Comparación entre análisis discriminante no métrico y regresión logística multinominal
Resumen: en este trabajo se presenta un estudio de comparación entre las técnicas de clasificación análisis discriminante no métrico, regresión logística multinomial; adicionalmente, se considera la técnica tradicional análisis discriminante lineal ya que la función de clasificación de ésta sirve co...
- Autores:
-
Hernández Barajas, Freddy
- Tipo de recurso:
- Fecha de publicación:
- 2007
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/55880
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/55880
http://bdigital.unal.edu.co/51383/
- Palabra clave:
- 51 Matemáticas / Mathematics
Estadística no paramétrica
Análisis discriminante
Análisis estadístico
Análisis de regresión logística
Diseño experimenta
Nonparametric statistics
Discriminant analysis
Experimental design
Logistic regression analysis
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_7c361a751ef70cf0dc06b3d83e8a4780 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/55880 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Comparación entre análisis discriminante no métrico y regresión logística multinominal |
title |
Comparación entre análisis discriminante no métrico y regresión logística multinominal |
spellingShingle |
Comparación entre análisis discriminante no métrico y regresión logística multinominal 51 Matemáticas / Mathematics Estadística no paramétrica Análisis discriminante Análisis estadístico Análisis de regresión logística Diseño experimenta Nonparametric statistics Discriminant analysis Experimental design Logistic regression analysis |
title_short |
Comparación entre análisis discriminante no métrico y regresión logística multinominal |
title_full |
Comparación entre análisis discriminante no métrico y regresión logística multinominal |
title_fullStr |
Comparación entre análisis discriminante no métrico y regresión logística multinominal |
title_full_unstemmed |
Comparación entre análisis discriminante no métrico y regresión logística multinominal |
title_sort |
Comparación entre análisis discriminante no métrico y regresión logística multinominal |
dc.creator.fl_str_mv |
Hernández Barajas, Freddy |
dc.contributor.author.spa.fl_str_mv |
Hernández Barajas, Freddy |
dc.contributor.spa.fl_str_mv |
Correa Morales, Juan Carlos |
dc.subject.ddc.spa.fl_str_mv |
51 Matemáticas / Mathematics |
topic |
51 Matemáticas / Mathematics Estadística no paramétrica Análisis discriminante Análisis estadístico Análisis de regresión logística Diseño experimenta Nonparametric statistics Discriminant analysis Experimental design Logistic regression analysis |
dc.subject.proposal.spa.fl_str_mv |
Estadística no paramétrica Análisis discriminante Análisis estadístico Análisis de regresión logística Diseño experimenta Nonparametric statistics Discriminant analysis Experimental design Logistic regression analysis |
description |
Resumen: en este trabajo se presenta un estudio de comparación entre las técnicas de clasificación análisis discriminante no métrico, regresión logística multinomial; adicionalmente, se considera la técnica tradicional análisis discriminante lineal ya que la función de clasificación de ésta sirve como punto de partida para análisis discriminante no métrico. Los escenarios bajo los cuales se llevó a cabo el estudio fueron los siguientes: tres grupos distribuidos normal bivariado con matrices de varianza y covarianza iguales y diferentes, siete grupos distribuidos normal con tres variables y matrices de varianza y covarianza diferentes, tres grupos distribuidos Logitnormal, Lognormal y Sinh−1-normal con dos variables. Los desempeños de las técnicas fueron medidos con la tasa de clasificación errónea. Las técnicas de Regresión Logística Multinomial y Análisis Discriminante Lineal obtuvieron tasas de clasificación errónea muy similares en todo el estudio e inferiores que Análisis Discriminante no Métrico. Se construyeron funciones en el programa R para implementar el algoritmo propuesto por Choulakian y Almhana (2001) para técnica Análisis Discriminante no Métrico. Se llevó a cabo una aplicación de las tres técnicas utilizando una base de datos real sobre datos antropométricos de trabajadores colombianos.En esta aplicación se encontró que las mejores clasificaciones fueron obtenidas por Regresión Logística Multinomial y Análisis Discriminante Lineal al clasificar personas en tres grupos predeterminados por el índice de masa corporal. Finalmente, del estudio se recomienda la utilización de las técnicas regresión logística multinomial y análisis discriminante lineal para realizar clasificaciones en situaciones donde la distribución de los datos sea próxima a la distribución normal multivariada con variables explicativas cuantitativas. |
publishDate |
2007 |
dc.date.issued.spa.fl_str_mv |
2007 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-02T11:30:51Z |
dc.date.available.spa.fl_str_mv |
2019-07-02T11:30:51Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/55880 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/51383/ |
url |
https://repositorio.unal.edu.co/handle/unal/55880 http://bdigital.unal.edu.co/51383/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Medellín Facultad de Ciencias Escuela de Estadística Escuela de Estadística |
dc.relation.references.spa.fl_str_mv |
Hernández Barajas, Freddy (2007) Comparación entre análisis discriminante no métrico y regresión logística multinominal. Maestría thesis, Universidad Nacional de Colombia - Sede Medellín. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/55880/1/freddyhernandezbarajas.2007.pdf https://repositorio.unal.edu.co/bitstream/unal/55880/2/freddyhernandezbarajas.2007.pdf.jpg |
bitstream.checksum.fl_str_mv |
6fb9f2aaa43e1e64e69f45bf7dbf329d c12ad374e7bbdb8abe57f931df51a7c9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089648471801856 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Correa Morales, Juan CarlosHernández Barajas, Freddyce2d0fae-45f7-4ee6-8dc5-916436108b913002019-07-02T11:30:51Z2019-07-02T11:30:51Z2007https://repositorio.unal.edu.co/handle/unal/55880http://bdigital.unal.edu.co/51383/Resumen: en este trabajo se presenta un estudio de comparación entre las técnicas de clasificación análisis discriminante no métrico, regresión logística multinomial; adicionalmente, se considera la técnica tradicional análisis discriminante lineal ya que la función de clasificación de ésta sirve como punto de partida para análisis discriminante no métrico. Los escenarios bajo los cuales se llevó a cabo el estudio fueron los siguientes: tres grupos distribuidos normal bivariado con matrices de varianza y covarianza iguales y diferentes, siete grupos distribuidos normal con tres variables y matrices de varianza y covarianza diferentes, tres grupos distribuidos Logitnormal, Lognormal y Sinh−1-normal con dos variables. Los desempeños de las técnicas fueron medidos con la tasa de clasificación errónea. Las técnicas de Regresión Logística Multinomial y Análisis Discriminante Lineal obtuvieron tasas de clasificación errónea muy similares en todo el estudio e inferiores que Análisis Discriminante no Métrico. Se construyeron funciones en el programa R para implementar el algoritmo propuesto por Choulakian y Almhana (2001) para técnica Análisis Discriminante no Métrico. Se llevó a cabo una aplicación de las tres técnicas utilizando una base de datos real sobre datos antropométricos de trabajadores colombianos.En esta aplicación se encontró que las mejores clasificaciones fueron obtenidas por Regresión Logística Multinomial y Análisis Discriminante Lineal al clasificar personas en tres grupos predeterminados por el índice de masa corporal. Finalmente, del estudio se recomienda la utilización de las técnicas regresión logística multinomial y análisis discriminante lineal para realizar clasificaciones en situaciones donde la distribución de los datos sea próxima a la distribución normal multivariada con variables explicativas cuantitativas.Abastract: in this paper we show the results of a comparison simulation study for three classification techniques: Multinomial Logistic Regression (MLR), No Metric Discriminant Analysis (NDA) and Linear Discriminant Analysis (LDA). The measure used to compare the performance of the three techniques was the Error Classification Rate (ECR). We found that MLR and LDA techniques have similar performance and that they are better that NDA when the population multivariate distribution is Normal or Logit-Normal. We illustrated the application of the three techniques using a Colombian workers anthropometric data baseMaestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Medellín Facultad de Ciencias Escuela de EstadísticaEscuela de EstadísticaHernández Barajas, Freddy (2007) Comparación entre análisis discriminante no métrico y regresión logística multinominal. Maestría thesis, Universidad Nacional de Colombia - Sede Medellín.51 Matemáticas / MathematicsEstadística no paramétricaAnálisis discriminanteAnálisis estadísticoAnálisis de regresión logísticaDiseño experimentaNonparametric statisticsDiscriminant analysisExperimental designLogistic regression analysisComparación entre análisis discriminante no métrico y regresión logística multinominalTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMORIGINALfreddyhernandezbarajas.2007.pdfapplication/pdf424734https://repositorio.unal.edu.co/bitstream/unal/55880/1/freddyhernandezbarajas.2007.pdf6fb9f2aaa43e1e64e69f45bf7dbf329dMD51THUMBNAILfreddyhernandezbarajas.2007.pdf.jpgfreddyhernandezbarajas.2007.pdf.jpgGenerated Thumbnailimage/jpeg4149https://repositorio.unal.edu.co/bitstream/unal/55880/2/freddyhernandezbarajas.2007.pdf.jpgc12ad374e7bbdb8abe57f931df51a7c9MD52unal/55880oai:repositorio.unal.edu.co:unal/558802023-03-21 10:50:58.362Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |