Estudio por espectroscopia SERS de ADN genómico en interacción con nanoparticulas de Au y Ag a través de plasmones localizados
En la presente investigación se realizó un estudio de la interacción de nanopartículas de oro y plata con DNA genómico por medio de la Espectroscopia Raman. Se realizaron tres ciclos de síntesis de nanopartículas de oro y plata por medio del método de radiación por microondas, las nanopartículas se...
- Autores:
-
Báez Cruz, Ricardo Eulises
- Tipo de recurso:
- Fecha de publicación:
- 2015
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/55774
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/55774
http://bdigital.unal.edu.co/51237/
- Palabra clave:
- 5 Ciencias naturales y matemáticas / Science
53 Física / Physics
Nanopartículas oro y plata
Raman
DNA
Nanoparticles Au y Ag
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_7bef4b923b284537f01cb027ad2f8bd7 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/55774 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Estudio por espectroscopia SERS de ADN genómico en interacción con nanoparticulas de Au y Ag a través de plasmones localizados |
dc.title.translated.eng.fl_str_mv |
SERS spectroscopic study of genomic DNA interacting with Au and Ag nanoparticles through localized plasmons |
title |
Estudio por espectroscopia SERS de ADN genómico en interacción con nanoparticulas de Au y Ag a través de plasmones localizados |
spellingShingle |
Estudio por espectroscopia SERS de ADN genómico en interacción con nanoparticulas de Au y Ag a través de plasmones localizados 5 Ciencias naturales y matemáticas / Science 53 Física / Physics Nanopartículas oro y plata Raman DNA Nanoparticles Au y Ag |
title_short |
Estudio por espectroscopia SERS de ADN genómico en interacción con nanoparticulas de Au y Ag a través de plasmones localizados |
title_full |
Estudio por espectroscopia SERS de ADN genómico en interacción con nanoparticulas de Au y Ag a través de plasmones localizados |
title_fullStr |
Estudio por espectroscopia SERS de ADN genómico en interacción con nanoparticulas de Au y Ag a través de plasmones localizados |
title_full_unstemmed |
Estudio por espectroscopia SERS de ADN genómico en interacción con nanoparticulas de Au y Ag a través de plasmones localizados |
title_sort |
Estudio por espectroscopia SERS de ADN genómico en interacción con nanoparticulas de Au y Ag a través de plasmones localizados |
dc.creator.fl_str_mv |
Báez Cruz, Ricardo Eulises |
dc.contributor.author.spa.fl_str_mv |
Báez Cruz, Ricardo Eulises |
dc.subject.ddc.spa.fl_str_mv |
5 Ciencias naturales y matemáticas / Science 53 Física / Physics |
topic |
5 Ciencias naturales y matemáticas / Science 53 Física / Physics Nanopartículas oro y plata Raman DNA Nanoparticles Au y Ag |
dc.subject.proposal.spa.fl_str_mv |
Nanopartículas oro y plata Raman DNA Nanoparticles Au y Ag |
description |
En la presente investigación se realizó un estudio de la interacción de nanopartículas de oro y plata con DNA genómico por medio de la Espectroscopia Raman. Se realizaron tres ciclos de síntesis de nanopartículas de oro y plata por medio del método de radiación por microondas, las nanopartículas se caracterizaron usando microscopia electrónica de trasmisión (TEM) y absorción óptica (Uv-Visible). El DNA se extrajo del bazo de cerdo y se caracterizó por absorción óptica (Uv-Visible. Se encontró que las partículas sintetizadas estabilizaban en nanoesferas y adquieran un plasmon entre los 320 y 420 nm. Del DNA se encontró que estaba desproteinizado y con un PH estable. Las dos muestras fueron conjugas de dos formas, en la primera se combinaron en solución variando los ml de nanopartículas (oro y plata) y se realizaron las mediciones Raman entre 200 y 4000 cm−1. La segunda muestra se estudió en fibra (solido) agregando ml de nanopartículas (oro y plata) en un portaobjeto con la finalidad de secar las muestras a estos sustratos se les realizo igualmente pruebas de espectroscopia Raman 200 y 4000 cm−1. Se encontró que las NPs en solución ancladas al DNA no amplificaban la señal Raman del DNA debido al apantallamiento del citrato estabilizante envolate de las nanopartículas de oro. En contraposición, las nanopartículas de plata en solución amplificaron la señal Raman de la beses nitrógenos de DNA. Respecto a las muestras solidas tantas las nanopartículas de oro y plata realizaron amplificación del %100 de las bases nitrogenadas de DNA (Texto tomado de la fuente) |
