beam, Spec. Issues Magnes. Alloy. (2011). https://doi.org/10.5772/16808.[205] G.T. Bo Gao a, Shengzhi Hao, Jianxin Zou, Wenyuan Wu, C.D. B, Effect of high current pulsed electron beam treatment on surface microstructure and wear and corrosion resistance of an AZ91HP magnesium alloy, Surf. Coatings Technol. 201 (2007) 6297–6303. https://doi.org/10.1016/J.SURFCOAT.2006.11.036.[206] X. Zhang, K. Zhang, J. Zou, P. Yan, L. Song, Y. Liu, Surface microstructure modifications and in-vitro corrosion resistance improvement of a WE43 Mg alloy treated by pulsed electron beams, Vacuum. 173 (2020) 109132. https://doi.org/10.1016/j.vacuum.2019.109132.[207] S. Feliu, A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, Correlation between the surface chemistry and the atmospheric corrosion of AZ31, AZ80 and AZ91D magnesium alloys, Appl. Surf. Sci. 255 (2009) 4102–4108. https://doi.org/10.1016/J.APSUSC.2008.10.095.[208] W.J.E.M. Habraken, J. Tao, L.J. Brylka, H. Friedrich, L. Bertinetti, A.S. Schenk, A. Verch, V. Dmitrovic, P.H.H. Bomans, P.M. Frederik, J. Laven, P. van der Schoot, B. Aichmayer, G. de With, J.J. DeYoreo, N.A.J.M. Sommerdijk, Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate, Nat. Commun. 4 (2013) 1507. https://doi.org/10.1038/ncomms2490.[209] G.S. Frankel, A. Samaniego, N. Birbilis, Evolution of hydrogen at dissolving magnesium surfaces, Corros. Sci. 70 (2013) 104–111. https://doi.org/10.1016/J.CORSCI.2013.01.017.[210] F. Barrere, C.. van Blitterswijk, K. de Groot, P. Layrolle, Nucleation of biomimetic Ca–P coatings on Ti6Al4V from a SBF×5 solution: influence of magnesium, Biomaterials. 23 (2002) 2211–2220. https://doi.org/10.1016/S0142-9612(01)00354-4.[211] M. Tomozawa, S. Hiromoto, Growth mechanism of hydroxyapatite-coatings formed on pure magnesium and corrosion behavior of the coated magnesium, Appl. Surf. Sci. 257 (2011) 8253–8257. https://doi.org/10.1016/j.apsusc.2011.04.087.[212] S. Feliu, I. Llorente, Corrosion product layers on magnesium alloys AZ31 and AZ61: Surface chemistry and protective ability, Appl. Surf. Sci. 347 (2015) 736–746. https://doi.org/10.1016/J.APSUSC.2015.04.189.[213] Y.F. Zhang, B. Hinton, G. Wallace, X. Liu, M. Forsyth, On corrosion behaviour of magnesium alloy AZ31 in simulated body fluids and influence of ionic liquid pretreatments, Corros. Eng. Sci. Technol. 47 (2012) 374–382. https://doi.org/10.1179/1743278212Y.0000000032.[214] T.L. Nguyen, A. Blanquet, M.P. Staiger, G.J. Dias, T.B.F. Woodfield, On the role of surface roughness in the corrosion of pure magnesium in vitro, J. Biomed. Mater. Res. - Part B Appl. Biomater. 100 (2012) 1310–1318. https://doi.org/10.1002/jbm.b.32697.[215] R.B. Alvarez, H.J. Martin, M.F. Horstemeyer, M.Q. Chandler, N. Williams, P.T. Wang, A. Ruiz, Corrosion relationships as a function of time and surface roughness on a structural AE44 magnesium alloy, Corros. Sci. 52 (2010) 1635–1648. https://doi.org/10.1016/j.corsci.2010.01.018.[216] A.F. Cipriano, A. Sallee, R.-G.G. Guan, Z.-Y.Y. Zhao, M. Tayoba, J. Sanchez, H. Liu, Investigation of magnesium–zinc–calcium alloys and bone marrow derived mesenchymal stem cell response in direct culture, Acta Biomater. 12 (2015) 298–321. https://doi.org/10.1016/j.actbio.2014.10.018.