Using an Anchor to Improve Linear Predictions with Application to Predicting Disease Progression
Linear models are some of the most straightforward and commonly used modelling approaches. Consider modelling approximately monotonic response data arising from a time-related process. If one has knowledge as to when the process began or ended, then one may be able to leverage additionalassumed data...
- Autores:
-
Karanevich, Alex G.
He, Jianghua
Gajewski, Byron
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2018
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/66487
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/66487
http://bdigital.unal.edu.co/67515/
- Palabra clave:
- 51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
Anclaje
esclerosis lateral amiotrófica
modelos lineales
mínimos cuadrados ordinarios
regresión sesgada
Anchor
Amyotrophic lateral sclerosis
Biased regression
Linear models
Ordinary least squares
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_7c333044ddc4d08df0c88f378fa1f979 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/66487 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Using an Anchor to Improve Linear Predictions with Application to Predicting Disease Progression |
title |
Using an Anchor to Improve Linear Predictions with Application to Predicting Disease Progression |
spellingShingle |
Using an Anchor to Improve Linear Predictions with Application to Predicting Disease Progression 51 Matemáticas / Mathematics 31 Colecciones de estadística general / Statistics Anclaje esclerosis lateral amiotrófica modelos lineales mínimos cuadrados ordinarios regresión sesgada Anchor Amyotrophic lateral sclerosis Biased regression Linear models Ordinary least squares |
title_short |
Using an Anchor to Improve Linear Predictions with Application to Predicting Disease Progression |
title_full |
Using an Anchor to Improve Linear Predictions with Application to Predicting Disease Progression |
title_fullStr |
Using an Anchor to Improve Linear Predictions with Application to Predicting Disease Progression |
title_full_unstemmed |
Using an Anchor to Improve Linear Predictions with Application to Predicting Disease Progression |
title_sort |
Using an Anchor to Improve Linear Predictions with Application to Predicting Disease Progression |
dc.creator.fl_str_mv |
Karanevich, Alex G. He, Jianghua Gajewski, Byron |
dc.contributor.author.spa.fl_str_mv |
Karanevich, Alex G. He, Jianghua Gajewski, Byron |
dc.subject.ddc.spa.fl_str_mv |
51 Matemáticas / Mathematics 31 Colecciones de estadística general / Statistics |
topic |
51 Matemáticas / Mathematics 31 Colecciones de estadística general / Statistics Anclaje esclerosis lateral amiotrófica modelos lineales mínimos cuadrados ordinarios regresión sesgada Anchor Amyotrophic lateral sclerosis Biased regression Linear models Ordinary least squares |
dc.subject.proposal.spa.fl_str_mv |
Anclaje esclerosis lateral amiotrófica modelos lineales mínimos cuadrados ordinarios regresión sesgada Anchor Amyotrophic lateral sclerosis Biased regression Linear models Ordinary least squares |
description |
Linear models are some of the most straightforward and commonly used modelling approaches. Consider modelling approximately monotonic response data arising from a time-related process. If one has knowledge as to when the process began or ended, then one may be able to leverage additionalassumed data to reduce prediction error. This assumed data, referred to as the anchor, is treated as an additional data-point generated at either the beginning or end of the process. The response value of the anchor is equal to an intelligently selected value of the response (such as the upper bound, lower bound, or 99th percentile of the response, as appropriate). The anchor reduces the variance of prediction at the cost of a possible increase in prediction bias, resulting in a potentially reduced overall mean-square prediction error. This can be extremely eective when few individual data-points are available, allowing one to make linear predictions using as little as a single observed data-point. We develop the mathematics showing the conditions under which an anchor can improve predictions, and also demonstrate using this approach to reduce prediction error when modelling the disease progression of patients with amyotrophic lateral sclerosis. |
publishDate |
2018 |
dc.date.issued.spa.fl_str_mv |
2018-07-01 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-03T02:13:24Z |
dc.date.available.spa.fl_str_mv |
2019-07-03T02:13:24Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
ISSN: 2389-8976 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/66487 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/67515/ |
identifier_str_mv |
ISSN: 2389-8976 |
url |
https://repositorio.unal.edu.co/handle/unal/66487 http://bdigital.unal.edu.co/67515/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
https://revistas.unal.edu.co/index.php/estad/article/view/68535 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Estadística Revista Colombiana de Estadística |
dc.relation.references.spa.fl_str_mv |
Karanevich, Alex G. and He, Jianghua and Gajewski, Byron (2018) Using an Anchor to Improve Linear Predictions with Application to Predicting Disease Progression. Revista Colombiana de Estadística, 41 (2). pp. 137-155. ISSN 2389-8976 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Estadística |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/66487/1/68535-390955-1-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/66487/2/68535-390955-1-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
5f8171aae6e2ff2acd3f3b78ef8e7423 a110766f06f7beea361085645970f5f5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090172679061504 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Karanevich, Alex G.364fb9b6-f79d-4860-9f09-14beb347e123300He, Jianghua7322b987-f73b-41d3-a0cd-245c5f7739d6300Gajewski, Byron8a38c39f-aa31-43d4-9b0d-4ae71d6aa74d3002019-07-03T02:13:24Z2019-07-03T02:13:24Z2018-07-01ISSN: 2389-8976https://repositorio.unal.edu.co/handle/unal/66487http://bdigital.unal.edu.co/67515/Linear models are some of the most straightforward and commonly used modelling approaches. Consider modelling approximately monotonic response data arising from a time-related process. If one has knowledge as to when the process began or ended, then one may be able to leverage additionalassumed data to reduce prediction error. This assumed data, referred to as the anchor, is treated as an additional data-point generated at either the beginning or end of the process. The response value of the anchor is equal to an intelligently selected value of the response (such as the upper bound, lower bound, or 99th percentile of the response, as appropriate). The anchor reduces the variance of prediction at the cost of a possible increase in prediction bias, resulting in a potentially reduced overall mean-square prediction error. This can be extremely eective when few individual data-points are available, allowing one to make linear predictions using as little as a single observed data-point. We develop the mathematics showing the conditions under which an anchor can improve predictions, and also demonstrate using this approach to reduce prediction error when modelling the disease progression of patients with amyotrophic lateral sclerosis.Modelos lineales son los modelos más fáciles de usar y comunes en modelamiento. Si se considera el modelamiento de una respuesta aprosimadamente monótona que surge de un proceso relacionado al tiempo y se sabe cuándo el proceso inició o terminó, es posible asumir datos adicionales como palanca para reducir el error de predicción. Estos datos adicionales son llamados de ``anclaje'' y son datos generados antes del inicion o después del final del proceso. El valor de respuesta del anclaje es igual a un valor de respuesta escogido de manera inteligente (como por ejemplo la cota superior, iferior o el percentil 99, según conveniencia). Este anclaje reduce la varianza de la predicción a costo de un posible sesgo en la misma, lo cual resulta en una reducción potencial del error medio de predicción. Lo anterior puede ser extremadamente efectivo cuando haypocos datos individuales, permitiendo hacer predicciones con muy pocos datos. En este trabajo presentamos en desarrollo matemático demostrando las condiciones bajo las cuales el anclaje puede mejorar predicciones y también demostramos una reducción del error de predicción aplicando el método a la modelación de progresión de enfermedad en pacientes con esclerosis lateral amiotrófica.application/pdfspaUniversidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Estadísticahttps://revistas.unal.edu.co/index.php/estad/article/view/68535Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de EstadísticaRevista Colombiana de EstadísticaKaranevich, Alex G. and He, Jianghua and Gajewski, Byron (2018) Using an Anchor to Improve Linear Predictions with Application to Predicting Disease Progression. Revista Colombiana de Estadística, 41 (2). pp. 137-155. ISSN 2389-897651 Matemáticas / Mathematics31 Colecciones de estadística general / StatisticsAnclajeesclerosis lateral amiotróficamodelos linealesmínimos cuadrados ordinariosregresión sesgadaAnchorAmyotrophic lateral sclerosisBiased regressionLinear modelsOrdinary least squaresUsing an Anchor to Improve Linear Predictions with Application to Predicting Disease ProgressionArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL68535-390955-1-PB.pdfapplication/pdf504307https://repositorio.unal.edu.co/bitstream/unal/66487/1/68535-390955-1-PB.pdf5f8171aae6e2ff2acd3f3b78ef8e7423MD51THUMBNAIL68535-390955-1-PB.pdf.jpg68535-390955-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg6300https://repositorio.unal.edu.co/bitstream/unal/66487/2/68535-390955-1-PB.pdf.jpga110766f06f7beea361085645970f5f5MD52unal/66487oai:repositorio.unal.edu.co:unal/664872023-05-25 23:02:55.076Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |