Evaluación in vitro del efecto del material particulado y un potencial tratamiento en dos líneas celulares
ilustraciones, diagramas, tablas
- Autores:
-
Londoño Berrio, Maritza
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/82250
- Palabra clave:
- 660 - Ingeniería química
Citotoxicidad por mediación celular
Cell-mediated cytotoxicity
Toxicoproteómica
Nanopartículas
Diésel con mezcla de alcoholes
Toxicoproteomics
Nanoparticles
Diesel with a mixture of alcohols
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_7b41483ab7ee8e2534cae2e87fee91b9 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/82250 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluación in vitro del efecto del material particulado y un potencial tratamiento en dos líneas celulares |
dc.title.translated.eng.fl_str_mv |
In vitro evaluation of the effect of particulate matter and a potential treatment on two cell lines |
title |
Evaluación in vitro del efecto del material particulado y un potencial tratamiento en dos líneas celulares |
spellingShingle |
Evaluación in vitro del efecto del material particulado y un potencial tratamiento en dos líneas celulares 660 - Ingeniería química Citotoxicidad por mediación celular Cell-mediated cytotoxicity Toxicoproteómica Nanopartículas Diésel con mezcla de alcoholes Toxicoproteomics Nanoparticles Diesel with a mixture of alcohols |
title_short |
Evaluación in vitro del efecto del material particulado y un potencial tratamiento en dos líneas celulares |
title_full |
Evaluación in vitro del efecto del material particulado y un potencial tratamiento en dos líneas celulares |
title_fullStr |
Evaluación in vitro del efecto del material particulado y un potencial tratamiento en dos líneas celulares |
title_full_unstemmed |
Evaluación in vitro del efecto del material particulado y un potencial tratamiento en dos líneas celulares |
title_sort |
Evaluación in vitro del efecto del material particulado y un potencial tratamiento en dos líneas celulares |
dc.creator.fl_str_mv |
Londoño Berrio, Maritza |
dc.contributor.advisor.none.fl_str_mv |
Ortiz Trujillo, Isabel Cristina López, Juan Bautista |
dc.contributor.author.none.fl_str_mv |
Londoño Berrio, Maritza |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Bioinformática y Biología de Sistemas |
dc.subject.ddc.spa.fl_str_mv |
660 - Ingeniería química |
topic |
660 - Ingeniería química Citotoxicidad por mediación celular Cell-mediated cytotoxicity Toxicoproteómica Nanopartículas Diésel con mezcla de alcoholes Toxicoproteomics Nanoparticles Diesel with a mixture of alcohols |
dc.subject.lemb.none.fl_str_mv |
Citotoxicidad por mediación celular Cell-mediated cytotoxicity |
dc.subject.proposal.spa.fl_str_mv |
Toxicoproteómica Nanopartículas Diésel con mezcla de alcoholes |
dc.subject.proposal.eng.fl_str_mv |
Toxicoproteomics Nanoparticles Diesel with a mixture of alcohols |
description |
ilustraciones, diagramas, tablas |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-09-05T15:57:17Z |
dc.date.available.none.fl_str_mv |
2022-09-05T15:57:17Z |
dc.date.issued.none.fl_str_mv |
2022 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/82250 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/82250 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Yadav R, Sahu LK, Beig G, Tripathi N, Jaaffrey SNA. Ambient particulate matter and carbon monoxide at an urban site of India: Influence of anthropogenic emissions and dust storms. Environmental Pollution. 1 de junio de 2017;225:291-303. Liang F, Lu M, Keener TC, Liu Z, Khang S-J. The organic composition of diesel particulate matter, diesel fuel and engine oil of a non-road diesel generator. J Environ Monit. octubre de 2005;7(10):983-8. Dumax-Vorzet AF, Tate M, Walmsley R, Elder RH, Povey AC. Cytotoxicity and genotoxicity of urban particulate matter in mammalian cells. Mutagenesis. septiembre de 2015;30(5):621-33. Jeon YM, Son BS, Lee MY. Proteomic identification of the differentially expressed proteins in human lung epithelial cells by airborne particulate matter. J Appl Toxicol. enero de 2011;31(1):45-52. Kim H-J, Bae I-H, Son ED, Park J, Cha N, Na H-W, et al. Transcriptome analysis of airborne PM2.5-induced detrimental effects on human keratinocytes. Toxicol Lett. 5 de mayo de 2017;273:26-35. Wetmore BA, Merrick BA. Toxicoproteomics: proteomics applied to toxicology and pathology. Toxicol Pathol. diciembre de 2004;32(6):619-42. Feng S, Gao D, Liao F, Zhou F, Wang X. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicology and Environmental Safety. 1 de junio de 2016;128:67-74. Humans IWG on the E of CR to. Diesel and Gasoline Engine Exhausts and Some Nitroarenes. International Agency for Research on Cancer; 2014 Arora S, Rajwade JM, Paknikar KM. Nanotoxicology and in vitro studies: the need of the hour. Toxicol Appl Pharmacol. 15 de enero de 2012;258(2):151-65. Targeted Drug Delivery : Concepts and Design | Padma V. Devarajan | Springer [Internet]. [citado 10 de enero de 2018]. Disponible en: //www.springer.com/br/book/9783319113548 Osorio-Delgado MA, Henao-Tamayo LJ, Velásquez-Cock JA, Cañas-Gutierrez AI, Restrepo-Múnera LM, Gañán-Rojo PF, et al. Biomedical applications of polymeric biomaterials. DYNA. junio de 2017;84(201):241-52. Camacho Á, Duarte Á, Dubay D, Forero E, González E, Jaramillo F, et al. Definición de nanomateriales para Colombia. Revista Colombiana de Química. 1 de enero de 2016;45(1):15-20. Kleeman MJ, Schauer JJ, Cass GR. Size and Composition Distribution of Fine Particulate Matter Emitted from Motor Vehicles. Environ Sci Technol. 1 de abril de 2000;34(7):1132-42. Sevastyanova O, Binkova B, Topinka J, Sram RJ, Kalina I, Popov T, et al. In vitro genotoxicity of PAH mixtures and organic extract from urban air particles part II: human cell lines. Mutat Res. 1 de julio de 2007;620(1-2):123-34. Corrêa AXR, Cotelle S, Millet M, Somensi CA, Wagner TM, Radetski CM. Genotoxicity assessment of particulate matter emitted from heavy-duty diesel-powered vehicles using the in vivo Vicia faba L. micronucleus test. Ecotoxicology and Environmental Safety. 1 de mayo de 2016;127:199-204. Velali E, Papachristou E, Pantazaki A, Choli-Papadopoulou T, Argyrou N, Tsourouktsoglou T, et al. Cytotoxicity and genotoxicity induced in vitro by solvent-extractable organic matter of size-segregated urban particulate matter. Environmental Pollution. 1 de noviembre de 2016;218:1350-62. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative Stress: Harms and Benefits for Human Health. Oxid Med Cell Longev. 2017;2017:8416763. Influence of butanol addition to diesel–biodiesel blend on engine performance and particulate emissions of a stationary diesel engine - ScienceDirect [Internet]. [citado 13 de noviembre de 2021]. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0306261914000622 Giard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H, et al. In Vitro Cultivation of Human Tumors: Establishment of Cell Lines Derived From a Series of Solid Tumors2. JNCI: Journal of the National Cancer Institute. 1 de noviembre de 1973;51(5):1417-23. Yoshitomi S, Ikemoto K, Takahashi J, Miki H, Namba M, Asahi S. Establishment of the transformants expressing human cytochrome P450 subtypes in HepG2, and their applications on drug metabolism and toxicology. Toxicology in Vitro. 1 de junio de 2001;15(3):245-56. Lineamientos de Política [Internet]. Ministerio de Ambiente y Desarrollo Sostenible. [citado 25 de noviembre de 2021]. Disponible en: https://www.minambiente.gov.co/asuntos-ambientales-sectorial-y-urbana/lineamientos-de-politica/ Cadrazco M, Agudelo JR, Orozco LY, Estrada V. Genotoxicity of Diesel Particulate Matter Emitted by Port-Injection of Hydrous Ethanol and n-Butanol. Journal of Energy Resources Technology [Internet]. 30 de marzo de 2017 [citado 14 de noviembre de 2021];139(4). Disponible en: https://doi.org/10.1115/1.4036253 Mutagenicidad de material orgánico particulado en el aire de áreas urbanas e industriales de São Paulo, Brasil - ScienceDirect [Internet]. [citado 15 de noviembre de 2021]. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/0165116195000356 Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, et al. Single cell gel/comet assay: Guidelines for in vitro and in vivo genetic toxicology testing. Environmental and Molecular Mutagenesis. 2000;35(3):206-21 Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. marzo de 1988;175(1):184-91. The comet assay: a method to measure DNA damage in individual cells | Nature Protocols [Internet]. [citado 18 de abril de 2018]. Disponible en: https://www.nature.com/articles/nprot.2006.5 Beamish LA, Osornio-Vargas AR, Wine E. Air pollution: An environmental factor contributing to intestinal disease. Journal of Crohn’s and Colitis. 1 de agosto de 2011;5(4):279-86. Amann CA, Stivender DL, Plee SL, MacDonald JS. Some Rudiments of Diesel Particulate Emissions. SAE Transactions. 1980;89:1118-47. López C, Nohema S, Alvarado Díaz D. Análisis y determinación de la concentración de hidrocarburos aromático policíclicos (HAP.s) contenidos en el material particulado respirable (PM10) en la localidad de Puente Aranda de Bogotá en la zona de alta actividad industrial y alto flujo vehicular. 2006 [citado 18 de abril de 2018]; Disponible en: http://repository.lasalle.edu.co/handle/10185/14835 Crebelli R, Conti L, Crochi B, Carere A, Bertoli C, Del Giacomo N. The effect of fuel composition on the mutagenicity of diesel engine exhaust. Mutat Res. marzo de 1995;346(3):167-72. Arenas LMB, Atehortúa JR, Ortíz LD, Guerrero MC. Búsqueda de nuevos biomarcadores genéticos en gliomas de alto grado. Actualidades Biológicas. 2019;41(111):01-9. Krahl J, Knothe G, Munack A, Ruschel Y, Schröder O, Hallier E, et al. Comparison of exhaust emissions and their mutagenicity from the combustion of biodiesel, vegetable oil, gas-to-liquid and petrodiesel fuels. Fuel. 1 de junio de 2009;88(6):1064-9 Kisin ER, Shi XC, Keane MJ, Bugarski AB, Shvedova AA. Mutagenicity of biodiesel or diesel exhaust particles and the effect of engine operating conditions. J Environ Eng Ecol Sci. marzo de 2013;2(3):10.7243/2050-1323-2-3. Senthil Kumar S, Muthuselvam P, Pugalenthi V, Subramanian N, Ramkumar KM, Suresh T, et al. Toxicoproteomic analysis of human lung epithelial cells exposed to steel industry ambient particulate matter (PM) reveals possible mechanism of PM related carcinogenesis. Environ Pollut. agosto de 2018;239:483-92. Waters MD, Fostel JM. Toxicogenomics and systems toxicology: aims and prospects. Nature Reviews Genetics. diciembre de 2004;5(12):936-48. Lemos AT, Lemos CT de, Flores AN, Pantoja EO, Rocha JAV, Vargas VMF. Genotoxicity biomarkers for airborne particulate matter (PM2.5) in an area under petrochemical influence. Chemosphere. 1 de septiembre de 2016;159:610-8. Bai Y, Suzuki AK, Sagai M. The cytotoxic effects of diesel exhaust particles on human pulmonary artery endothelial cells in vitro: role of active oxygen species. Free Radic Biol Med. 1 de marzo de 2001;30(5):555-62. Mendoza LC, Jimenez luz YO, Restrepo LMZ, Baena JAP. Genotoxicidad sobre linfocitos humanos expuestos a PM10 de tres sitios del Valle de Aburrá (Antioquia). Revista de Salud Pública. 1 de marzo de 2013;15(2):294-306. Lepers C, André V, Dergham M, Billet S, Verdin A, Garçon G, et al. Xenobiotic metabolism induction and bulky DNA adducts generated by particulate matter pollution in BEAS-2B cell line: geographical and seasonal influence. J Appl Toxicol. junio de 2014;34(6):703-13. Claxton LD, Woodall GM. A review of the mutagenicity and rodent carcinogenicity of ambient air. Mutat Res. diciembre de 2007;636(1-3):36-94. Zhao C, Zhu L, Li R, Wang H, Cai Z. Omics approach reveals metabolic disorders associated with the cytotoxicity of airborne particulate matter in human lung carcinoma cells. Environmental Pollution. 1 de marzo de 2019;246:45-52. COX5A cytochrome c oxidase subunit 5A [Homo sapiens (human)] - Gene - NCBI [Internet]. [citado 6 de noviembre de 2021]. Disponible en: https://www.ncbi.nlm.nih.gov/gene/9377 Whitworth KM, Zhao J, Spate LD, Li R, Prather RS. Scriptaid corrects gene expression of a few aberrantly reprogrammed transcripts in nuclear transfer pig blastocyst stage embryos. Cell Reprogram. junio de 2011;13(3):191-204. TPI1 triosafosfato isomerasa 1 [Homo sapiens (humano)] - Gene - NCBI [Internet]. [citado 6 de noviembre de 2021]. Disponible en: https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=7167 Triosephosphate isomerase 1 suppresses growth, migration and invasion of hepatocellular carcinoma cells - ScienceDirect [Internet]. [citado 6 de noviembre de 2021]. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0006291X16320307?casa_token=YZ2YolvZTMEAAAAA:kocwZMyzwd-fkJWnVXn9b7daD7_TMVllltuVqGakEXRiNqzh-exBSu__Br9xS7q_HO2_C7vOgzfM Zhao F, Wang Q. The protective effect of peroxiredoxin II on oxidative stress induced apoptosis in pancreatic β-cells. Cell Biosci. 