[217] J. Fischer, M.H. Prosenc, M. Wolff, N. Hort, R. Willumeit, F. Feyerabend, Interference of magnesium corrosion with tetrazolium-based cytotoxicity assays☆, Acta Biomater. 6 (2010) 1813–1823. https://doi.org/10.1016/j.actbio.2009.10.020.[218] A. Burmester, R. Willumeit-Römer, F. Feyerabend, R. Willumeit‐Römer, F. Feyerabend, Behavior of bone cells in contact with magnesium implant material, J. Biomed. Mater. Res. - Part B Appl. Biomater. 105 (2017) 165–179. https://doi.org/10.1002/jbm.b.33542.[219] R. Xin, B. Li, L. Li, Q. Liu, Influence of texture on corrosion rate of AZ31 Mg alloy in 3.5 wt.% NaCl, Mater. Des. 32 (2011) 4548–4552. https://doi.org/10.1016/J.MATDES.2011.04.031.[220] J. Fischer, D. Pröfrock, N. Hort, R. Willumeit, F. Feyerabend, Improved cytotoxicity testing of magnesium materials, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 176 (2011) 830–834. https://doi.org/10.1016/j.mseb.2011.04.008.[221] D.-T. Chou, D. Hong, P. Saha, J. Ferrero, B. Lee, Z. Tan, Z. Dong, P.N. Kumta, In vitro and in vivo corrosion, cytocompatibility and mechanical properties of biodegradable Mg–Y–Ca–Zr alloys as implant materials, Acta Biomater. 9 (2013) 8518–8533. https://doi.org/10.1016/j.actbio.2013.06.025.[222] R. Willumeit, A. Möhring, F. Feyerabend, Optimization of Cell Adhesion on Mg Based Implant Materials by Pre-Incubation under Cell Culture Conditions, Int. J. Mol. Sci. 15 (2014) 7639–7650. https://doi.org/10.3390/ijms15057639.[223] E. Ferna  Ndez, F.J. Gil, M.P. Ginebra, F.C.M. Driessens, J.A. Planell, S.M. Best, Calcium phosphate bone cements for clinical applications Part II: Precipitate formation during setting reactions, J. Mater. Sci. Mater. Med. 10 (1999) 177–183. https://doi.org/10.1023/A:1008989525461.[224] M. Gawlik, B. Wiese, V. Desharnais, T. Ebel, R. Willumeit-Römer, M.M. Gawlik, B. Wiese, V. Desharnais, T. Ebel, R. Willumeit-Römer, The Effect of Surface Treatments on the Degradation of Biomedical Mg Alloys—A Review Paper, Materials (Basel). 11 (2018) 2561. https://doi.org/10.3390/ma11122561.[225] X. Zhang, G. Wu, X. Peng, L. Li, H. Feng, B. Gao, K. Huo, P.K. Chu, Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion, Sci. Rep. 5 (2015) 17399. https://doi.org/10.1038/srep17399.[226] K. DAS, S. BOSE, A. BANDYOPADHYAY, Surface modifications and cell–materials interactions with anodized Ti, Acta Biomater. 3 (2007) 573–585. https://doi.org/10.1016/j.actbio.2006.12.003.[227] A. Pardo, M.C. Merino, A.E. Coy, R. Arrabal, F. Viejo, E. Matykina, Corrosion behaviour of magnesium/aluminium alloys in 3.5 wt.% NaCl, Corros. Sci. 50 (2008) 823–834. https://doi.org/10.1016/j.corsci.2007.11.005.[228] B. Carlson, J. Jones, The Metallurgical Aspects of the Corrosion Behaviour of Cast Mg--Al Alloys, Light Met. Process. Appl. (1993) 833–847.[229] Y. Lu, P. Wan, B. Zhang, L. Tan, K. Yang, J. Lin, Research on the corrosion resistance and formation of double-layer calcium phosphate coating on AZ31 obtained at varied temperatures, Mater. Sci. Eng. C. 43 (2014) 264–271. https://doi.org/10.1016/j.msec.2014.06.039.[230] S.-H. Kwon, T.-J. Lee, J. Park, J.-E. Hwang, M. Jin, H.-K. Jang, N.S. Hwang, B.