Climatología del transporte potencial de sedimentos costeros inducido por oleaje en la Isla San Andrés

ilustraciones, gráficas, tablas

Autores:
Olarte Cáceres, Paloma Marina
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/77571
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/77571
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
Oleaje
Transporte potencial longitudinal de sedimentos
San Andres Isla
Eventos extremos
Erosion costera
Waves
Potential longshore sediment transport
San Andres Island
Extreme events
Costal erosion
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_7bdbaad958f4bb5cb917ae1537ea4eba
oai_identifier_str oai:repositorio.unal.edu.co:unal/77571
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Climatología del transporte potencial de sedimentos costeros inducido por oleaje en la Isla San Andrés
dc.title.translated.eng.fl_str_mv Climatology of the potential coastal sediment transport induced by waves in San Andres island
title Climatología del transporte potencial de sedimentos costeros inducido por oleaje en la Isla San Andrés
spellingShingle Climatología del transporte potencial de sedimentos costeros inducido por oleaje en la Isla San Andrés
620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
Oleaje
Transporte potencial longitudinal de sedimentos
San Andres Isla
Eventos extremos
Erosion costera
Waves
Potential longshore sediment transport
San Andres Island
Extreme events
Costal erosion
title_short Climatología del transporte potencial de sedimentos costeros inducido por oleaje en la Isla San Andrés
title_full Climatología del transporte potencial de sedimentos costeros inducido por oleaje en la Isla San Andrés
title_fullStr Climatología del transporte potencial de sedimentos costeros inducido por oleaje en la Isla San Andrés
title_full_unstemmed Climatología del transporte potencial de sedimentos costeros inducido por oleaje en la Isla San Andrés
title_sort Climatología del transporte potencial de sedimentos costeros inducido por oleaje en la Isla San Andrés
dc.creator.fl_str_mv Olarte Cáceres, Paloma Marina
dc.contributor.advisor.spa.fl_str_mv Bernal Franco, Gladys Rocio
Osorio Arias, Andrés Fernando
dc.contributor.author.spa.fl_str_mv Olarte Cáceres, Paloma Marina
dc.contributor.researchgroup.spa.fl_str_mv OCEANICOS - Grupo de Oceanografía e Ingeniería Costera de la Universidad Nacional
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
topic 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
Oleaje
Transporte potencial longitudinal de sedimentos
San Andres Isla
Eventos extremos
Erosion costera
Waves
Potential longshore sediment transport
San Andres Island
Extreme events
Costal erosion
dc.subject.proposal.spa.fl_str_mv Oleaje
Transporte potencial longitudinal de sedimentos
San Andres Isla
Eventos extremos
Erosion costera
dc.subject.proposal.eng.fl_str_mv Waves
Potential longshore sediment transport
San Andres Island
Extreme events
Costal erosion
description ilustraciones, gráficas, tablas
publishDate 2019
dc.date.issued.spa.fl_str_mv 2019-07-02
dc.date.accessioned.spa.fl_str_mv 2020-05-29T17:06:35Z
dc.date.available.spa.fl_str_mv 2020-05-29T17:06:35Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/77571
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/77571
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Aagaard, T., y Kroon, A. (2017). Sediment transport under storm conditions on sandy beaches. Coastal Storms: Processes and Impacts, 45{63
Aagaard, T., y Vinther, N. (2008). Cross-shore currents in the surf zone: Rips or undertow? Journal of Coastal Research, 561{570.
Andrade-Amaya, C. (2012). Oceanografía del archipiélago de San Andrés, Providencia y Santa Catalina. Atlas de la Reserva de Biósfera Seaflower. Archipiélago de San Andrés, Providencia y Santa Catalina, 28 .
Atkins, R. (2005). Sediment suspension by waves. Encyclopedia of coastal science, 850{853.
Bailard. (1981). An energetics total load sediment transport model for a plane sloping beach. Journal of Geophysical Research: Oceans, 86 (C11), 10938{10954.
Bailard, J. (1984). A simpli ed model for longshore sediment transport. En Proceedings. 19th international conference on coastal engineering (pp. 1454{1470).
BARUA, D. K. (2015). Longshore sand transport|an examination of methods and associated uncertainties. En The proceedings of the coastal sediments 2015. World Scienti c.
Bayram, A., Larson, M., y Hanson, H. (2007). A new formula for the total longshore sediment transport rate. Coastal Engineering, 54 (9), 700{710.
Bijker, E. W. (1967). Some considerations about scales for coastal models with movable bed.
Bijker, E. W. (1971). Longshore transport computations. Journal of the Waterways, Harbors and Coastal Engineering Division, 97 (4), 687{701.
Booij, N., Ris, R. C., y Holthuijsen, L. H. (1999). A third-generation wave model for coastal regions: 1. model description and validation. Journal of geophysical research: Oceans, 104 (C4), 7649{7666.
Bowen, A. J. (1969). The generation of longshore currents on a plane beach. J. Mar. Res., 27 (2), 206{215.
Buckley, M., Lowe, R., y Hansen, J. (2014). Evaluation of nearshore wave models in steep reef environments. Ocean Dynamics, 64 (6), 47{862.
Cartier, A., Larroud e, P., y H equette, A. (2013). Longshore sediment transport measurements on sandy macrotidal beaches compared with sediment transport formulae. En Sediment transport processes and their modelling applications. IntechOpen.
Castaño-Isaza, J., Newball, R., Roach, B., y Lau, W. W. (2014). Valuing beaches to develop payment for ecosystem services schemes in Colombia's Sea Flower marine protected area. Ecosystem services, 11 , 22{31.
CERC. (1984). Shore protection manual, vols. i and ii. Coastal Engineering Research Center, USACE.
Christensen, E. D., Walstra, D.-J., y Emerat, N. (2002). Vertical variation of the flow across the surf zone. Coastal Engineering, 45 (3-4), 169{198.
