Nonparametric Double EWMA Control Chart for Process Monitoring

In monitoring process parameters, we assume normality of the quality characteristic of interest, which is an ideal assumption. In many practical situations, we may not know the distributional behavior of the data, and hence, the need arises use nonparametric techniques. In this study, a nonparametri...

Full description

Autores:
Riaza, Muhammad
Abbasib, Saddam Akber
Tipo de recurso:
Article of journal
Fecha de publicación:
2016
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/66517
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/66517
http://bdigital.unal.edu.co/67545/
Palabra clave:
51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
ARL
Control charts
DEWMA
EQL
Nonparametric
Process location
Run length sistribution
SDRL.
ARL
Gráficas de control
DEWMA
EQL
No paramétrica
Ubicación proceso
ejecutar distribución de longitud
SDRL.
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:In monitoring process parameters, we assume normality of the quality characteristic of interest, which is an ideal assumption. In many practical situations, we may not know the distributional behavior of the data, and hence, the need arises use nonparametric techniques. In this study, a nonparametric double EWMA control chart, namely the NPDEWMA chart, is proposed to ensure efficient monitoring of the location parameter. The performance of the proposed chart is evaluated in terms of different run length properties, such as average, standard deviation and percentiles. The proposed scheme is compared with its recent existing counterparts, namely the nonparametric EWMA and the nonparametric CUSUM schemes. The performance measures used are the average run length (ARL), standard deviation of the run length (SDRL) and extra quadratic loss (EQL). We observed that the proposed chart outperforms the said existing schemes to detect shifts in the process mean level. We also provide an illustrative example for practical considerations.