Influencia de los ensamblajes de peces bentónicos en la dinámica del mercurio en un estuario tropical

Los estuarios son ecosistemas clave para el estudio de la contaminación por mercurio, al recibir el mercurio directamente a través de los ríos y la escorrentía, y tener condiciones ambientales que permiten su acumulación, biodisponibilidad y flujo. Con el objetivo de determinar la influencia de la e...

Full description

Autores:
Molina Sandoval, Andrés Esteban
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79261
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79261
Palabra clave:
570 - Biología
Mercury
Community structure
Estuarine fishes
Mercury accumulation
Tropical estuary
Mercurio
Estructura de la comunidad
Peces estuarinos
Acumulación de mercurio
Estuario tropical
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_7b5ee263741a3da39390616d3fce2f00
oai_identifier_str oai:repositorio.unal.edu.co:unal/79261
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Influencia de los ensamblajes de peces bentónicos en la dinámica del mercurio en un estuario tropical
title Influencia de los ensamblajes de peces bentónicos en la dinámica del mercurio en un estuario tropical
spellingShingle Influencia de los ensamblajes de peces bentónicos en la dinámica del mercurio en un estuario tropical
570 - Biología
Mercury
Community structure
Estuarine fishes
Mercury accumulation
Tropical estuary
Mercurio
Estructura de la comunidad
Peces estuarinos
Acumulación de mercurio
Estuario tropical
title_short Influencia de los ensamblajes de peces bentónicos en la dinámica del mercurio en un estuario tropical
title_full Influencia de los ensamblajes de peces bentónicos en la dinámica del mercurio en un estuario tropical
title_fullStr Influencia de los ensamblajes de peces bentónicos en la dinámica del mercurio en un estuario tropical
title_full_unstemmed Influencia de los ensamblajes de peces bentónicos en la dinámica del mercurio en un estuario tropical
title_sort Influencia de los ensamblajes de peces bentónicos en la dinámica del mercurio en un estuario tropical
dc.creator.fl_str_mv Molina Sandoval, Andrés Esteban
dc.contributor.advisor.spa.fl_str_mv Duque, Guillermo
Cogua, Pilar
dc.contributor.author.spa.fl_str_mv Molina Sandoval, Andrés Esteban
dc.contributor.researchgroup.spa.fl_str_mv Ecología y Contaminación Acuática
dc.subject.ddc.spa.fl_str_mv 570 - Biología
topic 570 - Biología
Mercury
Community structure
Estuarine fishes
Mercury accumulation
Tropical estuary
Mercurio
Estructura de la comunidad
Peces estuarinos
Acumulación de mercurio
Estuario tropical
dc.subject.proposal.eng.fl_str_mv Mercury
Community structure
Estuarine fishes
Mercury accumulation
Tropical estuary
dc.subject.proposal.spa.fl_str_mv Mercurio
Estructura de la comunidad
Peces estuarinos
Acumulación de mercurio
Estuario tropical
description Los estuarios son ecosistemas clave para el estudio de la contaminación por mercurio, al recibir el mercurio directamente a través de los ríos y la escorrentía, y tener condiciones ambientales que permiten su acumulación, biodisponibilidad y flujo. Con el objetivo de determinar la influencia de la estructura de la comunidad sobre el flujo de mercurio en estuarios tropicales, se tomó como modelo biológico los ensamblajes peces y como ecosistema modelo el estuario Bahía de Buenaventura. Se colectaron muestras representativas de los gradientes espaciotemporales del estuario de granulometría, materia orgánica y mercurio total (HgT) en sedimentos, de variables fisicoquímicas del agua, de la comunidad de peces y del contenido de HgT en musculo de peces. El ensamblaje de peces de la Bahía de Buenaventura estuvo dominado por 14 de las 69 especies encontradas, representando el 90% de la densidad y el 81% de la biomasa. El mayor número de especies, densidad y biomasa se encontraron asociados a las zonas con mayor influencia de ríos. Por otra parte, la MO y el HgT en sedimentos fueron mayores en época de lluvia y en la parte interna del estuario, pudiéndose modelar su distribución y acumulación a partir de la MO y la salinidad, donde la MO representa el medio de transporte y acumulación del HgT y la salinidad representa la influencia de las variaciones hidroclimáticas y los gradientes ambientales del estuario. En la Bahía de Buenaventura el proceso de bioacumulación de mercurio en peces está activo, detectándose la presencia de mercurio en todas las especies analizadas, registrándose concentraciones de HgT superiores a 0.2 µg g-1 en más de la mitad de las especies. Por esto se escogieron las especies: Urotrygon rogersi, Cathorops multiradiatus, Achirus mazatlanus, Achirus klunzingeri, Sphoeroides trichocephalus, Daector dowi y Citharichthys gilberti para su análisis individual. Se identificaron tres grupos de peces, según los principales factores conductores del proceso de acumulación de HgT, que fueron la biodisponibilidad, las concentraciones iniciales en el ambiente y la fisiología específica de las especies, siendo la especie U. rogersi la que presentó el mayor potencial para ser utilizada como bioindicador para la contaminación por mercurio en este estuario. Para las siete especies de peces analizadas individualmente se encontraron Factores de Acumulación Biota-Sedimento (FABS) mayores a uno, comprobando que el proceso de bioacumulación está activo en este estuario. Adicionalmente, se observó que el proceso de transferencia de HgT de los sedimentos a los peces fue más eficiente en época seca y en la parte externa del estuario. Por otra parte, según la influencia de los descriptores de la estructura del ensamblaje de peces sobre los FABS, se identificaron tres tipos de interacción: 1) asociados a la variedad de respuestas a la contaminación por mercurio, relacionados con el número de especies; 2) por el aumento en el ingreso y flujo de mercurio por la producción de biomasa y nuevos individuos cuando los FABS fueron mayores al aumentar la densidad y la biomasa y 3) por los cambios tróficos por variaciones en la oferta de alimento, relacionados con la disminución de los FABS cuando aumento la densidad. Según los resultados de esta investigación la conservación de la diversidad y la dinámica ecológica puede hacer a los ecosistemas estuarinos más resistentes a la contaminación por mercurio.
publishDate 2020
dc.date.issued.spa.fl_str_mv 2020-11-09
dc.date.accessioned.spa.fl_str_mv 2021-02-17T15:09:55Z
dc.date.available.spa.fl_str_mv 2021-02-17T15:09:55Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Molina (2020) Influencia de los ensamblajes de peces bentónicos en la dinámica del mercurio en un estuario tropical. Tesis de doctorado. Instituto de Estudios en Ciencias del Mar – CECIMAR. Universidad Nacional de Colombia, sede Caribe. 155pp.
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79261
identifier_str_mv Molina (2020) Influencia de los ensamblajes de peces bentónicos en la dinámica del mercurio en un estuario tropical. Tesis de doctorado. Instituto de Estudios en Ciencias del Mar – CECIMAR. Universidad Nacional de Colombia, sede Caribe. 155pp.
url https://repositorio.unal.edu.co/handle/unal/79261
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Adams DH, Paperno R (2012) Stable isotopes and mercury in a model estuarine fish: Multibasin comparisons with water quality, community structure, and available prey base. Sci Total Environ 414:445–455. doi: 10.1016/j.scitotenv.2011.10.014
Adams DH, Sonne C, Basu N, et al (2010) Mercury contamination in spotted seatrout, Cynoscion nebulosus: An assessment of liver, kidney, blood, and nervous system health. Sci Total Environ 408:5808–5816. doi: 10.1016/j.scitotenv.2010.08.019
Ahonen SA, Hayden B, Leppänen JJ, Kahilainen KK (2018) Climate and productivity affect total mercury concentration and bioaccumulation rate of fish along a spatial gradient of subarctic lakes. Sci Total Environ 637–638:1586–1596. doi: 10.1016/j.scitotenv.2018.04.436
Amorim E, Ramos S, Elliott M, et al (2017) Habitat loss and gain : Influence on habitat attractiveness for estuarine fish communities. Estuar Coast Shelf Sci 197:244–257. doi: 10.1016/j.ecss.2017.08.043
Amorós R, Murcia M, Ballester F, et al (2018) Selenium status during pregnancy: Influential factors and effects on neuropsychological development among Spanish infants. Sci Total Environ 610–611:741–749. doi: 10.1016/j.scitotenv.2017.08.042
Andersen JL, Depledge MH (1997) A survey of total mercury and methylmercury in edible fish and invertebrates from Azorean waters. Mar Environ Res 44:331–350. doi: 10.1016/S0141-1136(97)00011-1
Anderson M, Gorley RN, Clarke KR (2008) PERMANOVA + for PRIMER Guide to Software and Statistical Methods. PRIMER-E. PRIMER-E Ltd., Plymouth, UK
Anderson MJ (2017) Permutational Multivariate Analysis of Variance (PERMANOVA). In: Wiley StatsRef: Statistics Reference Online. John Wiley & Sons, Ltd, Chichester, UK, pp 1–15
Anderson MJ (2005) PERMANOVA Permutational multivariate analysis of variance. Austral Ecol 1–24. doi: 10.1139/cjfas-58-3-626
Arnot JA, Gobas FAPC (2006) A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environ Rev 14:257–297. doi: 10.1139/A06-005
Azaroff A, Tessier E, Deborde J, et al (2019) Mercury and methylmercury concentrations, sources and distribution in submarine canyon sediments (Capbreton, SW France): Implications for the net methylmercury production. Sci Total Environ 673:511–521. doi: 10.1016/j.scitotenv.2019.04.111
Azevedo JS, Fernandez WS, Farias LA, et al (2009) Use of Cathorops spixii as bioindicator of pollution of trace metals in the Santos Bay, Brazil. Ecotoxicology 18:577–586. doi: 10.1007/s10646-009-0315-4
Bank M (2012) Mercury in the Environment. University of California Press
Barletta M, Lima ARA (2019) Systematic Review of Fish Ecology and Anthropogenic Impacts in South American Estuaries: Setting Priorities for Ecosystem Conservation. Front Mar Sci 6:. doi: 10.3389/fmars.2019.00237
Bay SM, Greenstein D, Parks AN, Zeeman C (2016) Assessment of Bioaccumulation in San Diego Bay. U.S. Fish & Wildlife Service, San Diego, California
Beyer J, Petersen K, Song Y, et al (2014) Environmental risk assessment of combined effects in aquatic ecotoxicology: A discussion paper. Mar Environ Res 96:81–91. doi: 10.1016/j.marenvres.2013.10.008
Bisi TL, Lepoint G, Azevedo ADF, et al (2012) Trophic relationships and mercury biomagnification in Brazilian tropical coastal food webs. Ecol Indic 18:291–302. doi: 10.1016/j.ecolind.2011.11.015
Boening DW (2000) Ecological effects, transport, and fate of mercury: A general review. Chemosphere 40:1335–1351. doi: 10.1016/S0045-6535(99)00283-0
Bouvier T, Venail P, Pommier T, et al (2012) Contrasted effects of diversity and immigration on ecological insurance in marine bacterioplankton communities. PLoS One 7:1–9. doi: 10.1371/journal.pone.0037620
Bowles KC, Apte SC, Maher WA, et al (2001) Bioaccumulation and biomagnification of mercury in Lake Murray, Papua New Guinea. Can J Fish Aquat Sci 58:888–897. doi: 10.1139/cjfas-58-5-888
Bowling AM, Hammerschmidt CR, Oris JT (2011) Necrophagy by a benthic omnivore influences biomagnification of methylmercury in fish. Aquat Toxicol 102:134–141. doi: 10.1016/j.aquatox.2011.01.006
Box GE, Cox DR (1964) An Analysis of Transformations. J R Stat Soc Ser B 26:211–252
Burkhard L (2009) Estimation of Biota Sediment Accumulation Factor (BSAF) from Paired Observations of Chemical Concentrations in Biota and Sediment. U.S. Environmental Protection Agency, Cincinnati, OH
Burkhard LP (2003) Factors influencing the design of bioaccumulation factor and biota-sediment accumulation factor field studies. Environ Toxicol Chem 22:351–360. doi: 10.1897/1551-5028(2003)022<0351:FITDOB>2.0.CO;2
Burkhard LP, Arnot JA, Embry MR, et al (2012) Comparing laboratory- and field-measured biota-sediment accumulation factors. Integr Environ Assess Manag 8:32–41. doi: 10.1002/ieam.218
Cabana G, Rasmussen JB (1994) Modelling food chain structure and contaminant bioaccumulation using stable nitrogen isotopes. Nature 372:255–257
Cantera JR, Blanco JF (2001) The Estuary Ecosystem of Buenaventura Bay, Colombia. In: Seeliger U, Kjerfve B (eds) Coastal Marine Ecosystems of Latin America. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 265–280
Chakraborty P, Jayachandran S, Lekshmy J, et al (2019) Seawater intrusion and resuspension of surface sediment control mercury (Hg) distribution and its bioavailability in water column of a monsoonal estuarine system. Sci Total Environ 660:1441–1448. doi: 10.1016/j.scitotenv.2018.12.477
Chapman PM (2002) Integrating toxicology and ecology: Putting the “eco” into ecotoxicology. Mar Pollut Bull 44:7–15. doi: 10.1016/S0025-326X(01)00253-3
Chen C-F, Ju Y-R, Chen C-W, Dong C-D (2019) The distribution of methylmercury in estuary and harbor sediments. Sci Total Environ 691:55–63. doi: 10.1016/j.scitotenv.2019.07.002
Chen C-F, Ju Y-R, Lim YC, et al (2020) Dry and wet seasonal variation of total mercury, inorganic mercury, and methylmercury formation in estuary and harbor sediments. J Environ Manage 253:109683. doi: 10.1016/j.jenvman.2019.109683
Chen C, Amirbahman A, Fisher N, et al (2008) Methylmercury in marine ecosystems: Spatial patterns and processes of production, bioaccumulation, and biomagnification. Ecohealth 5:399–408. doi: 10.1007/s10393-008-0201-1
Chen CY, Dionne M, Mayes BM, et al (2009) Mercury bioavailability and bioaccumulation in estuarine food webs in the Gulf of Maine. Environ Sci Technol 43:1804–1810. doi: 10.1021/es8017122
Chumchal MM, Drenner RW, Cross DR, Hambright KD (2010) Factors influencing mercury accumulation in three species of forage fish from Caddo Lake, Texas, USA. J Environ Sci 22:1158–1163. doi: 10.1016/S1001-0742(09)60232-1
Chumchal MM, Drenner RW, Fry B, et al (2008) Habitat-Specific Differences in Mercury Concentration in a Top Predator from a Shallow Lake. Trans Am Fish Soc 137:195–208. doi: 10.1577/T07-009.1
Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Austral Ecol 18:117–143. doi: 10.1111/j.1442-9993.1993.tb00438.x
Clarke KR, Gorley RN (2015) PRIMER v7: User Manual/Tutorial. PRIMER-E Ltd., Plymounth, UK
Clarke KR, Gorley RN, Somerfield PJ, Warwick RM (2014) Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 3rd editio. PRIMER-E Ltd., Plymouth, UK
Coelho JP, Mieiro CL, Pereira E, et al (2013) Mercury biomagnification in a contaminated estuary food web: Effects of age and trophic position using stable isotope analyses. Mar Pollut Bull 69:110–115. doi: 10.1016/j.marpolbul.2013.01.021
Cogua P (2011) Estudio comparativo del flujo de mercurio a través de redes detritívoras y planctívoras en un estuario tropical. Universidad Nacional de Colombia
Costa MF, Landing WM, Kehrig HA, et al (2012) Mercury in tropical and subtropical coastal environments. Environ Res 119:88–100. doi: 10.1016/j.envres.2012.07.008
Covich AP, Austen MC, Bärlocher F, et al (2004) The role of biodiversity in the functioning of freshwater and marine benthic ecosystems. Bioscience 54:767–775. doi: 10.1641/0006-3568(2004)054[0767:TROBIT]2.0.CO;2
DANE (2005) Proyecciones de población. In: Dep. Adm. Nac. Estadística - DANE. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/proyecciones-de-poblacion. Accessed 29 May 2019
Dang F, Wang WX (2012) Why mercury concentration increases with fish size? Biokinetic explanation. Environ Pollut 163:192–198. doi: 10.1016/j.envpol.2011.12.026
Dauvin JC, Ruellet T (2009) The estuarine quality paradox: Is it possible to define an ecological quality status for specific modified and naturally stressed estuarine ecosystems? Mar Pollut Bull 59:38–47. doi: 10.1016/j.marpolbul.2008.11.008
Day JW, Crump BC, Michael, Kemp W, Yáñez-Arancibia A (2012) Estuarine Ecology, Second Edi. John Wiley & Sons, Inc., Hoboken, NJ, USA
de Souza JB, Reisen VA, Franco GC, et al (2018) Generalized additive models with principal component analysis: an application to time series of respiratory disease and air pollution data. J R Stat Soc Ser C Appl Stat 67:453–480. doi: 10.1111/rssc.12239
Diaz JM (2007) Deltas y Estuarios de Colombia. Imprelibros S.A., Cali, Colombia
Díaz O, Encina F, Chuecas L, et al (2001) Influencia de variables estacionales, espaciales, biológicas y ambientales en la bioacumulación de mercurio total y metilmercurio en Tagelus dombeii. Rev Biol Mar Oceanogr 36:15–29. doi: 10.4067/S0718-19572001000100003
Djikanović V, Skorić S, Spasić S, et al (2018) Ecological risk assessment for different macrophytes and fish species in reservoirs using biota-sediment accumulation factors as a useful tool. Environ Pollut 241:1167–1174. doi: 10.1016/j.envpol.2018.06.054
Duque G, Cogua P (2016) Mercurio en peces de la bahía de Buenaventura. Ingenium 10:11–17. doi: https://doi.org/10.21774/ing.v10i29.696
Duque G, Gamboa-García DE, Molina A, Cogua P (2020) Effect of water quality variation on fish assemblages in an anthropogenically impacted tropical estuary, Colombian Pacific. Environ Sci Pollut Res Online Fir:14. doi: 10.1007/s11356-020-08971-2
Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J. Anim. Ecol. 77:802–813
Engstrom DR (2007) Fish respond when the mercury rises. Proc Natl Acad Sci 104:16394–16395. doi: 10.1073/pnas.0708273104
Evers D (2017) The effects of methylmercury on wildlife: A comprehensive review and approach for interpretation. Elsevier Inc.
Feutry P, Hartmann HJ, Casabonnet H, Umaña G (2010) Preliminary analysis of the fish species of the Pacific Central American Mangrove of Zancudo, Golfo Dulce, Costa Rica. Wetl Ecol Manag 18:637–650. doi: 10.1007/s11273-010-9183-1
Fischer W, Krupp F, Schneider W, et al (1995) Guía FAO para la identificación de especies para los fines de la pesca. Pacífico centro-oriental. Volumen II. Vertebrados - Parte 1. FAO, Roma
Fonseca VF, França S, Duarte B, et al (2019) Spatial variation in mercury bioaccumulation and magnification in a temperate estuarine food web. Front Mar Sci 6:1–11. doi: 10.3389/fmars.2019.00117
Froese R, Pauly D (2017) Fishbase. In: World Wide Web Electron. Publ.
Froese R, Pauly D (2019) Fishbase. World Wide Web electronic publication. In: www.fishbase.org
Gallego A (2018) Hábitos tróficos de Cathorops multiradiatus (Ariidae) en la Bahía de Buenaventura, Pacifico colombiano. Trabajo de grado. Universidad Nacional de Colombia, Sede Palmira
Gamboa-García DE, Duque G, Cogua P (2018) Structural and compositional dynamics of macroinvertebrates and their relation to environmental variables in Buenaventura Bay. Bull Mar Coast Res 47:67–83. doi: 10.25268/bimc.invemar.2018.47.1.738
Gamboa-García DE, Duque G, Cogua P, Freire M (2019) Mercurio total en Plumas de Pelecanus occidentalis en el Pacífico Vallecaucano. In: Comunidades Epistemológicas Tomo II: Investigando la actualidad desde diversas disciplinas. Editorial Universidad Santiago de Cali, pp 31–47
Gamboa-García DE, Duque G, Cogua P, Marrugo-Negrete JL (2020) Mercury dynamics in macroinvertebrates in relation to environmental factors in a highly impacted tropical estuary: Buenaventura Bay, Colombian Pacific. Environ Sci Pollut Res 27:4044–4057. doi: 10.1007/s11356-019-06970-6
Goto D, Wallace WG (2009) Biodiversity loss in benthic macroinfaunal communities and its consequence for organic mercury trophic availability to benthivorous predators in the lower Hudson River estuary, USA. Mar Pollut Bull 58:1909–1915. doi: 10.1016/j.marpolbul.2009.09.032
Grant CJ, Lutz AK, Kulig AD, Stanton MR (2016) Fracked ecology: Response of aquatic trophic structure and mercury biomagnification dynamics in the Marcellus Shale Formation. Ecotoxicology 25:1739–1750. doi: 10.1007/s10646-016-1717-8
Han S, Gill GA, Lehman RD, Choe KY (2006) Complexation of mercury by dissolved organic matter in surface waters of Galveston Bay, Texas. Mar Chem 98:156–166. doi: 10.1016/j.marchem.2005.07.004
He M, Tian L, Braaten HFV, et al (2019) Mercury–Organic Matter Interactions in Soils and Sediments: Angel or Devil? Bull Environ Contam Toxicol 102:621–627. doi: 10.1007/s00128-018-2523-1
Henderson BL, Chumchal MM, Drenner RW, et al (2012) Effects of fish on mercury contamination of macroinvertebrate communities of Grassland ponds. Environ Toxicol Chem 31:870–876. doi: 10.1002/etc.1760
IDEAM (2016) Consulta y Descarga de Datos Hidrometeorológicos. In: Sist. Inf. para la gestión datos Hidrológicos y Meteorológicos – DHIME. http://dhime.ideam.gov.co/atencionciudadano/
Ieno EN, Solan M, Batty P, Pierce GJ (2006) How biodiversity affects ecosystem functioning: roles of inaunal species richaness, identity and density in the marine benthos. Mar Ecol Prog Ser 311 263-271 311:263–271. doi: 10.3354/meps311263
Jæger I, Hop H, Gabrielsen GW (2009) Biomagnification of mercury in selected species from an Arctic marine food web in Svalbard. Sci Total Environ 407:4744–4751. doi: 10.1016/j.scitotenv.2009.04.004
Jones TA, Chumchal MM, Drenner RW, et al (2013) Bottom-up nutrient and top-down fish impacts on insect-mediated mercury flux from aquatic ecosystems. Environ Toxicol Chem 32:612–618. doi: 10.1002/etc.2079
Kehrig HA, Pinto FN, Moreira I, Malm O (2003) Heavy metals and methylmercury in a tropical coastal estuary and a mangrove in Brazil. Org Geochem 34:661–669. doi: 10.1016/S0146-6380(03)00021-4
Klusmann M (2018) Hábitos tróficos de Daector dowi (batrachoididae) en la Bahía de Buenaventura, Pacifico colombiano. Universidad Nacional de Colombia, Sede Palmira
Krause KP, Wu C-L, Chu ML, Knouft JH (2019) Fish assemblage-environment relationships suggest differential trophic responses to heavy metal contamination. Freshw Biol 64:632–642. doi: 10.1111/fwb.13248
Lacerda LD, Fitzgerald WF (2001) Biogeochemistry of mercury in wetlands. Wetl Ecol Manag 9:291–293. doi: 10.1023/A:1011851432573
Le Croizier G, Schaal G, Point D, et al (2019) Stable isotope analyses revealed the influence of foraging habitat on mercury accumulation in tropical coastal marine fish. Sci Total Environ 650:2129–2140. doi: 10.1016/j.scitotenv.2018.09.330
Lima ARA, Barletta M, Costa MF (2015) Seasonal distribution and interactions between plankton and microplastics in a tropical estuary. Estuar. Coast. Shelf Sci. 165:213–225
Lindeman RL (1942) The trophic dynamics aspect of ecology. Ecology 23:399–418. doi: 10.1017/CBO9781107415324.004
Lobo-Guerrero AL (1993) Hidrología e Hidrogeología de la región Pacífica colombiana. In: Leyva P (ed) Colombia-Pacífico, Tomo I. Banco de la Republica, Santafé de Bogotá, pp 122–134
Loreau M, Naeem S, Inchausti P, et al (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808. doi: 10.1126/science.1064088
Loseto LL, Stern GA, Deibel D, et al (2008) Linking mercury exposure to habitat and feeding behaviour in Beaufort Sea beluga whales. J Mar Syst 74:1012–1024. doi: 10.1016/j.jmarsys.2007.10.004
Marceniuk AP, Acero A, Cooke R, Betancur-R R (2017) Taxonomic revision of the New World genus Ariopsis Gill (Siluriformes: Ariidae), with description of two new species. Zootaxa 4290:1–42. doi: 10.11646/zootaxa.4290.1.1
Marceniuk AP, Betancur-R R, Acero A (2009) A New Species of Cathorops (Siluriformes; Ariidae) from Mesoamerica, with Redescription of Four Species From the Eastern Pacific. Bull Mar Sci 85:245–280
Martins ACB, Kinas PG, Marangoni JC, et al (2015) Medium- and long-term temporal trends in the fish assemblage inhabiting a surf zone, analyzed by Bayesian generalized additive models. Aquat Ecol 49:57–69. doi: 10.1007/s10452-015-9504-9
McNaughton SJ (1977) Diversity and Stability of Ecological Communities: A Comment on the Role of Empiricism in Ecology. Am Nat 111:515–525. doi: 10.1086/283181
Molina A, Duque G, Cogua P (2020) Influences of environmental conditions in the fish assemblage structure of a tropical estuary. Mar Biodivers 50:5. doi: 10.1007/s12526-019-01023-0
Morel FMM, Kraepiel AML, Amyot M (1998) The Chemical Cycle and Bioaccumulation of Mercury. Annu Rev Ecol Syst 29:543–566. doi: 10.1146/annurev.ecolsys.29.1.543
Naeem S, Chapin FS, Constanza R, et al (1999) Biodiversity and ecosystem functioning: maintaining natural life support processes. Issues Ecol 1–13. doi: 10.1890/0012-9623(2005)86[249b:IIE]2.0.CO;2
Naeem S, Loreau M, Inchausti P (2002) Biodiversity and ecosystem functioning : the emergence of a synthetic ecological framework. Biodivers Ecosyst Funct Synth Perspect 3–11
Nagelkerken I, Blaber SJM, Bouillon S, et al (2008) The habitat function of mangroves for terrestrial and marine fauna : A review. Aquat Bot 89:155–185. doi: 10.1016/j.aquabot.2007.12.007
Nelson JS (2006) Fishes of tne World, Fourth Edition, 4th edn. John Wiley & Sons, New Jersey
Oliver BG (1984) Uptake of chlorinated organics from anthropogenically contaminated sediments by oligochaete worms. Can J Fish Aquat Sci 41:878–883. doi: 10.1139/f84-104
Otero LJ (2005) Aplicación de un modelo hidrodinámico bidimensional para describir las corrientes y la propagación de la onda de marea en la bahía de Buenaventura. Boletín Científico CCCP 9–21. doi: 10.26640/01213423.12.9
Padalkar PP, Chakraborty P, Chennuri K, et al (2019) Molecular characteristics of sedimentary organic matter in controlling mercury (Hg) and elemental mercury (Hg0) distribution in tropical estuarine sediments. Sci Total Environ 668:592–601. doi: 10.1016/j.scitotenv.2019.02.353
Paine RT (1980) Food webs: linkage, interaction strength and community infrastracture. J Anim Ecol 49:666–685. doi: 10.2307/4220
Panesso M (2017) Influencia de las variables ambientales en la estructura de las comunidades bentónicas y su relación con el flujo de mercurio en la bahía de Buenaventura. Tesis de maestría. Universidad Nacional de Colombia Sede Palmira
Pecoraro GD, Hortellani MA, Hagiwara YS, et al (2019) Bioaccumulation of Total Mercury (THg) in Catfish (Siluriformes, Ariidae) with Different Sexual Maturity from Cananéia-Iguape Estuary, SP, Brazil. Bull Environ Contam Toxicol 102:175–179. doi: 10.1007/s00128-018-2485-3
Polak-Juszczak L (2012) Bioaccumulation of mercury in the trophic chain of flatfish from the Baltic Sea. Chemosphere 89:585–591. doi: 10.1016/j.chemosphere.2012.05.057
Power M, Klein GM, Guiguer KRRA, Kwan MKH (2002) Mercury accumulation in the fish community of a sub-Arctic lake in relation to trophic position and carbon sources. J Appl Ecol 39:819–830. doi: 10.1046/j.1365-2664.2002.00758.x
Quinn GP, Keough MJ (2002) Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge
Rashed MN (2001) Monitoring of environmental heavy metals in fish from nasser lake. Environ Int 27:27–33. doi: 10.1016/S0160-4120(01)00050-2
Rizzo A, Arcagni M, Arribére MA, et al (2011) Mercury in the biotic compartments of Northwest Patagonia lakes, Argentina. Chemosphere 84:70–79. doi: 10.1016/j.chemosphere.2011.02.052
Robertson DR, Allen GR (2015) Shorefishes of the Tropical Eastern Pacific: online information system. In: Smithson. Trop. Res. Institute, Balboa, Panamá. http://biogeodb.stri.si.edu/sftep/en
Rodrı́guez Martı́n-Doimeadios RC, Tessier E, Amouroux D, et al (2004) Mercury methylation/demethylation and volatilization pathways in estuarine sediment slurries using species-specific enriched stable isotopes. Mar Chem 90:107–123. doi: 10.1016/j.marchem.2004.02.022
Rudy ACA, Lamoureux SF, Treitz P, van Ewijk KY (2016) Transferability of regional permafrost disturbance susceptibility modelling using generalized linear and generalized additive models. Geomorphology 264:95–108. doi: 10.1016/j.geomorph.2016.04.011
Saniewska D, Bełdowska M, Bełdowski J, et al (2018) Impact of intense rains and flooding on mercury riverine input to the coastal zone. Mar Pollut Bull 127:593–602. doi: 10.1016/j.marpolbul.2017.12.058
Sankaran M, McNaughton SJ (1999) Determinants of biodiversity regulate compositional stability of communities. Nature 401:691–693. doi: 10.1038/44368
Scherer-Lorenzen M (2005) Biodiversity and Ecosystem Functioning: Basic Principles. In: Biodiversity: Structure and Function. UNESCO-EOLSS, Zurich, Switzerland, p 21
Scheuhammer A, Braune B, Chan HM, et al (2015) Recent progress on our understanding of the biological effects of mercury in fish and wildlife in the Canadian Arctic. Sci Total Environ 509–510:91–103. doi: 10.1016/j.scitotenv.2014.05.142
Schmitt-Jansen M, Veit U, Dudel G, Altenburger R (2008) An ecological perspective in aquatic ecotoxicology: Approaches and challenges. Basic Appl Ecol 9:337–345. doi: 10.1016/j.baae.2007.08.008
Shervette VR, Aguirre WE, Blacio E, et al (2007) Fish communities of a disturbed mangrove wetland and an adjacent tidal river in Palmar, Ecuador. Estuar Coast Shelf Sci 72:115–128. doi: 10.1016/j.ecss.2006.10.010
Sigmon CF, Kania HJ, Beyers RJ (1977) Reductions in Biomass and Diversity Resulting from Exposure to Mercury in Artificial Streams. J Fish Res Board Canada 34:493–500. doi: 10.1139/f77-080
Tadiso TM, Borgstrøm R, Rosseland BO (2011) Mercury concentrations are low in commercial fish species of Lake Ziway, Ethiopia, but stable isotope data indicated biomagnification. Ecotoxicol Environ Saf 74:953–959. doi: 10.1016/j.ecoenv.2011.01.005
Tafurt D (2020) Influencia de las condiciones ambientales en la ecología trófica y presencia de microplásticos en tres especies de lenguados de la familia Achiridae en la Bahía de Buenaventura, Pacífico Colombiano. Trabajo de grado. Universidad Nacional de Colombia, sede Palmira
Tang H, Xu L, Zhou C, et al (2017) The effect of environmental variables, gear design and operational parameters on sinking performance of tuna purse seine setting on free-swimming schools. Fish Res 196:151–159. doi: 10.1016/j.fishres.2017.08.006
Tavera J, Acero P. A, Wainwright PC (2018) Multilocus phylogeny, divergence times, and a major role for the benthic-to-pelagic axis in the diversification of grunts (Haemulidae). Mol Phylogenet Evol 121:212–223. doi: 10.1016/j.ympev.2017.12.032
USEPA (2003) Methodology for Deriving Ambient Water Quality Criteria for the Protection of Human Health (2000). Technical Support Document Volume 2: Development of National Bioaccumulation Factors. United States Environmental Protection Agency, Washington, DC
Valone TJ, Barber NA (2008) An Empirical Evaluation of the Insurance Hypothesis in Diversity-Stability Models. Ecology 89:522–531. doi: 10.1890/07-0153.1
van der Velden S, Evans MS, Dempson JB, et al (2013) Comparative analysis of total mercury concentrations in anadromous and non-anadromous Arctic charr (Salvelinus alpinus) from eastern Canada. Sci Total Environ 447:438–449. doi: 10.1016/j.scitotenv.2012.12.092
Vilar CC, Joyeux JC, Giarrizzo T, et al (2013) Local and regional ecological drivers of fish assemblages in Brazilian estuaries. Mar Ecol Prog Ser 485:181–197. doi: 10.3354/meps10343
von Canstein H, Kelly S, Li Y, Wagner-Döbler I (2002) Species Diversity Improves the Efficiency of Mercury-Reducing Biofilms under Changing Environmental Conditions. Appl Environ Microbiol 68:2829–2837. doi: 10.1128/AEM.68.6.2829-2837.2002
W F, F K, C S, et al (1995) Guía FAO para la identificación de especies para los fines de la pesca Pacifico Centro - Oriental, I, II, III. Organización de las Naciones Unidas para la agricultura y la alimentación, Roma, FAO
Walker CH (2008) Organic Pollutants: An Ecotoxicological Perspective, Second Edition, Second. CRC Press - Taylor & Francis Group, Boca Raton, FL
Whitfield AK (1999) Ichthyofaunal assemblages in estuaries: A South African case study. Rev Fish Biol andFisheries 9:151–186
WHO (1990) Environmental Health Criteria 101: Methylmercury. World Health Organization, Finlandia
Wohl DL, Arora S, Gladstone JR (2004) Functional redundancy supports biodiversity and ecosystem function in a closed and constant environment. Ecology 85:1534–1540. doi: 10.1890/03-3050
Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc Natl Acad Sci 96:1463–1468. doi: 10.1073/pnas.96.4.1463
Zhang C, Yu Z, Zeng G, et al (2014) Effects of sediment geochemical properties on heavy metal bioavailability. Environ Int 73:270–281. doi: 10.1016/j.envint.2014.08.010
Zillioux E (2015) Mercury in Fish: History, Sources, Pathways, Effects, and Indicator Usage. In: Armon RH, Hänninen O (eds) Environmental Indicators. pp 1–1068
Zolfaghari G, Esmaili-Sari A, Ghasempouri SM, et al (2009) A multispecies-monitoring study about bioaccumulation of mercury in Iranian birds (Khuzestan to Persian Gulf): Effect of taxonomic affiliation and trophic level. Environ Res 109:830–836. doi: 10.1016/j.envres.2009.07.001
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.spa.spa.fl_str_mv Acceso abierto
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
Acceso abierto
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 155
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Caribe - Caribe - Doctorado en Ciencias - Biología
dc.publisher.department.spa.fl_str_mv Centro de estudios en Ciencias del mar-CECIMAR
dc.publisher.faculty.spa.fl_str_mv Facultad Caribe
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Caribe
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79261/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79261/1/1032359785.2020.pdf
https://repositorio.unal.edu.co/bitstream/unal/79261/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79261/4/1032359785.2020.pdf.jpg
bitstream.checksum.fl_str_mv 217700a34da79ed616c2feb68d4c5e06
16779c6125ec4856efc39ef5d631bf49
cccfe52f796b7c63423298c2d3365fc6
8c425642815d88423f892451923554fd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089974483517440
spelling Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Duque, Guillermo0bb45789-8f4f-4f2d-a7cf-b137cd2f20dfCogua, Pilar4082611e-0d7c-444c-9cb5-317d45067e22Molina Sandoval, Andrés Estebane57c8845-c636-4f2a-8b4a-b231fdade087Ecología y Contaminación Acuática2021-02-17T15:09:55Z2021-02-17T15:09:55Z2020-11-09Molina (2020) Influencia de los ensamblajes de peces bentónicos en la dinámica del mercurio en un estuario tropical. Tesis de doctorado. Instituto de Estudios en Ciencias del Mar – CECIMAR. Universidad Nacional de Colombia, sede Caribe. 155pp.https://repositorio.unal.edu.co/handle/unal/79261Los estuarios son ecosistemas clave para el estudio de la contaminación por mercurio, al recibir el mercurio directamente a través de los ríos y la escorrentía, y tener condiciones ambientales que permiten su acumulación, biodisponibilidad y flujo. Con el objetivo de determinar la influencia de la estructura de la comunidad sobre el flujo de mercurio en estuarios tropicales, se tomó como modelo biológico los ensamblajes peces y como ecosistema modelo el estuario Bahía de Buenaventura. Se colectaron muestras representativas de los gradientes espaciotemporales del estuario de granulometría, materia orgánica y mercurio total (HgT) en sedimentos, de variables fisicoquímicas del agua, de la comunidad de peces y del contenido de HgT en musculo de peces. El ensamblaje de peces de la Bahía de Buenaventura estuvo dominado por 14 de las 69 especies encontradas, representando el 90% de la densidad y el 81% de la biomasa. El mayor número de especies, densidad y biomasa se encontraron asociados a las zonas con mayor influencia de ríos. Por otra parte, la MO y el HgT en sedimentos fueron mayores en época de lluvia y en la parte interna del estuario, pudiéndose modelar su distribución y acumulación a partir de la MO y la salinidad, donde la MO representa el medio de transporte y acumulación del HgT y la salinidad representa la influencia de las variaciones hidroclimáticas y los gradientes ambientales del estuario. En la Bahía de Buenaventura el proceso de bioacumulación de mercurio en peces está activo, detectándose la presencia de mercurio en todas las especies analizadas, registrándose concentraciones de HgT superiores a 0.2 µg g-1 en más de la mitad de las especies. Por esto se escogieron las especies: Urotrygon rogersi, Cathorops multiradiatus, Achirus mazatlanus, Achirus klunzingeri, Sphoeroides trichocephalus, Daector dowi y Citharichthys gilberti para su análisis individual. Se identificaron tres grupos de peces, según los principales factores conductores del proceso de acumulación de HgT, que fueron la biodisponibilidad, las concentraciones iniciales en el ambiente y la fisiología específica de las especies, siendo la especie U. rogersi la que presentó el mayor potencial para ser utilizada como bioindicador para la contaminación por mercurio en este estuario. Para las siete especies de peces analizadas individualmente se encontraron Factores de Acumulación Biota-Sedimento (FABS) mayores a uno, comprobando que el proceso de bioacumulación está activo en este estuario. Adicionalmente, se observó que el proceso de transferencia de HgT de los sedimentos a los peces fue más eficiente en época seca y en la parte externa del estuario. Por otra parte, según la influencia de los descriptores de la estructura del ensamblaje de peces sobre los FABS, se identificaron tres tipos de interacción: 1) asociados a la variedad de respuestas a la contaminación por mercurio, relacionados con el número de especies; 2) por el aumento en el ingreso y flujo de mercurio por la producción de biomasa y nuevos individuos cuando los FABS fueron mayores al aumentar la densidad y la biomasa y 3) por los cambios tróficos por variaciones en la oferta de alimento, relacionados con la disminución de los FABS cuando aumento la densidad. Según los resultados de esta investigación la conservación de la diversidad y la dinámica ecológica puede hacer a los ecosistemas estuarinos más resistentes a la contaminación por mercurio.Estuaries are key ecosystems for the study of mercury pollution, as they receive mercury directly through rivers and runoff, and have environmental conditions that allow its accumulation, bioavailability and flow. In order to determine the influence of the community structure on the flow of mercury in tropical estuaries, the fish assemblages were taken as a biological model and the Buenaventura Bay estuary as an ecosystem model. Samples representative of the spatio-temporal gradients of the estuary of granulometry, organic matter (MO) and total mercury (HgT) in sediments, of physicochemical variables of the water, of the fish community and of the content of HgT in fish muscle were collected. The fish assemblage of Buenaventura Bay was dominated by 14 of the 69 species found, representing 90% of the density and 81% of the biomass. The highest number of species, density and biomass are associated with the areas with the greatest influence of rivers. On the other hand, MO and HgT in sediments were higher in the rainy season and in the inner part of the estuary, and its distribution and accumulation can be modeled from MO and salinity, where MO represents the means of transport and accumulation of HgT and salinity represents the influence of hydroclimatic variations and environmental gradients of the estuary. In the Buenaventura Bay the process of bioaccumulation of mercury in fish is active, detecting the presence of mercury in all the species analyzed, registering HgT concentrations higher than 0.2 µg g-1 in more than half of the species. For this reason, the following species were chosen for their individual analysis: Urotrygon rogersi, Cathorops multiradiatus, Achirus mazatlanus, Achirus klunzingeri, Sphoeroides trichocephalus, Daector dowi y Citharichthys gilberti. Three groups of fish were identified according to the main driving factors of the HgT accumulation process, which were bioavailability, initial concentrations in the environment and the specific physiology of the species, being the species U. rogersi the one that presented the greatest potential for be used as a bioindicator for mercury pollution in this estuary. For the seven fish species analyzed individually, Biota-Sediment Accumulation Factors (FABS) greater than one were found, verifying that the bioaccumulation process is active in this estuary. Additionally, it was observed that the HgT transfer process from the sediments to the fish was more efficient in the dry season and in the external part of the estuary. On the other hand, according to the influence of the descriptors of the structure of the fish assemblage on the FABS, three types of interaction were identified: 1) associated with the variety of responses to mercury contamination, related to the number of species; 2) due to the increase in mercury income and flux due to biomass production and new individuals, when the FABS were higher with increasing density and biomass, and 3) due to trophic changes due to variations in food supply, related to the decrease in FABS when density increases. According to the results of this research, the conservation of diversity and ecological dynamics can make estuarine ecosystems more resistant to mercury pollution.Doctorado155application/pdfspa570 - BiologíaMercuryCommunity structureEstuarine fishesMercury accumulationTropical estuaryMercurioEstructura de la comunidadPeces estuarinosAcumulación de mercurioEstuario tropicalInfluencia de los ensamblajes de peces bentónicos en la dinámica del mercurio en un estuario tropicalTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDCaribe - Caribe - Doctorado en Ciencias - BiologíaCentro de estudios en Ciencias del mar-CECIMARFacultad CaribeUniversidad Nacional de Colombia - Sede CaribeAdams DH, Paperno R (2012) Stable isotopes and mercury in a model estuarine fish: Multibasin comparisons with water quality, community structure, and available prey base. Sci Total Environ 414:445–455. doi: 10.1016/j.scitotenv.2011.10.014Adams DH, Sonne C, Basu N, et al (2010) Mercury contamination in spotted seatrout, Cynoscion nebulosus: An assessment of liver, kidney, blood, and nervous system health. Sci Total Environ 408:5808–5816. doi: 10.1016/j.scitotenv.2010.08.019Ahonen SA, Hayden B, Leppänen JJ, Kahilainen KK (2018) Climate and productivity affect total mercury concentration and bioaccumulation rate of fish along a spatial gradient of subarctic lakes. Sci Total Environ 637–638:1586–1596. doi: 10.1016/j.scitotenv.2018.04.436Amorim E, Ramos S, Elliott M, et al (2017) Habitat loss and gain : Influence on habitat attractiveness for estuarine fish communities. Estuar Coast Shelf Sci 197:244–257. doi: 10.1016/j.ecss.2017.08.043Amorós R, Murcia M, Ballester F, et al (2018) Selenium status during pregnancy: Influential factors and effects on neuropsychological development among Spanish infants. Sci Total Environ 610–611:741–749. doi: 10.1016/j.scitotenv.2017.08.042Andersen JL, Depledge MH (1997) A survey of total mercury and methylmercury in edible fish and invertebrates from Azorean waters. Mar Environ Res 44:331–350. doi: 10.1016/S0141-1136(97)00011-1Anderson M, Gorley RN, Clarke KR (2008) PERMANOVA + for PRIMER Guide to Software and Statistical Methods. PRIMER-E. PRIMER-E Ltd., Plymouth, UKAnderson MJ (2017) Permutational Multivariate Analysis of Variance (PERMANOVA). In: Wiley StatsRef: Statistics Reference Online. John Wiley & Sons, Ltd, Chichester, UK, pp 1–15Anderson MJ (2005) PERMANOVA Permutational multivariate analysis of variance. Austral Ecol 1–24. doi: 10.1139/cjfas-58-3-626Arnot JA, Gobas FAPC (2006) A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environ Rev 14:257–297. doi: 10.1139/A06-005Azaroff A, Tessier E, Deborde J, et al (2019) Mercury and methylmercury concentrations, sources and distribution in submarine canyon sediments (Capbreton, SW France): Implications for the net methylmercury production. Sci Total Environ 673:511–521. doi: 10.1016/j.scitotenv.2019.04.111Azevedo JS, Fernandez WS, Farias LA, et al (2009) Use of Cathorops spixii as bioindicator of pollution of trace metals in the Santos Bay, Brazil. Ecotoxicology 18:577–586. doi: 10.1007/s10646-009-0315-4Bank M (2012) Mercury in the Environment. University of California PressBarletta M, Lima ARA (2019) Systematic Review of Fish Ecology and Anthropogenic Impacts in South American Estuaries: Setting Priorities for Ecosystem Conservation. Front Mar Sci 6:. doi: 10.3389/fmars.2019.00237Bay SM, Greenstein D, Parks AN, Zeeman C (2016) Assessment of Bioaccumulation in San Diego Bay. U.S. Fish & Wildlife Service, San Diego, CaliforniaBeyer J, Petersen K, Song Y, et al (2014) Environmental risk assessment of combined effects in aquatic ecotoxicology: A discussion paper. Mar Environ Res 96:81–91. doi: 10.1016/j.marenvres.2013.10.008Bisi TL, Lepoint G, Azevedo ADF, et al (2012) Trophic relationships and mercury biomagnification in Brazilian tropical coastal food webs. Ecol Indic 18:291–302. doi: 10.1016/j.ecolind.2011.11.015Boening DW (2000) Ecological effects, transport, and fate of mercury: A general review. Chemosphere 40:1335–1351. doi: 10.1016/S0045-6535(99)00283-0Bouvier T, Venail P, Pommier T, et al (2012) Contrasted effects of diversity and immigration on ecological insurance in marine bacterioplankton communities. PLoS One 7:1–9. doi: 10.1371/journal.pone.0037620Bowles KC, Apte SC, Maher WA, et al (2001) Bioaccumulation and biomagnification of mercury in Lake Murray, Papua New Guinea. Can J Fish Aquat Sci 58:888–897. doi: 10.1139/cjfas-58-5-888Bowling AM, Hammerschmidt CR, Oris JT (2011) Necrophagy by a benthic omnivore influences biomagnification of methylmercury in fish. Aquat Toxicol 102:134–141. doi: 10.1016/j.aquatox.2011.01.006Box GE, Cox DR (1964) An Analysis of Transformations. J R Stat Soc Ser B 26:211–252Burkhard L (2009) Estimation of Biota Sediment Accumulation Factor (BSAF) from Paired Observations of Chemical Concentrations in Biota and Sediment. U.S. Environmental Protection Agency, Cincinnati, OHBurkhard LP (2003) Factors influencing the design of bioaccumulation factor and biota-sediment accumulation factor field studies. Environ Toxicol Chem 22:351–360. doi: 10.1897/1551-5028(2003)022<0351:FITDOB>2.0.CO;2Burkhard LP, Arnot JA, Embry MR, et al (2012) Comparing laboratory- and field-measured biota-sediment accumulation factors. Integr Environ Assess Manag 8:32–41. doi: 10.1002/ieam.218Cabana G, Rasmussen JB (1994) Modelling food chain structure and contaminant bioaccumulation using stable nitrogen isotopes. Nature 372:255–257Cantera JR, Blanco JF (2001) The Estuary Ecosystem of Buenaventura Bay, Colombia. In: Seeliger U, Kjerfve B (eds) Coastal Marine Ecosystems of Latin America. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 265–280Chakraborty P, Jayachandran S, Lekshmy J, et al (2019) Seawater intrusion and resuspension of surface sediment control mercury (Hg) distribution and its bioavailability in water column of a monsoonal estuarine system. Sci Total Environ 660:1441–1448. doi: 10.1016/j.scitotenv.2018.12.477Chapman PM (2002) Integrating toxicology and ecology: Putting the “eco” into ecotoxicology. Mar Pollut Bull 44:7–15. doi: 10.1016/S0025-326X(01)00253-3Chen C-F, Ju Y-R, Chen C-W, Dong C-D (2019) The distribution of methylmercury in estuary and harbor sediments. Sci Total Environ 691:55–63. doi: 10.1016/j.scitotenv.2019.07.002Chen C-F, Ju Y-R, Lim YC, et al (2020) Dry and wet seasonal variation of total mercury, inorganic mercury, and methylmercury formation in estuary and harbor sediments. J Environ Manage 253:109683. doi: 10.1016/j.jenvman.2019.109683Chen C, Amirbahman A, Fisher N, et al (2008) Methylmercury in marine ecosystems: Spatial patterns and processes of production, bioaccumulation, and biomagnification. Ecohealth 5:399–408. doi: 10.1007/s10393-008-0201-1Chen CY, Dionne M, Mayes BM, et al (2009) Mercury bioavailability and bioaccumulation in estuarine food webs in the Gulf of Maine. Environ Sci Technol 43:1804–1810. doi: 10.1021/es8017122Chumchal MM, Drenner RW, Cross DR, Hambright KD (2010) Factors influencing mercury accumulation in three species of forage fish from Caddo Lake, Texas, USA. J Environ Sci 22:1158–1163. doi: 10.1016/S1001-0742(09)60232-1Chumchal MM, Drenner RW, Fry B, et al (2008) Habitat-Specific Differences in Mercury Concentration in a Top Predator from a Shallow Lake. Trans Am Fish Soc 137:195–208. doi: 10.1577/T07-009.1Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Austral Ecol 18:117–143. doi: 10.1111/j.1442-9993.1993.tb00438.xClarke KR, Gorley RN (2015) PRIMER v7: User Manual/Tutorial. PRIMER-E Ltd., Plymounth, UKClarke KR, Gorley RN, Somerfield PJ, Warwick RM (2014) Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 3rd editio. PRIMER-E Ltd., Plymouth, UKCoelho JP, Mieiro CL, Pereira E, et al (2013) Mercury biomagnification in a contaminated estuary food web: Effects of age and trophic position using stable isotope analyses. Mar Pollut Bull 69:110–115. doi: 10.1016/j.marpolbul.2013.01.021Cogua P (2011) Estudio comparativo del flujo de mercurio a través de redes detritívoras y planctívoras en un estuario tropical. Universidad Nacional de ColombiaCosta MF, Landing WM, Kehrig HA, et al (2012) Mercury in tropical and subtropical coastal environments. Environ Res 119:88–100. doi: 10.1016/j.envres.2012.07.008Covich AP, Austen MC, Bärlocher F, et al (2004) The role of biodiversity in the functioning of freshwater and marine benthic ecosystems. Bioscience 54:767–775. doi: 10.1641/0006-3568(2004)054[0767:TROBIT]2.0.CO;2DANE (2005) Proyecciones de población. In: Dep. Adm. Nac. Estadística - DANE. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/proyecciones-de-poblacion. Accessed 29 May 2019Dang F, Wang WX (2012) Why mercury concentration increases with fish size? Biokinetic explanation. Environ Pollut 163:192–198. doi: 10.1016/j.envpol.2011.12.026Dauvin JC, Ruellet T (2009) The estuarine quality paradox: Is it possible to define an ecological quality status for specific modified and naturally stressed estuarine ecosystems? Mar Pollut Bull 59:38–47. doi: 10.1016/j.marpolbul.2008.11.008Day JW, Crump BC, Michael, Kemp W, Yáñez-Arancibia A (2012) Estuarine Ecology, Second Edi. John Wiley & Sons, Inc., Hoboken, NJ, USAde Souza JB, Reisen VA, Franco GC, et al (2018) Generalized additive models with principal component analysis: an application to time series of respiratory disease and air pollution data. J R Stat Soc Ser C Appl Stat 67:453–480. doi: 10.1111/rssc.12239Diaz JM (2007) Deltas y Estuarios de Colombia. Imprelibros S.A., Cali, ColombiaDíaz O, Encina F, Chuecas L, et al (2001) Influencia de variables estacionales, espaciales, biológicas y ambientales en la bioacumulación de mercurio total y metilmercurio en Tagelus dombeii. Rev Biol Mar Oceanogr 36:15–29. doi: 10.4067/S0718-19572001000100003Djikanović V, Skorić S, Spasić S, et al (2018) Ecological risk assessment for different macrophytes and fish species in reservoirs using biota-sediment accumulation factors as a useful tool. Environ Pollut 241:1167–1174. doi: 10.1016/j.envpol.2018.06.054Duque G, Cogua P (2016) Mercurio en peces de la bahía de Buenaventura. Ingenium 10:11–17. doi: https://doi.org/10.21774/ing.v10i29.696Duque G, Gamboa-García DE, Molina A, Cogua P (2020) Effect of water quality variation on fish assemblages in an anthropogenically impacted tropical estuary, Colombian Pacific. Environ Sci Pollut Res Online Fir:14. doi: 10.1007/s11356-020-08971-2Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J. Anim. Ecol. 77:802–813Engstrom DR (2007) Fish respond when the mercury rises. Proc Natl Acad Sci 104:16394–16395. doi: 10.1073/pnas.0708273104Evers D (2017) The effects of methylmercury on wildlife: A comprehensive review and approach for interpretation. Elsevier Inc.Feutry P, Hartmann HJ, Casabonnet H, Umaña G (2010) Preliminary analysis of the fish species of the Pacific Central American Mangrove of Zancudo, Golfo Dulce, Costa Rica. Wetl Ecol Manag 18:637–650. doi: 10.1007/s11273-010-9183-1Fischer W, Krupp F, Schneider W, et al (1995) Guía FAO para la identificación de especies para los fines de la pesca. Pacífico centro-oriental. Volumen II. Vertebrados - Parte 1. FAO, RomaFonseca VF, França S, Duarte B, et al (2019) Spatial variation in mercury bioaccumulation and magnification in a temperate estuarine food web. Front Mar Sci 6:1–11. doi: 10.3389/fmars.2019.00117Froese R, Pauly D (2017) Fishbase. In: World Wide Web Electron. Publ.Froese R, Pauly D (2019) Fishbase. World Wide Web electronic publication. In: www.fishbase.orgGallego A (2018) Hábitos tróficos de Cathorops multiradiatus (Ariidae) en la Bahía de Buenaventura, Pacifico colombiano. Trabajo de grado. Universidad Nacional de Colombia, Sede PalmiraGamboa-García DE, Duque G, Cogua P (2018) Structural and compositional dynamics of macroinvertebrates and their relation to environmental variables in Buenaventura Bay. Bull Mar Coast Res 47:67–83. doi: 10.25268/bimc.invemar.2018.47.1.738Gamboa-García DE, Duque G, Cogua P, Freire M (2019) Mercurio total en Plumas de Pelecanus occidentalis en el Pacífico Vallecaucano. In: Comunidades Epistemológicas Tomo II: Investigando la actualidad desde diversas disciplinas. Editorial Universidad Santiago de Cali, pp 31–47Gamboa-García DE, Duque G, Cogua P, Marrugo-Negrete JL (2020) Mercury dynamics in macroinvertebrates in relation to environmental factors in a highly impacted tropical estuary: Buenaventura Bay, Colombian Pacific. Environ Sci Pollut Res 27:4044–4057. doi: 10.1007/s11356-019-06970-6Goto D, Wallace WG (2009) Biodiversity loss in benthic macroinfaunal communities and its consequence for organic mercury trophic availability to benthivorous predators in the lower Hudson River estuary, USA. Mar Pollut Bull 58:1909–1915. doi: 10.1016/j.marpolbul.2009.09.032Grant CJ, Lutz AK, Kulig AD, Stanton MR (2016) Fracked ecology: Response of aquatic trophic structure and mercury biomagnification dynamics in the Marcellus Shale Formation. Ecotoxicology 25:1739–1750. doi: 10.1007/s10646-016-1717-8Han S, Gill GA, Lehman RD, Choe KY (2006) Complexation of mercury by dissolved organic matter in surface waters of Galveston Bay, Texas. Mar Chem 98:156–166. doi: 10.1016/j.marchem.2005.07.004He M, Tian L, Braaten HFV, et al (2019) Mercury–Organic Matter Interactions in Soils and Sediments: Angel or Devil? Bull Environ Contam Toxicol 102:621–627. doi: 10.1007/s00128-018-2523-1Henderson BL, Chumchal MM, Drenner RW, et al (2012) Effects of fish on mercury contamination of macroinvertebrate communities of Grassland ponds. Environ Toxicol Chem 31:870–876. doi: 10.1002/etc.1760IDEAM (2016) Consulta y Descarga de Datos Hidrometeorológicos. In: Sist. Inf. para la gestión datos Hidrológicos y Meteorológicos – DHIME. http://dhime.ideam.gov.co/atencionciudadano/Ieno EN, Solan M, Batty P, Pierce GJ (2006) How biodiversity affects ecosystem functioning: roles of inaunal species richaness, identity and density in the marine benthos. Mar Ecol Prog Ser 311 263-271 311:263–271. doi: 10.3354/meps311263Jæger I, Hop H, Gabrielsen GW (2009) Biomagnification of mercury in selected species from an Arctic marine food web in Svalbard. Sci Total Environ 407:4744–4751. doi: 10.1016/j.scitotenv.2009.04.004Jones TA, Chumchal MM, Drenner RW, et al (2013) Bottom-up nutrient and top-down fish impacts on insect-mediated mercury flux from aquatic ecosystems. Environ Toxicol Chem 32:612–618. doi: 10.1002/etc.2079Kehrig HA, Pinto FN, Moreira I, Malm O (2003) Heavy metals and methylmercury in a tropical coastal estuary and a mangrove in Brazil. Org Geochem 34:661–669. doi: 10.1016/S0146-6380(03)00021-4Klusmann M (2018) Hábitos tróficos de Daector dowi (batrachoididae) en la Bahía de Buenaventura, Pacifico colombiano. Universidad Nacional de Colombia, Sede PalmiraKrause KP, Wu C-L, Chu ML, Knouft JH (2019) Fish assemblage-environment relationships suggest differential trophic responses to heavy metal contamination. Freshw Biol 64:632–642. doi: 10.1111/fwb.13248Lacerda LD, Fitzgerald WF (2001) Biogeochemistry of mercury in wetlands. Wetl Ecol Manag 9:291–293. doi: 10.1023/A:1011851432573Le Croizier G, Schaal G, Point D, et al (2019) Stable isotope analyses revealed the influence of foraging habitat on mercury accumulation in tropical coastal marine fish. Sci Total Environ 650:2129–2140. doi: 10.1016/j.scitotenv.2018.09.330Lima ARA, Barletta M, Costa MF (2015) Seasonal distribution and interactions between plankton and microplastics in a tropical estuary. Estuar. Coast. Shelf Sci. 165:213–225Lindeman RL (1942) The trophic dynamics aspect of ecology. Ecology 23:399–418. doi: 10.1017/CBO9781107415324.004Lobo-Guerrero AL (1993) Hidrología e Hidrogeología de la región Pacífica colombiana. In: Leyva P (ed) Colombia-Pacífico, Tomo I. Banco de la Republica, Santafé de Bogotá, pp 122–134Loreau M, Naeem S, Inchausti P, et al (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808. doi: 10.1126/science.1064088Loseto LL, Stern GA, Deibel D, et al (2008) Linking mercury exposure to habitat and feeding behaviour in Beaufort Sea beluga whales. J Mar Syst 74:1012–1024. doi: 10.1016/j.jmarsys.2007.10.004Marceniuk AP, Acero A, Cooke R, Betancur-R R (2017) Taxonomic revision of the New World genus Ariopsis Gill (Siluriformes: Ariidae), with description of two new species. Zootaxa 4290:1–42. doi: 10.11646/zootaxa.4290.1.1Marceniuk AP, Betancur-R R, Acero A (2009) A New Species of Cathorops (Siluriformes; Ariidae) from Mesoamerica, with Redescription of Four Species From the Eastern Pacific. Bull Mar Sci 85:245–280Martins ACB, Kinas PG, Marangoni JC, et al (2015) Medium- and long-term temporal trends in the fish assemblage inhabiting a surf zone, analyzed by Bayesian generalized additive models. Aquat Ecol 49:57–69. doi: 10.1007/s10452-015-9504-9McNaughton SJ (1977) Diversity and Stability of Ecological Communities: A Comment on the Role of Empiricism in Ecology. Am Nat 111:515–525. doi: 10.1086/283181Molina A, Duque G, Cogua P (2020) Influences of environmental conditions in the fish assemblage structure of a tropical estuary. Mar Biodivers 50:5. doi: 10.1007/s12526-019-01023-0Morel FMM, Kraepiel AML, Amyot M (1998) The Chemical Cycle and Bioaccumulation of Mercury. Annu Rev Ecol Syst 29:543–566. doi: 10.1146/annurev.ecolsys.29.1.543Naeem S, Chapin FS, Constanza R, et al (1999) Biodiversity and ecosystem functioning: maintaining natural life support processes. Issues Ecol 1–13. doi: 10.1890/0012-9623(2005)86[249b:IIE]2.0.CO;2Naeem S, Loreau M, Inchausti P (2002) Biodiversity and ecosystem functioning : the emergence of a synthetic ecological framework. Biodivers Ecosyst Funct Synth Perspect 3–11Nagelkerken I, Blaber SJM, Bouillon S, et al (2008) The habitat function of mangroves for terrestrial and marine fauna : A review. Aquat Bot 89:155–185. doi: 10.1016/j.aquabot.2007.12.007Nelson JS (2006) Fishes of tne World, Fourth Edition, 4th edn. John Wiley & Sons, New JerseyOliver BG (1984) Uptake of chlorinated organics from anthropogenically contaminated sediments by oligochaete worms. Can J Fish Aquat Sci 41:878–883. doi: 10.1139/f84-104Otero LJ (2005) Aplicación de un modelo hidrodinámico bidimensional para describir las corrientes y la propagación de la onda de marea en la bahía de Buenaventura. Boletín Científico CCCP 9–21. doi: 10.26640/01213423.12.9Padalkar PP, Chakraborty P, Chennuri K, et al (2019) Molecular characteristics of sedimentary organic matter in controlling mercury (Hg) and elemental mercury (Hg0) distribution in tropical estuarine sediments. Sci Total Environ 668:592–601. doi: 10.1016/j.scitotenv.2019.02.353Paine RT (1980) Food webs: linkage, interaction strength and community infrastracture. J Anim Ecol 49:666–685. doi: 10.2307/4220Panesso M (2017) Influencia de las variables ambientales en la estructura de las comunidades bentónicas y su relación con el flujo de mercurio en la bahía de Buenaventura. Tesis de maestría. Universidad Nacional de Colombia Sede PalmiraPecoraro GD, Hortellani MA, Hagiwara YS, et al (2019) Bioaccumulation of Total Mercury (THg) in Catfish (Siluriformes, Ariidae) with Different Sexual Maturity from Cananéia-Iguape Estuary, SP, Brazil. Bull Environ Contam Toxicol 102:175–179. doi: 10.1007/s00128-018-2485-3Polak-Juszczak L (2012) Bioaccumulation of mercury in the trophic chain of flatfish from the Baltic Sea. Chemosphere 89:585–591. doi: 10.1016/j.chemosphere.2012.05.057Power M, Klein GM, Guiguer KRRA, Kwan MKH (2002) Mercury accumulation in the fish community of a sub-Arctic lake in relation to trophic position and carbon sources. J Appl Ecol 39:819–830. doi: 10.1046/j.1365-2664.2002.00758.xQuinn GP, Keough MJ (2002) Experimental Design and Data Analysis for Biologists. Cambridge University Press, CambridgeRashed MN (2001) Monitoring of environmental heavy metals in fish from nasser lake. Environ Int 27:27–33. doi: 10.1016/S0160-4120(01)00050-2Rizzo A, Arcagni M, Arribére MA, et al (2011) Mercury in the biotic compartments of Northwest Patagonia lakes, Argentina. Chemosphere 84:70–79. doi: 10.1016/j.chemosphere.2011.02.052Robertson DR, Allen GR (2015) Shorefishes of the Tropical Eastern Pacific: online information system. In: Smithson. Trop. Res. Institute, Balboa, Panamá. http://biogeodb.stri.si.edu/sftep/enRodrı́guez Martı́n-Doimeadios RC, Tessier E, Amouroux D, et al (2004) Mercury methylation/demethylation and volatilization pathways in estuarine sediment slurries using species-specific enriched stable isotopes. Mar Chem 90:107–123. doi: 10.1016/j.marchem.2004.02.022Rudy ACA, Lamoureux SF, Treitz P, van Ewijk KY (2016) Transferability of regional permafrost disturbance susceptibility modelling using generalized linear and generalized additive models. Geomorphology 264:95–108. doi: 10.1016/j.geomorph.2016.04.011Saniewska D, Bełdowska M, Bełdowski J, et al (2018) Impact of intense rains and flooding on mercury riverine input to the coastal zone. Mar Pollut Bull 127:593–602. doi: 10.1016/j.marpolbul.2017.12.058Sankaran M, McNaughton SJ (1999) Determinants of biodiversity regulate compositional stability of communities. Nature 401:691–693. doi: 10.1038/44368Scherer-Lorenzen M (2005) Biodiversity and Ecosystem Functioning: Basic Principles. In: Biodiversity: Structure and Function. UNESCO-EOLSS, Zurich, Switzerland, p 21Scheuhammer A, Braune B, Chan HM, et al (2015) Recent progress on our understanding of the biological effects of mercury in fish and wildlife in the Canadian Arctic. Sci Total Environ 509–510:91–103. doi: 10.1016/j.scitotenv.2014.05.142Schmitt-Jansen M, Veit U, Dudel G, Altenburger R (2008) An ecological perspective in aquatic ecotoxicology: Approaches and challenges. Basic Appl Ecol 9:337–345. doi: 10.1016/j.baae.2007.08.008Shervette VR, Aguirre WE, Blacio E, et al (2007) Fish communities of a disturbed mangrove wetland and an adjacent tidal river in Palmar, Ecuador. Estuar Coast Shelf Sci 72:115–128. doi: 10.1016/j.ecss.2006.10.010Sigmon CF, Kania HJ, Beyers RJ (1977) Reductions in Biomass and Diversity Resulting from Exposure to Mercury in Artificial Streams. J Fish Res Board Canada 34:493–500. doi: 10.1139/f77-080Tadiso TM, Borgstrøm R, Rosseland BO (2011) Mercury concentrations are low in commercial fish species of Lake Ziway, Ethiopia, but stable isotope data indicated biomagnification. Ecotoxicol Environ Saf 74:953–959. doi: 10.1016/j.ecoenv.2011.01.005Tafurt D (2020) Influencia de las condiciones ambientales en la ecología trófica y presencia de microplásticos en tres especies de lenguados de la familia Achiridae en la Bahía de Buenaventura, Pacífico Colombiano. Trabajo de grado. Universidad Nacional de Colombia, sede PalmiraTang H, Xu L, Zhou C, et al (2017) The effect of environmental variables, gear design and operational parameters on sinking performance of tuna purse seine setting on free-swimming schools. Fish Res 196:151–159. doi: 10.1016/j.fishres.2017.08.006Tavera J, Acero P. A, Wainwright PC (2018) Multilocus phylogeny, divergence times, and a major role for the benthic-to-pelagic axis in the diversification of grunts (Haemulidae). Mol Phylogenet Evol 121:212–223. doi: 10.1016/j.ympev.2017.12.032USEPA (2003) Methodology for Deriving Ambient Water Quality Criteria for the Protection of Human Health (2000). Technical Support Document Volume 2: Development of National Bioaccumulation Factors. United States Environmental Protection Agency, Washington, DCValone TJ, Barber NA (2008) An Empirical Evaluation of the Insurance Hypothesis in Diversity-Stability Models. Ecology 89:522–531. doi: 10.1890/07-0153.1van der Velden S, Evans MS, Dempson JB, et al (2013) Comparative analysis of total mercury concentrations in anadromous and non-anadromous Arctic charr (Salvelinus alpinus) from eastern Canada. Sci Total Environ 447:438–449. doi: 10.1016/j.scitotenv.2012.12.092Vilar CC, Joyeux JC, Giarrizzo T, et al (2013) Local and regional ecological drivers of fish assemblages in Brazilian estuaries. Mar Ecol Prog Ser 485:181–197. doi: 10.3354/meps10343von Canstein H, Kelly S, Li Y, Wagner-Döbler I (2002) Species Diversity Improves the Efficiency of Mercury-Reducing Biofilms under Changing Environmental Conditions. Appl Environ Microbiol 68:2829–2837. doi: 10.1128/AEM.68.6.2829-2837.2002W F, F K, C S, et al (1995) Guía FAO para la identificación de especies para los fines de la pesca Pacifico Centro - Oriental, I, II, III. Organización de las Naciones Unidas para la agricultura y la alimentación, Roma, FAOWalker CH (2008) Organic Pollutants: An Ecotoxicological Perspective, Second Edition, Second. CRC Press - Taylor & Francis Group, Boca Raton, FLWhitfield AK (1999) Ichthyofaunal assemblages in estuaries: A South African case study. Rev Fish Biol andFisheries 9:151–186WHO (1990) Environmental Health Criteria 101: Methylmercury. World Health Organization, FinlandiaWohl DL, Arora S, Gladstone JR (2004) Functional redundancy supports biodiversity and ecosystem function in a closed and constant environment. Ecology 85:1534–1540. doi: 10.1890/03-3050Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc Natl Acad Sci 96:1463–1468. doi: 10.1073/pnas.96.4.1463Zhang C, Yu Z, Zeng G, et al (2014) Effects of sediment geochemical properties on heavy metal bioavailability. Environ Int 73:270–281. doi: 10.1016/j.envint.2014.08.010Zillioux E (2015) Mercury in Fish: History, Sources, Pathways, Effects, and Indicator Usage. In: Armon RH, Hänninen O (eds) Environmental Indicators. pp 1–1068Zolfaghari G, Esmaili-Sari A, Ghasempouri SM, et al (2009) A multispecies-monitoring study about bioaccumulation of mercury in Iranian birds (Khuzestan to Persian Gulf): Effect of taxonomic affiliation and trophic level. Environ Res 109:830–836. doi: 10.1016/j.envres.2009.07.001CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.unal.edu.co/bitstream/unal/79261/3/license_rdf217700a34da79ed616c2feb68d4c5e06MD53ORIGINAL1032359785.2020.pdf1032359785.2020.pdfapplication/pdf1838184https://repositorio.unal.edu.co/bitstream/unal/79261/1/1032359785.2020.pdf16779c6125ec4856efc39ef5d631bf49MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79261/2/license.txtcccfe52f796b7c63423298c2d3365fc6MD52THUMBNAIL1032359785.2020.pdf.jpg1032359785.2020.pdf.jpgGenerated Thumbnailimage/jpeg4987https://repositorio.unal.edu.co/bitstream/unal/79261/4/1032359785.2020.pdf.jpg8c425642815d88423f892451923554fdMD54unal/79261oai:repositorio.unal.edu.co:unal/792612024-07-28 01:12:19.735Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==