-S. Kim, Modulation of BMP-2-induced chondrogenic versus osteogenic differentiation of human mesenchymal stem cells by cell-specific extracellular matrices, Tissue Eng. Part A. 19 (2013) 49–58. https://doi.org/10.1089/ten.TEA.2012.0245.[231] F. Geng, L.L. Tan, X.X. Jin, J.Y. Yang, K. Yang, The preparation, cytocompatibility, and in vitro biodegradation study of pure β-TCP on magnesium, J. Mater. Sci. Mater. Med. 20 (2009) 1149–1157. https://doi.org/10.1007/s10856-008-3669-x.[232] R. Harrison, D. Maradze, S. Lyons, Y. Zheng, Y. Liu, Corrosion of magnesium and magnesium–calcium alloy in biologically-simulated environment, Prog. Nat. Sci. Mater. Int. 24 (2014) 539–546. https://doi.org/10.1016/J.PNSC.2014.08.010.[233] N.A. Agha, R. Willumeit-Römer, D. Laipple, B. Luthringer, F. Feyerabend, The Degradation Interface of Magnesium Based Alloys in Direct Contact with Human Primary Osteoblast Cells, PLoS One. 11 (2016) e0157874. https://doi.org/10.1371/journal.pone.0157874.[234] A. Yamamoto, S. Hiromoto, Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro, Mater. Sci. Eng. C. 29 (2009) 1559–1568. https://doi.org/10.1016/j.msec.2008.12.015.[235] F. Seuss, S. Seuss, M.C. Turhan, B. Fabry, S. Virtanen, Corrosion of Mg alloy AZ91D in the presence of living cells, J. Biomed. Mater. Res. - Part B Appl. Biomater. 99B (2011) 276–281. https://doi.org/10.1002/jbm.b.31896.[236] S. Yoshizawa, A. Brown, A. Barchowsky, C. Sfeir, Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation, Acta Biomater. 10 (2014) 2834–2842. https://doi.org/10.1016/j.actbio.2014.02.002.[237] R.W. Li, N.T. Kirkland, J. Truong, J. Wang, P.N. Smith, N. Birbilis, D.R. Nisbet, The influence of biodegradable magnesium alloys on the osteogenic differentiation of human mesenchymal stem cells, J. Biomed. Mater. Res. Part A. 102 (2014) n/a-n/a. https://doi.org/10.1002/jbm.a.35111.[238] W. Huang, B. Carlsen, G. Rudkin, M. Berry, K. Ishida, D.T. Yamaguchi, T.A. Miller, Osteopontin is a negative regulator of proliferation and differentiation in MC3T3-E1 pre-osteoblastic cells, Bone. 34 (2004) 799–808. https://doi.org/10.1016/j.bone.2003.11.027.[239] J.-A. Kim, J. Lim, R. Naren, H. Yun, E.K. Park, Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo, Acta Biomater. 44 (2016) 155–167. https://doi.org/10.1016/j.actbio.2016.08.039.[240] M. Bessa-Gonçalves, A.M. Silva, J.P. Brás, H. Helmholz, B.J.C. Luthringer-Feyerabend, R. Willumeit-Römer, M.A. Barbosa, S.G. Santos, Fibrinogen and magnesium combination biomaterials modulate macrophage phenotype, NF-kB signaling and crosstalk with mesenchymal stem/stromal cells, Acta Biomater. 114 (2020) 471–484. https://doi.org/10.1016/j.actbio.2020.07.028.[241] F. Alvarez, R.M. Lozano Puerto, B. Pérez-Maceda, C.A. Grillo, M. Fernández Lorenzo de Mele, Time-Lapse Evaluation of Interactions Between Biodegradable Mg Particles and Cells, Microsc. Microanal. 22 (2016) 1–12. https://doi.org/10.1017/S1431927615015597.[242] A. Mantovani, S.K. Biswas, M.R. Galdiero, A. Sica, M. Locati, Macrophage plasticity and polarization in tissue repair and remodelling, J. Pathol. 229 (2013) 176–185. https://doi.org/10.1002/path.4133.[243] G.E. Glass, J.K. Chan, A. Freidin, M. Feldmann, N.J. Horwood, J. Nanchahal, TNF- promotes fracture repair by augmenting the recruitment and differentiation of muscle-derived stromal cells, Proc. Natl. Acad. Sci. 108 (2011) 1585–1590. https://doi.org/10.1073/pnas.1018501108.[244] W.L. Chan, E. Chason, Making waves: Kinetic processes controlling surface evolution during low energy ion sputtering, J. Appl. Phys. 101 (2007) 121301. https://doi.org/10.1063/1.2749198.[245] O.D. Acevedo Rueda, Desarrollo de un metal celular ordenado con recubrimiento continuo como alternativa aplicable a elementos de fijación ósea, Universidad Nacional de Colombia , 2019. http://bdigital.unal.edu.co/75011/ (accessed October 5, 2020).[246] M. Doube, M.M. Kłosowski, I. Arganda-Carreras, F.P. Cordelières, R.P. Dougherty, J.S. Jackson, B. Schmid, J.R. Hutchinson, S.J. Shefelbine, BoneJ: Free and extensible bone image analysis in ImageJ, Bone. 47 (2010) 1076–1079. https://doi.org/10.1016/J.BONE.2010.08.023.[247] C. Colosi, M. Costantini, A. Barbetta, R. Pecci, R. Bedini, M. Dentini, Morphological Comparison of PVA Scaffolds Obtained by Gas Foaming and Microfluidic Foaming Techniques, Langmuir. 29 (2013) 82–91. https://doi.org/10.1021/la303788z.[248] L. Wu, F. Pan, M. Yang, R. Cheng, An investigation of second phases in as-cast AZ31 magnesium alloys with different Sr contents, J. Mater. Sci. 48 (2013) 5456–5469. https://doi.org/10.1007/s10853-013-7339-0.[249] J. Tao, Y. Zhang, F. Fan, Q. Chen, Microstructural Evolution and Mechanical Properties of AZ31 Magnesium Alloy Prepared by Casting-solid Extrusion Forging During Partial Remelting, Def. Technol. 9 (2013) 146–152. https://doi.org/10.1016/j.dt.2013.09.013.[250] L. Bourgeois, B.C. Muddle, J.F. Nie, The crystal structure of the equilibrium Φ phase in Mg-Zn-Al casting alloys, Acta Mater. 49 (2001) 2701–2711. https://doi.org/10.1016/S1359-6454(01)00162-8.[251] Michael Ashby, Tony Evans, NA Fleck, J.W. Hutchinson, H.N.G. Wadley, L. J. Gibson, Properties of metal foams, in: Met. Foam. A Des. Guid., Elsevier, 2000: pp. 42–48.[252] X.N. Gu, W.R. Zhou, Y.F. Zheng, Y. Cheng, S.C. Wei, S.P. Zhong, T.F. Xi, L.J. Chen, Corrosion fatigue behaviors of two biomedical Mg alloys - AZ91D and WE43 - In simulated body fluid, Acta Biomater. 6 (2010) 4605–4613. https://doi.org/10.1016/j.actbio.2010.07.026.[253] C. Miura, Y. Shimizu, Y. Imai, T. Mukai, A. Yamamoto, Y. Sano, N. Ikeo, S. Isozaki, T. Takahashi, M. Oikawa, H. Kumamoto, M. Tachi, In vivo corrosion behaviour of magnesium alloy in association with surrounding tissue response in rats, Biomed. Mater. 11 (2016) 025001. https://doi.org/10.1088/1748-6041/11/2/025001.[254] Y. Jang, B. Collins, J. Sankar, Y. Yun, Effect of biologically relevant ions on the corrosion products formed on alloy AZ31B: An improved understanding of magnesium corrosion, Acta Biomater. 9 (2013) 8761–8770. https://doi.org/10.1016/j.actbio.2013.03.026.[255] F. Tamimi, Z. Sheikh, J. Barralet, Dicalcium phosphate cements: Brushite and monetite, Acta Biomater. 8 (2012) 474–487. https://doi.org/10.1016/j.actbio.2011.08.005.[256] F. Witte, N. Hort, C. Vogt, S. Cohen, K.U. Kainer, R. Willumeit, F. Feyerabend, Degradable biomaterials based on magnesium corrosion, Curr. Opin. Solid State Mater. Sci. 12 (2008) 63–72. https://doi.org/10.1016/j.cossms.2009.04.001.[257] F. Witte, J. Fischer, J. Nellesen, H.-A. Crostack, V. Kaese, A. Pisch, F. Beckmann, H. Windhagen, In vitro and in vivo corrosion measurements of magnesium alloys, Biomaterials. 27 (2006) 1013–1018. https://doi.org/10.1016/j.biomaterials.2005.07.037.[258] D. Zhao, T. Wang, W. Hoagland, D. Benson, Z. Dong, S. Chen, D.-T. Chou, D. Hong, J. Wu, P.N. Kumta, W.R. Heineman, Visual H2 sensor for monitoring biodegradation of magnesium implants in vivo, Acta Biomater. 45 (2016) 399–409. https://doi.org/10.1016/J.ACTBIO.2016.08.049.[259] N.I. Zainal Abidin, B. Rolfe, H. Owen, J. Malisano, D. Martin, J. Hofstetter, P.J. Uggowitzer, A. Atrens, The in vivo and in vitro corrosion of high-purity magnesium and magnesium alloys WZ21 and AZ91, Corros. Sci. 75 (2013) 354–366. https://doi.org/10.1016/J.CORSCI.2013.06.019.[260] J. Wang, L. Cui, Y. Ren, Y. Zou, J. Ma, C. Wang, Z. Zheng, X. Chen, R. Zeng, Y. Zheng, In vitro and in vivo biodegradation and biocompatibility of an MMT/BSA composite coating upon magnesium alloy AZ31, J. Mater. Sci. Technol. 47 (2020) 52–67. https://doi.org/10.1016/j.jmst.2020.02.006.[261] I. Heinonen, J. Kemppainen, K. Kaskinoro, H. Langberg, J. Knuuti, R. Boushel, M. Kjaer, K.K. Kalliokoski, Bone blood flow and metabolism in humans: Effect of muscular exercise and other physiological perturbations, J. Bone Miner. Res. 28 (2013) 1068–1074. https://doi.org/10.1002/jbmr.1833.[262] J. Walker, S. Shadanbaz, N.T. Kirkland, E. Stace, T. Woodfield, M.P. Staiger, G.J. Dias, Magnesium alloys: Predicting in vivo corrosion with in vitro immersion testing, J. Biomed. Mater. Res. - Part B Appl. Biomater. 100 B (2012) 1134–1141. https://doi.org/10.1002/jbm.b.32680.[263] S.E. Harandi, P.C. Banerjee, C.D. Easton, R.K. Singh Raman, Influence of bovine serum albumin in Hanks’ solution on the corrosion and stress corrosion cracking of a magnesium alloy, Mater. Sci. Eng. C. 80 (2017) 335–345. https://doi.org/10.1016/j.msec.2017.06.002.[264] M.F. Ulum, W. Caesarendra, R. Alavi, H. Hermawan, M.F. Ulum, W. Caesarendra, R. Alavi, H. Hermawan, In-Vivo Corrosion Characterization and Assessment of Absorbable Metal Implants, Coatings. 9 (2019) 282. https://doi.org/10.3390/coatings9050282.[265] H. Wu, C. Zhang, T. Lou, B. Chen, R. Yi, W. Wang, R. Zhang, M. Zuo, H. Xu, P. Han, S. Zhang, J. Ni, X. Zhang, Crevice corrosion – A newly observed mechanism of degradation in biomedical magnesium, Acta Biomater. 98 (2019) 152–159. https://doi.org/10.1016/j.actbio.2019.06.013.LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79575/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/79575/3/license_rdf4460e5956bc1d1639be9ae6146a50347MD53ORIGINAL1038407092.2021.pdf1038407092.2021.pdfTesis de Doctorado en Ingeniería – Ingeniería Mecánica y Mecatrónicaapplication/pdf12282920https://repositorio.unal.edu.co/bitstream/unal/79575/4/1038407092.2021.pdf3b6371996129ad8136ff9b6848a17f7cMD54THUMBNAIL1038407092.2021.pdf.jpg1038407092.2021.pdf.jpgGenerated Thumbnailimage/jpeg4021https://repositorio.unal.edu.co/bitstream/unal/79575/5/1038407092.2021.pdf.jpgc489c2a4e99f9ed40abb0c5eb52334bfMD55unal/79575oai:repositorio.unal.edu.co:unal/795752024-07-20 23:10:36.239Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==