Dally, W. R. (2005). Surf zone processes. Encyclopedia of coastal science, 929{935.
Davidson-Arnott, R. (2010). Introduction to coastal processes and geomorphology. Cambridge University Press.
Davis, R. A., y FitzGerald, D. M. (2009). Beaches and coasts. John Wiley & Sons.
del Valle, R., Medina, R., y Losada, M. A. (1993). Dependence of coeficient k on grain size. Journal of waterway, port, coastal, and ocean engineering, 119 (5), 568{574.
Devis-Morales, A., Montoya-Sánchez, R., Bernal, G., y Osorio, A. (2017). Assessment of extreme wind and waves in the Colombian Caribbean Sea for offshore applications. Applied Ocean Research, 69 , 10{26.
Díaz, J., Barrios, L., Cendales, M., Garzón-Ferreira, J., Geister, J., López-Victoria, M., . . .others (2000). Areas Coralinas de Colombia [Coral areas in Colombia]. Santa Marta, Colombia: Instituto de Investigaciones Marinas y Costeras \José Benito Vives de Andreis"(Invemar), 17{167.
Díaz, M., Manuel, J., Díaz-Pulido, G., Garzón-Ferreira, J., Geister, J., Sánchez, J. A., y Zea, S. (1996). Atlas de los arrecifes coralinos del Caribe colombiano: I. complejos arrecifales oceánicos.
Esteves, L. S., Williams, J. J., y Lisniowski, M. A. (2009). Measuring and modelling longshore sediment transport. Estuarine, Coastal and Shelf Science, 83 (1), 47{59
Fern andez-Fern andez, S., Baptista, P., Martins, V. A., Silva, P. A., Abreu, T., Pais-Barbosa, J., . . . others (2015). Longshore transport estimation on O r Beach in Northwest Portugal: Sand-tracer experiment. Journal of Waterway, Port, Coastal, and Ocean Engineering, 142 (2), 04015017.
Filipot, J.-F., y Cheung, K. F. (2012). Spectral wave modeling in fringing reef environments. Coastal Engineering, 67 , 67{79.
Gamboa, L., y Posada, B. O. (2012). Geolog a del archipi elago de San Andr es, Providencia y Santa Catalina. Atlas de la Reserva de Bi osfera Sea Flower: archipi elago de San Andr es, Providencia y Santa Catalina, 36{46.
Geister, G., J. Gorin. (2007). Evolution d un archipel oc eanique des Cara bes (San Andr es et Providencia, Colombie). 3 eme Cycle Romand en Sciences de la Terre, Cours de terrain du 14 au 29 septembre 2007 .
Geister, J. (1992). Modern reef development and Cenozoic evolution of an oceanic island/reef complex: Isla de Providencia (Western Caribbean Sea, Colombia). Facies, 27 (1), 1.
Gonz alez, y Hurtado, G. (2012). Caracterizaci on clim atica del archipi elago de San Andr es y Providencia. pp (48- 52) en CORALINA- INVEMAR, 2012. G omez{L opez, D.I., C. Segura Quintero, P. C. Sierra- Correa y J. Garay- Tinoco (Eds). Atlas de la Reserva de Biosfera Sea Flower. Archipi elago de San Andr es Providencia y Santa Catalina. Instituto de Investigaciones Marinas y Costeras \Jos e Benito Vives D Andr eis"{INVEMAR y Corporaci on para el desarrollo Sostenible del Archipi elago de San Andr es, Providencia y Santa Catalina { CORALINA. Serie de Publicaciones Especiales de INVEMAR 28. Santa Marta-Colombia, 28 , 180 p.
Gowthaman, R., Kumar, V. S., Dwarakish, G. S., Shanas, P., Jena, B. K., y Singh, J. (2015). Nearshore waves and longshore sediment transport along Rameshwaram Island o the east coast of India. International Journal of Naval Architecture and Ocean Engineering, 7 (6), 939{950.
Grant, U. (1948). Influence of the water table on beach aggradation and degradation. publisher not identi fied.
Hearn, C. J. (2008). The dynamics of coastal models. Cambridge University Press.
Hoeke, R., Storlazzi, C., y Ridd, P. (2011). Hydrodynamics of a bathymetrically complex fringing coral reef embayment: Wave climate, in situ observations, and wave prediction. Journal of Geophysical Research: Oceans, 116 (C4).
Hoeke, R. K., Storlazzi, C. D., y Ridd, P. V. (2013). Drivers of circulation in a fringing coral reef embayment: A wave- flow coupled numerical modeling study of Hanalei Bay, Hawaii. Continental Shelf Research, 58 , 79{95.
Holland, G. J. (1980). An analytic model of the wind and pressure pro les in hurricanes. Monthly weather review, 108 (8), 1212{1218.
Inch, K. (2014). Surf zone hydrodynamics: Measuring waves and currents. Geomorphological Techniques, 3 , 1{13.
Inman, D., y Bagnold, R. (1963). Littoral processes. The Sea: Ideas and Observations, vol. 3 , 529{533.
INVEMAR-GEO. (2015). Erosi on costera en la isla de San Andr es. informe t ecnico nal. Actividad GEO - BPIN INVEMAR. Santa Marta, 71 p.
Kamphuis, J., y Readshaw, J. (1978). A model study of alongshore sediment transport rat. Coastal Engineering Proceedings, 1 (16).
Kamphuis, J. W. (1991). Alongshore sediment transport rate. Journal of Waterway, Port, Coastal, and Ocean Engineering, 117 (6), 624{640.
Komar, P. D. (1979). Beach-slope dependence of longshore currents. Journal of the Water- way, Port, Coastal and Ocean Division, 105 (4), 460{464.
Komar, P. D., y Inman, D. L. (1970). Longshore sand transport on beaches. Journal of geophysical research, 75 (30), 5914{5927.
Kumar, V. S., Shanas, P., Dora, G. U., Glejin, J., y Philip, S. (2014). Longshore sediment transport in the surf zone based on di erent formulae: a case study along the central west coast of India. Journal of coastal conservation, 21 (1), 1{13.
Larson, M., Hanson, H., y Kraus, N. C. (1987). Analytical solutions of the one-line model of shoreline change. (Inf. T ec.). COASTAL ENGINEERING RESEARCH CENTER VICKSBURG MS.
Lee, J., Liu, J., y Teng, M. (2006). A numerical study on nearshore sediment transport around Oahu Island in Hawaii. Journal of Coastal research, 1700{1705.
List, J. (2005). Surf zone processes. Encyclopedia of coastal science, 846{850.
Longuet-Higgins, M. S. (1970a). Longshore currents generated by obliquely incident sea waves: 1. Journal of geophysical research, 75 (33), 6778{6789.
Longuet-Higgins, M. S. (1970b). Longshore currents generated by obliquely incident sea waves: 2. Journal of geophysical research, 75 (33), 6778{6789.
Longuet-Higgins, M. S., y Stewart, R. (1964). Radiation stresses in water waves; a physical discussion, with applications. En Deep sea research and oceanographic abstracts (Vol. 11, pp. 529{562).
Lowe, R. J., Falter, J. L., Monismith, S. G., y Atkinson, M. J. (2009). A numerical study of circulation in a coastal reef-lagoon system. Journal of Geophysical Research: Oceans, 114 (C6).
Madsen, O. S., Poon, Y.-K., y Graber, H. C. (1988). Spectral wave attenuation by bottom friction: Theory. Coastal Engineering Proceedings, 1 (21).
Mart n-Prieto, J. A., Roig-Munar, F. X., Pons, G. X., Rodr guez-Perea, A., Alvarado, M., y Mir-Gual, M. (2013). Description of erosion processes in Spratt Bight (San Andr es Island, Colombia) using sequential end point rates (epr). Journal of Coastal Research, 65 (sp1), 997{1003.
MAVDT, V. y. D. T., Ministerio de Ambiente. (2004). Agenda ambiental de San Andr es Isla 2004-2020.
Meisel-Roca, A., Aguilera-D az, M. M., Yabrudy-Vega, J., y S anchez-Jabba, A. M. (2016). Econom a y medio ambiente del archipi elago de San Andr es, Providencia y Santa Catalina. Banco de la Rep ublica de Colombia.
Mesa, O., Poveda, G., y Carvajal, L. (1997). Introducci on al clima de Colombia [tesis].[ Medell n (Colombia)]: Facultad de Minas. Posgrado en Aprovechamiento de precursor hidr aulicos, Universidad Nacional de Colombia. Sede Medell n, 390.
Mil-Homens, J., Ranasinghe, R., de Vries, J. v. T., y Stive, M. (2013). Re-evaluation and improvement of three commonly used bulk longshore sediment transport formulas. Coastal Engineering, 75 , 29{39.
Ortiz-Royero, J., Otero, L., Restrepo, J., Ruiz, J., y Cadena, M. (2013). Cold fronts in the Colombian Caribbean sea and their relationship to extreme wave events. Natural Hazards and Earth System Sciences, 13 (11), 2797{2804.
Ortiz-Royero, J. C. (2012). Exposure of the Colombian Caribbean coast, including San Andr es Island, to tropical storms and hurricanes, 1900{2010. Natural hazards, 61 (2), 815{827.
Ortiz-Royero, J. C., Moreno, J. M. P., y Lizano, O. (2014). Evaluation of extreme waves associated with cyclonic activity on San Andr es island in the Caribbean sea since 1900. Journal of Coastal Research, 31 (3), 557{568.
Osorio, A. F., Montoya, R. D., Ortiz, J. C., y Pel aez, D. (2016). Construction of synthetic ocean wave series along the Colombian Caribbean Coast: A wave climate analysis. Applied Ocean Research, 56 , 119{131.
Othman, N., Wahab, A. K. A., y Jamal, M. H. (2014). E ects of seasonal variations on sandy beach groundwater table and swash zone sediment transport. Coastal Engineering Proceedings, 1 (34), 59.
Otvos, E. G. (1999). Rain-induced beach processes; landforms of ground water sapping and surface runo . Journal of Coastal Research, 1040{1054.
Perry, C. T., Kench, P. S., Smithers, S. G., Riegl, B., Yamano, H., y O'leary, M. J. (2011). Implications of reef ecosystem change for the stability and maintenance of coral reef islands. Global Change Biology, 17 (12), 3679{3696.
Posada, B., y Guzman, W. (2007). Diagnostico de la erosi on costera en las islas de San Andr es, Providencia y Santa Catalina.
Recomendaciones generales para el manejo y control de la erosi on. Investigaci on elaborada para CORALINA por el INVEMAR, seg un convenio, 10 , 2006.
Posada, B. O., Pineda, W. H., y Giraldo, D. F. M. (2011). Diagn ostico de la erosi on costera del territorio insular colombiano. INVEMAR.
Ramalho, R. S., Quartau, R., Trenhaile, A. S., Mitchell, N. C., Woodro e, C. D., y Avila, S. P. (2013). Coastal evolution on volcanic oceanic islands: A complex interplay between volcanism, erosion, sedimentation, sea-level change and biogenic production. Earth-Science Reviews, 127 , 140{170.
Roelvink, D., Reniers, A., Van Dongeren, A., De Vries, J. V. T., McCall, R., y Lescinski, J. (2009). Modelling storm impacts on beaches, dunes and barrier islands. Coastal engineering, 56 (11-12), 1133{1152.
Ruíz de Alegria-Arzaburu, A., Mari~no-Tapia, I., Enriquez, C., Silva, R., y González-Leija, M. (2013). The role of fringing coral reefs on beach morphodynamics. Geomorphology, 198 , 69{83.
Sánchez-Jabba, A. M. (2012). Manejo ambiental en Seaflower, Reserva de Biosfera en el Archipiélago de San Andrés, Providencia y Santa Catalina. Documentos de Trabajo Sobre Econom a Regional y Urbana; No. 176 .
Schoonees, J., y Theron, A. (1993). Review of the eld-data base for longshore sediment transport. Coastal Engineering, 19 (1-2), 1{25.
Schoonees, J., y Theron, A. (1994). Accuracy and applicability of the spm longshore transport formula. Coastal Engineering Proceedings, 1 (24).
Schoonees, J., y Theron, A. (1996). Improvement of the most accurate longshore transport formula. 25th icce orlando, usa.
Seymore, R. (2005). Crosshore sediment transport. Encyclopedia of coastal science, 352{353.
Siegle, E., y Costa, M. B. (2017). Nearshore wave power increase on reef-shaped coasts due to sea-level rise. Earth's Future, 5 (10), 1054{1065.
Smith, E. R., Wang, P., Ebersole, B. A., y Zhang, J. (2009). Dependence of total longshore sediment transport rates on incident wave parameters and breaker type. Journal of Coastal Research, 675{683.
Sonu, C. J. (1972). Field observation of nearshore circulation and meandering currents. Journal of Geophysical Research, 77 (18), 3232{3247.
Storlazzi, C., Elias, E., Field, M., y Presto, M. (2011). Numerical modeling of the impact of sea-level rise on fringing coral reef hydrodynamics and sediment transport. Coral Reefs, 30 (1), 83{96.
Storlazzi, C. D., Elias, E. P., y Berkowitz, P. (2015). Many atolls may be uninhabitable within decades due to climate change. Scienti c reports, 5 , 14546.
Tarbuck, E. J., Lutgens, F. K., Tasa, D., y Linneman, S. (2017). Earth: an introduction to physical geology (12.a ed.). Pearson/Prentice Hall Upper Saddle River.
Theuerkauf, E. J., Rodriguez, A. B., Fegley, S. R., y Luettich, R. A. (2014). Sea level anomalies exacerbate beach erosion. Geophysical Research Letters, 41 (14), 5139{5147.
Thomas, Y.-F., Nicolae-Lerma, A., y Posada, B. O. P. (2012). Atlas climatol ogico del mar Caribe colombiano. INVEMAR-Instituto de Investigaciones Marinas y Costeras.
USACE. (1984). Coastal engineering manual. Printing O ce, Washington, DC, USA, vols. USACE. (2002). Coastal engineering manual. Engineer manual 1110{2-1100 .
Van Rijn, L. C. (2014). A simple general expression for longshore transport of sand, gravel and shingle. Coastal Engineering, 90 , 23{39.
Van Rijn, L. C., y cols. (1993). Principles of sediment transport in rivers, estuaries and coastal seas (Vol. 1006). Aqua publications Amsterdam.
Vargas, G. (2004). Geolog a y aspectos geogr a cos de la Isla de San Andr es. Geolog a Colombiana, 29 , 73{89.
Wang, P., Ebersole, B. A., y Smith, E. R. (2002). Longshore sand transport-initial results from large-scale sediment transport facility (Inf. T ec.). Engineer Research And Development Center Vicksburg Ms Coastal And Hydraulics Lab.
Watts, G. M. (1953). A study of sand movement at South Lake Worth Inlet Florida (Inf. T ec.). Coastal Engineering Research Center Vicksburg MS.
Williams, J. J., y Esteves, L. S. (2005). Predicting shoreline changes: A case study in Rio Grande do Sul, Brazil. Geophysical Research Letters, 32 (11).
Zijlema, M., Stelling, G., y Smit, P. (2011). Swash: An operational public domain code for simulating wave elds and rapidly varied ows in coastal waters. Coastal Engineering, 58 (10), 992{1012.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.spa.spa.fl_str_mv Acceso abierto
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
Acceso abierto
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 113 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.region.spa.fl_str_mv San Andrés Isla, Colombia
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Recursos Hidráulicos
dc.publisher.department.spa.fl_str_mv Departamento de Geociencias y Medo Ambiente
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/77571/5/1026270340.2020.pdf
https://repositorio.unal.edu.co/bitstream/unal/77571/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/77571/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/77571/6/1026270340.2020.pdf.jpg
bitstream.checksum.fl_str_mv b2a7c962e0d1d2f3cc3bcc21075bbbd0
6f3f13b02594d02ad110b3ad534cd5df
217700a34da79ed616c2feb68d4c5e06
4e398e65c05ce8ea883bf6d541e469df
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089331165364224
spelling Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Bernal Franco, Gladys Rocio3bd413ee-42b1-4391-9908-ad25bbeef6d4Osorio Arias, Andrés Fernando51c751e0-bf37-4a8f-b27f-f4ba5804adc6Olarte Cáceres, Paloma Marinaa310a354-f828-4bb9-9925-e506b3d91b09OCEANICOS - Grupo de Oceanografía e Ingeniería Costera de la Universidad Nacional2020-05-29T17:06:35Z2020-05-29T17:06:35Z2019-07-02https://repositorio.unal.edu.co/handle/unal/77571Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasLas islas oceánicas arrecifales son ambientes marinos considerados altamente vulnerables a las amenazas del cambio climático, en especial la erosión costera. Para entender esta problemática es preciso considerar que la erosión costera es un proceso dinámico que opera en diferentes escalas temporales. En consecuencia, las aproximaciones deben ser múltiples, especialmente en ambientes arrecifales, donde la compleja interacción entre geomorfología, disponibilidad de sedimentos y clima marítimo determinan las variaciones morfológicas de la zona costera. Uno de los factores determinantes de la erosión costera son los gradientes espaciales en la tasa de transporte longitudinal de sedimentos. Por lo tanto, en esta investigación se propone una metodología integrada para estimar la tasa de transporte potencial longitudinal de sedimentos (TPLS) alrededor de una isla oceánica arrecifal, considerando procesos a nivel estacional, interanual y eventos extremos. La metodología fue implementada en la isla de San Andrés, en el Caribe colombiano. A partir de información de oleaje del reanálisis ERA-Interim, el modelo numérico SWAN fue empleado para simular la propagación del oleaje desde aguas abiertas hasta la zona litoral. Los resultados del modelo fueron validados con mediciones de campo. La tasa de TPLS fue estimada haciendo uso de formulaciones empíricas, y posteriormente empleada para inferir condiciones de erosión y depositación que fueron corroboradas con imágenes satelitales. Los resultados sugieren que en la isla se presentan diferencias estacionales en los patrones de TPLS y ratifican la importancia de la barrera arrecifal para la disipación de energía del oleaje. La tasa de TPLS se incrementa durante eventos extremos. La metodología propuesta puede ser aplicable en otras islas arrecifales y provee información relevante para el manejo de la erosión costera en estos ambientes. (Texto tomado de la fuente)Ocean reef islands are marine environments considered highly vulnerable to threats of climate change, especially coastal erosion. To understand this problem, it is necessary to consider that coastal erosion is a dynamic process that operates at di_erent time scales. Consequently, the approaching must be multiple, especially in reef environments, where the complex interaction between geomorphology, sediment availability and maritime climate determines the morphological variations of the coastal zone. One of the determining factors of coastal erosion is the spatial gradients in the sediment longshore transport rate. Therefore, this research proposes an integrated methodology to estimate the potential longshore sediment transport (PLST) around an oceanic reef island, considering seasonal, interannual and extreme events processes. The methodology was implemented on San Andr_es Island, in the Colombian Caribbean. Using wave data from the ERA-Interim reanalysis, the SWAN numerical model was used to simulate the propagation of waves from open waters to the coastal zone. The results of the model were validated with _eld measurements. The PLST rate was estimated using empirical formulations and used to infer erosion and deposition conditions that were corroborated with satellite images. The results suggest that seasonal di_erences in PLST patterns occur on the island and con_rm the importance of the reef barrier for wave energy dissipation. The PLST rate increases during extreme events. The proposed methodology may be applicable in other reef islands and provides relevant information for the management of coastal erosion in these environmentsMaestríaMagíster en Ingeniería - Recursos HidráulicosÁrea Curricular de Medio Ambiente113 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Recursos HidráulicosDepartamento de Geociencias y Medo AmbienteFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulicaOleajeTransporte potencial longitudinal de sedimentosSan Andres IslaEventos extremosErosion costeraWavesPotential longshore sediment transportSan Andres IslandExtreme eventsCostal erosionClimatología del transporte potencial de sedimentos costeros inducido por oleaje en la Isla San AndrésClimatology of the potential coastal sediment transport induced by waves in San Andres islandTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMSan Andrés Isla, ColombiaAagaard, T., y Kroon, A. (2017). Sediment transport under storm conditions on sandy beaches. Coastal Storms: Processes and Impacts, 45{63Aagaard, T., y Vinther, N. (2008). Cross-shore currents in the surf zone: Rips or undertow? Journal of Coastal Research, 561{570.Andrade-Amaya, C. (2012). Oceanografía del archipiélago de San Andrés, Providencia y Santa Catalina. Atlas de la Reserva de Biósfera Seaflower. Archipiélago de San Andrés, Providencia y Santa Catalina, 28 .Atkins, R. (2005). Sediment suspension by waves. Encyclopedia of coastal science, 850{853.Bailard. (1981). An energetics total load sediment transport model for a plane sloping beach. Journal of Geophysical Research: Oceans, 86 (C11), 10938{10954.Bailard, J. (1984). A simpli ed model for longshore sediment transport. En Proceedings. 19th international conference on coastal engineering (pp. 1454{1470).BARUA, D. K. (2015). Longshore sand transport|an examination of methods and associated uncertainties. En The proceedings of the coastal sediments 2015. World Scienti c.Bayram, A., Larson, M., y Hanson, H. (2007). A new formula for the total longshore sediment transport rate. Coastal Engineering, 54 (9), 700{710.Bijker, E. W. (1967). Some considerations about scales for coastal models with movable bed.Bijker, E. W. (1971). Longshore transport computations. Journal of the Waterways, Harbors and Coastal Engineering Division, 97 (4), 687{701.Booij, N., Ris, R. C., y Holthuijsen, L. H. (1999). A third-generation wave model for coastal regions: 1. model description and validation. Journal of geophysical research: Oceans, 104 (C4), 7649{7666.Bowen, A. J. (1969). The generation of longshore currents on a plane beach. J. Mar. Res., 27 (2), 206{215.Buckley, M., Lowe, R., y Hansen, J. (2014). Evaluation of nearshore wave models in steep reef environments. Ocean Dynamics, 64 (6), 47{862.Cartier, A., Larroud e, P., y H equette, A. (2013). Longshore sediment transport measurements on sandy macrotidal beaches compared with sediment transport formulae. En Sediment transport processes and their modelling applications. IntechOpen.Castaño-Isaza, J., Newball, R., Roach, B., y Lau, W. W. (2014). Valuing beaches to develop payment for ecosystem services schemes in Colombia's Sea Flower marine protected area. Ecosystem services, 11 , 22{31.CERC. (1984). Shore protection manual, vols. i and ii. Coastal Engineering Research Center, USACE.Christensen, E. D., Walstra, D.-J., y Emerat, N. (2002). Vertical variation of the flow across the surf zone. Coastal Engineering, 45 (3-4), 169{198.Dally, W. R. (2005). Surf zone processes. Encyclopedia of coastal science, 929{935.Davidson-Arnott, R. (2010). Introduction to coastal processes and geomorphology. Cambridge University Press.Davis, R. A., y FitzGerald, D. M. (2009). Beaches and coasts. John Wiley & Sons.del Valle, R., Medina, R., y Losada, M. A. (1993). Dependence of coeficient k on grain size. Journal of waterway, port, coastal, and ocean engineering, 119 (5), 568{574.Devis-Morales, A., Montoya-Sánchez, R., Bernal, G., y Osorio, A. (2017). Assessment of extreme wind and waves in the Colombian Caribbean Sea for offshore applications. Applied Ocean Research, 69 , 10{26.Díaz, J., Barrios, L., Cendales, M., Garzón-Ferreira, J., Geister, J., López-Victoria, M., . . .others (2000). Areas Coralinas de Colombia [Coral areas in Colombia]. Santa Marta, Colombia: Instituto de Investigaciones Marinas y Costeras \José Benito Vives de Andreis"(Invemar), 17{167.Díaz, M., Manuel, J., Díaz-Pulido, G., Garzón-Ferreira, J., Geister, J., Sánchez, J. A., y Zea, S. (1996). Atlas de los arrecifes coralinos del Caribe colombiano: I. complejos arrecifales oceánicos.Esteves, L. S., Williams, J. J., y Lisniowski, M. A. (2009). Measuring and modelling longshore sediment transport. Estuarine, Coastal and Shelf Science, 83 (1), 47{59Fern andez-Fern andez, S., Baptista, P., Martins, V. A., Silva, P. A., Abreu, T., Pais-Barbosa, J., . . . others (2015). Longshore transport estimation on O r Beach in Northwest Portugal: Sand-tracer experiment. Journal of Waterway, Port, Coastal, and Ocean Engineering, 142 (2), 04015017.Filipot, J.-F., y Cheung, K. F. (2012). Spectral wave modeling in fringing reef environments. Coastal Engineering, 67 , 67{79.Gamboa, L., y Posada, B. O. (2012). Geolog a del archipi elago de San Andr es, Providencia y Santa Catalina. Atlas de la Reserva de Bi osfera Sea Flower: archipi elago de San Andr es, Providencia y Santa Catalina, 36{46.Geister, G., J. Gorin. (2007). Evolution d un archipel oc eanique des Cara bes (San Andr es et Providencia, Colombie). 3 eme Cycle Romand en Sciences de la Terre, Cours de terrain du 14 au 29 septembre 2007 .Geister, J. (1992). Modern reef development and Cenozoic evolution of an oceanic island/reef complex: Isla de Providencia (Western Caribbean Sea, Colombia). Facies, 27 (1), 1.Gonz alez, y Hurtado, G. (2012). Caracterizaci on clim atica del archipi elago de San Andr es y Providencia. pp (48- 52) en CORALINA- INVEMAR, 2012. G omez{L opez, D.I., C. Segura Quintero, P. C. Sierra- Correa y J. Garay- Tinoco (Eds). Atlas de la Reserva de Biosfera Sea Flower. Archipi elago de San Andr es Providencia y Santa Catalina. Instituto de Investigaciones Marinas y Costeras \Jos e Benito Vives D Andr eis"{INVEMAR y Corporaci on para el desarrollo Sostenible del Archipi elago de San Andr es, Providencia y Santa Catalina { CORALINA. Serie de Publicaciones Especiales de INVEMAR 28. Santa Marta-Colombia, 28 , 180 p.Gowthaman, R., Kumar, V. S., Dwarakish, G. S., Shanas, P., Jena, B. K., y Singh, J. (2015). Nearshore waves and longshore sediment transport along Rameshwaram Island o the east coast of India. International Journal of Naval Architecture and Ocean Engineering, 7 (6), 939{950.Grant, U. (1948). Influence of the water table on beach aggradation and degradation. publisher not identi fied.Hearn, C. J. (2008). The dynamics of coastal models. Cambridge University Press.Hoeke, R., Storlazzi, C., y Ridd, P. (2011). Hydrodynamics of a bathymetrically complex fringing coral reef embayment: Wave climate, in situ observations, and wave prediction. Journal of Geophysical Research: Oceans, 116 (C4).Hoeke, R. K., Storlazzi, C. D., y Ridd, P. V. (2013). Drivers of circulation in a fringing coral reef embayment: A wave- flow coupled numerical modeling study of Hanalei Bay, Hawaii. Continental Shelf Research, 58 , 79{95.Holland, G. J. (1980). An analytic model of the wind and pressure pro les in hurricanes. Monthly weather review, 108 (8), 1212{1218.Inch, K. (2014). Surf zone hydrodynamics: Measuring waves and currents. Geomorphological Techniques, 3 , 1{13.Inman, D., y Bagnold, R. (1963). Littoral processes. The Sea: Ideas and Observations, vol. 3 , 529{533.INVEMAR-GEO. (2015). Erosi on costera en la isla de San Andr es. informe t ecnico nal. Actividad GEO - BPIN INVEMAR. Santa Marta, 71 p.Kamphuis, J., y Readshaw, J. (1978). A model study of alongshore sediment transport rat. Coastal Engineering Proceedings, 1 (16).Kamphuis, J. W. (1991). Alongshore sediment transport rate. Journal of Waterway, Port, Coastal, and Ocean Engineering, 117 (6), 624{640.Komar, P. D. (1979). Beach-slope dependence of longshore currents. Journal of the Water- way, Port, Coastal and Ocean Division, 105 (4), 460{464.Komar, P. D., y Inman, D. L. (1970). Longshore sand transport on beaches. Journal of geophysical research, 75 (30), 5914{5927.Kumar, V. S., Shanas, P., Dora, G. U., Glejin, J., y Philip, S. (2014). Longshore sediment transport in the surf zone based on di erent formulae: a case study along the central west coast of India. Journal of coastal conservation, 21 (1), 1{13.Larson, M., Hanson, H., y Kraus, N. C. (1987). Analytical solutions of the one-line model of shoreline change. (Inf. T ec.). COASTAL ENGINEERING RESEARCH CENTER VICKSBURG MS.Lee, J., Liu, J., y Teng, M. (2006). A numerical study on nearshore sediment transport around Oahu Island in Hawaii. Journal of Coastal research, 1700{1705.List, J. (2005). Surf zone processes. Encyclopedia of coastal science, 846{850.Longuet-Higgins, M. S. (1970a). Longshore currents generated by obliquely incident sea waves: 1. Journal of geophysical research, 75 (33), 6778{6789.Longuet-Higgins, M. S. (1970b). Longshore currents generated by obliquely incident sea waves: 2. Journal of geophysical research, 75 (33), 6778{6789.Longuet-Higgins, M. S., y Stewart, R. (1964). Radiation stresses in water waves; a physical discussion, with applications. En Deep sea research and oceanographic abstracts (Vol. 11, pp. 529{562).Lowe, R. J., Falter, J. L., Monismith, S. G., y Atkinson, M. J. (2009). A numerical study of circulation in a coastal reef-lagoon system. Journal of Geophysical Research: Oceans, 114 (C6).Madsen, O. S., Poon, Y.-K., y Graber, H. C. (1988). Spectral wave attenuation by bottom friction: Theory. Coastal Engineering Proceedings, 1 (21).Mart n-Prieto, J. A., Roig-Munar, F. X., Pons, G. X., Rodr guez-Perea, A., Alvarado, M., y Mir-Gual, M. (2013). Description of erosion processes in Spratt Bight (San Andr es Island, Colombia) using sequential end point rates (epr). Journal of Coastal Research, 65 (sp1), 997{1003.MAVDT, V. y. D. T., Ministerio de Ambiente. (2004). Agenda ambiental de San Andr es Isla 2004-2020.Meisel-Roca, A., Aguilera-D az, M. M., Yabrudy-Vega, J., y S anchez-Jabba, A. M. (2016). Econom a y medio ambiente del archipi elago de San Andr es, Providencia y Santa Catalina. Banco de la Rep ublica de Colombia.Mesa, O., Poveda, G., y Carvajal, L. (1997). Introducci on al clima de Colombia [tesis].[ Medell n (Colombia)]: Facultad de Minas. Posgrado en Aprovechamiento de precursor hidr aulicos, Universidad Nacional de Colombia. Sede Medell n, 390.Mil-Homens, J., Ranasinghe, R., de Vries, J. v. T., y Stive, M. (2013). Re-evaluation and improvement of three commonly used bulk longshore sediment transport formulas. Coastal Engineering, 75 , 29{39.Ortiz-Royero, J., Otero, L., Restrepo, J., Ruiz, J., y Cadena, M. (2013). Cold fronts in the Colombian Caribbean sea and their relationship to extreme wave events. Natural Hazards and Earth System Sciences, 13 (11), 2797{2804.Ortiz-Royero, J. C. (2012). Exposure of the Colombian Caribbean coast, including San Andr es Island, to tropical storms and hurricanes, 1900{2010. Natural hazards, 61 (2), 815{827.Ortiz-Royero, J. C., Moreno, J. M. P., y Lizano, O. (2014). Evaluation of extreme waves associated with cyclonic activity on San Andr es island in the Caribbean sea since 1900. Journal of Coastal Research, 31 (3), 557{568.Osorio, A. F., Montoya, R. D., Ortiz, J. C., y Pel aez, D. (2016). Construction of synthetic ocean wave series along the Colombian Caribbean Coast: A wave climate analysis. Applied Ocean Research, 56 , 119{131.Othman, N., Wahab, A. K. A., y Jamal, M. H. (2014). E ects of seasonal variations on sandy beach groundwater table and swash zone sediment transport. Coastal Engineering Proceedings, 1 (34), 59.Otvos, E. G. (1999). Rain-induced beach processes; landforms of ground water sapping and surface runo . Journal of Coastal Research, 1040{1054.Perry, C. T., Kench, P. S., Smithers, S. G., Riegl, B., Yamano, H., y O'leary, M. J. (2011). Implications of reef ecosystem change for the stability and maintenance of coral reef islands. Global Change Biology, 17 (12), 3679{3696.Posada, B., y Guzman, W. (2007). Diagnostico de la erosi on costera en las islas de San Andr es, Providencia y Santa Catalina.Recomendaciones generales para el manejo y control de la erosi on. Investigaci on elaborada para CORALINA por el INVEMAR, seg un convenio, 10 , 2006.Posada, B. O., Pineda, W. H., y Giraldo, D. F. M. (2011). Diagn ostico de la erosi on costera del territorio insular colombiano. INVEMAR.Ramalho, R. S., Quartau, R., Trenhaile, A. S., Mitchell, N. C., Woodro e, C. D., y Avila, S. P. (2013). Coastal evolution on volcanic oceanic islands: A complex interplay between volcanism, erosion, sedimentation, sea-level change and biogenic production. Earth-Science Reviews, 127 , 140{170.Roelvink, D., Reniers, A., Van Dongeren, A., De Vries, J. V. T., McCall, R., y Lescinski, J. (2009). Modelling storm impacts on beaches, dunes and barrier islands. Coastal engineering, 56 (11-12), 1133{1152.Ruíz de Alegria-Arzaburu, A., Mari~no-Tapia, I., Enriquez, C., Silva, R., y González-Leija, M. (2013). The role of fringing coral reefs on beach morphodynamics. Geomorphology, 198 , 69{83.Sánchez-Jabba, A. M. (2012). Manejo ambiental en Seaflower, Reserva de Biosfera en el Archipiélago de San Andrés, Providencia y Santa Catalina. Documentos de Trabajo Sobre Econom a Regional y Urbana; No. 176 .Schoonees, J., y Theron, A. (1993). Review of the eld-data base for longshore sediment transport. Coastal Engineering, 19 (1-2), 1{25.Schoonees, J., y Theron, A. (1994). Accuracy and applicability of the spm longshore transport formula. Coastal Engineering Proceedings, 1 (24).Schoonees, J., y Theron, A. (1996). Improvement of the most accurate longshore transport formula. 25th icce orlando, usa.Seymore, R. (2005). Crosshore sediment transport. Encyclopedia of coastal science, 352{353.Siegle, E., y Costa, M. B. (2017). Nearshore wave power increase on reef-shaped coasts due to sea-level rise. Earth's Future, 5 (10), 1054{1065.Smith, E. R., Wang, P., Ebersole, B. A., y Zhang, J. (2009). Dependence of total longshore sediment transport rates on incident wave parameters and breaker type. Journal of Coastal Research, 675{683.Sonu, C. J. (1972). Field observation of nearshore circulation and meandering currents. Journal of Geophysical Research, 77 (18), 3232{3247.Storlazzi, C., Elias, E., Field, M., y Presto, M. (2011). Numerical modeling of the impact of sea-level rise on fringing coral reef hydrodynamics and sediment transport. Coral Reefs, 30 (1), 83{96.Storlazzi, C. D., Elias, E. P., y Berkowitz, P. (2015). Many atolls may be uninhabitable within decades due to climate change. Scienti c reports, 5 , 14546.Tarbuck, E. J., Lutgens, F. K., Tasa, D., y Linneman, S. (2017). Earth: an introduction to physical geology (12.a ed.). Pearson/Prentice Hall Upper Saddle River.Theuerkauf, E. J., Rodriguez, A. B., Fegley, S. R., y Luettich, R. A. (2014). Sea level anomalies exacerbate beach erosion. Geophysical Research Letters, 41 (14), 5139{5147.Thomas, Y.-F., Nicolae-Lerma, A., y Posada, B. O. P. (2012). Atlas climatol ogico del mar Caribe colombiano. INVEMAR-Instituto de Investigaciones Marinas y Costeras.USACE. (1984). Coastal engineering manual. Printing O ce, Washington, DC, USA, vols. USACE. (2002). Coastal engineering manual. Engineer manual 1110{2-1100 .Van Rijn, L. C. (2014). A simple general expression for longshore transport of sand, gravel and shingle. Coastal Engineering, 90 , 23{39.Van Rijn, L. C., y cols. (1993). Principles of sediment transport in rivers, estuaries and coastal seas (Vol. 1006). Aqua publications Amsterdam.Vargas, G. (2004). Geolog a y aspectos geogr a cos de la Isla de San Andr es. Geolog a Colombiana, 29 , 73{89.Wang, P., Ebersole, B. A., y Smith, E. R. (2002). Longshore sand transport-initial results from large-scale sediment transport facility (Inf. T ec.). Engineer Research And Development Center Vicksburg Ms Coastal And Hydraulics Lab.Watts, G. M. (1953). A study of sand movement at South Lake Worth Inlet Florida (Inf. T ec.). Coastal Engineering Research Center Vicksburg MS.Williams, J. J., y Esteves, L. S. (2005). Predicting shoreline changes: A case study in Rio Grande do Sul, Brazil. Geophysical Research Letters, 32 (11).Zijlema, M., Stelling, G., y Smit, P. (2011). Swash: An operational public domain code for simulating wave elds and rapidly varied ows in coastal waters. Coastal Engineering, 58 (10), 992{1012.InvestigadoresORIGINAL1026270340.2020.pdf1026270340.2020.pdfTesis de Maestría en Ingeniería - Recursos Hidráulicosapplication/pdf35445790https://repositorio.unal.edu.co/bitstream/unal/77571/5/1026270340.2020.pdfb2a7c962e0d1d2f3cc3bcc21075bbbd0MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-83991https://repositorio.unal.edu.co/bitstream/unal/77571/2/license.txt6f3f13b02594d02ad110b3ad534cd5dfMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.unal.edu.co/bitstream/unal/77571/3/license_rdf217700a34da79ed616c2feb68d4c5e06MD53THUMBNAIL1026270340.2020.pdf.jpg1026270340.2020.pdf.jpgGenerated Thumbnailimage/jpeg5824https://repositorio.unal.edu.co/bitstream/unal/77571/6/1026270340.2020.pdf.jpg4e398e65c05ce8ea883bf6d541e469dfMD56unal/77571oai:repositorio.unal.edu.co:unal/775712023-07-09 23:03:58.186Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHBvciB1biBwbGF6byBkZSA1IGHDsW9zLCBxdWUgc2Vyw6FuIHByb3Jyb2dhYmxlcyBpbmRlZmluaWRhbWVudGUgcG9yIGVsIHRpZW1wbyBxdWUgZHVyZSBlbCBkZXJlY2hvIHBhdHJpbW9uaWFsIGRlbCBhdXRvci4gRWwgYXV0b3IgcG9kcsOhIGRhciBwb3IgdGVybWluYWRhIGxhIGxpY2VuY2lhIHNvbGljaXTDoW5kb2xvIGEgbGEgVW5pdmVyc2lkYWQgY29uIHVuYSBhbnRlbGFjacOzbiBkZSBkb3MgbWVzZXMgYW50ZXMgZGUgbGEgY29ycmVzcG9uZGllbnRlIHByw7Nycm9nYS4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCg==