Determinación de grupos heteróticos en líneas endogámicas de maíz tropical mediante cruzamientos dialélicos y marcadores SNP

Ilustraciones, gráficas, tablas

Autores:
Torres González, Laura Marcela
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84523
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84523
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología::576 - Genética y evolución
Fitomejoramiento
Plant breeding
Marcadores genéticos
Genetic markers
Endogamia
Inbreeding
Análisis dialelo
Diallel analysis
Técnicas genéticas
Genetic techniques
Grupos heteróticos
Maíz tropical
Dialelo
Habilidad combinatoria específica
SNP
Análisis de clúster
Heterotic groups
Tropical maize
Diallel
Specific combine ability
SNP
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_7b26165bf647b4bb227b6db1ea788b9e
oai_identifier_str oai:repositorio.unal.edu.co:unal/84523
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Determinación de grupos heteróticos en líneas endogámicas de maíz tropical mediante cruzamientos dialélicos y marcadores SNP
dc.title.translated.eng.fl_str_mv Heterotic grouping of tropical maize inbred lines using Diallel crosses and SNP markers
title Determinación de grupos heteróticos en líneas endogámicas de maíz tropical mediante cruzamientos dialélicos y marcadores SNP
spellingShingle Determinación de grupos heteróticos en líneas endogámicas de maíz tropical mediante cruzamientos dialélicos y marcadores SNP
570 - Biología::576 - Genética y evolución
Fitomejoramiento
Plant breeding
Marcadores genéticos
Genetic markers
Endogamia
Inbreeding
Análisis dialelo
Diallel analysis
Técnicas genéticas
Genetic techniques
Grupos heteróticos
Maíz tropical
Dialelo
Habilidad combinatoria específica
SNP
Análisis de clúster
Heterotic groups
Tropical maize
Diallel
Specific combine ability
SNP
title_short Determinación de grupos heteróticos en líneas endogámicas de maíz tropical mediante cruzamientos dialélicos y marcadores SNP
title_full Determinación de grupos heteróticos en líneas endogámicas de maíz tropical mediante cruzamientos dialélicos y marcadores SNP
title_fullStr Determinación de grupos heteróticos en líneas endogámicas de maíz tropical mediante cruzamientos dialélicos y marcadores SNP
title_full_unstemmed Determinación de grupos heteróticos en líneas endogámicas de maíz tropical mediante cruzamientos dialélicos y marcadores SNP
title_sort Determinación de grupos heteróticos en líneas endogámicas de maíz tropical mediante cruzamientos dialélicos y marcadores SNP
dc.creator.fl_str_mv Torres González, Laura Marcela
dc.contributor.advisor.none.fl_str_mv Chacón Sánchez, María Isabel
Mayor Durán, Victor Manuel
dc.contributor.author.none.fl_str_mv Torres González, Laura Marcela
dc.subject.ddc.spa.fl_str_mv 570 - Biología::576 - Genética y evolución
topic 570 - Biología::576 - Genética y evolución
Fitomejoramiento
Plant breeding
Marcadores genéticos
Genetic markers
Endogamia
Inbreeding
Análisis dialelo
Diallel analysis
Técnicas genéticas
Genetic techniques
Grupos heteróticos
Maíz tropical
Dialelo
Habilidad combinatoria específica
SNP
Análisis de clúster
Heterotic groups
Tropical maize
Diallel
Specific combine ability
SNP
dc.subject.agrovoc.none.fl_str_mv Fitomejoramiento
Plant breeding
Marcadores genéticos
Genetic markers
Endogamia
Inbreeding
Análisis dialelo
Diallel analysis
Técnicas genéticas
Genetic techniques
dc.subject.proposal.spa.fl_str_mv Grupos heteróticos
Maíz tropical
Dialelo
Habilidad combinatoria específica
SNP
Análisis de clúster
dc.subject.proposal.eng.fl_str_mv Heterotic groups
Tropical maize
Diallel
Specific combine ability
SNP
description Ilustraciones, gráficas, tablas
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-08-10T16:47:42Z
dc.date.available.none.fl_str_mv 2023-08-10T16:47:42Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84523
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84523
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Zhao, J., Li, C., Song, W., Wang, Y., Zhang, R., Wang, J., Wang, F., Tian, H., & Wang, R. (2018). Genetic diversity and population structure of important Chinese maize breeding germplasm revealed by SNP-chips. Scientia Agricultura Sinica, 51(4), 626–634. https://doi.org/10.3864/j.issn.0578-1752.2018.04.003
Adu, G. B., Badu-Apraku, B., Akromah, R., & Awuku, F. J. (2022). Combining Abilities and Heterotic Patterns among Early Maturing Maize Inbred Lines under Optimal and Striga-Infested Environments. Genes, 13(12). https://doi.org/10.3390/genes13122289
Adu, G. B., Badu-Apraku, B., Akromah, R., Garcia-Oliveira, A. L., Awuku, F. J., & Gedil, M. (2019). Genetic diversity and population structure of early-maturing tropical maize inbred lines using SNP markers. PLoS ONE, 14(4), 1–12. https://doi.org/10.1371/journal.pone.0214810
Aguiar, C. G., Schuster, I., Amaral, A. T., Scapim, C. A., & Vieira, E. S. N. (2008). Heterotic groups in tropical maize germplasm by test crosses and simple sequence repeat markers. Genetics and Molecular Research, 7(4), 1233–1244. https://doi.org/10.4238/vol7-4gmr495
Alika, J. E., Aken’ova, M. E., & Fatokun, C. A. (1993). Variation among maize (Zea mays L.) accessions of Bendel State, Nigeria. Multivariate analysis of agronomic data. In Euphytica (Vol. 66).
Al-Naggar, A. M. M., Shafik, M. M., & Musa, R. Y. M. (2020). Genetic Diversity Based on Morphological Traits of 19 Maize Genotypes Using Principal Component Analysis and GT Biplot. Annual Research & Review in Biology, 68–85. https://doi.org/10.9734/arrb/2020/v35i230191
Al-samarai, R., & Al-Kazaz, A. (2015). Molecular Markers: an Introduction and Applications. European Journal of Molecular Biotechnology, 9(3), 118–130. https://doi.org/10.13187/ejmb.2015.9.118
Awata, L. A. O., Tongoona, P., Danquah, E., Efie, B. E., & Marchelo-Dragga, P. W. (2018). Common Mating Designs in Agricultural Research and Their Reliability in Estimation of Genetic Parameters. 11(7), 16–36. https://doi.org/10.9790/2380-1107021636
Badu-Apraku, B., Annor, B., Oyekunle, M., Akinwale, R. O., Fakorede, M. A. B., Talabi, A. O., Akaogu, I. C., Melaku, G., & Fasanmade, Y. (2015). Grouping of early maturing quality protein maize inbreds based on SNP markers and combining ability under multiple environments. Field Crops Research, 183, 169–183. https://doi.org/10.1016/j.fcr.2015.07.015
Badu-Apraku, B., Oyekunle, M., Fakorede, M. A. B., Vroh, I., O Akinwale, R., & Aderounmu, M. (2013). Combining ability, heterotic patterns and genetic diversity of extra-early yellow inbreds under contrasting environments. Euphytica, 192(3), 413–433. https://doi.org/10.1007/s10681-013-0876-4
Barata, C., & Carena, M. J. (2006). Classification of North Dakota maize inbred lines into heterotic groups based on molecular and testcross data. Euphytica, 151(3), 339–349. https://doi.org/10.1007/s10681-006-9155-y
Barroso, P. A., Medeiros, A. M., Santos, N. P. S. dos, Silva, D. C. Q., Silva, S. da C., & Gomes, R. L. F. (2019). Phenotypic Dispersion of Landrace Lima Bean Varieties Using Multidimensional Scaling. Journal of Agricultural Science, 11(13), 178. https://doi.org/10.5539/jas.v11n13p178
Begum, S., Alam, S. S., Omy, S. H., Amiruzzaman, M., & Rohman, M. M. (2018). Inheritance and combing ability in maize using a 7x7 diallel cross. Journal of Plant Breeding and Crop Science, 10(9), 239–248. https://doi.org/10.5897/jpbcs2018.0750
Beiragi, M. A., Siah Sar, B. A., Sadeghi Geive, H., Nasrolah Alhossini, M., Rahmani, A., & Bakhtiari Gharibdoosti, A. (2012). Application of the multivariate analysis method for some traits in maize. AFRICAN JOURNAL OF AGRICULTURAL RESEEARCH, 7(10). https://doi.org/10.5897/ajar11.1595
Bello, O. B., Abdulmaliq, S. Y., & Ige. (2010). Correlation and path coefficient analysis of yield and agronomic characters among open pollinated maize varieties and their F 1 hybrids in a diallel cross. African Journal of Biotechnology, 9(18), 2633–2639. http://www.academicjournals.org/AJB
Beyene, T., Botha, A. M., & Myburg, A. A. (2005). Phenotypic diversity for morphological and agronomic traits in traditional ethiopian highland maize accessions. South African Journal of Plant and Soil, 22(2), 100–105. https://doi.org/10.1080/02571862.2005.10634689
Bfinziger, M., & Lafitte, H. R. (1997). Efficiency of Secondary Traits for Improving Maize for Low-Nitrogen Target Environments. Crop Science, 37.
Bidhendi, M., Mostafavi, K., Choukan, R., Darvish, F., & Majidi, E. (2009). Classifying of maize inbred iines into heterotic groups using diallel analysis. World Acad Sci Eng Technol, 6(7), 1161–1164.
Birchler, J. A., Auger, D. L., & Riddle, N. C. (2003). In Search of the Molecular Basis of Heterosis. Plant Cell, 15(10), 2236–2239. https://doi.org/10.1105/tpc.151030
Borg, I., & Groenen, P. (2005). Modern Multidimensional Scaling: Theory and Applications. Springer-Verlag.
Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S. (2007). TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 23(19), 2633–2635. https://doi.org/10.1093/bioinformatics/btm308
Chandel, U., Kumar, D., & Guleria, S. K. (2019). Combining ability effects and heterotic grouping in newly developed early maturing yellow maize (Zea mays L.) inbreds under sub-tropical conditions. Electronic Journal of Plant Breeding, 10(3), 1049–1059. https://doi.org/10.5958/0975-928X.2019.00134.0
Chengsong, Z., & Jianming, Y. (2009). Nonmetric multidimensional scaling corrects for population structure in association mapping with different sample types. Genetics, 182(3), 875–888. https://doi.org/10.1534/genetics.108.098863
Ching, A., Caldwell, K. S., Jung, M., Dolan, M., Smith, O. S., Tingey, S., Morgante, M., & Rafalski, A. J. (2002). SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. http://www.arabidopsis.org/cereon/].
Christie, B. R., & Shattuck, V. I. (2010). The Diallel Cross: Design, Analysis, and Use for Plant Breeders. Plant Breeding Reviews, 9(736), 9–36. https://doi.org/10.1002/9780470650363.ch2
da Silva, A. R., Cecon, P. R., Días, C. T. dos S., Puiatti, M., Finger, F. L., & Souza Carneiro, A. P. (2014). Morphological phenotypic dispersion of garlic cultivars by cluster analysis and multidimensional scaling. Scientia Agricola, 71(1), 38–43.
Derera, J., Tongoona, P., Vivek, B. S., & Laing, M. D. (2008). Gene action controlling grain yield and secondary traits in southern African maize hybrids under drought and non-drought environments. Euphytica, 162(3), 411–422. https://doi.org/10.1007/s10681-007-9582-4
Duitama, J., Quintero, J. C., Cruz, D. F., Quintero, C., Hubmann, G., Foulquié-Moreno, M. R., Verstrepen, K. J., Thevelein, J. M., & Tohme, J. (2014). An integrated framework for discovery and genotyping of genomic variants from high-throughput sequencing experiments. Nucleic Acids Research, 42(6). https://doi.org/10.1093/nar/gkt1381
Earl, D. A., & vonHoldt, B. M. (2012). STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4(2), 359–361. https://doi.org/10.1007/s12686-011-9548-7
El-Badawy, M. E. M. (2013). Heterosis and combining ability in maize using diallel crosses among seven new inbred lines. Asian Journal of Crop Science, 5(1), 1–13. https://doi.org/10.3923/ajcs.2013.1.13
Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 14(8), 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
Fan, X. M., Bi, Y., Zhang, Y., Jeffers, D., Yin, X., & Kang, M. (2018). Improving breeding efficiency of a hybrid maize breeding program using a three heterotic-group classification. Agronomy Journal, 110(4), 1209–1216. https://doi.org/10.2134/agronj2017.05.0290
Fan, X. M., Zhang, Y. M., Yao, W. H., Chen, H. M., Tan, J., Xu, C. X., Han, X. L., Luo, L. M., & Kang, M. S. (2009). Classifying maize inbred lines into heterotic groups using a factorial mating design. Agronomy Journal, 101(1), 106–112. https://doi.org/10.2134/agronj2008.0217
Fondo Nacional Cerealista, & FENALCE, F. N. de C. de C. (2011). Aspectos técnicos de la producción de maíz en Colombia. http://hdl.handle.net/20.500.12324/19418.
Fonseca, A. E., Westgate, M. E., Grass, L., & Dornbos, D. L. (2003). Tassel Morphology as an Indicator of Potential Pollen Production in Maize. Crop Management, 2(1), 1–15. https://doi.org/10.1094/cm-2003-0804-01-rs
Govaerts, B., Vega, D., Chávez, X., Narro, L., San Vicente, F., Palacios, N., Pérez, M., González, G., Ortega, P., Carvajal, A., Arcos, A. L., Bolaños, J., Romero, N., Bolaños, J., Vanegas, Y. F., Echeverría, R., Jarvis, A., Jiménez, D., & Ramírez-Villegas, J. (2019). Maíz para Colombia: Visión 2030.
Griffing, B. (1956). Concept of General and Specific Combining Ability in Relation to Diallel Crossing Systems. Australian Journal of Biological Sciences, 9(4), 463. https://doi.org/10.1071/bi9560463
Hallauer, A. R. (2015). Heterosis What Have We Learned? What Have We Done? Where Are We Headed? 1922, 483–492. https://doi.org/10.2134/1999.geneticsandexploitation.c45
Hassan, W. A., Hadi, B. H., & Hamdalla, M. S. H. (2020). Study The GCA and SCA Effects of Five Inbred Lines of Maize According to Half Diallel Mating System. In Journal For Agriculture Sciences (QJAS) (Vol. 10, Issue 2). https://jouagr.qu.edu.iq/
Hussain, M., Shah, K. N., Ghafoor, A., Kiani, T. T., & Mahmood, T. (2014). GENETIC ANALYSIS FOR GRAIN YIELD AND VARIOUS MORPHOLOGICAL TRAITS IN MAIZE (ZEA MAYS L.) UNDER NORMAL AND WATER STRESS ENVIRONMENTS. In J. Anim. Plant Sci (Vol. 24, Issue 4).
Jamshidian, P., Reza Golparvar, A., Naderi, M. R., Darkhal, H., & Golparvar, A. R. (2013). International Journal of Farming and Allied Sciences Phenotypic correlations and path analysis between ear yield and other associated characters in corn hybrids (Zea mays L.). International Journal of Farming and Allied Sciences, 2, 1273–1276. www.ijfas.com
Ji, H. C., Cho, J.-W., & Yamakawa, T. (2006). Diallel Analysis of Plant and Ear Heights in Tropical Maize (Zea mays L.). In J. Fac. Agr., Kyushu Univ (Vol. 51, Issue 2). Jombart, T., & Ahmed, I. (2011). adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics, 27(21), 3070–3071. https://doi.org/10.1093/bioinformatics/btr521
Khakwani, K., Cengiz, R., Asif, M., & Ahsan, M. (2020). Heterotic and heritability pattern of grain yield and related traits in doubled haploid f1 hybrids of maize (Zea mays L.). Maydica. https://www.researchgate.net/publication/347986397
Labroo, M. R., Studer, A. J., & Rutkoski, J. E. (2021). Heterosis and Hybrid Crop Breeding: A Multidisciplinary Review. In Frontiers in Genetics (Vol. 12). Frontiers Media S.A. https://doi.org/10.3389/fgene.2021.643761
Letunic, I., & Bork, P. (2021). Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), W293–W296. https://doi.org/10.1093/nar/gkab301
Li, H., Qu, W., Obrycki, J. J., Meng, L., Zhou, X., Chu, D., & Li, B. (2020). Optimizing sample size for population genomic study in a global invasive lady beetle, harmonia axyridis. Insects, 11(5). https://doi.org/10.3390/insects11050290
Li, Q., Yang, X., Xu, S., Cai, Y., Zhang, D., Han, Y., Li, L., Zhang, Z., Gao, S., Li, J., & Yan, J. (2012). Genome-wide association studies identified three independent polymorphisms associated with α-tocopherol content in maize kernels. PloS One, 7(5). https://doi.org/10.1371/journal.pone.0036807
Liu, K., Goodman, M., Muse, S., Smith, J. S., Buckler, E., & Doebley, J. (2003). Genetic Structure and Diversity among Maize Inbred Lines as Inferred from DNA Microsatellites. Genetics, 165(4), 2117–2128.
Liu, N., Xue, Y., Guo, Z., Li, W., & Tang, J. (2016). Genome-wide association study identifies candidate genes for starch content regulation in Maize Kernels. Frontiers in Plant Science, 7(JULY2016). https://doi.org/10.3389/fpls.2016.01046
Lu, X., Zhou, Z., Yuan, Z., Zhang, C., Hao, Z., Wang, Z., Li, M., Zhang, D., Yong, H., Han, J., Li, X., & Weng, J. (2020). Genetic Dissection of the General Combining Ability of Yield-Related Traits in Maize. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00788
Mahato, A., Shahi, J. P., Singh, P. K., Kumar, M., & Singamsetti, A. (2021). Heterotic grouping of sweet corn (Zea mays var. sachharata) genotypes based on their combining ability and molecular diversity. Article in Indian Journal of Genetics and Plant Breeding. https://doi.org/10.31742/IJGPB.81.3.8
Maruthi, R. R. N. G. J. S. B. C. G. K. (2019). Heterotic grouping of late-maturing maize inbred lines based on combining ability and molecular marker studies. Journal of Environmental Biology, 40, 705–710.
Medici, L. O., Pereira, M. B., Lea, P. J., & Azevedo, R. A. (2004). Diallel analysis of maize lines with contrasting responses to applied nitrogen. Journal of Agricultural Science, 142(5), 535–541. https://doi.org/10.1017/S002185960400468X
Meena, A. K., Gurjar, D., Patil, S. S., & Kumhar, B. L. (2017). Concept of Heterotic Group and its Exploitation in Hybrid Breeding. International Journal of Current Microbiology and Applied Sciences, 6(6), 61–73. https://doi.org/10.20546/ijcmas.2017.606.007
Melchinger, A. E., & Gumber, R. K. (1998). Concepts and Breeding of Heterosis in Crop Plants. In CSSA Special Publication (Issue 25).
Menkir, A., Melake-Berhan, A., The, C., Ingelbrecht, I., & Adepoju, A. (2004). Grouping of tropical mid-altitude maize inbred lines on the basis of yield data and molecular markers. Theoretical and Applied Genetics, 108(8), 1582–1590. https://doi.org/10.1007/s00122-004-1585-0
Messmer, R., Fracheboud, Y., Bänziger, M., Vargas, M., Stamp, P., & Ribaut, J. M. (2009). Drought stress and tropical maize: QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits. Theoretical and Applied Genetics, 119(5), 913–930. https://doi.org/10.1007/s00122-009-1099-x
Mhike, X., Lungu, D. M., & Vivek, B. (2011). Combining ability studies amongst AREX and CIMMYT maize (Zea mays L.) inbred lines under stress and non stress conditions. In African Journal of Agricultural Research (Vol. 6, Issue 8). http://www.academicjournals.org/AJAR
Murtadha, M. A., Ariyo, O. J., & Alghamdi, S. S. (2018). Analysis of combining ability over environments in diallel crosses of maize (Zea mays). Journal of the Saudi Society of Agricultural Sciences, 17(1), 69–78. https://doi.org/10.1016/j.jssas.2016.01.004
Nardino, M., Carvalho, I. R., Barros, W. S., Souza, V. Q. De, Corazza, T., Koch, F., Aisenberg, G., Aumonde, T. Z., Pedó, T., Szareski, V. J., & Demari, G. H. (2016). DIALLEL CROSS ANALYSIS IN MAIZE. International Journal of Current Research, 8(08), 35686–35692.
Nazareno, A. G., Bemmels, J. B., Dick, C. W., & Lohmann, L. G. (2017). Minimum sample sizes for population genomics: an empirical study from an Amazonian plant species. Molecular Ecology Resources, 17(6), 1136–1147. https://doi.org/10.1111/1755-0998.12654
Nei, M. (1972). Genetic Distance between Populations. 106(949), 283–292.
Nei, M. (1987). Molecular Evolutionary Genetics. Columbia University Press.
Nyaligwa, L., Hussein, S., Amelework, B., & Ghebrehi-Wot, H. (2015). Genetic diversity analysis of elite maize inbred lines of diverse sources using SSR markers. Maydica, 60(3). http://www.agron.missouri.edu
Olutayo Akinwale, R. (2021). Cereal Grains (A. K. Goyal, Ed.; Vol. 2).
Oyetunde, O. A., Badu-Apraku, B., Ariyo, O. J., & Alake, C. O. (2020). Efficiencies of Heterotic Grouping Methods for Classifying Early Maturing Maize Inbred Lines. Agronomy, 10(8). https://doi.org/10.3390/agronomy10081198
Paterniani, M. E. A. G. Z., Sawazaki, E., Dudienas, C., Duarte, A. P., & Gallo, P. B. (2000). Diallel crosses among maize lines with emphasis on resistance to foliar diseases. Genetics and Molecular Biology, 23(2), 381–385. https://doi.org/10.1590/S1415-47572000000200024
Pereira, V., & Gusmão, L. (2013). X-Chromosome Markers. Encyclopedia of Forensic Sciences: Second Edition, 257–263. https://doi.org/10.1016/B978-0-12-382165-2.00047-7
Pinto, R. D. M. C., De Souza, C. L., Carlini-Garcia, L. A., Garcia, A. A. F., & Pereira De Souza, A. (2003). Comparison between molecular markers and diallel crosses in the assignment of maize lines to heterotic groups. In Maydica (Vol. 48, Issue 1, pp. 63–73).
Porras-Hurtado, L., Ruiz, Y., Santos, C., Phillips, C., Carracedo, Á., & Lareu, M. V. (2013). An overview of STRUCTURE: Applications, parameter settings, and supporting software. Frontiers in Genetics, 4(MAY). https://doi.org/10.3389/fgene.2013.00098
Pritchard, J., Stephens, M., Rosenberg, N., & Donnelly, P. (2000). Association Mapping in Structured Populations. American Journal of Human Genetics, 67, 170–181. https://doi.org/https://doi.org/10.1086/302959
Pswarayi, A., & Vivek, B. (2008). Combining ability of CIMMYT’s early maturing maize (Zea mays L.) germplasm under stress and non-stress conditions and identification of testers. Euphytica, 162, 353–362. www.fao.org
Reif, J. C., Gumpert, F. M., Fischer, S., & Melchinger, A. E. (2007). Impact of interpopulation divergence on additive and dominance variance in hybrid populations. Genetics, 176(3), 1931–1934. https://doi.org/10.1534/genetics.107.074146
Reif, J. C., Melchinger, A. E., Xia, X. C., Warburton, M. L., Hoisington, D. A., Vasal, S. K., Srinivasan, G., Bohn, M., & Frisch, M. (2003). Genetic distance based on simple sequence repeats and heterosis in tropical maize populations. Crop Science, 43(4), 1275–1282. https://doi.org/10.2135/cropsci2003.1275
Revilla, P., Butron, A., Malvar, R. A., & Ordas, A. (1999). Relationships among Kernel Weight, Early Vigor, and Growth in Maize. Crop Sci., 39, 654–658.
Ricci, G. C. L., Silva, N., Pagliarini, M. S., & Scapim, C. A. (2007). Microsporogenesis in inbred line of popcorn (Zea mays L.). Genetics and Molecular Research, 6(4), 1013–1018.
Richard, C., Osiru, D., Mwala, M., & Lubberstedt, T. (2016). Genetic diversity and heterotic grouping of the core set of southern African and temperate maize (Zea mays L) Inbred lines using SNP markers. In Maydica electronic publication (Vol. 61, Issue 1). [Istituto sperimentale per la cerealicoltura, Section of Bergamo, Italy]. https://journals-crea.4science.it/index.php/maydica/article/view/1513
Rodríguez, F., Alvarado, G., Pacheco, Á., Crossa, J., & Burgueño, J. (2015). AGD-R (Analysis of Genetic Designs with R for Windows) Version 5.0. CIMMYT Research Data & Software Repository Network, 14.
Romay, M. C., Millard, M. J., Glaubitz, J. C., Peiffer, J. A., Swarts, K. L., Casstevens, T. M., Elshire, R. J., Acharya, C. B., Mitchell, S. E., Flint-Garcia, S. A., McMullen, M. D., Holland, J. B., Buckler, E. S., & Gardner, C. A. (2013). Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biology, 14(6). https://doi.org/10.1186/gb-2013-14-6-r55
RStudio Team. (2022). RStudio: Integrated Development Environment for R. Http://Www.Rstudio.Com/.
Salgar, L. M. (2004, November). El cultivo de maíz en Colombia. Revista Semillas, 2–7.
Santos De Oliveira, L., Schuster, I., Novaes, E., & Pereira, W. A. (2021). SNP genotyping for fast and consistent clustering of maize inbred lines into heterotic groups SNP genotyping for fast and consistent clustering of maize inbred lines into heterotic groups ARTICLE. Crop Breeding and Applied Biotechnology, 21(1), 367121110. https://doi.org/10.1590/1984
Saraswathy, N., & Ramalingam, P. (2011). Genome mapping. Concepts and Techniques in Genomics and Proteomics, 77–93. https://doi.org/10.1533/9781908818058.77
Shahrokhi, M., Khorasani, S. K., & Ebrahimi, A. (2013). Study of genetic components in various maize (Zea mays L.) traits, using generation mean analysis method. International Journal of Agronomy and Plant Production, 4(3), 405–412. http://www.ijappjournal.com
Shi, W., Ayub, Q., Vermeulen, M., Shao, R. G., Zuniga, S., Van Der Gaag, K., De Knijff, P., Kayser, M., Xue, Y., & Tyler-Smith, C. (2010). A worldwide survey of human male demographic history based on Y-SNP and Y-STR data from the HGDP-CEPH populations. Molecular Biology and Evolution, 27(2), 385–393. https://doi.org/10.1093/molbev/msp243
Shu, G., Cao, G., Li, N., Wang, A., Wei, F., Li, T., Yi, L., Xu, Y., & Wang, Y. (2021). Genetic variation and population structure in China summer maize germplasm. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-84732-6
Shull, G. H. (1952). Beginnings of the heterosis concept. In J.W. Gowen (ed.) Heterosis (pp. 14–48). Iowa State Univ. Press. Ames.
Silva, K. J., Guimarães, C. T., Guilhen, J. H. S., Guimarães, P. E. de O., Parentoni, S. N., Trindade, R. dos S., de Oliveira, A. A., Bernardino, K. da C., Pinto, M. de O., Dias, K. O. das G., Bernardes, C. de O., Dias, L. A. dos S., Guimarães, L. J. M., & Pastina, M. M. (2020). High-density SNP-based genetic diversity and heterotic patterns of tropical maize breeding lines. Crop Science, 60(2), 779–787. https://doi.org/10.1002/csc2.20018
Singh, S., & Gupta, S. K. (2019). Formation of heterotic pools and understanding relationship between molecular divergence and heterosis in pearl millet (Pennisetum glaucum (L.) R. Br.). PLoS ONE, 14(5).
Sprague, G. F., & Tatum, L. A. (1942). General vs. Specific Combining Ability in Single Crosses of Corn1. Agronomy Journal, 34(10), 923–932. https://doi.org/https://doi.org/10.2134/agronj1942.00021962003400100008x
Stanley, A., Menkir, A., Paterne, A., Ifie, B., Tongoona, P., Unachukwu, N., Meseka, S., Mengesha, W., & Gedil, M. (2020). Genetic Diversity and Population Structure of Maize Inbred Lines with Varying Levels of Resistance to.
UGRA, U. de G. de R. Agropecuarios. (2018). Ficha de inteligencia: maíz tecnificado. FINAGRO.
van Inghelandt, D., Melchinger, A. E., Lebreton, C., & Stich, B. (2010). Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theoretical and Applied Genetics, 120(7), 1289–1299. https://doi.org/10.1007/s00122-009-1256-2
Viveros Barrera, J. S. (2016). El maíz en la economía rural colombiana. El Cerealista, 125(58), 6–9.
Wang, X., Zhang, Z., Xu, Y., Li, P., Zhang, X., & Xu, C. (2020). Using genomic data to improve the estimation of general combining ability based on sparse partial diallel cross designs in maize. Crop Journal, 8(5), 819–829. https://doi.org/10.1016/j.cj.2020.04.012
Ward, J. H. Jr. (1963). Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association, 58(301), 236–244.
Weir, B. S., & Goudet, J. (2017). A unified characterization of population structure and relatedness. Genetics, 206(4), 2085–2103. https://doi.org/10.1534/genetics.116.198424
White, O. E. (1917). Inheritance of Endosperm Color in Maize. In Source: American Journal of Botany (Vol. 4, Issue 7).
Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis (Springer, Ed.; 2nd ed.).
Xia, X. C., Reif, J. C., Melchinger, A. E., Frisch, M., Hoisington, D. A., Beck, D., Pixley, K., & Warburton, M. L. (2005). Genetic diversity among CIMMYT maize inbred lines investigated with SSR markers: II. Subtropical, tropical midaltitude, and highland maize inbred lines and their relationships with elite U.S. and European maize. Crop Science, 45(6), 2573–2582. https://doi.org/10.2135/cropsci2005.0246
Xu, C., Ren, Y., Jian, Y., Guo, Z., Zhang, Y., Xie, C., Fu, J., Wang, H., Wang, G., Xu, Y., Li, P., & Zou, C. (2017). Development of a maize 55 K SNP array with improved genome coverage for molecular breeding. Molecular Breeding, 37(3). https://doi.org/10.1007/s11032-017-0622-z
Yousuf, M., & Saleem, M. (2002). Estimates of Heritability for Some Quantitative Characters in Maize Coordination and development activities regarding Rice, Maize, Sorghum, Millet and Fodder Crops View project Development of Rice Hybrids for Different Rice Growing Ecologies of Pakistan View project Estimates of Heritability for Some Quantitative Characters in Maize. In Article in International Journal of Agriculture and Biology · INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY. http://ijab.org
Zhang, X., Zhang, H., Li, L., Lan, H., Ren, Z., Liu, D., Wu, L., Liu, H., Jaqueth, J., Li, B., Pan, G., & Gao, S. (2016). Characterizing the population structure and genetic diversity of maize breeding germplasm in Southwest China using genome-wide SNP markers. BMC Genomics, 17(1). https://doi.org/10.1186/s12864-016-3041-3
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xix, 91 páginas + anexos
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Palmira - Ciencias Agropecuarias - Maestría en Ciencias Agrarias
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agropecuarias
dc.publisher.place.spa.fl_str_mv Palmira, Valle del Cauca, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Palmira
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84523/2/1070976076.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/84523/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84523/4/1070976076.2023.pdf.jpg
bitstream.checksum.fl_str_mv c10c7503626b55f1f9a062e3ec8deaaa
eb34b1cf90b7e1103fc9dfd26be24b4a
ecf9aaf3f09b66329e40b5524f9c05ab
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089768894464000
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Chacón Sánchez, María Isabele07b0a6a7caf29ce7306e5f505bd5d82Mayor Durán, Victor Manuel25cdec9199ec9ec97a1fb54c0ba19e41Torres González, Laura Marcelac5dee68d53d57751e606074f42a64f522023-08-10T16:47:42Z2023-08-10T16:47:42Z2023https://repositorio.unal.edu.co/handle/unal/84523Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, gráficas, tablasUno de los objetivos principales de los programas de mejoramiento genético de maíz es desarrollar líneas parentales endocriadas de alto valor genético que al ser cruzadas puedan producir híbridos con características agronómicas superiores. En Colombia, la obtención de este tipo de híbridos es de alto interés ya que pueden ayudar a aumentar el rendimiento y la producción de maíz y cerrar la brecha que existe entre la producción nacional y la importación de maíz que actualmente es del 74%. Actualmente el programa de mejoramiento genético de maíz de Semillas Valle no cuenta con una caracterización del germoplasma que le permita establecer estrategias eficientes para la obtención de híbridos de alto rendimiento. En el presente estudio se llevó a cabo la clasificación de líneas endocriadas en grupos heteróticos a partir de datos genómicos empleando marcadores moleculares tipo SNP y variables fenotípicas en 66 líneas del programa de mejoramiento de Semillas Valle S.A., y a partir de datos de campo de un ensayo de tipo dialelo donde participaron 30 parentales. A partir de un análisis de clúster de los datos SNPs se identificaron tres grupos heteróticos o subpoblaciones. Por otra parte, los resultados del dialelo permitieron clasificar las líneas en dos grupos heteróticos basados en los efectos de la habilidad combinatoria específica (HCE), y en tres grupos basados en la habilidad combinatoria general para múltiples rasgos (HGCAMT). Sin embargo, la integración de las metodologías podría proveer más información respecto a los grupos heteróticos presentes en la población evaluada. (Texto tomado de la fuente)One of the main objectives on the maize breeding programs is the development of parental inbred lines of high genetic value, which crossings could produce new hybrids with improved agronomic characteristics. In Colombia, obtaining this kind of hybrids is highly interesting because it can help to obtain better yielding and improve the maize production, to close the gap between the national production and the maize imports, which currently represents the 74% of the internal consume. Currently, the Semillas Valle maize breeding program does not have with the characterization of the germplasm to be used in the establishment efficient strategies for the high yielding hybrids. In this study, we are going to evaluate the classification of inbred lines into heterotic groups using SNP molecular markers, and field data of 66 lines from the Semillas Valle S.A. maize breeding program, and from field data of a diallel crossing essay where 30 parental lines participate. From a cluster analysis of the SNPs data, we identify three heterotic groups or subpopulations. In the other hand, diallel results allows us to infer three different groups. Nevertheless, the integration of both methodologies could provide additional information about the heterotic groups present in the population.Semillas Valle S.A.MaestríaMagíster en Ciencias AgrariasEn el ensayo se incluyeron 30 líneas élite del programa de mejoramiento de Semillas Valle S.A como parentales, 15 líneas de grano color blanco y 15 líneas de grano color amarillo. Las líneas fueron seleccionadas por ser las líneas parentales con mayor cantidad de híbridos experimentales formados desde 2013. Con ayuda de la herramienta informática Semillas (v. 2018) (Semillas Valle S.A.), se programaron cruzamientos entre los 30 parentales, sin incluir los recíprocos, de acuerdo con el método II descrito por Griffing (1956), para un total de 435 cruzamientos [(P(P-1)) /2] y los 30 parentales. La obtención de semilla se realizó en las instalaciones del Centro Experimental Guillermo Paz Casas de Semillas Valle S.A. ubicado en el municipio de El Cerrito, Valle del Cauca. Los cruzamientos fueron formados mediante polinizaciones manuales para asegurar la integridad genética de los materiales. Para ello, las líneas hembra y macho se sembraron en una relación de 2 surcos a 1, respectivamente. Cada hembra se dispuso en campo en 2 surcos de 2 metros, separados a 0,8 m entre surcos, en grupos de 10 a 15 hembras seguidas por el macho correspondiente para la formación del híbrido. Los parentales se obtuvieron mediante autopolinizaciones manuales, en 2 surcos de 2 metros cada uno. La trazabilidad de los procesos de campo se realizó identificando cada genotipo con un código QR sobre el cual se registraron, además de la información de los cruzamientos realizados, los datos fenotípicos recolectados para cada material. La cosecha de dichos materiales se realizó de forma manual al momento de madurez fisiológica (aprox. 105 días después de siembra). La semilla fue llevada a secamiento en las celdas de secado de la planta de beneficio de semillas de Semillas Valle S.A., ubicada en el municipio de Yumbo, Valle del Cauca, hasta alcanzar el 14% de humedad. Posteriormente se seleccionó manualmente por el equipo experimentado de Semillas Valle y fue almacenada en cuarto frío a 4°C hasta la siembra para garantizar su calidad fisiológica.Genética y FitomejoramientoCiencias Agropecuarias.Sede Palmiraxix, 91 páginas + anexosapplication/pdfspaUniversidad Nacional de ColombiaPalmira - Ciencias Agropecuarias - Maestría en Ciencias AgrariasFacultad de Ciencias AgropecuariasPalmira, Valle del Cauca, ColombiaUniversidad Nacional de Colombia - Sede Palmira570 - Biología::576 - Genética y evoluciónFitomejoramientoPlant breedingMarcadores genéticosGenetic markersEndogamiaInbreedingAnálisis dialeloDiallel analysisTécnicas genéticasGenetic techniquesGrupos heteróticosMaíz tropicalDialeloHabilidad combinatoria específicaSNPAnálisis de clústerHeterotic groupsTropical maizeDiallelSpecific combine abilitySNPDeterminación de grupos heteróticos en líneas endogámicas de maíz tropical mediante cruzamientos dialélicos y marcadores SNPHeterotic grouping of tropical maize inbred lines using Diallel crosses and SNP markersTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMZhao, J., Li, C., Song, W., Wang, Y., Zhang, R., Wang, J., Wang, F., Tian, H., & Wang, R. (2018). Genetic diversity and population structure of important Chinese maize breeding germplasm revealed by SNP-chips. Scientia Agricultura Sinica, 51(4), 626–634. https://doi.org/10.3864/j.issn.0578-1752.2018.04.003Adu, G. B., Badu-Apraku, B., Akromah, R., & Awuku, F. J. (2022). Combining Abilities and Heterotic Patterns among Early Maturing Maize Inbred Lines under Optimal and Striga-Infested Environments. Genes, 13(12). https://doi.org/10.3390/genes13122289Adu, G. B., Badu-Apraku, B., Akromah, R., Garcia-Oliveira, A. L., Awuku, F. J., & Gedil, M. (2019). Genetic diversity and population structure of early-maturing tropical maize inbred lines using SNP markers. PLoS ONE, 14(4), 1–12. https://doi.org/10.1371/journal.pone.0214810Aguiar, C. G., Schuster, I., Amaral, A. T., Scapim, C. A., & Vieira, E. S. N. (2008). Heterotic groups in tropical maize germplasm by test crosses and simple sequence repeat markers. Genetics and Molecular Research, 7(4), 1233–1244. https://doi.org/10.4238/vol7-4gmr495Alika, J. E., Aken’ova, M. E., & Fatokun, C. A. (1993). Variation among maize (Zea mays L.) accessions of Bendel State, Nigeria. Multivariate analysis of agronomic data. In Euphytica (Vol. 66).Al-Naggar, A. M. M., Shafik, M. M., & Musa, R. Y. M. (2020). Genetic Diversity Based on Morphological Traits of 19 Maize Genotypes Using Principal Component Analysis and GT Biplot. Annual Research & Review in Biology, 68–85. https://doi.org/10.9734/arrb/2020/v35i230191Al-samarai, R., & Al-Kazaz, A. (2015). Molecular Markers: an Introduction and Applications. European Journal of Molecular Biotechnology, 9(3), 118–130. https://doi.org/10.13187/ejmb.2015.9.118Awata, L. A. O., Tongoona, P., Danquah, E., Efie, B. E., & Marchelo-Dragga, P. W. (2018). Common Mating Designs in Agricultural Research and Their Reliability in Estimation of Genetic Parameters. 11(7), 16–36. https://doi.org/10.9790/2380-1107021636Badu-Apraku, B., Annor, B., Oyekunle, M., Akinwale, R. O., Fakorede, M. A. B., Talabi, A. O., Akaogu, I. C., Melaku, G., & Fasanmade, Y. (2015). Grouping of early maturing quality protein maize inbreds based on SNP markers and combining ability under multiple environments. Field Crops Research, 183, 169–183. https://doi.org/10.1016/j.fcr.2015.07.015Badu-Apraku, B., Oyekunle, M., Fakorede, M. A. B., Vroh, I., O Akinwale, R., & Aderounmu, M. (2013). Combining ability, heterotic patterns and genetic diversity of extra-early yellow inbreds under contrasting environments. Euphytica, 192(3), 413–433. https://doi.org/10.1007/s10681-013-0876-4Barata, C., & Carena, M. J. (2006). Classification of North Dakota maize inbred lines into heterotic groups based on molecular and testcross data. Euphytica, 151(3), 339–349. https://doi.org/10.1007/s10681-006-9155-yBarroso, P. A., Medeiros, A. M., Santos, N. P. S. dos, Silva, D. C. Q., Silva, S. da C., & Gomes, R. L. F. (2019). Phenotypic Dispersion of Landrace Lima Bean Varieties Using Multidimensional Scaling. Journal of Agricultural Science, 11(13), 178. https://doi.org/10.5539/jas.v11n13p178Begum, S., Alam, S. S., Omy, S. H., Amiruzzaman, M., & Rohman, M. M. (2018). Inheritance and combing ability in maize using a 7x7 diallel cross. Journal of Plant Breeding and Crop Science, 10(9), 239–248. https://doi.org/10.5897/jpbcs2018.0750Beiragi, M. A., Siah Sar, B. A., Sadeghi Geive, H., Nasrolah Alhossini, M., Rahmani, A., & Bakhtiari Gharibdoosti, A. (2012). Application of the multivariate analysis method for some traits in maize. AFRICAN JOURNAL OF AGRICULTURAL RESEEARCH, 7(10). https://doi.org/10.5897/ajar11.1595Bello, O. B., Abdulmaliq, S. Y., & Ige. (2010). Correlation and path coefficient analysis of yield and agronomic characters among open pollinated maize varieties and their F 1 hybrids in a diallel cross. African Journal of Biotechnology, 9(18), 2633–2639. http://www.academicjournals.org/AJBBeyene, T., Botha, A. M., & Myburg, A. A. (2005). Phenotypic diversity for morphological and agronomic traits in traditional ethiopian highland maize accessions. South African Journal of Plant and Soil, 22(2), 100–105. https://doi.org/10.1080/02571862.2005.10634689Bfinziger, M., & Lafitte, H. R. (1997). Efficiency of Secondary Traits for Improving Maize for Low-Nitrogen Target Environments. Crop Science, 37.Bidhendi, M., Mostafavi, K., Choukan, R., Darvish, F., & Majidi, E. (2009). Classifying of maize inbred iines into heterotic groups using diallel analysis. World Acad Sci Eng Technol, 6(7), 1161–1164.Birchler, J. A., Auger, D. L., & Riddle, N. C. (2003). In Search of the Molecular Basis of Heterosis. Plant Cell, 15(10), 2236–2239. https://doi.org/10.1105/tpc.151030Borg, I., & Groenen, P. (2005). Modern Multidimensional Scaling: Theory and Applications. Springer-Verlag.Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S. (2007). TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 23(19), 2633–2635. https://doi.org/10.1093/bioinformatics/btm308Chandel, U., Kumar, D., & Guleria, S. K. (2019). Combining ability effects and heterotic grouping in newly developed early maturing yellow maize (Zea mays L.) inbreds under sub-tropical conditions. Electronic Journal of Plant Breeding, 10(3), 1049–1059. https://doi.org/10.5958/0975-928X.2019.00134.0Chengsong, Z., & Jianming, Y. (2009). Nonmetric multidimensional scaling corrects for population structure in association mapping with different sample types. Genetics, 182(3), 875–888. https://doi.org/10.1534/genetics.108.098863Ching, A., Caldwell, K. S., Jung, M., Dolan, M., Smith, O. S., Tingey, S., Morgante, M., & Rafalski, A. J. (2002). SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. http://www.arabidopsis.org/cereon/].Christie, B. R., & Shattuck, V. I. (2010). The Diallel Cross: Design, Analysis, and Use for Plant Breeders. Plant Breeding Reviews, 9(736), 9–36. https://doi.org/10.1002/9780470650363.ch2da Silva, A. R., Cecon, P. R., Días, C. T. dos S., Puiatti, M., Finger, F. L., & Souza Carneiro, A. P. (2014). Morphological phenotypic dispersion of garlic cultivars by cluster analysis and multidimensional scaling. Scientia Agricola, 71(1), 38–43.Derera, J., Tongoona, P., Vivek, B. S., & Laing, M. D. (2008). Gene action controlling grain yield and secondary traits in southern African maize hybrids under drought and non-drought environments. Euphytica, 162(3), 411–422. https://doi.org/10.1007/s10681-007-9582-4Duitama, J., Quintero, J. C., Cruz, D. F., Quintero, C., Hubmann, G., Foulquié-Moreno, M. R., Verstrepen, K. J., Thevelein, J. M., & Tohme, J. (2014). An integrated framework for discovery and genotyping of genomic variants from high-throughput sequencing experiments. Nucleic Acids Research, 42(6). https://doi.org/10.1093/nar/gkt1381Earl, D. A., & vonHoldt, B. M. (2012). STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4(2), 359–361. https://doi.org/10.1007/s12686-011-9548-7El-Badawy, M. E. M. (2013). Heterosis and combining ability in maize using diallel crosses among seven new inbred lines. Asian Journal of Crop Science, 5(1), 1–13. https://doi.org/10.3923/ajcs.2013.1.13Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 14(8), 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.xFan, X. M., Bi, Y., Zhang, Y., Jeffers, D., Yin, X., & Kang, M. (2018). Improving breeding efficiency of a hybrid maize breeding program using a three heterotic-group classification. Agronomy Journal, 110(4), 1209–1216. https://doi.org/10.2134/agronj2017.05.0290Fan, X. M., Zhang, Y. M., Yao, W. H., Chen, H. M., Tan, J., Xu, C. X., Han, X. L., Luo, L. M., & Kang, M. S. (2009). Classifying maize inbred lines into heterotic groups using a factorial mating design. Agronomy Journal, 101(1), 106–112. https://doi.org/10.2134/agronj2008.0217Fondo Nacional Cerealista, & FENALCE, F. N. de C. de C. (2011). Aspectos técnicos de la producción de maíz en Colombia. http://hdl.handle.net/20.500.12324/19418.Fonseca, A. E., Westgate, M. E., Grass, L., & Dornbos, D. L. (2003). Tassel Morphology as an Indicator of Potential Pollen Production in Maize. Crop Management, 2(1), 1–15. https://doi.org/10.1094/cm-2003-0804-01-rsGovaerts, B., Vega, D., Chávez, X., Narro, L., San Vicente, F., Palacios, N., Pérez, M., González, G., Ortega, P., Carvajal, A., Arcos, A. L., Bolaños, J., Romero, N., Bolaños, J., Vanegas, Y. F., Echeverría, R., Jarvis, A., Jiménez, D., & Ramírez-Villegas, J. (2019). Maíz para Colombia: Visión 2030.Griffing, B. (1956). Concept of General and Specific Combining Ability in Relation to Diallel Crossing Systems. Australian Journal of Biological Sciences, 9(4), 463. https://doi.org/10.1071/bi9560463Hallauer, A. R. (2015). Heterosis What Have We Learned? What Have We Done? Where Are We Headed? 1922, 483–492. https://doi.org/10.2134/1999.geneticsandexploitation.c45Hassan, W. A., Hadi, B. H., & Hamdalla, M. S. H. (2020). Study The GCA and SCA Effects of Five Inbred Lines of Maize According to Half Diallel Mating System. In Journal For Agriculture Sciences (QJAS) (Vol. 10, Issue 2). https://jouagr.qu.edu.iq/Hussain, M., Shah, K. N., Ghafoor, A., Kiani, T. T., & Mahmood, T. (2014). GENETIC ANALYSIS FOR GRAIN YIELD AND VARIOUS MORPHOLOGICAL TRAITS IN MAIZE (ZEA MAYS L.) UNDER NORMAL AND WATER STRESS ENVIRONMENTS. In J. Anim. Plant Sci (Vol. 24, Issue 4).Jamshidian, P., Reza Golparvar, A., Naderi, M. R., Darkhal, H., & Golparvar, A. R. (2013). International Journal of Farming and Allied Sciences Phenotypic correlations and path analysis between ear yield and other associated characters in corn hybrids (Zea mays L.). International Journal of Farming and Allied Sciences, 2, 1273–1276. www.ijfas.comJi, H. C., Cho, J.-W., & Yamakawa, T. (2006). Diallel Analysis of Plant and Ear Heights in Tropical Maize (Zea mays L.). In J. Fac. Agr., Kyushu Univ (Vol. 51, Issue 2). Jombart, T., & Ahmed, I. (2011). adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics, 27(21), 3070–3071. https://doi.org/10.1093/bioinformatics/btr521Khakwani, K., Cengiz, R., Asif, M., & Ahsan, M. (2020). Heterotic and heritability pattern of grain yield and related traits in doubled haploid f1 hybrids of maize (Zea mays L.). Maydica. https://www.researchgate.net/publication/347986397Labroo, M. R., Studer, A. J., & Rutkoski, J. E. (2021). Heterosis and Hybrid Crop Breeding: A Multidisciplinary Review. In Frontiers in Genetics (Vol. 12). Frontiers Media S.A. https://doi.org/10.3389/fgene.2021.643761Letunic, I., & Bork, P. (2021). Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), W293–W296. https://doi.org/10.1093/nar/gkab301Li, H., Qu, W., Obrycki, J. J., Meng, L., Zhou, X., Chu, D., & Li, B. (2020). Optimizing sample size for population genomic study in a global invasive lady beetle, harmonia axyridis. Insects, 11(5). https://doi.org/10.3390/insects11050290Li, Q., Yang, X., Xu, S., Cai, Y., Zhang, D., Han, Y., Li, L., Zhang, Z., Gao, S., Li, J., & Yan, J. (2012). Genome-wide association studies identified three independent polymorphisms associated with α-tocopherol content in maize kernels. PloS One, 7(5). https://doi.org/10.1371/journal.pone.0036807Liu, K., Goodman, M., Muse, S., Smith, J. S., Buckler, E., & Doebley, J. (2003). Genetic Structure and Diversity among Maize Inbred Lines as Inferred from DNA Microsatellites. Genetics, 165(4), 2117–2128.Liu, N., Xue, Y., Guo, Z., Li, W., & Tang, J. (2016). Genome-wide association study identifies candidate genes for starch content regulation in Maize Kernels. Frontiers in Plant Science, 7(JULY2016). https://doi.org/10.3389/fpls.2016.01046Lu, X., Zhou, Z., Yuan, Z., Zhang, C., Hao, Z., Wang, Z., Li, M., Zhang, D., Yong, H., Han, J., Li, X., & Weng, J. (2020). Genetic Dissection of the General Combining Ability of Yield-Related Traits in Maize. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00788Mahato, A., Shahi, J. P., Singh, P. K., Kumar, M., & Singamsetti, A. (2021). Heterotic grouping of sweet corn (Zea mays var. sachharata) genotypes based on their combining ability and molecular diversity. Article in Indian Journal of Genetics and Plant Breeding. https://doi.org/10.31742/IJGPB.81.3.8Maruthi, R. R. N. G. J. S. B. C. G. K. (2019). Heterotic grouping of late-maturing maize inbred lines based on combining ability and molecular marker studies. Journal of Environmental Biology, 40, 705–710.Medici, L. O., Pereira, M. B., Lea, P. J., & Azevedo, R. A. (2004). Diallel analysis of maize lines with contrasting responses to applied nitrogen. Journal of Agricultural Science, 142(5), 535–541. https://doi.org/10.1017/S002185960400468XMeena, A. K., Gurjar, D., Patil, S. S., & Kumhar, B. L. (2017). Concept of Heterotic Group and its Exploitation in Hybrid Breeding. International Journal of Current Microbiology and Applied Sciences, 6(6), 61–73. https://doi.org/10.20546/ijcmas.2017.606.007Melchinger, A. E., & Gumber, R. K. (1998). Concepts and Breeding of Heterosis in Crop Plants. In CSSA Special Publication (Issue 25).Menkir, A., Melake-Berhan, A., The, C., Ingelbrecht, I., & Adepoju, A. (2004). Grouping of tropical mid-altitude maize inbred lines on the basis of yield data and molecular markers. Theoretical and Applied Genetics, 108(8), 1582–1590. https://doi.org/10.1007/s00122-004-1585-0Messmer, R., Fracheboud, Y., Bänziger, M., Vargas, M., Stamp, P., & Ribaut, J. M. (2009). Drought stress and tropical maize: QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits. Theoretical and Applied Genetics, 119(5), 913–930. https://doi.org/10.1007/s00122-009-1099-xMhike, X., Lungu, D. M., & Vivek, B. (2011). Combining ability studies amongst AREX and CIMMYT maize (Zea mays L.) inbred lines under stress and non stress conditions. In African Journal of Agricultural Research (Vol. 6, Issue 8). http://www.academicjournals.org/AJARMurtadha, M. A., Ariyo, O. J., & Alghamdi, S. S. (2018). Analysis of combining ability over environments in diallel crosses of maize (Zea mays). Journal of the Saudi Society of Agricultural Sciences, 17(1), 69–78. https://doi.org/10.1016/j.jssas.2016.01.004Nardino, M., Carvalho, I. R., Barros, W. S., Souza, V. Q. De, Corazza, T., Koch, F., Aisenberg, G., Aumonde, T. Z., Pedó, T., Szareski, V. J., & Demari, G. H. (2016). DIALLEL CROSS ANALYSIS IN MAIZE. International Journal of Current Research, 8(08), 35686–35692.Nazareno, A. G., Bemmels, J. B., Dick, C. W., & Lohmann, L. G. (2017). Minimum sample sizes for population genomics: an empirical study from an Amazonian plant species. Molecular Ecology Resources, 17(6), 1136–1147. https://doi.org/10.1111/1755-0998.12654Nei, M. (1972). Genetic Distance between Populations. 106(949), 283–292.Nei, M. (1987). Molecular Evolutionary Genetics. Columbia University Press.Nyaligwa, L., Hussein, S., Amelework, B., & Ghebrehi-Wot, H. (2015). Genetic diversity analysis of elite maize inbred lines of diverse sources using SSR markers. Maydica, 60(3). http://www.agron.missouri.eduOlutayo Akinwale, R. (2021). Cereal Grains (A. K. Goyal, Ed.; Vol. 2).Oyetunde, O. A., Badu-Apraku, B., Ariyo, O. J., & Alake, C. O. (2020). Efficiencies of Heterotic Grouping Methods for Classifying Early Maturing Maize Inbred Lines. Agronomy, 10(8). https://doi.org/10.3390/agronomy10081198Paterniani, M. E. A. G. Z., Sawazaki, E., Dudienas, C., Duarte, A. P., & Gallo, P. B. (2000). Diallel crosses among maize lines with emphasis on resistance to foliar diseases. Genetics and Molecular Biology, 23(2), 381–385. https://doi.org/10.1590/S1415-47572000000200024Pereira, V., & Gusmão, L. (2013). X-Chromosome Markers. Encyclopedia of Forensic Sciences: Second Edition, 257–263. https://doi.org/10.1016/B978-0-12-382165-2.00047-7Pinto, R. D. M. C., De Souza, C. L., Carlini-Garcia, L. A., Garcia, A. A. F., & Pereira De Souza, A. (2003). Comparison between molecular markers and diallel crosses in the assignment of maize lines to heterotic groups. In Maydica (Vol. 48, Issue 1, pp. 63–73).Porras-Hurtado, L., Ruiz, Y., Santos, C., Phillips, C., Carracedo, Á., & Lareu, M. V. (2013). An overview of STRUCTURE: Applications, parameter settings, and supporting software. Frontiers in Genetics, 4(MAY). https://doi.org/10.3389/fgene.2013.00098Pritchard, J., Stephens, M., Rosenberg, N., & Donnelly, P. (2000). Association Mapping in Structured Populations. American Journal of Human Genetics, 67, 170–181. https://doi.org/https://doi.org/10.1086/302959Pswarayi, A., & Vivek, B. (2008). Combining ability of CIMMYT’s early maturing maize (Zea mays L.) germplasm under stress and non-stress conditions and identification of testers. Euphytica, 162, 353–362. www.fao.orgReif, J. C., Gumpert, F. M., Fischer, S., & Melchinger, A. E. (2007). Impact of interpopulation divergence on additive and dominance variance in hybrid populations. Genetics, 176(3), 1931–1934. https://doi.org/10.1534/genetics.107.074146Reif, J. C., Melchinger, A. E., Xia, X. C., Warburton, M. L., Hoisington, D. A., Vasal, S. K., Srinivasan, G., Bohn, M., & Frisch, M. (2003). Genetic distance based on simple sequence repeats and heterosis in tropical maize populations. Crop Science, 43(4), 1275–1282. https://doi.org/10.2135/cropsci2003.1275Revilla, P., Butron, A., Malvar, R. A., & Ordas, A. (1999). Relationships among Kernel Weight, Early Vigor, and Growth in Maize. Crop Sci., 39, 654–658.Ricci, G. C. L., Silva, N., Pagliarini, M. S., & Scapim, C. A. (2007). Microsporogenesis in inbred line of popcorn (Zea mays L.). Genetics and Molecular Research, 6(4), 1013–1018.Richard, C., Osiru, D., Mwala, M., & Lubberstedt, T. (2016). Genetic diversity and heterotic grouping of the core set of southern African and temperate maize (Zea mays L) Inbred lines using SNP markers. In Maydica electronic publication (Vol. 61, Issue 1). [Istituto sperimentale per la cerealicoltura, Section of Bergamo, Italy]. https://journals-crea.4science.it/index.php/maydica/article/view/1513Rodríguez, F., Alvarado, G., Pacheco, Á., Crossa, J., & Burgueño, J. (2015). AGD-R (Analysis of Genetic Designs with R for Windows) Version 5.0. CIMMYT Research Data & Software Repository Network, 14.Romay, M. C., Millard, M. J., Glaubitz, J. C., Peiffer, J. A., Swarts, K. L., Casstevens, T. M., Elshire, R. J., Acharya, C. B., Mitchell, S. E., Flint-Garcia, S. A., McMullen, M. D., Holland, J. B., Buckler, E. S., & Gardner, C. A. (2013). Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biology, 14(6). https://doi.org/10.1186/gb-2013-14-6-r55RStudio Team. (2022). RStudio: Integrated Development Environment for R. Http://Www.Rstudio.Com/.Salgar, L. M. (2004, November). El cultivo de maíz en Colombia. Revista Semillas, 2–7.Santos De Oliveira, L., Schuster, I., Novaes, E., & Pereira, W. A. (2021). SNP genotyping for fast and consistent clustering of maize inbred lines into heterotic groups SNP genotyping for fast and consistent clustering of maize inbred lines into heterotic groups ARTICLE. Crop Breeding and Applied Biotechnology, 21(1), 367121110. https://doi.org/10.1590/1984Saraswathy, N., & Ramalingam, P. (2011). Genome mapping. Concepts and Techniques in Genomics and Proteomics, 77–93. https://doi.org/10.1533/9781908818058.77Shahrokhi, M., Khorasani, S. K., & Ebrahimi, A. (2013). Study of genetic components in various maize (Zea mays L.) traits, using generation mean analysis method. International Journal of Agronomy and Plant Production, 4(3), 405–412. http://www.ijappjournal.comShi, W., Ayub, Q., Vermeulen, M., Shao, R. G., Zuniga, S., Van Der Gaag, K., De Knijff, P., Kayser, M., Xue, Y., & Tyler-Smith, C. (2010). A worldwide survey of human male demographic history based on Y-SNP and Y-STR data from the HGDP-CEPH populations. Molecular Biology and Evolution, 27(2), 385–393. https://doi.org/10.1093/molbev/msp243Shu, G., Cao, G., Li, N., Wang, A., Wei, F., Li, T., Yi, L., Xu, Y., & Wang, Y. (2021). Genetic variation and population structure in China summer maize germplasm. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-84732-6Shull, G. H. (1952). Beginnings of the heterosis concept. In J.W. Gowen (ed.) Heterosis (pp. 14–48). Iowa State Univ. Press. Ames.Silva, K. J., Guimarães, C. T., Guilhen, J. H. S., Guimarães, P. E. de O., Parentoni, S. N., Trindade, R. dos S., de Oliveira, A. A., Bernardino, K. da C., Pinto, M. de O., Dias, K. O. das G., Bernardes, C. de O., Dias, L. A. dos S., Guimarães, L. J. M., & Pastina, M. M. (2020). High-density SNP-based genetic diversity and heterotic patterns of tropical maize breeding lines. Crop Science, 60(2), 779–787. https://doi.org/10.1002/csc2.20018Singh, S., & Gupta, S. K. (2019). Formation of heterotic pools and understanding relationship between molecular divergence and heterosis in pearl millet (Pennisetum glaucum (L.) R. Br.). PLoS ONE, 14(5).Sprague, G. F., & Tatum, L. A. (1942). General vs. Specific Combining Ability in Single Crosses of Corn1. Agronomy Journal, 34(10), 923–932. https://doi.org/https://doi.org/10.2134/agronj1942.00021962003400100008xStanley, A., Menkir, A., Paterne, A., Ifie, B., Tongoona, P., Unachukwu, N., Meseka, S., Mengesha, W., & Gedil, M. (2020). Genetic Diversity and Population Structure of Maize Inbred Lines with Varying Levels of Resistance to.UGRA, U. de G. de R. Agropecuarios. (2018). Ficha de inteligencia: maíz tecnificado. FINAGRO.van Inghelandt, D., Melchinger, A. E., Lebreton, C., & Stich, B. (2010). Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theoretical and Applied Genetics, 120(7), 1289–1299. https://doi.org/10.1007/s00122-009-1256-2Viveros Barrera, J. S. (2016). El maíz en la economía rural colombiana. El Cerealista, 125(58), 6–9.Wang, X., Zhang, Z., Xu, Y., Li, P., Zhang, X., & Xu, C. (2020). Using genomic data to improve the estimation of general combining ability based on sparse partial diallel cross designs in maize. Crop Journal, 8(5), 819–829. https://doi.org/10.1016/j.cj.2020.04.012Ward, J. H. Jr. (1963). Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association, 58(301), 236–244.Weir, B. S., & Goudet, J. (2017). A unified characterization of population structure and relatedness. Genetics, 206(4), 2085–2103. https://doi.org/10.1534/genetics.116.198424White, O. E. (1917). Inheritance of Endosperm Color in Maize. In Source: American Journal of Botany (Vol. 4, Issue 7).Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis (Springer, Ed.; 2nd ed.).Xia, X. C., Reif, J. C., Melchinger, A. E., Frisch, M., Hoisington, D. A., Beck, D., Pixley, K., & Warburton, M. L. (2005). Genetic diversity among CIMMYT maize inbred lines investigated with SSR markers: II. Subtropical, tropical midaltitude, and highland maize inbred lines and their relationships with elite U.S. and European maize. Crop Science, 45(6), 2573–2582. https://doi.org/10.2135/cropsci2005.0246Xu, C., Ren, Y., Jian, Y., Guo, Z., Zhang, Y., Xie, C., Fu, J., Wang, H., Wang, G., Xu, Y., Li, P., & Zou, C. (2017). Development of a maize 55 K SNP array with improved genome coverage for molecular breeding. Molecular Breeding, 37(3). https://doi.org/10.1007/s11032-017-0622-zYousuf, M., & Saleem, M. (2002). Estimates of Heritability for Some Quantitative Characters in Maize Coordination and development activities regarding Rice, Maize, Sorghum, Millet and Fodder Crops View project Development of Rice Hybrids for Different Rice Growing Ecologies of Pakistan View project Estimates of Heritability for Some Quantitative Characters in Maize. In Article in International Journal of Agriculture and Biology · INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY. http://ijab.orgZhang, X., Zhang, H., Li, L., Lan, H., Ren, Z., Liu, D., Wu, L., Liu, H., Jaqueth, J., Li, B., Pan, G., & Gao, S. (2016). Characterizing the population structure and genetic diversity of maize breeding germplasm in Southwest China using genome-wide SNP markers. BMC Genomics, 17(1). https://doi.org/10.1186/s12864-016-3041-3EstudiantesInvestigadoresORIGINAL1070976076.2023.pdf1070976076.2023.pdfTesis de Maestrías en Ciencias Agrarías, fitomejoramiento.application/pdf2591328https://repositorio.unal.edu.co/bitstream/unal/84523/2/1070976076.2023.pdfc10c7503626b55f1f9a062e3ec8deaaaMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84523/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53THUMBNAIL1070976076.2023.pdf.jpg1070976076.2023.pdf.jpgGenerated Thumbnailimage/jpeg4888https://repositorio.unal.edu.co/bitstream/unal/84523/4/1070976076.2023.pdf.jpgecf9aaf3f09b66329e40b5524f9c05abMD54unal/84523oai:repositorio.unal.edu.co:unal/845232023-08-16 23:04:37.653Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=