publishDate |
2015 |
dc.date.issued.spa.fl_str_mv |
2015 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-02T11:28:05Z |
dc.date.available.spa.fl_str_mv |
2019-07-02T11:28:05Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/55774 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/51237/ |
url |
https://repositorio.unal.edu.co/handle/unal/55774 http://bdigital.unal.edu.co/51237/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Manizales Facultad de Ciencias Exactas y Naturales Departamento de Física y Química Departamento de Física y Química |
dc.relation.references.spa.fl_str_mv |
La cromatina durante el ciclo celular. A Khan, S Alrokayan M Alsalhi M Alhoshan A S.: B, Angela S. C.: ACOPLAMIENTO DE PLASMONES LOCALIZADOS EN NANOSISTEMAS. 56 (2) (2010), p. 147–154 B, Angela S. C.: ACOPLAMIENTO DE PLASMONES LOCALIZADOS EN NANOSISTEMAS. XXXVI (2012), p. 138 Barrio, Justo V.: Sintesis de nanoparticulas de oro y plata y estudio de su deposicion sobre nanoestructuras de base silicea. (2012), p. 2 FERREIRA, SZPINIAC Beatriz; GRASSI E.: Manual de Genetica. Gonzalez, Edgar E.: La nueva era de los nanomateriales. 1 (2013), p. 35–45 Luis, José: ADN: Estructura molecular. N, Raul: Biologia Moleculas Antes y despues de la doble helice. O, Nestor: ADN:una molecula maravillosa. y Santiago Sanchez-Cortes, Jose Vicente Garcia-Ramos: Espectroscopía vibracional sobre nanoestructuras metálicas (SERS y SEIR): nuevos sustratos y aplicaciones. 39 (2) (2006), p. 147–154 Santillan, Jesica Maria J.: Estudios de las propiedades opticas de materiales nanoestructurados y aplicaciones. (2013), p. 11–24 Sinencio., V Altuzar. C Mendoza Barrera. ML Munoz. JG Mendoza Alvarezy. F S.: Analisis cuantitativo de interacciones moleculares proteina proteina mediante la combinacion de microarreglos y un lector optico basado en el fenomeno de resonancia de plasmones superficiales. 36 (138) (2012), p. 15–24 Solorzano, Daniel M.: Determinacion de tamanos de nanoparticulas metalicas mediante tecnicas espectroscopicas y polarimetricas. (2012), p. 13–18 Tognalli, Nicolas G.: Nanoestructuras metalicas para espectroscopia SERS de sistemas biomimeticos y de sensado. (2008), p. 48 |
dc.relation.references.eng.fl_str_mv |
A. Serrano, V. Collado J. Rubio-Zuazo C. Monton G. ; García, M. A.: Simultaneous Surface Plasmon Resonance and X-ray Absorption Spectroscopy. Angshuman Pal, Surekha D.: Microwave-assisted synthesis of silver nanoparticles using ethanol as a reducing agent. En: Materials Chemistry and Physics 114 2009() (2009), p. 530–532 Anju K. Augustine, M. K.: Rapid synthesize of gold nanoparticles by microwave irradiation method and its application as an optical limiting material. 125 (2014) (2014), p. 6696–6699 Aoune Barhoumi, Felicia T. ; Halas, Naomi J.: Surface-Enhanced Raman Spectroscopy of DNA. 130 (2008), p. 5523–5529 Atwater, Harry A.: The Promise of PLASMONICS. B. Aswathy, G.S. Avadhani R. Aswathy S. Suganthi G. S.: Microwave assisted one pot synthesis of biocompatible gold nanoparticles in Triton X-100 aqueous micellar medium using tryptophan as reducing agent. 0928-4931 (2015), p. 298–309 C. Otto, F. F. M.: Surface enhanced Raman spectroscopy of DNA bases. 17 (2005), p. 289–298 Catalina David, Hong Shen Timothee T. ; de la Chapelle., Marc L.: SERS detection of biomolecules using lithographed nanoparticles towards a reproducible SERS biosensor. 21 (2010), p. 475501 (6pp) Cristina M. Muntean, Carmen Tripon Ana Coste Adela H.: Surface-enhanced Raman spectroscopy of genomic DNA fromin vitro grown tomato (Lycopersicon esculentumMill.) cultivars before and after plant cryopreservation. 22 (2006), p. 1735–1741 D. A. Guzman-Embus, M. Orrego C. ; Vargas-Hernandez, C.: Genomic DNA characterization of pork spleen by Raman spectroscopy. En: J. Appl.Polym. Sci. 114 (2013), p. 1–8 D. Yamini a, J. Kumar b V. R.: Raman scattering studies on PEG functionalized hydroxyapatite nanoparticles. 117 (2014), p. 299–303 E Sassaroli, K C P L. ; O’Neill, B E.: Radio frequency absorption in gold nanoparticle suspensions: a phenomenological study. 45 (2012) 075303 (2012), p. 1–15 Garcia, M A.: surface plasmons in metallic nanoparticles : fundamentals and applications. 44 (2011), p. 283001 Garc´ıa-Etxarri, Aitzol ; Jennifer A. Dionne, Surface-enhanced circular dichroisspectroscopymediated by nonchiral n.: Metal Nanoparticles: Synthesis, Characterization, and Applications. 