18 de junio de 2012;2:22. Yan Y, Sabharwal P, Rao M, Sockanathan S. The antioxidant enzyme Prdx1 controls neuronal differentiation by thiol-redox-dependent activation of GDE2. Cell. 18 de septiembre de 2009;138(6):1209-21. Peroxiredoxin II Is Essential for Maintaining Stemness by Redox Regulation in Liver Cancer Cells - Kwon - 2016 - STEM CELLS - Wiley Online Library [Internet]. [citado 6 de noviembre de 2021]. Disponible en: https://stemcellsjournals.onlinelibrary.wiley.com/doi/10.1002/stem.2323 Rao X, Zhong J, Brook RD, Rajagopalan S. Effect of Particulate Matter Air Pollution on Cardiovascular Oxidative Stress Pathways. Antioxidants & Redox Signaling. 20 de marzo de 2018;28(9):797-818. Piao MJ, Ahn MJ, Kang KA, Ryu YS, Hyun YJ, Shilnikova K, et al. Particulate matter 2.5 damages skin cells by inducing oxidative stress, subcellular organelle dysfunction, and apoptosis. Arch Toxicol. 1 de junio de 2018;92(6):2077-91. Ye G, Ding D, Gao H, Chi Y, Chen J, Wu Z, et al. Comprehensive metabolic responses of HepG2 cells to fine particulate matter exposure: Insights from an untargeted metabolomics. Science of The Total Environment. 15 de noviembre de 2019;691:874-84. Bolton JL, Dunlap T. Formation and Biological Targets of Quinones: Cytotoxic versus Cytoprotective Effects. Chem Res Toxicol. 17 de enero de 2017;30(1):13-37. Mkrtchiana S, Baryshev M, Matvijenko O, Sharipo A, Sandalova T, Schneider G, et al. Oligomerization properties of ERp29, an endoplasmic reticulum stress protein. FEBS Letters. 24 de julio de 1998;431(3):322-6. Zhang M, Wang Y, Wong RMS, Yung KKL, Li R. Fine particulate matter induces endoplasmic reticulum stress-mediated apoptosis in human SH-SY5Y cells. NeuroToxicology. 1 de enero de 2022;88:187-95. Laing S, Wang G, Briazova T, Zhang C, Wang A, Zheng Z, et al. Airborne particulate matter selectively activates endoplasmic reticulum stress response in the lung and liver tissues. Am J Physiol Cell Physiol. octubre de 2010;299(4):C736-749. Watterson TL, Hamilton B, Martin R, Coulombe RA Jr. Urban Particulate Matter Causes ER Stress and the Unfolded Protein Response in Human Lung Cells. Toxicological Sciences. 1 de noviembre de 2009;112(1):111-22. Guo L, Guan J, Xing M, Wang Z, Hou F, Xing C, et al. Endoplasmic reticulum protein ERp29 and doxorubicininduced toxicity in H9c2 cardiomyocytes: a comparative proteomics analysis. Asian Biomedicine. 31 de mayo de 2012;6(3):433-7. Lu J-J, Lu D-Z, Chen Y-F, Dong Y-T, Zhang J-R, Li T, et al. Proteomic analysis of hepatocellular carcinoma HepG2 cells treated with platycodin D. Chinese Journal of Natural Medicines. 1 de septiembre de 2015;13(9):673-9. Kondo R, Ishino K, Wada R, Takata H, Peng W-X, Kudo M, et al. Downregulation of protein disulfide‑isomerase A3 expression inhibits cell proliferation and induces apoptosis through STAT3 signaling in hepatocellular carcinoma. International Journal of Oncology. 1 de abril de 2019;54(4):1409-21. Verheyen GR, Nuijten J-M, Van Hummelen P, Schoeters GR. Microarray analysis of the effect of diesel exhaust particles on in vitro cultured macrophages. Toxicology in Vitro. 1 de junio de 2004;18(3):377-91. Winckelmans E, Nawrot TS, Tsamou M, Den Hond E, Baeyens W, Kleinjans J, et al. Transcriptome-wide analyses indicate mitochondrial responses to particulate air pollution exposure. Environ Health [Internet]. 18 de agosto de 2017 [citado 22 de febrero de 2019];16. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5563023/ Chao Y-K, Liu K-S, Wang Y-C, Huang Y-L, Liu S-J. Biodegradable cisplatin-eluting tracheal stent for malignant airway obstruction: in vivo and in vitro studies. Chest. julio de 2013;144(1):193-9. Lee P, Kupeli E, Mehta AC. Airway stents. Clin Chest Med. marzo de 2010;31(1):141-50, Table of Contents. Zhao X, Ng S, Heng BC, Guo J, Ma L, Tan TTY, et al. Cytotoxicity of hydroxyapatite nanoparticles is shape and cell dependent. Arch Toxicol. junio de 2013;87(6):1037-52. Babaie E, Lin B, Goel VK, Bhaduri SB. Evaluation of amorphous magnesium phosphate (AMP) based non-exothermic orthopedic cements. Biomed Mater. 07 de 2016;11(5):055010. Kumari L, Li WZ, Vannoy CH, Leblanc RM, Wang DZ. Synthesis, characterization and optical properties of Mg(OH)2 micro-/nanostructure and its conversion to MgO. Ceramics International. 1 de diciembre de 2009;35(8):3355-64. an Meerloo J, Kaspers GJL, Cloos J. Cell Sensitivity Assays: The MTT Assay. En: Cree IA, editor. Cancer Cell Culture: Methods and Protocols [Internet]. Totowa, NJ: Humana Press; 2011 [citado 23 de septiembre de 2021]. p. 237-45. (Methods in Molecular Biology). Disponible en: https://doi.org/10.1007/978-1-61779-080-5_20 OpacUdea [Internet]. [citado 7 de diciembre de 2017]. Disponible en: http://opacudea.udea.edu.co/query.php?607415 Strober W. Trypan Blue Exclusion Test of Cell Viability. Curr Protoc Immunol. 2 de noviembre de 2015;111:A3.B.1-3. Mortelmans K, Zeiger E. The Ames Salmonella/microsome mutagenicity assay. Mutat Res. 20 de noviembre de 2000;455(1-2):29-60. Ge S, Wang G, Shen Y, Zhang Q, Jia D, Wang H, et al. Cytotoxic effects of MgO nanoparticles on human umbilical vein endothelial cells in vitro. IET Nanobiotechnology. junio de 2011;5(2):36-40. Makadia HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers (Basel). 1 de septiembre de 2011;3(3):1377-97. Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces B: Biointerfaces. 1 de enero de 2010;75(1):1-18. Lima TC, Lucarini R, Luz PP, de Faria EH, Marçal L, Magalhães LG, et al. In vitro schistosomicidal activity of the lignan (−)-6,6′-dinitrohinokinin (DNHK) loaded into poly(lactic-co-glycolic acid) nanoparticles against Schistosoma mansoni. Pharm Biol. 26 de noviembre de 2017;55(1):2270-6. Zhang B, Sai Lung P, Zhao S, Chu Z, Chrzanowski W, Li Q. Shape dependent cytotoxicity of PLGA-PEG nanoparticles on human cells. Sci Rep [Internet]. 4 de agosto de 2017 [citado 7 de noviembre de 2018];7. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5544670/ Xiong S, George S, Yu H, Damoiseaux R, France B, Ng KW, et al. Size influences the cytotoxicity of poly (lactic-co-glycolic acid) (PLGA) and titanium dioxide (TiO2) nanoparticles. Arch Toxicol. junio de 2013;87(6):1075-86. Doak SH, Manshian B, Jenkins GJS, Singh N. In vitro genotoxicity testing strategy for nanomaterials and the adaptation of current OECD guidelines. Mutat Res. 14 de junio de 2012;745(1-2):104-11. Henderson L, Wolfreys A, Fedyk J, Bourner C, Windebank S. The ability of the Comet assay to discriminate between genotoxins and cytotoxins. Mutagenesis. enero de 1998;13(1):89-94. Zivkovic L, Akar B, Roux BM, Spremo Potparevic B, Bajic V, Brey EM. Investigation of DNA damage in cells exposed to poly (lactic-co-glycolic acid) microspheres. J Biomed Mater Res A. 2017;105(1):284-91. Magdolenova Z, Collins A, Kumar A, Dhawan A, Stone V, Dusinska M. Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology. mayo de 2014;8(3):233-78. Kisin ER, Murray AR, Keane MJ, Shi X-C, Schwegler-Berry D, Gorelik O, et al. Single-walled Carbon Nanotubes: Geno- and Cytotoxic Effects in Lung Fibroblast V79 Cells. Journal of Toxicology and Environmental Health, Part A. 13 de noviembre de 2007;70(24):2071-9. Li Y, Chen DH, Yan J, Chen Y, Mittelstaedt RA, Zhang Y, et al. Genotoxicity of silver nanoparticles evaluated using the Ames test and in vitro micronucleus assay. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 14 de junio de 2012;745(1):4-10. The photogenotoxicity of titanium dioxide particles - ScienceDirect [Internet]. [citado 24 de noviembre de 2021]. Disponible en: https://www.sciencedirect.com/science/article/pii/S1383571897001265?casa_token=Rh-WCuPH8JUAAAAA:QYQBvCrRb2Ideeq6HKGmtowKsEnM_iorfwddX0mNGEQkT_8nexF309TRWo9kKU-Xs8qH4g4sBg Dusinska M, Tulinska J, El Yamani N, Kuricova M, Liskova A, Rollerova E, et al. Immunotoxicity, genotoxicity and epigenetic toxicity of nanomaterials: New strategies for toxicity testing? Food Chem Toxicol. noviembre de 2017;109(Pt 1):797-811 Sawai J, Kojima H, Kano F, Igarashi H, Hashimoto A, Kawada E, et al. Short Communication: Ames assay with Salmonella typhimurium TA102 for mutagenicity and antimutagenicity of metallic oxide powders having antibacterial activities. World Journal of Microbiology and Biotechnology. 1 de octubre de 1998;14:773-5. Fu PP, Xia Q, Hwang H-M, Ray PC, Yu H. Mechanisms of nanotoxicity: Generation of reactive oxygen species. Journal of Food and Drug Analysis. 1 de marzo de 2014;22(1):64-75. Choudhury SR, Ordaz J, Lo C-L, Damayanti NP, Zhou F, Irudayaraj J. From the Cover: Zinc oxide Nanoparticles-Induced Reactive Oxygen Species Promotes Multimodal Cyto- and Epigenetic Toxicity. Toxicol Sci. 01 de 2017;156(1):261-74. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xiv, 66 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Ciencias - Maestría en Ciencias - Biotecnología |
dc.publisher.department.spa.fl_str_mv |
Escuela de biociencias |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/82250/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/82250/3/1214714626.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/82250/4/1214714626.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
b577153cc0e11f0aeb5fc5005dc82d8a abd4ba7996320f3c16150593e742fef6 1a24db62da76af7835258cef3aede6ac |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089575824359424 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ortiz Trujillo, Isabel Cristinaddffc2883d89562ffa5884e6f6763a78López, Juan Bautista48cddd926e9153b1685dca90131e1c4eLondoño Berrio, Maritza99072322951ca7f7299399cb0d3e177fGrupo de Investigación en Bioinformática y Biología de Sistemas2022-09-05T15:57:17Z2022-09-05T15:57:17Z2022https://repositorio.unal.edu.co/handle/unal/82250Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasLa interacción de los sistemas biológicos con agentes externos puede representar una desregulación de la homeóstasis celular al generar procesos tóxicos, por esto se hace necesario evaluar la exposición a las diferentes propuestas de ingeniería en todos los campos del desarrollo. Teniendo en cuenta esto, el objetivo del estudio fue evaluar la citotoxicidad y genotoxicidad del material orgánico extraíble (MOE) proveniente de diésel y diésel con mezclas de alcoholes y nanopartículas (NPs) del copolímero de ácido láctico y glicólico (PLGA) y la expresión diferencial de proteínas tras la exposición al MOE. Esto se logró llevando a cabo el ensayo de MTT para determinar la citotoxicidad de estos compuestos, para la evaluación de genotoxicidad se realizó el ensayo de electroforesis alcalino de células individuales (ensayo Cometa) y para la evaluación de la mutagenicidad de Nps se realizó el test de AMES. Posteriormente, para evaluar la expresión diferencial de proteínas, se realizó la extracción de proteínas totales y mediante geles de una dimensión (1D) se evaluó integridad y estabilidad, para la generación de los perfiles proteicos se realizó una electroforesis de dos dimensiones (2D) y las proteínas que se encontraron diferencialmente expresadas frente al control negativo se caracterizaron mediante espectrometría de masas (MALDI-TOF/TOF). Los resultados indicaron efectos genotóxicos, pero no citotóxicos tras la exposición a MP y Nps y no se evidenció mutagenicidad mediada por Nps. En cuanto a la expresión diferencial de proteínas tras la exposición al MOE, se evidenció sobreexpresión de proteínas relacionadas con el estrés oxidativo. En conjunto estos resultados resaltan la necesidad de probar nuevas tecnologías y compuestos a los cuales pueden expuestos los sistemas biológicos. (Texto tomado de la fuente)The particulate matter (PM) of diesel fuels is a complex mixture that can vary depending on the characteristics of the engine, its type, the type of fuel and the source of production, it has been shown to have negative effects on environmental health and For this reason, the need has been generated to test alternative fuels that may have less effect on biological systems, taking this into account, the cytotoxicity and genotoxicity of the organic fraction of the particulate material of engines fed with alternative fuels corresponding to diesel was evaluated. . Mixed with alcohols (10% ethanol and butanol) by in vitro tests using the HepG2 cell line, cytotoxicity was evaluated by the MTT colorimetric test and genotoxicity by the comet test. A low cytotoxicity of the extracts was found, but a high genotoxicity, showing statistically significant differences between the negative control and the different treatments in all the concentrations tested, with this it is concluded that the organic fraction of the PM has a genotoxic effect that can lead to imbalances of cellular homeostasis.MaestríaMagister en Ciencias-biotecnologíaInvestigaciónMutagénesis y Epigenética AmbientaÁrea Curricular de Bioctecnologíaxiv, 66 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias - Maestría en Ciencias - BiotecnologíaEscuela de biocienciasFacultad de CienciasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín660 - Ingeniería químicaCitotoxicidad por mediación celularCell-mediated cytotoxicityToxicoproteómicaNanopartículasDiésel con mezcla de alcoholesToxicoproteomicsNanoparticlesDiesel with a mixture of alcoholsEvaluación in vitro del efecto del material particulado y un potencial tratamiento en dos líneas celularesIn vitro evaluation of the effect of particulate matter and a potential treatment on two cell linesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMYadav R, Sahu LK, Beig G, Tripathi N, Jaaffrey SNA. Ambient particulate matter and carbon monoxide at an urban site of India: Influence of anthropogenic emissions and dust storms. Environmental Pollution. 1 de junio de 2017;225:291-303.Liang F, Lu M, Keener TC, Liu Z, Khang S-J. The organic composition of diesel particulate matter, diesel fuel and engine oil of a non-road diesel generator. J Environ Monit. octubre de 2005;7(10):983-8.Dumax-Vorzet AF, Tate M, Walmsley R, Elder RH, Povey AC. Cytotoxicity and genotoxicity of urban particulate matter in mammalian cells. Mutagenesis. septiembre de 2015;30(5):621-33.Jeon YM, Son BS, Lee MY. Proteomic identification of the differentially expressed proteins in human lung epithelial cells by airborne particulate matter. J Appl Toxicol. enero de 2011;31(1):45-52.Kim H-J, Bae I-H, Son ED, Park J, Cha N, Na H-W, et al. Transcriptome analysis of airborne PM2.5-induced detrimental effects on human keratinocytes. Toxicol Lett. 5 de mayo de 2017;273:26-35.Wetmore BA, Merrick BA. Toxicoproteomics: proteomics applied to toxicology and pathology. Toxicol Pathol. diciembre de 2004;32(6):619-42.Feng S, Gao D, Liao F, Zhou F, Wang X. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicology and Environmental Safety. 1 de junio de 2016;128:67-74.Humans IWG on the E of CR to. Diesel and Gasoline Engine Exhausts and Some Nitroarenes. International Agency for Research on Cancer; 2014Arora S, Rajwade JM, Paknikar KM. Nanotoxicology and in vitro studies: the need of the hour. Toxicol Appl Pharmacol. 15 de enero de 2012;258(2):151-65.Targeted Drug Delivery : Concepts and Design | Padma V. Devarajan | Springer [Internet]. [citado 10 de enero de 2018]. Disponible en: //www.springer.com/br/book/9783319113548Osorio-Delgado MA, Henao-Tamayo LJ, Velásquez-Cock JA, Cañas-Gutierrez AI, Restrepo-Múnera LM, Gañán-Rojo PF, et al. Biomedical applications of polymeric biomaterials. DYNA. junio de 2017;84(201):241-52.Camacho Á, Duarte Á, Dubay D, Forero E, González E, Jaramillo F, et al. Definición de nanomateriales para Colombia. Revista Colombiana de Química. 1 de enero de 2016;45(1):15-20.Kleeman MJ, Schauer JJ, Cass GR. Size and Composition Distribution of Fine Particulate Matter Emitted from Motor Vehicles. Environ Sci Technol. 1 de abril de 2000;34(7):1132-42.Sevastyanova O, Binkova B, Topinka J, Sram RJ, Kalina I, Popov T, et al. In vitro genotoxicity of PAH mixtures and organic extract from urban air particles part II: human cell lines. Mutat Res. 1 de julio de 2007;620(1-2):123-34.Corrêa AXR, Cotelle S, Millet M, Somensi CA, Wagner TM, Radetski CM. Genotoxicity assessment of particulate matter emitted from heavy-duty diesel-powered vehicles using the in vivo Vicia faba L. micronucleus test. Ecotoxicology and Environmental Safety. 1 de mayo de 2016;127:199-204.Velali E, Papachristou E, Pantazaki A, Choli-Papadopoulou T, Argyrou N, Tsourouktsoglou T, et al. Cytotoxicity and genotoxicity induced in vitro by solvent-extractable organic matter of size-segregated urban particulate matter. Environmental Pollution. 1 de noviembre de 2016;218:1350-62.Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative Stress: Harms and Benefits for Human Health. Oxid Med Cell Longev. 2017;2017:8416763.Influence of butanol addition to diesel–biodiesel blend on engine performance and particulate emissions of a stationary diesel engine - ScienceDirect [Internet]. [citado 13 de noviembre de 2021]. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0306261914000622Giard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H, et al. In Vitro Cultivation of Human Tumors: Establishment of Cell Lines Derived From a Series of Solid Tumors2. JNCI: Journal of the National Cancer Institute. 1 de noviembre de 1973;51(5):1417-23.Yoshitomi S, Ikemoto K, Takahashi J, Miki H, Namba M, Asahi S. Establishment of the transformants expressing human cytochrome P450 subtypes in HepG2, and their applications on drug metabolism and toxicology. Toxicology in Vitro. 1 de junio de 2001;15(3):245-56.Lineamientos de Política [Internet]. Ministerio de Ambiente y Desarrollo Sostenible. [citado 25 de noviembre de 2021]. Disponible en: https://www.minambiente.gov.co/asuntos-ambientales-sectorial-y-urbana/lineamientos-de-politica/Cadrazco M, Agudelo JR, Orozco LY, Estrada V. Genotoxicity of Diesel Particulate Matter Emitted by Port-Injection of Hydrous Ethanol and n-Butanol. Journal of Energy Resources Technology [Internet]. 30 de marzo de 2017 [citado 14 de noviembre de 2021];139(4). Disponible en: https://doi.org/10.1115/1.4036253Mutagenicidad de material orgánico particulado en el aire de áreas urbanas e industriales de São Paulo, Brasil - ScienceDirect [Internet]. [citado 15 de noviembre de 2021]. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/0165116195000356Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, et al. Single cell gel/comet assay: Guidelines for in vitro and in vivo genetic toxicology testing. Environmental and Molecular Mutagenesis. 2000;35(3):206-21Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. marzo de 1988;175(1):184-91.The comet assay: a method to measure DNA damage in individual cells | Nature Protocols [Internet]. [citado 18 de abril de 2018]. Disponible en: https://www.nature.com/articles/nprot.2006.5Beamish LA, Osornio-Vargas AR, Wine E. Air pollution: An environmental factor contributing to intestinal disease. Journal of Crohn’s and Colitis. 1 de agosto de 2011;5(4):279-86.Amann CA, Stivender DL, Plee SL, MacDonald JS. Some Rudiments of Diesel Particulate Emissions. SAE Transactions. 1980;89:1118-47.López C, Nohema S, Alvarado Díaz D. Análisis y determinación de la concentración de hidrocarburos aromático policíclicos (HAP.s) contenidos en el material particulado respirable (PM10) en la localidad de Puente Aranda de Bogotá en la zona de alta actividad industrial y alto flujo vehicular. 2006 [citado 18 de abril de 2018]; Disponible en: http://repository.lasalle.edu.co/handle/10185/14835Crebelli R, Conti L, Crochi B, Carere A, Bertoli C, Del Giacomo N. The effect of fuel composition on the mutagenicity of diesel engine exhaust. Mutat Res. marzo de 1995;346(3):167-72.Arenas LMB, Atehortúa JR, Ortíz LD, Guerrero MC. Búsqueda de nuevos biomarcadores genéticos en gliomas de alto grado. Actualidades Biológicas. 2019;41(111):01-9.Krahl J, Knothe G, Munack A, Ruschel Y, Schröder O, Hallier E, et al. Comparison of exhaust emissions and their mutagenicity from the combustion of biodiesel, vegetable oil, gas-to-liquid and petrodiesel fuels. Fuel. 1 de junio de 2009;88(6):1064-9Kisin ER, Shi XC, Keane MJ, Bugarski AB, Shvedova AA. Mutagenicity of biodiesel or diesel exhaust particles and the effect of engine operating conditions. J Environ Eng Ecol Sci. marzo de 2013;2(3):10.7243/2050-1323-2-3.Senthil Kumar S, Muthuselvam P, Pugalenthi V, Subramanian N, Ramkumar KM, Suresh T, et al. Toxicoproteomic analysis of human lung epithelial cells exposed to steel industry ambient particulate matter (PM) reveals possible mechanism of PM related carcinogenesis. Environ Pollut. agosto de 2018;239:483-92.Waters MD, Fostel JM. Toxicogenomics and systems toxicology: aims and prospects. Nature Reviews Genetics. diciembre de 2004;5(12):936-48.Lemos AT, Lemos CT de, Flores AN, Pantoja EO, Rocha JAV, Vargas VMF. Genotoxicity biomarkers for airborne particulate matter (PM2.5) in an area under petrochemical influence. Chemosphere. 1 de septiembre de 2016;159:610-8.Bai Y, Suzuki AK, Sagai M. The cytotoxic effects of diesel exhaust particles on human pulmonary artery endothelial cells in vitro: role of active oxygen species. Free Radic Biol Med. 1 de marzo de 2001;30(5):555-62.Mendoza LC, Jimenez luz YO, Restrepo LMZ, Baena JAP. Genotoxicidad sobre linfocitos humanos expuestos a PM10 de tres sitios del Valle de Aburrá (Antioquia). Revista de Salud Pública. 1 de marzo de 2013;15(2):294-306.Lepers C, André V, Dergham M, Billet S, Verdin A, Garçon G, et al. Xenobiotic metabolism induction and bulky DNA adducts generated by particulate matter pollution in BEAS-2B cell line: geographical and seasonal influence. J Appl Toxicol. junio de 2014;34(6):703-13.Claxton LD, Woodall GM. A review of the mutagenicity and rodent carcinogenicity of ambient air. Mutat Res. diciembre de 2007;636(1-3):36-94.Zhao C, Zhu L, Li R, Wang H, Cai Z. Omics approach reveals metabolic disorders associated with the cytotoxicity of airborne particulate matter in human lung carcinoma cells. Environmental Pollution. 1 de marzo de 2019;246:45-52.COX5A cytochrome c oxidase subunit 5A [Homo sapiens (human)] - Gene - NCBI [Internet]. [citado 6 de noviembre de 2021]. Disponible en: https://www.ncbi.nlm.nih.gov/gene/9377Whitworth KM, Zhao J, Spate LD, Li R, Prather RS. Scriptaid corrects gene expression of a few aberrantly reprogrammed transcripts in nuclear transfer pig blastocyst stage embryos. Cell Reprogram. junio de 2011;13(3):191-204.TPI1 triosafosfato isomerasa 1 [Homo sapiens (humano)] - Gene - NCBI [Internet]. [citado 6 de noviembre de 2021]. Disponible en: https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=7167Triosephosphate isomerase 1 suppresses growth, migration and invasion of hepatocellular carcinoma cells - ScienceDirect [Internet]. [citado 6 de noviembre de 2021]. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0006291X16320307?casa_token=YZ2YolvZTMEAAAAA:kocwZMyzwd-fkJWnVXn9b7daD7_TMVllltuVqGakEXRiNqzh-exBSu__Br9xS7q_HO2_C7vOgzfMZhao F, Wang Q. The protective effect of peroxiredoxin II on oxidative stress induced apoptosis in pancreatic β-cells. Cell Biosci. 18 de junio de 2012;2:22.Yan Y, Sabharwal P, Rao M, Sockanathan S. The antioxidant enzyme Prdx1 controls neuronal differentiation by thiol-redox-dependent activation of GDE2. Cell. 18 de septiembre de 2009;138(6):1209-21.Peroxiredoxin II Is Essential for Maintaining Stemness by Redox Regulation in Liver Cancer Cells - Kwon - 2016 - STEM CELLS - Wiley Online Library [Internet]. [citado 6 de noviembre de 2021]. Disponible en: https://stemcellsjournals.onlinelibrary.wiley.com/doi/10.1002/stem.2323Rao X, Zhong J, Brook RD, Rajagopalan S. Effect of Particulate Matter Air Pollution on Cardiovascular Oxidative Stress Pathways. Antioxidants & Redox Signaling. 20 de marzo de 2018;28(9):797-818.Piao MJ, Ahn MJ, Kang KA, Ryu YS, Hyun YJ, Shilnikova K, et al. Particulate matter 2.5 damages skin cells by inducing oxidative stress, subcellular organelle dysfunction, and apoptosis. Arch Toxicol. 1 de junio de 2018;92(6):2077-91.Ye G, Ding D, Gao H, Chi Y, Chen J, Wu Z, et al. Comprehensive metabolic responses of HepG2 cells to fine particulate matter exposure: Insights from an untargeted metabolomics. Science of The Total Environment. 15 de noviembre de 2019;691:874-84.Bolton JL, Dunlap T. Formation and Biological Targets of Quinones: Cytotoxic versus Cytoprotective Effects. Chem Res Toxicol. 17 de enero de 2017;30(1):13-37.Mkrtchiana S, Baryshev M, Matvijenko O, Sharipo A, Sandalova T, Schneider G, et al. Oligomerization properties of ERp29, an endoplasmic reticulum stress protein. FEBS Letters. 24 de julio de 1998;431(3):322-6.Zhang M, Wang Y, Wong RMS, Yung KKL, Li R. Fine particulate matter induces endoplasmic reticulum stress-mediated apoptosis in human SH-SY5Y cells. NeuroToxicology. 1 de enero de 2022;88:187-95.Laing S, Wang G, Briazova T, Zhang C, Wang A, Zheng Z, et al. Airborne particulate matter selectively activates endoplasmic reticulum stress response in the lung and liver tissues. Am J Physiol Cell Physiol. octubre de 2010;299(4):C736-749.Watterson TL, Hamilton B, Martin R, Coulombe RA Jr. Urban Particulate Matter Causes ER Stress and the Unfolded Protein Response in Human Lung Cells. Toxicological Sciences. 1 de noviembre de 2009;112(1):111-22.Guo L, Guan J, Xing M, Wang Z, Hou F, Xing C, et al. Endoplasmic reticulum protein ERp29 and doxorubicininduced toxicity in H9c2 cardiomyocytes: a comparative proteomics analysis. Asian Biomedicine. 31 de mayo de 2012;6(3):433-7.Lu J-J, Lu D-Z, Chen Y-F, Dong Y-T, Zhang J-R, Li T, et al. Proteomic analysis of hepatocellular carcinoma HepG2 cells treated with platycodin D. Chinese Journal of Natural Medicines. 1 de septiembre de 2015;13(9):673-9.Kondo R, Ishino K, Wada R, Takata H, Peng W-X, Kudo M, et al. Downregulation of protein disulfide‑isomerase A3 expression inhibits cell proliferation and induces apoptosis through STAT3 signaling in hepatocellular carcinoma. International Journal of Oncology. 1 de abril de 2019;54(4):1409-21.Verheyen GR, Nuijten J-M, Van Hummelen P, Schoeters GR. Microarray analysis of the effect of diesel exhaust particles on in vitro cultured macrophages. Toxicology in Vitro. 1 de junio de 2004;18(3):377-91.Winckelmans E, Nawrot TS, Tsamou M, Den Hond E, Baeyens W, Kleinjans J, et al. Transcriptome-wide analyses indicate mitochondrial responses to particulate air pollution exposure. Environ Health [Internet]. 18 de agosto de 2017 [citado 22 de febrero de 2019];16. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5563023/Chao Y-K, Liu K-S, Wang Y-C, Huang Y-L, Liu S-J. Biodegradable cisplatin-eluting tracheal stent for malignant airway obstruction: in vivo and in vitro studies. Chest. julio de 2013;144(1):193-9.Lee P, Kupeli E, Mehta AC. Airway stents. Clin Chest Med. marzo de 2010;31(1):141-50, Table of Contents.Zhao X, Ng S, Heng BC, Guo J, Ma L, Tan TTY, et al. Cytotoxicity of hydroxyapatite nanoparticles is shape and cell dependent. Arch Toxicol. junio de 2013;87(6):1037-52.Babaie E, Lin B, Goel VK, Bhaduri SB. Evaluation of amorphous magnesium phosphate (AMP) based non-exothermic orthopedic cements. Biomed Mater. 07 de 2016;11(5):055010.Kumari L, Li WZ, Vannoy CH, Leblanc RM, Wang DZ. Synthesis, characterization and optical properties of Mg(OH)2 micro-/nanostructure and its conversion to MgO. Ceramics International. 1 de diciembre de 2009;35(8):3355-64.an Meerloo J, Kaspers GJL, Cloos J. Cell Sensitivity Assays: The MTT Assay. En: Cree IA, editor. Cancer Cell Culture: Methods and Protocols [Internet]. Totowa, NJ: Humana Press; 2011 [citado 23 de septiembre de 2021]. p. 237-45. (Methods in Molecular Biology). Disponible en: https://doi.org/10.1007/978-1-61779-080-5_20OpacUdea [Internet]. [citado 7 de diciembre de 2017]. Disponible en: http://opacudea.udea.edu.co/query.php?607415Strober W. Trypan Blue Exclusion Test of Cell Viability. Curr Protoc Immunol. 2 de noviembre de 2015;111:A3.B.1-3.Mortelmans K, Zeiger E. The Ames Salmonella/microsome mutagenicity assay. Mutat Res. 20 de noviembre de 2000;455(1-2):29-60.Ge S, Wang G, Shen Y, Zhang Q, Jia D, Wang H, et al. Cytotoxic effects of MgO nanoparticles on human umbilical vein endothelial cells in vitro. IET Nanobiotechnology. junio de 2011;5(2):36-40.Makadia HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers (Basel). 1 de septiembre de 2011;3(3):1377-97.Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces B: Biointerfaces. 1 de enero de 2010;75(1):1-18.Lima TC, Lucarini R, Luz PP, de Faria EH, Marçal L, Magalhães LG, et al. In vitro schistosomicidal activity of the lignan (−)-6,6′-dinitrohinokinin (DNHK) loaded into poly(lactic-co-glycolic acid) nanoparticles against Schistosoma mansoni. Pharm Biol. 26 de noviembre de 2017;55(1):2270-6.Zhang B, Sai Lung P, Zhao S, Chu Z, Chrzanowski W, Li Q. Shape dependent cytotoxicity of PLGA-PEG nanoparticles on human cells. Sci Rep [Internet]. 4 de agosto de 2017 [citado 7 de noviembre de 2018];7. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5544670/Xiong S, George S, Yu H, Damoiseaux R, France B, Ng KW, et al. Size influences the cytotoxicity of poly (lactic-co-glycolic acid) (PLGA) and titanium dioxide (TiO2) nanoparticles. Arch Toxicol. junio de 2013;87(6):1075-86.Doak SH, Manshian B, Jenkins GJS, Singh N. In vitro genotoxicity testing strategy for nanomaterials and the adaptation of current OECD guidelines. Mutat Res. 14 de junio de 2012;745(1-2):104-11.Henderson L, Wolfreys A, Fedyk J, Bourner C, Windebank S. The ability of the Comet assay to discriminate between genotoxins and cytotoxins. Mutagenesis. enero de 1998;13(1):89-94.Zivkovic L, Akar B, Roux BM, Spremo Potparevic B, Bajic V, Brey EM. Investigation of DNA damage in cells exposed to poly (lactic-co-glycolic acid) microspheres. J Biomed Mater Res A. 2017;105(1):284-91.Magdolenova Z, Collins A, Kumar A, Dhawan A, Stone V, Dusinska M. Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology. mayo de 2014;8(3):233-78.Kisin ER, Murray AR, Keane MJ, Shi X-C, Schwegler-Berry D, Gorelik O, et al. Single-walled Carbon Nanotubes: Geno- and Cytotoxic Effects in Lung Fibroblast V79 Cells. Journal of Toxicology and Environmental Health, Part A. 13 de noviembre de 2007;70(24):2071-9.Li Y, Chen DH, Yan J, Chen Y, Mittelstaedt RA, Zhang Y, et al. Genotoxicity of silver nanoparticles evaluated using the Ames test and in vitro micronucleus assay. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 14 de junio de 2012;745(1):4-10.The photogenotoxicity of titanium dioxide particles - ScienceDirect [Internet]. [citado 24 de noviembre de 2021]. Disponible en: https://www.sciencedirect.com/science/article/pii/S1383571897001265?casa_token=Rh-WCuPH8JUAAAAA:QYQBvCrRb2Ideeq6HKGmtowKsEnM_iorfwddX0mNGEQkT_8nexF309TRWo9kKU-Xs8qH4g4sBgDusinska M, Tulinska J, El Yamani N, Kuricova M, Liskova A, Rollerova E, et al. Immunotoxicity, genotoxicity and epigenetic toxicity of nanomaterials: New strategies for toxicity testing? Food Chem Toxicol. noviembre de 2017;109(Pt 1):797-811Sawai J, Kojima H, Kano F, Igarashi H, Hashimoto A, Kawada E, et al. Short Communication: Ames assay with Salmonella typhimurium TA102 for mutagenicity and antimutagenicity of metallic oxide powders having antibacterial activities. World Journal of Microbiology and Biotechnology. 1 de octubre de 1998;14:773-5.Fu PP, Xia Q, Hwang H-M, Ray PC, Yu H. Mechanisms of nanotoxicity: Generation of reactive oxygen species. Journal of Food and Drug Analysis. 1 de marzo de 2014;22(1):64-75.Choudhury SR, Ordaz J, Lo C-L, Damayanti NP, Zhou F, Irudayaraj J. From the Cover: Zinc oxide Nanoparticles-Induced Reactive Oxygen Species Promotes Multimodal Cyto- and Epigenetic Toxicity. Toxicol Sci. 01 de 2017;156(1):261-74.InvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-84675https://repositorio.unal.edu.co/bitstream/unal/82250/1/license.txtb577153cc0e11f0aeb5fc5005dc82d8aMD51ORIGINAL1214714626.2021.pdf1214714626.2021.pdfTesis de Maestría en Ciencias - Biotecnologíaapplication/pdf1528409https://repositorio.unal.edu.co/bitstream/unal/82250/3/1214714626.2021.pdfabd4ba7996320f3c16150593e742fef6MD53THUMBNAIL1214714626.2021.pdf.jpg1214714626.2021.pdf.jpgGenerated Thumbnailimage/jpeg4148https://repositorio.unal.edu.co/bitstream/unal/82250/4/1214714626.2021.pdf.jpg1a24db62da76af7835258cef3aede6acMD54unal/82250oai:repositorio.unal.edu.co:unal/822502024-08-11 01:07:18.774Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUGFydGUgMS4gIFTDqXJtaW5vcyBkZSBsYSBsaWNlbmNpYSBwYXJhIHB1YmxpY2FjacOzbiBkZSBvYnJhcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOQUwuCgpMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yLCBjb25maWVyZW4gYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSB1bmEgbGljZW5jaWEgbm8gZXhjbHVzaXZhLCBsaW1pdGFkYSB5IGdyYXR1aXRhIHNvYnJlIGxhIG9icmEgcXVlIHNlIGludGVncmEgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgYmFqbyBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6CgoKYSkJTG9zIGF1dG9yZXMgeS9vIGxvcyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBjb25maWVyZW4gYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSB1bmEgbGljZW5jaWEgbm8gZXhjbHVzaXZhIHBhcmEgcmVhbGl6YXIgbG9zIHNpZ3VpZW50ZXMgYWN0b3Mgc29icmUgbGEgb2JyYTogaSkgcmVwcm9kdWNpciBsYSBvYnJhIGRlIG1hbmVyYSBkaWdpdGFsLCBwZXJtYW5lbnRlIG8gdGVtcG9yYWwsIGluY2x1eWVuZG8gZWwgYWxtYWNlbmFtaWVudG8gZWxlY3Ryw7NuaWNvLCBhc8OtIGNvbW8gY29udmVydGlyIGVsIGRvY3VtZW50byBlbiBlbCBjdWFsIHNlIGVuY3VlbnRyYSBjb250ZW5pZGEgbGEgb2JyYSBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gZXhpc3RlbnRlIGEgbGEgZmVjaGEgZGUgbGEgc3VzY3JpcGNpw7NuIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhLCB5IGlpKSBjb211bmljYXIgYWwgcMO6YmxpY28gbGEgb2JyYSBwb3IgY3VhbHF1aWVyIG1lZGlvIG8gcHJvY2VkaW1pZW50bywgZW4gbWVkaW9zIGFsw6FtYnJpY29zIG8gaW5hbMOhbWJyaWNvcywgaW5jbHV5ZW5kbyBsYSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZW4gYWNjZXNvIGFiaWVydG8uIEFkaWNpb25hbCBhIGxvIGFudGVyaW9yLCBlbCBhdXRvciB5L28gdGl0dWxhciBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHBhcmEgcXVlLCBlbiBsYSByZXByb2R1Y2Npw7NuIHkgY29tdW5pY2FjacOzbiBhbCBww7pibGljbyBxdWUgbGEgVW5pdmVyc2lkYWQgcmVhbGljZSBzb2JyZSBsYSBvYnJhLCBoYWdhIG1lbmNpw7NuIGRlIG1hbmVyYSBleHByZXNhIGFsIHRpcG8gZGUgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBiYWpvIGxhIGN1YWwgZWwgYXV0b3IgeS9vIHRpdHVsYXIgZGVzZWEgb2ZyZWNlciBzdSBvYnJhIGEgbG9zIHRlcmNlcm9zIHF1ZSBhY2NlZGFuIGEgZGljaGEgb2JyYSBhIHRyYXbDqXMgZGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIGN1YW5kbyBzZWEgZWwgY2Fzby4gRWwgYXV0b3IgeS9vIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IgcG9kcsOhIGRhciBwb3IgdGVybWluYWRhIGxhIHByZXNlbnRlIGxpY2VuY2lhIG1lZGlhbnRlIHNvbGljaXR1ZCBlbGV2YWRhIGEgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBCaWJsaW90ZWNhcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYS4gCgpiKSAJTG9zIGF1dG9yZXMgeS9vIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBsYSBsaWNlbmNpYSBzZcOxYWxhZGEgZW4gZWwgbGl0ZXJhbCBhKSBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHBvciBlbCB0aWVtcG8gZGUgcHJvdGVjY2nDs24gZGUgbGEgb2JyYSBlbiB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8sIGVzdG8gZXMsIHNpbiBsaW1pdGFjacOzbiB0ZXJyaXRvcmlhbCBhbGd1bmEuCgpjKQlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IgbWFuaWZpZXN0YW4gZXN0YXIgZGUgYWN1ZXJkbyBjb24gcXVlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHNlIG90b3JnYSBhIHTDrXR1bG8gZ3JhdHVpdG8sIHBvciBsbyB0YW50bywgcmVudW5jaWFuIGEgcmVjaWJpciBjdWFscXVpZXIgcmV0cmlidWNpw7NuIGVjb27Ds21pY2EgbyBlbW9sdW1lbnRvIGFsZ3VubyBwb3IgbGEgcHVibGljYWNpw7NuLCBkaXN0cmlidWNpw7NuLCBjb211bmljYWNpw7NuIHDDumJsaWNhIHkgY3VhbHF1aWVyIG90cm8gdXNvIHF1ZSBzZSBoYWdhIGVuIGxvcyB0w6lybWlub3MgZGUgbGEgcHJlc2VudGUgbGljZW5jaWEgeSBkZSBsYSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGNvbiBxdWUgc2UgcHVibGljYS4KCmQpCVF1aWVuZXMgZmlybWFuIGVsIHByZXNlbnRlIGRvY3VtZW50byBkZWNsYXJhbiBxdWUgcGFyYSBsYSBjcmVhY2nDs24gZGUgbGEgb2JyYSwgbm8gc2UgaGFuIHZ1bG5lcmFkbyBsb3MgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsLCBpbmR1c3RyaWFsLCBtb3JhbGVzIHkgcGF0cmltb25pYWxlcyBkZSB0ZXJjZXJvcy4gRGUgb3RyYSBwYXJ0ZSwgIHJlY29ub2NlbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZSB5IHNlIGVuY3VlbnRyYSBleGVudGEgZGUgY3VscGEgZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGfDum4gdGlwbyBkZSByZWNsYW1hY2nDs24gZW4gbWF0ZXJpYSBkZSBkZXJlY2hvcyBkZSBhdXRvciBvIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBnZW5lcmFsLiBQb3IgbG8gdGFudG8sIGxvcyBmaXJtYW50ZXMgIGFjZXB0YW4gcXVlIGNvbW8gdGl0dWxhcmVzIMO6bmljb3MgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGFzdW1pcsOhbiB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UgZGUgbGEgcHVibGljYWNpw7NuIGRlIGxhIG9icmEuICAKCmYpCUF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIGluY2x1aXIgbGEgb2JyYSBlbiBsb3MgYWdyZWdhZG9yZXMgZGUgY29udGVuaWRvcywgYnVzY2Fkb3JlcyBhY2Fkw6ltaWNvcywgbWV0YWJ1c2NhZG9yZXMsIMOtbmRpY2VzIHkgZGVtw6FzIG1lZGlvcyBxdWUgc2UgZXN0aW1lbiBuZWNlc2FyaW9zIHBhcmEgcHJvbW92ZXIgZWwgYWNjZXNvIHkgY29uc3VsdGEgZGUgbGEgbWlzbWEuIAoKZykJRW4gZWwgY2FzbyBkZSBsYXMgdGVzaXMgY3JlYWRhcyBwYXJhIG9wdGFyIGRvYmxlIHRpdHVsYWNpw7NuLCBsb3MgZmlybWFudGVzIHNlcsOhbiBsb3MgcmVzcG9uc2FibGVzIGRlIGNvbXVuaWNhciBhIGxhcyBpbnN0aXR1Y2lvbmVzIG5hY2lvbmFsZXMgbyBleHRyYW5qZXJhcyBlbiBjb252ZW5pbywgbGFzIGxpY2VuY2lhcyBkZSBhY2Nlc28gYWJpZXJ0byBDcmVhdGl2ZSBDb21tb25zIHkgYXV0b3JpemFjaW9uZXMgYXNpZ25hZGFzIGEgc3Ugb2JyYSBwYXJhIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOQUwgZGUgYWN1ZXJkbyBjb24gbGFzIGRpcmVjdHJpY2VzIGRlIGxhIFBvbMOtdGljYSBHZW5lcmFsIGRlIGxhIEJpYmxpb3RlY2EgRGlnaXRhbC4KCgpoKQlTZSBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIGNvbW8gcmVzcG9uc2FibGUgZGVsIHRyYXRhbWllbnRvIGRlIGRhdG9zIHBlcnNvbmFsZXMsIGRlIGFjdWVyZG8gY29uIGxhIGxleSAxNTgxIGRlIDIwMTIgZW50ZW5kaWVuZG8gcXVlIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQsIHkgc3UgdHJhdGFtaWVudG8gdGllbmUgdW5hIGZpbmFsaWRhZCBoaXN0w7NyaWNhLCBlc3RhZMOtc3RpY2EgbyBjaWVudMOtZmljYSBzZWfDum4gbG8gZGlzcHVlc3RvIGVuIGxhIFBvbMOtdGljYSBkZSBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLgoKCgpQYXJ0ZSAyLiBBdXRvcml6YWNpw7NuIHBhcmEgcHVibGljYXIgeSBwZXJtaXRpciBsYSBjb25zdWx0YSB5IHVzbyBkZSBvYnJhcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOQUwuCgpTZSBhdXRvcml6YSBsYSBwdWJsaWNhY2nDs24gZWxlY3Ryw7NuaWNhLCBjb25zdWx0YSB5IHVzbyBkZSBsYSBvYnJhIHBvciBwYXJ0ZSBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSB5IGRlIHN1cyB1c3VhcmlvcyBkZSBsYSBzaWd1aWVudGUgbWFuZXJhOgoKYS4JQ29uY2VkbyBsaWNlbmNpYSBlbiBsb3MgdMOpcm1pbm9zIHNlw7FhbGFkb3MgZW4gbGEgcGFydGUgMSBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBjb24gZWwgb2JqZXRpdm8gZGUgcXVlIGxhIG9icmEgZW50cmVnYWRhIHNlYSBwdWJsaWNhZGEgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSB5IHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0byBwYXJhIHN1IGNvbnN1bHRhIHBvciBsb3MgdXN1YXJpb3MgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgIGEgdHJhdsOpcyBkZSBpbnRlcm5ldC4KCg== |