Using an Anchor to Improve Linear Predictions with Application to Predicting Disease Progression

Linear models are some of the most straightforward and commonly used modelling approaches. Consider modelling approximately monotonic response data arising from a time-related process. If one has knowledge as to when the process began or ended, then one may be able to leverage additionalassumed data...

Full description

Autores:
Karanevich, Alex G.
He, Jianghua
Gajewski, Byron
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/66487
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/66487
http://bdigital.unal.edu.co/67515/
Palabra clave:
51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
Anclaje
esclerosis lateral amiotrófica
modelos lineales
mínimos cuadrados ordinarios
regresión sesgada
Anchor
Amyotrophic lateral sclerosis
Biased regression
Linear models
Ordinary least squares
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_7c333044ddc4d08df0c88f378fa1f979
oai_identifier_str oai:repositorio.unal.edu.co:unal/66487
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Using an Anchor to Improve Linear Predictions with Application to Predicting Disease Progression
title Using an Anchor to Improve Linear Predictions with Application to Predicting Disease Progression
spellingShingle Using an Anchor to Improve Linear Predictions with Application to Predicting Disease Progression
51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
Anclaje
esclerosis lateral amiotrófica
modelos lineales
mínimos cuadrados ordinarios
regresión sesgada
Anchor
Amyotrophic lateral sclerosis
Biased regression
Linear models
Ordinary least squares
title_short Using an Anchor to Improve Linear Predictions with Application to Predicting Disease Progression
title_full Using an Anchor to Improve Linear Predictions with Application to Predicting Disease Progression
title_fullStr Using an Anchor to Improve Linear Predictions with Application to Predicting Disease Progression
title_full_unstemmed Using an Anchor to Improve Linear Predictions with Application to Predicting Disease Progression
title_sort Using an Anchor to Improve Linear Predictions with Application to Predicting Disease Progression
dc.creator.fl_str_mv Karanevich, Alex G.
He, Jianghua
Gajewski, Byron
dc.contributor.author.spa.fl_str_mv Karanevich, Alex G.
He, Jianghua
Gajewski, Byron
dc.subject.ddc.spa.fl_str_mv 51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
topic 51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
Anclaje
esclerosis lateral amiotrófica
modelos lineales
mínimos cuadrados ordinarios
regresión sesgada
Anchor
Amyotrophic lateral sclerosis
Biased regression
Linear models
Ordinary least squares
dc.subject.proposal.spa.fl_str_mv Anclaje
esclerosis lateral amiotrófica
modelos lineales
mínimos cuadrados ordinarios
regresión sesgada
Anchor
Amyotrophic lateral sclerosis
Biased regression
Linear models
Ordinary least squares
description Linear models are some of the most straightforward and commonly used modelling approaches. Consider modelling approximately monotonic response data arising from a time-related process. If one has knowledge as to when the process began or ended, then one may be able to leverage additionalassumed data to reduce prediction error. This assumed data, referred to as the anchor, is treated as an additional data-point generated at either the beginning or end of the process. The response value of the anchor is equal to an intelligently selected value of the response (such as the upper bound, lower bound, or 99th percentile of the response, as appropriate). The anchor reduces the variance of prediction at the cost of a possible increase in prediction bias, resulting in a potentially reduced overall mean-square prediction error. This can be extremely eective when few individual data-points are available, allowing one to make linear predictions using as little as a single observed data-point. We develop the mathematics showing the conditions under which an anchor can improve predictions, and also demonstrate using this approach to reduce prediction error when modelling the disease progression of patients with amyotrophic lateral sclerosis.
publishDate 2018
dc.date.issued.spa.fl_str_mv 2018-07-01
dc.date.accessioned.spa.fl_str_mv 2019-07-03T02:13:24Z
dc.date.available.spa.fl_str_mv 2019-07-03T02:13:24Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv ISSN: 2389-8976
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/66487
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/67515/
identifier_str_mv ISSN: 2389-8976
url https://repositorio.unal.edu.co/handle/unal/66487
http://bdigital.unal.edu.co/67515/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv https://revistas.unal.edu.co/index.php/estad/article/view/68535
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Estadística
Revista Colombiana de Estadística
dc.relation.references.spa.fl_str_mv Karanevich, Alex G. and He, Jianghua and Gajewski, Byron (2018) Using an Anchor to Improve Linear Predictions with Application to Predicting Disease Progression. Revista Colombiana de Estadística, 41 (2). pp. 137-155. ISSN 2389-8976
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Estadística
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/66487/1/68535-390955-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/66487/2/68535-390955-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv 5f8171aae6e2ff2acd3f3b78ef8e7423
a110766f06f7beea361085645970f5f5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090172679061504
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Karanevich, Alex G.364fb9b6-f79d-4860-9f09-14beb347e123300He, Jianghua7322b987-f73b-41d3-a0cd-245c5f7739d6300Gajewski, Byron8a38c39f-aa31-43d4-9b0d-4ae71d6aa74d3002019-07-03T02:13:24Z2019-07-03T02:13:24Z2018-07-01ISSN: 2389-8976https://repositorio.unal.edu.co/handle/unal/66487http://bdigital.unal.edu.co/67515/Linear models are some of the most straightforward and commonly used modelling approaches. Consider modelling approximately monotonic response data arising from a time-related process. If one has knowledge as to when the process began or ended, then one may be able to leverage additionalassumed data to reduce prediction error. This assumed data, referred to as the anchor, is treated as an additional data-point generated at either the beginning or end of the process. The response value of the anchor is equal to an intelligently selected value of the response (such as the upper bound, lower bound, or 99th percentile of the response, as appropriate). The anchor reduces the variance of prediction at the cost of a possible increase in prediction bias, resulting in a potentially reduced overall mean-square prediction error. This can be extremely eective when few individual data-points are available, allowing one to make linear predictions using as little as a single observed data-point. We develop the mathematics showing the conditions under which an anchor can improve predictions, and also demonstrate using this approach to reduce prediction error when modelling the disease progression of patients with amyotrophic lateral sclerosis.Modelos lineales son los modelos más fáciles de usar y comunes en modelamiento. Si se considera el modelamiento de una respuesta aprosimadamente monótona que surge de un proceso relacionado al tiempo y se sabe cuándo el proceso inició o terminó, es posible asumir datos adicionales como palanca para reducir el error de predicción. Estos datos adicionales son llamados de ``anclaje'' y son datos generados antes del inicion o después del final del proceso. El valor de respuesta del anclaje es igual a un valor de respuesta escogido de manera inteligente (como por ejemplo la cota superior, iferior o el percentil 99, según conveniencia). Este anclaje reduce la varianza de la predicción a costo de un posible sesgo en la misma, lo cual resulta en una reducción potencial del error medio de predicción. Lo anterior puede ser extremadamente efectivo cuando haypocos datos individuales, permitiendo hacer predicciones con muy pocos datos. En este trabajo presentamos en desarrollo matemático demostrando las condiciones bajo las cuales el anclaje puede mejorar predicciones y también demostramos una reducción del error de predicción aplicando el método a la modelación de progresión de enfermedad en pacientes con esclerosis lateral amiotrófica.application/pdfspaUniversidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Estadísticahttps://revistas.unal.edu.co/index.php/estad/article/view/68535Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de EstadísticaRevista Colombiana de EstadísticaKaranevich, Alex G. and He, Jianghua and Gajewski, Byron (2018) Using an Anchor to Improve Linear Predictions with Application to Predicting Disease Progression. Revista Colombiana de Estadística, 41 (2). pp. 137-155. ISSN 2389-897651 Matemáticas / Mathematics31 Colecciones de estadística general / StatisticsAnclajeesclerosis lateral amiotróficamodelos linealesmínimos cuadrados ordinariosregresión sesgadaAnchorAmyotrophic lateral sclerosisBiased regressionLinear modelsOrdinary least squaresUsing an Anchor to Improve Linear Predictions with Application to Predicting Disease ProgressionArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL68535-390955-1-PB.pdfapplication/pdf504307https://repositorio.unal.edu.co/bitstream/unal/66487/1/68535-390955-1-PB.pdf5f8171aae6e2ff2acd3f3b78ef8e7423MD51THUMBNAIL68535-390955-1-PB.pdf.jpg68535-390955-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg6300https://repositorio.unal.edu.co/bitstream/unal/66487/2/68535-390955-1-PB.pdf.jpga110766f06f7beea361085645970f5f5MD52unal/66487oai:repositorio.unal.edu.co:unal/664872023-05-25 23:02:55.076Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co