87 (2013), p. 235409 Ghodselahia, M.A. Vesaghi B. Ranjba A. Azizi H. M.: Fabrication Localized Surface Plasmon Resonance sensor chip of gold nanoparticles and detection lipase–osmolytes interaction. 314 (2014), p. 138–144 Goia, D V. ; E, Matijevic: Metal Nanoparticles: Synthesis, Characterization, and Applications. (1998), p. 221203 Gonc¸alves, Manuel R.: Plasmonic nanoparticles: fabrication, simulation and experiments. 47 (2014) 213001 (2014), p. 1–45 Gutiérrez-Wing, C. ; Esparza, R. ; Vargas-Hern´andez, C. ; Fern´andez Garc´ıa, M. E. ; Jos´e-Yacam´an, M.: Microwave-assisted synthesis of gold nanoparticles self-assembled into self-supported superstructures. En: Nanoscale 4 (2012), p. 2281–2287 He Xu, Liping Zeng Yuezhong Xian Guoyue Shi Litong J.: Microwave-enhanced voltammetric detection of copper(II) at gold nanoparticles-modified platinum microelectrodes. 0022-0728 (2009), p. 53–59 He Xu, Sujie Xing Guoyue Shi Yuezhong Xian Litong J.: Microwave-radiated synthesis of gold nanoparticles/carbon nanotubes composites and its application to voltammetric detection of trace mercury(II). 1388-2481 (2008), p. 1839–1843 Hengbo Yin, Tetsushi Yamamoto Yuji Wada Shozo Y.: Large-scale and size-controlled synthesis of silver nanoparticles under microwave irradiation. En: Materials Chemistry and Physics 83 (2004) (2004), p. 66–70 Hongjin Jiang, Zhuqing Zhang Suresh Pothukuchi C.P. W.: Variable frequency microwave synthesis of silver nanoparticles. En: Journal of Nanoparticle Research 8(2006) (2006), p. 117–124 Hongwei Liao, Collen L N. ; Hafner, Jason H.: Biomedical applications of plasmon resonant metal nanoparticles. 2 (2006), p. 201–208 J Binoy, V S Jayakumar O F N. ; Aubard., J: DFT based relaxed PES scan studies and SERS of anti cancer drug, Combretastatin A-4. 2 (2005), p. 544–550 Jhnson, P.B. ; Christy, R. W.: Optical Constants of the Noble Metals. 6 (1972), p. 4370–4739 JSujata Patra, Ayan Kumar Barui Anirban Gangulya Bojja Sreedhar Chitta Ranjan P.: Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. 0928-4931 (2015), p. 298–309 Julian Restrepo, M. Isabel Burguete Eduardo Garc´ıa-Verdugo Santiago V. L.: Gold nanoparticles immobilized onto supported ionic liquid-likephases for microwave phenylethanol oxidation in water. 0920-5861 (2015), p. 1–8 K. Krishnan, F.A.Sc: Raman and infrared spectra of ethylene glycol. (1996), p. 111–122 K. Uchida, D. Kikuchi S. Ito Z. Qiu S. M. ; Saitoh, E.: Generation of spin currents by surface plasmon resonance. DOI: 10.1038/ncomms6910 (2015), p. 1–8 Kappeler, R.: Engineering the Field Enhancement at the apex of a Structured Noble Metal. Kazuo Nakamoto, Gary D. S.: DRUG–DNA INTERACTIONS STRUCTURES AND SPECTRA. L, Fedlheim D. ; A, Foss C.: Metal Nanoparticles: Synthesis, Characterization, and Applications. 314 (2001) Long, Derek A. ; Long, DA: The Raman effect: a unified treatment of the theory of Raman scattering by molecules. Vol. 8. Wiley Chichester, 2002 Lu Qiua, Peng Liu Li Zhao Meiqiong Wena Haiyan Yang Shuguo Fan Linzong Z.: Analysis of plant genomic DNAs and the genetic relationship among plants by using surface-enhanced Raman spectroscopy. 72 (2014), p. 134–141 M, J J.: Green synthesis and applications of Au–Ag bimetallic nanoparticles. En: D Philip,Spectrochimica acta Part A: Molecular and Biomolecular and Biomolecular Spectroscopy137 137 (2015) (2015), p. 185–192 M A Molina, M C Miras D L. ; Barbero, C A.: Nanocomposite synthesis by absorption of nanoparticles into macroporous hydrogels. Building a chemomechanical actuator driven by electromagnetic radiation. 245504 (2011), p. 1–8 Mie, Gustav: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. 25 (3) (1908), p. 377–445 Namrata Jayanth, Srinivas R. ; Puranik, Mrinalini: Solution Structure of the DNA Damage Lesion 8-Oxoguanosine from Ultraviolet Resonance Raman Spectroscopy. 113 (2009), p. 1459–1471 Oldenburg, Steven J.: Light scattering from gold nanoshells. Rice University, 2000 Oliva M. Primera-Pedrozoa, Jorge Castellanos a Hilsamar Felix-Riveraa Oscar Resto b Samuel P. Hern´andez-Riveraa: Increasing surface enhanced Raman spectroscopy effect of RNA and DNA components by changing the pH of silver colloidal suspensions. 87 (2012), p. 77–85 P Dou, W Wang A Sarreshteh X Qiao X Qiu J C.: One-step microwave-assisted synthesis of Ag/ZnO/graphene nanocomposites with enhanced photocatalytic activity. En: Journal of Photochemistry and Photobiology A:Chemistry 302 (2015) (2015), p. 17–22 Perkampus, Heinz-Helmut: UV-VIS Spectroscopy and its Applications. Springer Science & Business Media, 2013 Ponkumar, P. D. ; Iyandurai, N.: Structural Analysis of DNA Interactions with Magnesium Ion Studied by Raman Spectroscopy. 3 (2011), p. 135–140 Resham Bhattacharya, Priyabrata M.: Biological properties of naked metal nanoparticles. 60 (2008), p. 1289–1306 Resham Bhattacharya, Priyabrata M.: Biological properties of naked metal nanoparticles. 60 (2008), p. 1289–1306 Rolf Dootz, Binyang Du Stephan Herminghaus Thomas P.: Raman and Surface Enhanced Raman Microscopy of Microstructured Polyethylenimine/DNA Multilayers. 22 (2006), p. 1735–1741 S C. Motshekga, M S. Onyango M N.B. M.: Microwave-assisted synthesis, characterization and antibacterial activity of Ag/ZnO nanoparticles supported bentonite clay. En: Journal of Hazardous Materials 262 (2013) (2013), p. 439– 446. Samar Najjar, Le onard Schue Yannick Coffinier Sabine Szunerits Rabah Boukherroub Laurent Servant Vincent Rodriguez Sebastien B.: Tip-Enhanced Raman Spectroscopy of Combed Double-Stranded DNA Bundles. 118 (2013), p. 1174–1181 S.R. Bhuvanasree, Anantanarayanan Rajaram Rama R.: Rapid synthesis of gold nanoparticles with Cissus quadrangularis extract using microwave irradiation. 106 (2013) (2013), p. 190–196 Szymanski, Herman A.: Raman spectroscopy: theory and practice. Springer Science & Business Media, 2012 T. Ghodselahia, M.A. Vesaghi B. Ranjba A. Azizi H. M.: Fabrication Localized Surface Plasmon Resonance sensor chip of gold nanoparticles and detection lipase–osmolytes interaction. 314 (2014), p. 138–144 Ulla Jakobsen, Stefan V.: DNA-Controlled Assembly of Soft Nanoparticles. 9 (2008), p. 10462–10463 Vargas-Hernandez, C. ; Mariscal, M. M. ; Esparza, R. ; Yacaman, M. J.: A synthesis route of gold nanoparticles without using a reducing agent. En: Applied Physics Letters 96 (2010), Nr. 21, p. 1–4. – ISSN 00036951 Jose de la Venta, Enrique Fernández Pinel Miguel A. García Cesar de Julián Fernández Patricia Crespo Paolo Mazzoldi Giacomo R. ; Hernando, Antonio: Magnetism in Polymers with Embedded Gold Nanoparticles. 19 (2007), p. 875–877 Vo Ke Thanh Ngo, Trong Phat Huynh Nguyen Nguyen Pham Tran Quang Vinh L. ; Huynh, Thanh D.: Preparation of gold nanoparticles by microwave heating and application of spectroscopy to study conjugate of gold nanoparticles with antibody E. coli O157:H7. 6 (2015) 035015 (2015), p. 1–6 Williams, David B. ; Carter, C B.: The transmission electron microscope. En: Transmission electron microscopy. Springer, 1996, p. 3–17 Won Joon Cho, Suenghoon Han Sung-Min Lee Taewook Kang Kun-Hong Lee Kyung Cheol C. ; Kim, Jin K.: Plasmonic colloidal nanoparticles with open eccentric cavities via acid-induced chemical transformation. e167 (2015), p. 1–7 X Zhao, Q Li X Ma-F Quan C Geng Z H.: Microwave-assisted synthesis of silver nanoparticles using sodium alginate and their antibacterial acivity. En: Colloids and Surfaces A: Physicochem. Eng. Aspects 444 (2014) (2014), p. 180–188. X Zhao, Q Li X Ma-F Quan C Geng Z H.: Microwave-assisted synthesis of silver nanoparticles using sodium alginate and their antibacterial activity. En: Colloids and Surfaces A: Physicochem 444 (2014) (2014), p. 180–188 Xihui Zhaoa, Qun Li Xiaomei Ma-Fengyu Quana Cunzhen Genga Zhenyu H.: Microwave-assisted synthesis of silver nanoparticles using sodium alginate and their antibacterial activity. 0927-7757 (2014), p. 180– 188 Youngmin Lee, Natalie A. Frey H. ; of the Catalytic Properties of Au- Fe3O4 Nanoparticles, Shouheng Sun . Synthetic T.: Metal Nanoparticles: Synthesis, Characterization, and Applications. 49 (2010), p. 1271 –1274 ZHANG, QINGNAN: Investigating Polymer Conformation in Poly (Ethylene Oxide) (PEO) Based Systems for Pharmaceutical Applications. (2011), p. 22 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/55774/1/1013589528.2015.pdf https://repositorio.unal.edu.co/bitstream/unal/55774/2/U.FT.09.006.004%20Licencia%20y%20autorizaci%c3%b3n%20para%20publicaci%c3%b3n%20de%20obras%20en%20el%20repositorio%20institucional%20UN%20v4%20%281%29.pdf https://repositorio.unal.edu.co/bitstream/unal/55774/3/1013589528.2015.pdf.jpg https://repositorio.unal.edu.co/bitstream/unal/55774/4/U.FT.09.006.004%20Licencia%20y%20autorizaci%c3%b3n%20para%20publicaci%c3%b3n%20de%20obras%20en%20el%20repositorio%20institucional%20UN%20v4%20%281%29.pdf.jpg |
bitstream.checksum.fl_str_mv |
4c973cf9d3bfdaaecca2cf12b96c37a4 10dd8ebe1c88bb5fdca3698b9eac5d9b 9492742bb9dedb0753572b0b0cb036f2 d3fb75bf6fa9f6d1bce44d5e057842f4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089852687220736 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Báez Cruz, Ricardo Eulisesb4a15e89-52ca-4210-ac4f-675e6795a38b3002019-07-02T11:28:05Z2019-07-02T11:28:05Z2015https://repositorio.unal.edu.co/handle/unal/55774http://bdigital.unal.edu.co/51237/En la presente investigación se realizó un estudio de la interacción de nanopartículas de oro y plata con DNA genómico por medio de la Espectroscopia Raman. Se realizaron tres ciclos de síntesis de nanopartículas de oro y plata por medio del método de radiación por microondas, las nanopartículas se caracterizaron usando microscopia electrónica de trasmisión (TEM) y absorción óptica (Uv-Visible). El DNA se extrajo del bazo de cerdo y se caracterizó por absorción óptica (Uv-Visible. Se encontró que las partículas sintetizadas estabilizaban en nanoesferas y adquieran un plasmon entre los 320 y 420 nm. Del DNA se encontró que estaba desproteinizado y con un PH estable. Las dos muestras fueron conjugas de dos formas, en la primera se combinaron en solución variando los ml de nanopartículas (oro y plata) y se realizaron las mediciones Raman entre 200 y 4000 cm−1. La segunda muestra se estudió en fibra (solido) agregando ml de nanopartículas (oro y plata) en un portaobjeto con la finalidad de secar las muestras a estos sustratos se les realizo igualmente pruebas de espectroscopia Raman 200 y 4000 cm−1. Se encontró que las NPs en solución ancladas al DNA no amplificaban la señal Raman del DNA debido al apantallamiento del citrato estabilizante envolate de las nanopartículas de oro. En contraposición, las nanopartículas de plata en solución amplificaron la señal Raman de la beses nitrógenos de DNA. Respecto a las muestras solidas tantas las nanopartículas de oro y plata realizaron amplificación del %100 de las bases nitrogenadas de DNA (Texto tomado de la fuente)Abstract : In this research a study of the interaction of nanoparticles of gold and silver with genomic DNA by means of Raman spectroscopy was performed. Three cycles of synthesis of nanoparticles of gold and silver by the method of microwave radiation were performed, the nanoparticles were characterized using transmission electron microscopy (TEM) and optical absorption (UV-visible). The DNA was extracted from pig spleen and was characterized by optical absorption (UV-Vis. It was found that the synthesized particles stabilized in nanospheres and purchase a plasmon between 320 and 420 nm. The DNA was found to be deproteinized and a PH stable. The two samples were conjugas in two ways, in the first solution were combined in varying ml nanoparticles (gold and silver) and Raman measurements between 200 and 4000 cm−1 were performed. The second sample was studied fiber (solid) was added ml of nanoparticles (gold and silver) on a slide with the aim of drying the samples at these substrates were subjected to Raman spectroscopy testing igualemnte 200 and 4000 cm−1. It was found that NPs DNA in solution anchored not amplify the Raman signal due to shielding DNA citrate envolate stabilizing the gold nanoparticles. In contrast, the silver nanoparticles in solution Raman amplified signal DNA nitrogenous base. Regarding the many samples solid gold nanoparticles and silver amplification performed % 100 of the nitrogenous bases of DNAMaestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Manizales Facultad de Ciencias Exactas y Naturales Departamento de Física y QuímicaDepartamento de Física y QuímicaLa cromatina durante el ciclo celular.A Khan, S Alrokayan M Alsalhi M Alhoshan A S.:B, Angela S. C.: ACOPLAMIENTO DE PLASMONES LOCALIZADOS EN NANOSISTEMAS. 56 (2) (2010), p. 147–154B, Angela S. C.: ACOPLAMIENTO DE PLASMONES LOCALIZADOS EN NANOSISTEMAS. XXXVI (2012), p. 138Barrio, Justo V.: Sintesis de nanoparticulas de oro y plata y estudio de su deposicion sobre nanoestructuras de base silicea. (2012), p. 2FERREIRA, SZPINIAC Beatriz; GRASSI E.: Manual de Genetica.Gonzalez, Edgar E.: La nueva era de los nanomateriales. 1 (2013), p. 35–45Luis, José: ADN: Estructura molecular.N, Raul: Biologia Moleculas Antes y despues de la doble helice.O, Nestor: ADN:una molecula maravillosa.y Santiago Sanchez-Cortes, Jose Vicente Garcia-Ramos: Espectroscopía vibracional sobre nanoestructuras metálicas (SERS y SEIR): nuevos sustratos y aplicaciones. 39 (2) (2006), p. 147–154Santillan, Jesica Maria J.: Estudios de las propiedades opticas de materiales nanoestructurados y aplicaciones. (2013), p. 11–24Sinencio., V Altuzar. C Mendoza Barrera. ML Munoz. JG Mendoza Alvarezy. F S.: Analisis cuantitativo de interacciones moleculares proteina proteina mediante la combinacion de microarreglos y un lector optico basado en el fenomeno de resonancia de plasmones superficiales. 36 (138) (2012), p. 15–24Solorzano, Daniel M.: Determinacion de tamanos de nanoparticulas metalicas mediante tecnicas espectroscopicas y polarimetricas. (2012), p. 13–18Tognalli, Nicolas G.: Nanoestructuras metalicas para espectroscopia SERS de sistemas biomimeticos y de sensado. (2008), p. 48A. Serrano, V. Collado J. Rubio-Zuazo C. Monton G. ; García, M. A.: Simultaneous Surface Plasmon Resonance and X-ray Absorption Spectroscopy.Angshuman Pal, Surekha D.: Microwave-assisted synthesis of silver nanoparticles using ethanol as a reducing agent. En: Materials Chemistry and Physics 114 2009() (2009), p. 530–532Anju K. Augustine, M. K.: Rapid synthesize of gold nanoparticles by microwave irradiation method and its application as an optical limiting material. 125 (2014) (2014), p. 6696–6699Aoune Barhoumi, Felicia T. ; Halas, Naomi J.: Surface-Enhanced Raman Spectroscopy of DNA. 130 (2008), p. 5523–5529Atwater, Harry A.: The Promise of PLASMONICS.B. Aswathy, G.S. Avadhani R. Aswathy S. Suganthi G. S.: Microwave assisted one pot synthesis of biocompatible gold nanoparticles in Triton X-100 aqueous micellar medium using tryptophan as reducing agent. 0928-4931 (2015), p. 298–309C. Otto, F. F. M.: Surface enhanced Raman spectroscopy of DNA bases. 17 (2005), p. 289–298Catalina David, Hong Shen Timothee T. ; de la Chapelle., Marc L.: SERS detection of biomolecules using lithographed nanoparticles towards a reproducible SERS biosensor. 21 (2010), p. 475501 (6pp)Cristina M. Muntean, Carmen Tripon Ana Coste Adela H.: Surface-enhanced Raman spectroscopy of genomic DNA fromin vitro grown tomato (Lycopersicon esculentumMill.) cultivars before and after plant cryopreservation. 22 (2006), p. 1735–1741D. A. Guzman-Embus, M. Orrego C. ; Vargas-Hernandez, C.: Genomic DNA characterization of pork spleen by Raman spectroscopy. En: J. Appl.Polym. Sci. 114 (2013), p. 1–8D. Yamini a, J. Kumar b V. R.: Raman scattering studies on PEG functionalized hydroxyapatite nanoparticles. 117 (2014), p. 299–303E Sassaroli, K C P L. ; O’Neill, B E.: Radio frequency absorption in gold nanoparticle suspensions: a phenomenological study. 45 (2012) 075303 (2012), p. 1–15Garcia, M A.: surface plasmons in metallic nanoparticles : fundamentals and applications. 44 (2011), p. 283001Garc´ıa-Etxarri, Aitzol ; Jennifer A. Dionne, Surface-enhanced circular dichroisspectroscopymediated by nonchiral n.: Metal Nanoparticles: Synthesis, Characterization, and Applications. 87 (2013), p. 235409Ghodselahia, M.A. Vesaghi B. Ranjba A. Azizi H. M.: Fabrication Localized Surface Plasmon Resonance sensor chip of gold nanoparticles and detection lipase–osmolytes interaction. 314 (2014), p. 138–144Goia, D V. ; E, Matijevic: Metal Nanoparticles: Synthesis, Characterization, and Applications. (1998), p. 221203Gonc¸alves, Manuel R.: Plasmonic nanoparticles: fabrication, simulation and experiments. 47 (2014) 213001 (2014), p. 1–45Gutiérrez-Wing, C. ; Esparza, R. ; Vargas-Hern´andez, C. ; Fern´andez Garc´ıa, M. E. ; Jos´e-Yacam´an, M.: Microwave-assisted synthesis of gold nanoparticles self-assembled into self-supported superstructures. En: Nanoscale 4 (2012), p. 2281–2287He Xu, Liping Zeng Yuezhong Xian Guoyue Shi Litong J.: Microwave-enhanced voltammetric detection of copper(II) at gold nanoparticles-modified platinum microelectrodes. 0022-0728 (2009), p. 53–59He Xu, Sujie Xing Guoyue Shi Yuezhong Xian Litong J.: Microwave-radiated synthesis of gold nanoparticles/carbon nanotubes composites and its application to voltammetric detection of trace mercury(II). 1388-2481 (2008), p. 1839–1843Hengbo Yin, Tetsushi Yamamoto Yuji Wada Shozo Y.: Large-scale and size-controlled synthesis of silver nanoparticles under microwave irradiation. En: Materials Chemistry and Physics 83 (2004) (2004), p. 66–70Hongjin Jiang, Zhuqing Zhang Suresh Pothukuchi C.P. W.: Variable frequency microwave synthesis of silver nanoparticles. En: Journal of Nanoparticle Research 8(2006) (2006), p. 117–124Hongwei Liao, Collen L N. ; Hafner, Jason H.: Biomedical applications of plasmon resonant metal nanoparticles. 2 (2006), p. 201–208J Binoy, V S Jayakumar O F N. ; Aubard., J: DFT based relaxed PES scan studies and SERS of anti cancer drug, Combretastatin A-4. 2 (2005), p. 544–550Jhnson, P.B. ; Christy, R. W.: Optical Constants of the Noble Metals. 6 (1972), p. 4370–4739JSujata Patra, Ayan Kumar Barui Anirban Gangulya Bojja Sreedhar Chitta Ranjan P.: Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. 0928-4931 (2015), p. 298–309Julian Restrepo, M. Isabel Burguete Eduardo Garc´ıa-Verdugo Santiago V. L.: Gold nanoparticles immobilized onto supported ionic liquid-likephases for microwave phenylethanol oxidation in water. 0920-5861 (2015), p. 1–8K. Krishnan, F.A.Sc: Raman and infrared spectra of ethylene glycol. (1996), p. 111–122K. Uchida, D. Kikuchi S. Ito Z. Qiu S. M. ; Saitoh, E.: Generation of spin currents by surface plasmon resonance. DOI: 10.1038/ncomms6910 (2015), p. 1–8Kappeler, R.: Engineering the Field Enhancement at the apex of a Structured Noble Metal.Kazuo Nakamoto, Gary D. S.: DRUG–DNA INTERACTIONS STRUCTURES AND SPECTRA.L, Fedlheim D. ; A, Foss C.: Metal Nanoparticles: Synthesis, Characterization, and Applications. 314 (2001)Long, Derek A. ; Long, DA: The Raman effect: a unified treatment of the theory of Raman scattering by molecules. Vol. 8. Wiley Chichester, 2002Lu Qiua, Peng Liu Li Zhao Meiqiong Wena Haiyan Yang Shuguo Fan Linzong Z.: Analysis of plant genomic DNAs and the genetic relationship among plants by using surface-enhanced Raman spectroscopy. 72 (2014), p. 134–141M, J J.: Green synthesis and applications of Au–Ag bimetallic nanoparticles. En: D Philip,Spectrochimica acta Part A: Molecular and Biomolecular and Biomolecular Spectroscopy137 137 (2015) (2015), p. 185–192M A Molina, M C Miras D L. ; Barbero, C A.: Nanocomposite synthesis by absorption of nanoparticles into macroporous hydrogels. Building a chemomechanical actuator driven by electromagnetic radiation. 245504 (2011), p. 1–8Mie, Gustav: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. 25 (3) (1908), p. 377–445Namrata Jayanth, Srinivas R. ; Puranik, Mrinalini: Solution Structure of the DNA Damage Lesion 8-Oxoguanosine from Ultraviolet Resonance Raman Spectroscopy. 113 (2009), p. 1459–1471Oldenburg, Steven J.: Light scattering from gold nanoshells. Rice University, 2000Oliva M. Primera-Pedrozoa, Jorge Castellanos a Hilsamar Felix-Riveraa Oscar Resto b Samuel P. Hern´andez-Riveraa: Increasing surface enhanced Raman spectroscopy effect of RNA and DNA components by changing the pH of silver colloidal suspensions. 87 (2012), p. 77–85P Dou, W Wang A Sarreshteh X Qiao X Qiu J C.: One-step microwave-assisted synthesis of Ag/ZnO/graphene nanocomposites with enhanced photocatalytic activity. En: Journal of Photochemistry and Photobiology A:Chemistry 302 (2015) (2015), p. 17–22Perkampus, Heinz-Helmut: UV-VIS Spectroscopy and its Applications. Springer Science & Business Media, 2013Ponkumar, P. D. ; Iyandurai, N.: Structural Analysis of DNA Interactions with Magnesium Ion Studied by Raman Spectroscopy. 3 (2011), p. 135–140Resham Bhattacharya, Priyabrata M.: Biological properties of naked metal nanoparticles. 60 (2008), p. 1289–1306Resham Bhattacharya, Priyabrata M.: Biological properties of naked metal nanoparticles. 60 (2008), p. 1289–1306Rolf Dootz, Binyang Du Stephan Herminghaus Thomas P.: Raman and Surface Enhanced Raman Microscopy of Microstructured Polyethylenimine/DNA Multilayers. 22 (2006), p. 1735–1741S C. Motshekga, M S. Onyango M N.B. M.: Microwave-assisted synthesis, characterization and antibacterial activity of Ag/ZnO nanoparticles supported bentonite clay. En: Journal of Hazardous Materials 262 (2013) (2013), p. 439– 446.Samar Najjar, Le onard Schue Yannick Coffinier Sabine Szunerits Rabah Boukherroub Laurent Servant Vincent Rodriguez Sebastien B.: Tip-Enhanced Raman Spectroscopy of Combed Double-Stranded DNA Bundles. 118 (2013), p. 1174–1181S.R. Bhuvanasree, Anantanarayanan Rajaram Rama R.: Rapid synthesis of gold nanoparticles with Cissus quadrangularis extract using microwave irradiation. 106 (2013) (2013), p. 190–196Szymanski, Herman A.: Raman spectroscopy: theory and practice. Springer Science & Business Media, 2012T. Ghodselahia, M.A. Vesaghi B. Ranjba A. Azizi H. M.: Fabrication Localized Surface Plasmon Resonance sensor chip of gold nanoparticles and detection lipase–osmolytes interaction. 314 (2014), p. 138–144Ulla Jakobsen, Stefan V.: DNA-Controlled Assembly of Soft Nanoparticles. 9 (2008), p. 10462–10463Vargas-Hernandez, C. ; Mariscal, M. M. ; Esparza, R. ; Yacaman, M. J.: A synthesis route of gold nanoparticles without using a reducing agent. En: Applied Physics Letters 96 (2010), Nr. 21, p. 1–4. – ISSN 00036951Jose de la Venta, Enrique Fernández Pinel Miguel A. García Cesar de Julián Fernández Patricia Crespo Paolo Mazzoldi Giacomo R. ; Hernando, Antonio: Magnetism in Polymers with Embedded Gold Nanoparticles. 19 (2007), p. 875–877Vo Ke Thanh Ngo, Trong Phat Huynh Nguyen Nguyen Pham Tran Quang Vinh L. ; Huynh, Thanh D.: Preparation of gold nanoparticles by microwave heating and application of spectroscopy to study conjugate of gold nanoparticles with antibody E. coli O157:H7. 6 (2015) 035015 (2015), p. 1–6Williams, David B. ; Carter, C B.: The transmission electron microscope. En: Transmission electron microscopy. Springer, 1996, p. 3–17Won Joon Cho, Suenghoon Han Sung-Min Lee Taewook Kang Kun-Hong Lee Kyung Cheol C. ; Kim, Jin K.: Plasmonic colloidal nanoparticles with open eccentric cavities via acid-induced chemical transformation. e167 (2015), p. 1–7X Zhao, Q Li X Ma-F Quan C Geng Z H.: Microwave-assisted synthesis of silver nanoparticles using sodium alginate and their antibacterial acivity. En: Colloids and Surfaces A: Physicochem. Eng. Aspects 444 (2014) (2014), p. 180–188.X Zhao, Q Li X Ma-F Quan C Geng Z H.: Microwave-assisted synthesis of silver nanoparticles using sodium alginate and their antibacterial activity. En: Colloids and Surfaces A: Physicochem 444 (2014) (2014), p. 180–188Xihui Zhaoa, Qun Li Xiaomei Ma-Fengyu Quana Cunzhen Genga Zhenyu H.: Microwave-assisted synthesis of silver nanoparticles using sodium alginate and their antibacterial activity. 0927-7757 (2014), p. 180– 188Youngmin Lee, Natalie A. Frey H. ; of the Catalytic Properties of Au- Fe3O4 Nanoparticles, Shouheng Sun . Synthetic T.: Metal Nanoparticles: Synthesis, Characterization, and Applications. 49 (2010), p. 1271 –1274ZHANG, QINGNAN: Investigating Polymer Conformation in Poly (Ethylene Oxide) (PEO) Based Systems for Pharmaceutical Applications. (2011), p. 225 Ciencias naturales y matemáticas / Science53 Física / PhysicsNanopartículas oro y plataRamanDNANanoparticles Au y AgEstudio por espectroscopia SERS de ADN genómico en interacción con nanoparticulas de Au y Ag a través de plasmones localizadosSERS spectroscopic study of genomic DNA interacting with Au and Ag nanoparticles through localized plasmonsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMORIGINAL1013589528.2015.pdf1013589528.2015.pdfTesis de Maestría en Ciencias - Físicaapplication/pdf36556833https://repositorio.unal.edu.co/bitstream/unal/55774/1/1013589528.2015.pdf4c973cf9d3bfdaaecca2cf12b96c37a4MD51U.FT.09.006.004 Licencia y autorización para publicación de obras en el repositorio institucional UN v4 (1).pdfU.FT.09.006.004 Licencia y autorización para publicación de obras en el repositorio institucional UN v4 (1).pdfapplication/pdf221730https://repositorio.unal.edu.co/bitstream/unal/55774/2/U.FT.09.006.004%20Licencia%20y%20autorizaci%c3%b3n%20para%20publicaci%c3%b3n%20de%20obras%20en%20el%20repositorio%20institucional%20UN%20v4%20%281%29.pdf10dd8ebe1c88bb5fdca3698b9eac5d9bMD52THUMBNAIL1013589528.2015.pdf.jpg1013589528.2015.pdf.jpgGenerated Thumbnailimage/jpeg5519https://repositorio.unal.edu.co/bitstream/unal/55774/3/1013589528.2015.pdf.jpg9492742bb9dedb0753572b0b0cb036f2MD53U.FT.09.006.004 Licencia y autorización para publicación de obras en el repositorio institucional UN v4 (1).pdf.jpgU.FT.09.006.004 Licencia y autorización para publicación de obras en el repositorio institucional UN v4 (1).pdf.jpgGenerated Thumbnailimage/jpeg5750https://repositorio.unal.edu.co/bitstream/unal/55774/4/U.FT.09.006.004%20Licencia%20y%20autorizaci%c3%b3n%20para%20publicaci%c3%b3n%20de%20obras%20en%20el%20repositorio%20institucional%20UN%20v4%20%281%29.pdf.jpgd3fb75bf6fa9f6d1bce44d5e057842f4MD54unal/55774oai:repositorio.unal.edu.co:unal/557742023-03-14 23:08:58.701Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |