Nonparametric Double EWMA Control Chart for Process Monitoring
In monitoring process parameters, we assume normality of the quality characteristic of interest, which is an ideal assumption. In many practical situations, we may not know the distributional behavior of the data, and hence, the need arises use nonparametric techniques. In this study, a nonparametri...
- Autores:
-
Riaza, Muhammad
Abbasib, Saddam Akber
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2016
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/66517
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/66517
http://bdigital.unal.edu.co/67545/
- Palabra clave:
- 51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
ARL
Control charts
DEWMA
EQL
Nonparametric
Process location
Run length sistribution
SDRL.
ARL
Gráficas de control
DEWMA
EQL
No paramétrica
Ubicación proceso
ejecutar distribución de longitud
SDRL.
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | In monitoring process parameters, we assume normality of the quality characteristic of interest, which is an ideal assumption. In many practical situations, we may not know the distributional behavior of the data, and hence, the need arises use nonparametric techniques. In this study, a nonparametric double EWMA control chart, namely the NPDEWMA chart, is proposed to ensure efficient monitoring of the location parameter. The performance of the proposed chart is evaluated in terms of different run length properties, such as average, standard deviation and percentiles. The proposed scheme is compared with its recent existing counterparts, namely the nonparametric EWMA and the nonparametric CUSUM schemes. The performance measures used are the average run length (ARL), standard deviation of the run length (SDRL) and extra quadratic loss (EQL). We observed that the proposed chart outperforms the said existing schemes to detect shifts in the process mean level. We also provide an illustrative example for practical considerations. |
---|