Validación de modelos predictivos de analítica de datos de análisis de aceite usado para la toma de decisiones de mantenimiento en un turbogenerador de vapor.

ilustraciones, diagramas, mapas, tablas

Autores:
Sierra Mejia, Juan Pablo
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81094
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81094
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Oil reclamation
Recuperación de aceites usados
Análisis de aceite usado
Turbogenerador de vapor
Analítica de datos
Mantenimiento predictivo
Machine Learning
Used Oil Analysis
Data Analytics
Predictive Maintenance
Steam Turbogenerator
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional
id UNACIONAL2_7c08a7a4707e3a86cb3af1724961c87a
oai_identifier_str oai:repositorio.unal.edu.co:unal/81094
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Validación de modelos predictivos de analítica de datos de análisis de aceite usado para la toma de decisiones de mantenimiento en un turbogenerador de vapor.
dc.title.translated.eng.fl_str_mv Validation of predictive models on used oil analysis data for maintenance decision making in a steam turbo generator.
title Validación de modelos predictivos de analítica de datos de análisis de aceite usado para la toma de decisiones de mantenimiento en un turbogenerador de vapor.
spellingShingle Validación de modelos predictivos de analítica de datos de análisis de aceite usado para la toma de decisiones de mantenimiento en un turbogenerador de vapor.
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Oil reclamation
Recuperación de aceites usados
Análisis de aceite usado
Turbogenerador de vapor
Analítica de datos
Mantenimiento predictivo
Machine Learning
Used Oil Analysis
Data Analytics
Predictive Maintenance
Steam Turbogenerator
title_short Validación de modelos predictivos de analítica de datos de análisis de aceite usado para la toma de decisiones de mantenimiento en un turbogenerador de vapor.
title_full Validación de modelos predictivos de analítica de datos de análisis de aceite usado para la toma de decisiones de mantenimiento en un turbogenerador de vapor.
title_fullStr Validación de modelos predictivos de analítica de datos de análisis de aceite usado para la toma de decisiones de mantenimiento en un turbogenerador de vapor.
title_full_unstemmed Validación de modelos predictivos de analítica de datos de análisis de aceite usado para la toma de decisiones de mantenimiento en un turbogenerador de vapor.
title_sort Validación de modelos predictivos de analítica de datos de análisis de aceite usado para la toma de decisiones de mantenimiento en un turbogenerador de vapor.
dc.creator.fl_str_mv Sierra Mejia, Juan Pablo
dc.contributor.advisor.none.fl_str_mv Guevara Carazas, Fernando Jesús
dc.contributor.author.none.fl_str_mv Sierra Mejia, Juan Pablo
dc.contributor.researchgroup.spa.fl_str_mv Gestión, Operación y Mantenimiento de Activos - Gomac
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Oil reclamation
Recuperación de aceites usados
Análisis de aceite usado
Turbogenerador de vapor
Analítica de datos
Mantenimiento predictivo
Machine Learning
Used Oil Analysis
Data Analytics
Predictive Maintenance
Steam Turbogenerator
dc.subject.lemb.none.fl_str_mv Oil reclamation
Recuperación de aceites usados
dc.subject.proposal.spa.fl_str_mv Análisis de aceite usado
Turbogenerador de vapor
Analítica de datos
Mantenimiento predictivo
dc.subject.proposal.eng.fl_str_mv Machine Learning
Used Oil Analysis
Data Analytics
Predictive Maintenance
dc.subject.proposal.fra.fl_str_mv Steam Turbogenerator
description ilustraciones, diagramas, mapas, tablas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-09-16
dc.date.accessioned.none.fl_str_mv 2022-03-01T16:23:20Z
dc.date.available.none.fl_str_mv 2022-03-01T16:23:20Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81094
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81094
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Ahmad, R., & Kamaruddin, S. (2012). An overview of time-based and condition-based maintenance in industrial application. Computers & Industrial Engineering, 63(1), 135–149. https://doi.org/10.1016/j.cie.2012.02.002
Albarracín, P. R. (2015). Tribología y Lubricación (T. Ingeniería, Ed.). Medellín.
AXA Risk Consulting. (2020). Steam Turbine Lubricating Oil Systems. 1–4.
Ayvaz, S., & Alpay, K. (2021). Predictive maintenance system for production lines in manufacturing: A machine learning approach using IoT data in real-time. Expert Systems with Applications, 173, 114598. https://doi.org/10.1016/j.eswa.2021.114598
Bahari, A. (2017). Investigation into Tribological Performance of Vegetable Oils as Biolubricants at Severe Contact Conditions. (October), 292.
Banaszkiewicz, M. (2014). Steam turbines start-ups. Transactions of the Institute of Fluid-Flow Machinery, 126(126), 169–198.
Barrios, R. (2015). 3 Medidas De Tendencia Central Y De Dispersión. Slideshare, 59. Retrieved from https://es.slideshare.net/rbarriosm/3-medidas-de-tendencia-central-y-de-dispersion-49942466
Bergmeir, C., & Benítez, J. M. (2012). On the use of cross-validation for time series predictor evaluation. Information Sciences, 191, 192–213. https://doi.org/10.1016/j.ins.2011.12.028
Bergmeir, C., Hyndman, R. J., & Koo, B. (2018). A note on the validity of cross-validation for evaluating autoregressive time series prediction. Computational Statistics and Data Analysis, 120, 70–83. https://doi.org/10.1016/j.csda.2017.11.003
Bousdekis, A., Papageorgiou, N., Magoutas, B., Apostolou, D., & Mentzas, G. (2017). A Proactive Event-driven Decision Model for Joint Equipment Predictive Maintenance and Spare Parts Inventory Optimization. Procedia CIRP, 59(TESConf 2016), 184–189. https://doi.org/10.1016/j.procir.2016.09.015
Brnabic, A., & Hess, L. M. (2021). Systematic literature review of machine learning methods used in the analysis of real-world data for patient-provider decision making. BMC Medical Informatics and Decision Making, 21(1), 54. https://doi.org/10.1186/s12911-021-01403-2
Brown, P., & Sondalini, M. (n.d.). Asset Maintenance Management - The Path toward Defect Elimination. 1–10. Retrieved from www.lifetime-reliability.com
Capuano, G., & Rimoli, J. J. (2019). Smart finite elements: A novel machine learning application. Computer Methods in Applied Mechanics and Engineering, 345, 363–381. https://doi.org/https://doi.org/10.1016/j.cma.2018.10.046
Cave, A. (2017). What Will We Do When The World’s Data Hits 163 Zettabytes In 2025? Retrieved March 8, 2019, from Forbes website: https://www.forbes.com/sites/andrewcave/2017/04/13/what-will-we-do-when-the-worlds-data-hits-163-zettabytes-in-2025/#694cc76c349a
Chiu, S., & Tavella, D. (2008). Introduction to Data Mining. Data Mining and Market Intelligence for Optimal Marketing Returns, 137–192. https://doi.org/10.1016/b978-0-7506-8234-3.00007-1
Coleman, W. (1981). Water Contamination of Steam Turbine Lube Oils - How to Avoid It. Journal of Chemical Information and Modeling, 53(9), 1689–1699.
Deloitte Brazil. (2021). Strategic asset management. Retrieved April 30, 2021, from https://www2.deloitte.com/br/en/pages/finance/solutions/gestao-estrategica-ativos.html
Elshawi, R., Sakr, S., Talia, D., & Trunfio, P. (2018). Big Data Systems Meet Machine Learning Challenges: Towards Big Data Science as a Service. Big Data Research, 14, 1–11. https://doi.org/10.1016/j.bdr.2018.04.004
Espino Timón, C., & Martínez Fontes, X. (2017). “Análisis predictivo: técnicas y modelos utilizados y aplicaciones del mismo - herramientas Open Source que permiten su uso. 26/27, I(Principio activo y prestación ortoprotésica), 67. Retrieved from http://openaccess.uoc.edu/webapps/o2/bitstream/10609/59565/6/caresptimTFG0117memòria.pdf
Exposito, C. (2020). Clustering jerarquico. Universidad de La Laguna.
Exxon Mobil. (2009). Turbine Oil System Care & Maintenance.
Exxon Mobil. (2020). Mobil SHC 825. Retrieved April 2, 2021, from https://www.mobil.com.mx/es-mx/lubricantes/industrial/lubricants/products/products/mobil-shc-825
Faraldo, P. (2013). Estadística y metodología de la investigación. Universidad Santiago De Compostela, 15. Retrieved from http://eio.usc.es/eipc1/BASE/BASEMASTER/FORMULARIOS-PHP-DPTO/MATERIALES/Mat_G2021103104_EstadisticaTema1.pdf
Fernando, J., & Walters, T. (2021, February). Correlation Coefficient Definition. Retrieved May 1, 2021, from https://www.investopedia.com/terms/c/correlationcoefficient.asp
Fortune Business Insight. (2020). Lubricants Market Size, Share, Report. Retrieved April 30, 2021, from Market Research Report website: https://www.fortunebusinessinsights.com/industry-reports/lubricants-market-101771
Guevara Carazas, F. J., & Martha daSouza, G. F. (2010). Risk-based decision making method for maintenance policy selection of thermal power plant equipment. Energy, 35(2), 964–975. https://doi.org/10.1016/j.energy.2009.06.054
Gupta, G., & Mishra, R. P. (2016). A SWOT analysis of reliability centered maintenance framework. Journal of Quality in Maintenance Engineering, 22(2), 130–145. https://doi.org/10.1108/JQME-01-2015-0002
Gutierrez Pulido, H., & De la Vara Salazar, R. (2009). Control Estadístico de la Calidad y Seis Sigma (M. Hill, Ed.). Guanajuato.
Han, X., Wang, Z., Xie, M., He, Y., Li, Y., & Wang, W. (2021). Remaining useful life prediction and predictive maintenance strategies for multi-state manufacturing systems considering functional dependence. Reliability Engineering & System Safety, 210, 107560. https://doi.org/10.1016/j.ress.2021.107560
Hanke, J. E., & Wichern, D. W. (2010). Pronósticos en los negocios. In 9 Edición (Ed.), ممممم ممممم (Vol. 4). Retrieved from http://marefateadyan.nashriyat.ir/node/150
Hausermann, A. (1961). Particular Problems of Steam Turbine Lubrication. (Cv), 125–132.
Hejnowicz, Z., Burian, A., Dobrowolska, I., & Kolano, E. (2006). Orientational variability of parallel arrays of cortical microtubules under the outer cell wall of the Helianthus hypocotyl epidermis. Acta Societatis Botanicorum Poloniae, 75(3), 201–206. https://doi.org/10.5586/asbp.2006.023
Jiang, G., & Wang, W. (2017). Markov cross-validation for time series model evaluations. Information Sciences, 375, 219–233. https://doi.org/10.1016/j.ins.2016.09.061
Jiménez Rodríguez, C., & Arias Aguilar, D. (2004). Distribución de la biomasa y densidad de raíces finas en una gradiente sucesional de bosques en la Zona Norte de Costa Rica. Revista Forestal Mesoamerica Kurú, 1(2), pág. 44-63.
Joseph Omosanya, A., Titilayo Akinlabi, E., & Olusegun Okeniyi, J. (2019). Overview for Improving Steam Turbine Power Generation Efficiency. Journal of Physics: Conference Series, 1378(3). https://doi.org/10.1088/1742-6596/1378/3/032040
Lahura, E. (2003). El Coeficiente De Correlación Y Correlaciones Espúreas. Universidad Catolica Del Perú, 1–64.
Lazovic, T., & Marinkovic, A. (2015). A case study of turbogenerator journal bearing failure. (February).
Luo, J. (2013). Thin Film Lubrication. In Encyclopedia of Tribology (pp. 3663–3667). https://doi.org/10.1007/978-0-387-92897-5_682
Macián, V., Tormos, B., Ruíz, S., & Ramírez, L. (2015). Potential of low viscosity oils to reduce CO2 emissions and fuel consumption of urban buses fleets. Transportation Research Part D: Transport and Environment, 39, 76–88. https://doi.org/10.1016/j.trd.2015.06.006
Martha deSouza, G. F. (2012). Fundamentals of Maintenance. In Springer (Ed.), Thermal Power Plant Performance Analysis (pp. 123–146). Sao Paulo.
Maxell, D. (1996). The History of the Steam Turbine. Pacific Turbines, (1629).
McCoy, J. T., & Auret, L. (2019). Machine learning applications in minerals processing: A review. Minerals Engineering, 132, 95–109. https://doi.org/https://doi.org/10.1016/j.mineng.2018.12.004
Michalke, B., & Nischwitz, V. (2017). Speciation and element-specific detection. In Liquid Chromatography (pp. 753–767). https://doi.org/10.1016/B978-0-12-805392-8.00023-2
Montoya-Restrepo, N. E., & Correa-Morales, J. C. (2009). Estadístico de Procesos en el Monitoreo de la Mortalidad Perinatal. Revista de Salud Publica, 11(1), 92–99.
Neale, M. J. (1973). The Tribology Handbook. In Notes and Queries (Vol. s8-VI). https://doi.org/10.1093/nq/s8-VI.151.385-b
Nicholson, K. F., Richardson, R. T., van Roden, E. A. R., Quinton, R. G., Anzilotti, K. F., & Richards, J. G. (2019). Machine learning algorithms for predicting scapular kinematics. Medical Engineering & Physics, 65, 39–45. https://doi.org/https://doi.org/10.1016/j.medengphy.2019.01.005
Palladino, A. C. (2011). Gráfico de caja. Atención Primaria de Salud, Epidemiología e Informatica II, 7–10.
Patiño-Rodriguez, C. E., & Guevara Carazas, F. J. (2020). Maintenance and Asset Life Cycle for Reliability Systems. Reliability and Maintenance - An Overview of Cases. https://doi.org/10.5772/intechopen.85845
Phillips 66. (2019). Next-Generation Turbine Oils Combat Oxidation , Thermal Degradation and Varnish.
Pintelon, L., & Parodi-Herz, A. (2008). Maintenance: An Evolutionary Perspective. Springer Series in Reliability Engineering, 8, 21–48. https://doi.org/10.1007/978-1-84800-011-7_2
Pourahmadi, M. (2002). A Course in Time Series Analysis. The American Statistician, 56(1), 77–77. https://doi.org/10.1198/tas.2002.s131
R: The R Project for Statistical Computing. (n.d.). Retrieved April 15, 2021, from https://www.r-project.org/
Raadnui, S., & Kleesuwan, S. (2005). Low-cost condition monitoring sensor for used oil analysis. Wear, 259(7–12), 1502–1506. https://doi.org/10.1016/j.wear.2004.11.009
Raposo, H., Farinha, J. T., Fonseca, I., & Galar, D. (2019). Predicting condition based on oil analysis – A case study. Tribology International, 135(January), 65–74. https://doi.org/10.1016/j.triboint.2019.01.041
Reddy, a S., Ahmed, I., Kumar, T. S., Reddy, a V. K., & Bharathi, V. V. P. (2014). Analysis Of Steam Turbines. International Refereed Journal of Engineering and Science, 3(2), 32–48.
Sander, J. (2012). Steam Turbine Oil Challenges. LE White Paper, 1–10.
Scientific Spectro. (2000). Guide to Measuring TAN and TBN in Oil. Spectro Scientific, Spectro Sci. Retrieved from https://www.spectrosci.com/resource-center/lubrication-analysis/literature/e-guides/guide-to-measuring-tantbn/
Scopus. (2021a). Analyze search results for “lubricant” and “analytics.” Retrieved April 30, 2021, from https://www.scopus.com/term/analyzer.uri?sid=a091b7a8e94702c690c7bc7598eeaf06&origin=resultslist&src=s&s=TITLE-ABS-KEY%28%22lubricant%22+and+%22analytics%22%29&sort=plf-f&sdt=b&sot=b&sl=42&count=26&analyzeResults=Analyze+results&txGid=417060f79e9e194be4ae35a560a96415
Scopus. (2021b). Analyze search results for “Machine Learning” and “maintenance.” Retrieved April 30, 2021, from https://www.scopus.com/term/analyzer.uri?sid=de8fd338098c34bee445c5b4839b29cd&origin=resultslist&src=s&s=TITLE-ABS-KEY%28%22Machine+Learning%22+and+%22maintenance%22%29&sort=plf-f&sdt=b&sot=b&sl=51&count=3416&analyzeResults=Analyze+results&txGid=ed806beff
Scopus - Analyze search results. (n.d.). Retrieved March 19, 2019, from https://www-scopus-com.ezproxy.unal.edu.co/term/analyzer.uri?sid=6bce59022a605e33370d56242a5ba5fe&origin=resultslist&src=s&s=TITLE-ABS-KEY%28machine+learning%29&sort=plf-f&sdt=b&sot=b&sl=31&count=171267&analyzeResults=Analyze+results&txGid=da2bb524285aa00
Shahbazi, N., Bortoluzzi, B., Raghubar, C., An, A., Fok, R., & McArthur, J. J. (2018). Machine learning and BIM visualization for maintenance issue classification and enhanced data collection. Advanced Engineering Informatics, 38(October 2017), 101–112. https://doi.org/10.1016/j.aei.2018.06.007
Shimadzu. (2003). Elemental Analysis of Additives in Lubricant Oils Using ICPE-9820. Application News, J111.
Sibata. (2020). Viscosity Measurement Series. Sibata. Retrieved from https://www.sibata.co.jp/wpcms/wp-content/themes/sibata/en/pdf/viscosity_measurement_series.pdf
Spakovszky, Z. (2007). Enhancements of Rankine Cycles. Retrieved March 28, 2021, from Unified: Thermodynamics and propulsion website: https://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/node66.html
Spectro Scientific. (2015). Guide to Measuring Water in Oil. Spectro Scientific, 5. Retrieved from https://www.spectrosci.com/resource-center/lubrication-analysis/literature/whitepapers/guide-to-measuring-water-in-oil/%5Cnhttp://www.spectrosci.com/resource-center/lubrication-analysis/literature/e-guides/guide-to-measuring-water-in-oil/
Syan, C. S., Ramsoobag, G., Mahabir, K., & Rajnauth, V. (2020). A Case Study for Improving Maintenance Planning of Centrifugal Pumps Using Condition-Based Maintenance. 42(2), 17–24.
Troyer, D., & Fitch, J. (2004). Oil Analysis Basics. León: Noria.
Ucci, D., Aniello, L., & Baldoni, R. (2019). Survey of machine learning techniques for malware analysis. Computers & Security, 81, 123–147. https://doi.org/https://doi.org/10.1016/j.cose.2018.11.001
Vališ, D., Žák, L., & Pokora, O. (2015). Failure prediction of diesel engine based on occurrence of selected wear particles in oil. Engineering Failure Analysis, 56, 501–511. https://doi.org/10.1016/j.engfailanal.2014.11.020
Vellido, A., Martín-Guerrero, J. D., & Lisboa, P. J. G. (2012). Making machine learning models interpretable. ESANN 2012 Proceedings, 20th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, (April), 163–172.
Zhang, Z., & Sejdić, E. (2019). Radiological images and machine learning: Trends, perspectives, and prospects. Computers in Biology and Medicine. https://doi.org/https://doi.org/10.1016/j.compbiomed.2019.02.017
Zhao, Y. (2017). The Importance of Lubricant and Fluid Analysis in Predictive Maintenance. Spectro Scientific, (Figure 1), 1–6. Retrieved from https://www.spectrosci.com/blog/the-importance-of-lubricant-and-fluid-analysis-in-predictive-maintenance/
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv XII, 94 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería Mecánica
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Mecánica
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81094/4/1037633177.%202021.pdf
https://repositorio.unal.edu.co/bitstream/unal/81094/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81094/5/1037633177.%202021.pdf.jpg
bitstream.checksum.fl_str_mv bcc071c862ba50cc854993b918731a9d
8153f7789df02f0a4c9e079953658ab2
58e3e5ecbd26c5d07dc00a4cf7c859b6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090203491467264
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Guevara Carazas, Fernando Jesúse547a5abc87fbf8110af5d3714c280f6600Sierra Mejia, Juan Pablof0c00fc667c2504a91dbbb8dd89c9de4Gestión, Operación y Mantenimiento de Activos - Gomac2022-03-01T16:23:20Z2022-03-01T16:23:20Z2021-09-16https://repositorio.unal.edu.co/handle/unal/81094Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, mapas, tablasEn el presente trabajo se desarrollan modelos descriptivos, clasificatorios y predictivos de la analítica de datos, con el fin de generar una herramienta de toma de decisiones basadas en las observaciones capturadas de diferentes pruebas realizadas al aceite usado de un turbogenerador de vapor marca Siemens de una industria papelera. Se estructura una base de datos con la información recopilada en un periodo de seis años (81 registros).; allí se cuenta con mediciones de diferentes propiedades del lubricante, por lo que se seleccionan 4 variables principales para el análisis. Las variables seleccionadas son el Número acido total (TAN), el porcentaje de agua disuelta en el aceite, la concentración de fósforo en el aceite y la viscosidad a 40°c. Se implementan modelos de clusterización jerárquica, series de tiempo, aproximación por medias móviles y cartas de control. Por último, se presentan las conclusiones derivadas de la implementación de dichos modelos. (Texto tomado de la fuente)In this study, Data analytic models (descriptive, classificatory and predictive) are developed, in order to generate a decision-making tool based on observations obtained from different tests carried out on used oil of a Siemens brand steam turbogenerator from paper industry. A database is structured with information collected over a period of six years (81 records). There are measurements of different properties of lubricant, Then, 4 main variables are selected for analysis. Selected variables are Total Acid Number (TAN), percentage of water dissolved in oil, phosphorus concentration in oil and viscosity at 40 ° C. Hierarchical clustering models, time series, moving average approximation and control charts are implemented. Finally, Conclusions derived from the implementation of these models are presented.MaestríaMagíster en Ingeniería MecánicaMachine Learning en gestión de mantenimientoÁrea Curricular de Ingeniería MecánicaXII, 94 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería MecánicaDepartamento de Ingeniería MecánicaFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaOil reclamationRecuperación de aceites usadosAnálisis de aceite usadoTurbogenerador de vaporAnalítica de datosMantenimiento predictivoMachine LearningUsed Oil AnalysisData AnalyticsPredictive MaintenanceSteam TurbogeneratorValidación de modelos predictivos de analítica de datos de análisis de aceite usado para la toma de decisiones de mantenimiento en un turbogenerador de vapor.Validation of predictive models on used oil analysis data for maintenance decision making in a steam turbo generator.Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAhmad, R., & Kamaruddin, S. (2012). An overview of time-based and condition-based maintenance in industrial application. Computers & Industrial Engineering, 63(1), 135–149. https://doi.org/10.1016/j.cie.2012.02.002Albarracín, P. R. (2015). Tribología y Lubricación (T. Ingeniería, Ed.). Medellín.AXA Risk Consulting. (2020). Steam Turbine Lubricating Oil Systems. 1–4.Ayvaz, S., & Alpay, K. (2021). Predictive maintenance system for production lines in manufacturing: A machine learning approach using IoT data in real-time. Expert Systems with Applications, 173, 114598. https://doi.org/10.1016/j.eswa.2021.114598Bahari, A. (2017). Investigation into Tribological Performance of Vegetable Oils as Biolubricants at Severe Contact Conditions. (October), 292.Banaszkiewicz, M. (2014). Steam turbines start-ups. Transactions of the Institute of Fluid-Flow Machinery, 126(126), 169–198.Barrios, R. (2015). 3 Medidas De Tendencia Central Y De Dispersión. Slideshare, 59. Retrieved from https://es.slideshare.net/rbarriosm/3-medidas-de-tendencia-central-y-de-dispersion-49942466Bergmeir, C., & Benítez, J. M. (2012). On the use of cross-validation for time series predictor evaluation. Information Sciences, 191, 192–213. https://doi.org/10.1016/j.ins.2011.12.028Bergmeir, C., Hyndman, R. J., & Koo, B. (2018). A note on the validity of cross-validation for evaluating autoregressive time series prediction. Computational Statistics and Data Analysis, 120, 70–83. https://doi.org/10.1016/j.csda.2017.11.003Bousdekis, A., Papageorgiou, N., Magoutas, B., Apostolou, D., & Mentzas, G. (2017). A Proactive Event-driven Decision Model for Joint Equipment Predictive Maintenance and Spare Parts Inventory Optimization. Procedia CIRP, 59(TESConf 2016), 184–189. https://doi.org/10.1016/j.procir.2016.09.015Brnabic, A., & Hess, L. M. (2021). Systematic literature review of machine learning methods used in the analysis of real-world data for patient-provider decision making. BMC Medical Informatics and Decision Making, 21(1), 54. https://doi.org/10.1186/s12911-021-01403-2Brown, P., & Sondalini, M. (n.d.). Asset Maintenance Management - The Path toward Defect Elimination. 1–10. Retrieved from www.lifetime-reliability.comCapuano, G., & Rimoli, J. J. (2019). Smart finite elements: A novel machine learning application. Computer Methods in Applied Mechanics and Engineering, 345, 363–381. https://doi.org/https://doi.org/10.1016/j.cma.2018.10.046Cave, A. (2017). What Will We Do When The World’s Data Hits 163 Zettabytes In 2025? Retrieved March 8, 2019, from Forbes website: https://www.forbes.com/sites/andrewcave/2017/04/13/what-will-we-do-when-the-worlds-data-hits-163-zettabytes-in-2025/#694cc76c349aChiu, S., & Tavella, D. (2008). Introduction to Data Mining. Data Mining and Market Intelligence for Optimal Marketing Returns, 137–192. https://doi.org/10.1016/b978-0-7506-8234-3.00007-1Coleman, W. (1981). Water Contamination of Steam Turbine Lube Oils - How to Avoid It. Journal of Chemical Information and Modeling, 53(9), 1689–1699.Deloitte Brazil. (2021). Strategic asset management. Retrieved April 30, 2021, from https://www2.deloitte.com/br/en/pages/finance/solutions/gestao-estrategica-ativos.htmlElshawi, R., Sakr, S., Talia, D., & Trunfio, P. (2018). Big Data Systems Meet Machine Learning Challenges: Towards Big Data Science as a Service. Big Data Research, 14, 1–11. https://doi.org/10.1016/j.bdr.2018.04.004Espino Timón, C., & Martínez Fontes, X. (2017). “Análisis predictivo: técnicas y modelos utilizados y aplicaciones del mismo - herramientas Open Source que permiten su uso. 26/27, I(Principio activo y prestación ortoprotésica), 67. Retrieved from http://openaccess.uoc.edu/webapps/o2/bitstream/10609/59565/6/caresptimTFG0117memòria.pdfExposito, C. (2020). Clustering jerarquico. Universidad de La Laguna.Exxon Mobil. (2009). Turbine Oil System Care & Maintenance.Exxon Mobil. (2020). Mobil SHC 825. Retrieved April 2, 2021, from https://www.mobil.com.mx/es-mx/lubricantes/industrial/lubricants/products/products/mobil-shc-825Faraldo, P. (2013). Estadística y metodología de la investigación. Universidad Santiago De Compostela, 15. Retrieved from http://eio.usc.es/eipc1/BASE/BASEMASTER/FORMULARIOS-PHP-DPTO/MATERIALES/Mat_G2021103104_EstadisticaTema1.pdfFernando, J., & Walters, T. (2021, February). Correlation Coefficient Definition. Retrieved May 1, 2021, from https://www.investopedia.com/terms/c/correlationcoefficient.aspFortune Business Insight. (2020). Lubricants Market Size, Share, Report. Retrieved April 30, 2021, from Market Research Report website: https://www.fortunebusinessinsights.com/industry-reports/lubricants-market-101771Guevara Carazas, F. J., & Martha daSouza, G. F. (2010). Risk-based decision making method for maintenance policy selection of thermal power plant equipment. Energy, 35(2), 964–975. https://doi.org/10.1016/j.energy.2009.06.054Gupta, G., & Mishra, R. P. (2016). A SWOT analysis of reliability centered maintenance framework. Journal of Quality in Maintenance Engineering, 22(2), 130–145. https://doi.org/10.1108/JQME-01-2015-0002Gutierrez Pulido, H., & De la Vara Salazar, R. (2009). Control Estadístico de la Calidad y Seis Sigma (M. Hill, Ed.). Guanajuato.Han, X., Wang, Z., Xie, M., He, Y., Li, Y., & Wang, W. (2021). Remaining useful life prediction and predictive maintenance strategies for multi-state manufacturing systems considering functional dependence. Reliability Engineering & System Safety, 210, 107560. https://doi.org/10.1016/j.ress.2021.107560Hanke, J. E., & Wichern, D. W. (2010). Pronósticos en los negocios. In 9 Edición (Ed.), ممممم ممممم (Vol. 4). Retrieved from http://marefateadyan.nashriyat.ir/node/150Hausermann, A. (1961). Particular Problems of Steam Turbine Lubrication. (Cv), 125–132.Hejnowicz, Z., Burian, A., Dobrowolska, I., & Kolano, E. (2006). Orientational variability of parallel arrays of cortical microtubules under the outer cell wall of the Helianthus hypocotyl epidermis. Acta Societatis Botanicorum Poloniae, 75(3), 201–206. https://doi.org/10.5586/asbp.2006.023Jiang, G., & Wang, W. (2017). Markov cross-validation for time series model evaluations. Information Sciences, 375, 219–233. https://doi.org/10.1016/j.ins.2016.09.061Jiménez Rodríguez, C., & Arias Aguilar, D. (2004). Distribución de la biomasa y densidad de raíces finas en una gradiente sucesional de bosques en la Zona Norte de Costa Rica. Revista Forestal Mesoamerica Kurú, 1(2), pág. 44-63.Joseph Omosanya, A., Titilayo Akinlabi, E., & Olusegun Okeniyi, J. (2019). Overview for Improving Steam Turbine Power Generation Efficiency. Journal of Physics: Conference Series, 1378(3). https://doi.org/10.1088/1742-6596/1378/3/032040Lahura, E. (2003). El Coeficiente De Correlación Y Correlaciones Espúreas. Universidad Catolica Del Perú, 1–64.Lazovic, T., & Marinkovic, A. (2015). A case study of turbogenerator journal bearing failure. (February).Luo, J. (2013). Thin Film Lubrication. In Encyclopedia of Tribology (pp. 3663–3667). https://doi.org/10.1007/978-0-387-92897-5_682Macián, V., Tormos, B., Ruíz, S., & Ramírez, L. (2015). Potential of low viscosity oils to reduce CO2 emissions and fuel consumption of urban buses fleets. Transportation Research Part D: Transport and Environment, 39, 76–88. https://doi.org/10.1016/j.trd.2015.06.006Martha deSouza, G. F. (2012). Fundamentals of Maintenance. In Springer (Ed.), Thermal Power Plant Performance Analysis (pp. 123–146). Sao Paulo.Maxell, D. (1996). The History of the Steam Turbine. Pacific Turbines, (1629).McCoy, J. T., & Auret, L. (2019). Machine learning applications in minerals processing: A review. Minerals Engineering, 132, 95–109. https://doi.org/https://doi.org/10.1016/j.mineng.2018.12.004Michalke, B., & Nischwitz, V. (2017). Speciation and element-specific detection. In Liquid Chromatography (pp. 753–767). https://doi.org/10.1016/B978-0-12-805392-8.00023-2Montoya-Restrepo, N. E., & Correa-Morales, J. C. (2009). Estadístico de Procesos en el Monitoreo de la Mortalidad Perinatal. Revista de Salud Publica, 11(1), 92–99.Neale, M. J. (1973). The Tribology Handbook. In Notes and Queries (Vol. s8-VI). https://doi.org/10.1093/nq/s8-VI.151.385-bNicholson, K. F., Richardson, R. T., van Roden, E. A. R., Quinton, R. G., Anzilotti, K. F., & Richards, J. G. (2019). Machine learning algorithms for predicting scapular kinematics. Medical Engineering & Physics, 65, 39–45. https://doi.org/https://doi.org/10.1016/j.medengphy.2019.01.005Palladino, A. C. (2011). Gráfico de caja. Atención Primaria de Salud, Epidemiología e Informatica II, 7–10.Patiño-Rodriguez, C. E., & Guevara Carazas, F. J. (2020). Maintenance and Asset Life Cycle for Reliability Systems. Reliability and Maintenance - An Overview of Cases. https://doi.org/10.5772/intechopen.85845Phillips 66. (2019). Next-Generation Turbine Oils Combat Oxidation , Thermal Degradation and Varnish.Pintelon, L., & Parodi-Herz, A. (2008). Maintenance: An Evolutionary Perspective. Springer Series in Reliability Engineering, 8, 21–48. https://doi.org/10.1007/978-1-84800-011-7_2Pourahmadi, M. (2002). A Course in Time Series Analysis. The American Statistician, 56(1), 77–77. https://doi.org/10.1198/tas.2002.s131R: The R Project for Statistical Computing. (n.d.). Retrieved April 15, 2021, from https://www.r-project.org/Raadnui, S., & Kleesuwan, S. (2005). Low-cost condition monitoring sensor for used oil analysis. Wear, 259(7–12), 1502–1506. https://doi.org/10.1016/j.wear.2004.11.009Raposo, H., Farinha, J. T., Fonseca, I., & Galar, D. (2019). Predicting condition based on oil analysis – A case study. Tribology International, 135(January), 65–74. https://doi.org/10.1016/j.triboint.2019.01.041Reddy, a S., Ahmed, I., Kumar, T. S., Reddy, a V. K., & Bharathi, V. V. P. (2014). Analysis Of Steam Turbines. International Refereed Journal of Engineering and Science, 3(2), 32–48.Sander, J. (2012). Steam Turbine Oil Challenges. LE White Paper, 1–10.Scientific Spectro. (2000). Guide to Measuring TAN and TBN in Oil. Spectro Scientific, Spectro Sci. Retrieved from https://www.spectrosci.com/resource-center/lubrication-analysis/literature/e-guides/guide-to-measuring-tantbn/Scopus. (2021a). Analyze search results for “lubricant” and “analytics.” Retrieved April 30, 2021, from https://www.scopus.com/term/analyzer.uri?sid=a091b7a8e94702c690c7bc7598eeaf06&origin=resultslist&src=s&s=TITLE-ABS-KEY%28%22lubricant%22+and+%22analytics%22%29&sort=plf-f&sdt=b&sot=b&sl=42&count=26&analyzeResults=Analyze+results&txGid=417060f79e9e194be4ae35a560a96415Scopus. (2021b). Analyze search results for “Machine Learning” and “maintenance.” Retrieved April 30, 2021, from https://www.scopus.com/term/analyzer.uri?sid=de8fd338098c34bee445c5b4839b29cd&origin=resultslist&src=s&s=TITLE-ABS-KEY%28%22Machine+Learning%22+and+%22maintenance%22%29&sort=plf-f&sdt=b&sot=b&sl=51&count=3416&analyzeResults=Analyze+results&txGid=ed806beffScopus - Analyze search results. (n.d.). Retrieved March 19, 2019, from https://www-scopus-com.ezproxy.unal.edu.co/term/analyzer.uri?sid=6bce59022a605e33370d56242a5ba5fe&origin=resultslist&src=s&s=TITLE-ABS-KEY%28machine+learning%29&sort=plf-f&sdt=b&sot=b&sl=31&count=171267&analyzeResults=Analyze+results&txGid=da2bb524285aa00Shahbazi, N., Bortoluzzi, B., Raghubar, C., An, A., Fok, R., & McArthur, J. J. (2018). Machine learning and BIM visualization for maintenance issue classification and enhanced data collection. Advanced Engineering Informatics, 38(October 2017), 101–112. https://doi.org/10.1016/j.aei.2018.06.007Shimadzu. (2003). Elemental Analysis of Additives in Lubricant Oils Using ICPE-9820. Application News, J111.Sibata. (2020). Viscosity Measurement Series. Sibata. Retrieved from https://www.sibata.co.jp/wpcms/wp-content/themes/sibata/en/pdf/viscosity_measurement_series.pdfSpakovszky, Z. (2007). Enhancements of Rankine Cycles. Retrieved March 28, 2021, from Unified: Thermodynamics and propulsion website: https://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/node66.htmlSpectro Scientific. (2015). Guide to Measuring Water in Oil. Spectro Scientific, 5. Retrieved from https://www.spectrosci.com/resource-center/lubrication-analysis/literature/whitepapers/guide-to-measuring-water-in-oil/%5Cnhttp://www.spectrosci.com/resource-center/lubrication-analysis/literature/e-guides/guide-to-measuring-water-in-oil/Syan, C. S., Ramsoobag, G., Mahabir, K., & Rajnauth, V. (2020). A Case Study for Improving Maintenance Planning of Centrifugal Pumps Using Condition-Based Maintenance. 42(2), 17–24.Troyer, D., & Fitch, J. (2004). Oil Analysis Basics. León: Noria.Ucci, D., Aniello, L., & Baldoni, R. (2019). Survey of machine learning techniques for malware analysis. Computers & Security, 81, 123–147. https://doi.org/https://doi.org/10.1016/j.cose.2018.11.001Vališ, D., Žák, L., & Pokora, O. (2015). Failure prediction of diesel engine based on occurrence of selected wear particles in oil. Engineering Failure Analysis, 56, 501–511. https://doi.org/10.1016/j.engfailanal.2014.11.020Vellido, A., Martín-Guerrero, J. D., & Lisboa, P. J. G. (2012). Making machine learning models interpretable. ESANN 2012 Proceedings, 20th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, (April), 163–172.Zhang, Z., & Sejdić, E. (2019). Radiological images and machine learning: Trends, perspectives, and prospects. Computers in Biology and Medicine. https://doi.org/https://doi.org/10.1016/j.compbiomed.2019.02.017Zhao, Y. (2017). The Importance of Lubricant and Fluid Analysis in Predictive Maintenance. Spectro Scientific, (Figure 1), 1–6. Retrieved from https://www.spectrosci.com/blog/the-importance-of-lubricant-and-fluid-analysis-in-predictive-maintenance/EstudiantesInvestigadoresORIGINAL1037633177. 2021.pdf1037633177. 2021.pdfTesis de Maestría en Ingeniería Mecánicaapplication/pdf2235830https://repositorio.unal.edu.co/bitstream/unal/81094/4/1037633177.%202021.pdfbcc071c862ba50cc854993b918731a9dMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81094/3/license.txt8153f7789df02f0a4c9e079953658ab2MD53THUMBNAIL1037633177. 2021.pdf.jpg1037633177. 2021.pdf.jpgGenerated Thumbnailimage/jpeg5471https://repositorio.unal.edu.co/bitstream/unal/81094/5/1037633177.%202021.pdf.jpg58e3e5ecbd26c5d07dc00a4cf7c859b6MD55unal/81094oai:repositorio.unal.edu.co:unal/810942023-08-09 10:45:28.43Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK