Biorrefinería hidrotermal para la obtención de productos químicos plataforma, a partir de residuos agroindustriales de café: escala laboratorio

ilustraciones, fotografías, diagramas

Autores:
Lozano Pérez, Alejandra Sophia
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85816
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85816
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines::546 - Química inorgánica
Productos Quimicos
Productos quimicos de la biomasa
Residuos del cafe
Chemicals
Biomass chemicals
Coffee waste
Valorización hidrotermal
Residuos de café
HTC
LHW
Productos Químicos plataforma
Catalizadores
Cinética
Biomass
Hydrotermal valorization
Coffee Waste
Hydrotermal carbonization
Liquid Hot Water
Kinetics
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_7b0cb1828393fac9f216fe57e8e2debf
oai_identifier_str oai:repositorio.unal.edu.co:unal/85816
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Biorrefinería hidrotermal para la obtención de productos químicos plataforma, a partir de residuos agroindustriales de café: escala laboratorio
dc.title.translated.eng.fl_str_mv Hydrothermal biorefinery for the production of platform chemicals from agro-industrial coffee waste: laboratory scale
title Biorrefinería hidrotermal para la obtención de productos químicos plataforma, a partir de residuos agroindustriales de café: escala laboratorio
spellingShingle Biorrefinería hidrotermal para la obtención de productos químicos plataforma, a partir de residuos agroindustriales de café: escala laboratorio
540 - Química y ciencias afines::546 - Química inorgánica
Productos Quimicos
Productos quimicos de la biomasa
Residuos del cafe
Chemicals
Biomass chemicals
Coffee waste
Valorización hidrotermal
Residuos de café
HTC
LHW
Productos Químicos plataforma
Catalizadores
Cinética
Biomass
Hydrotermal valorization
Coffee Waste
Hydrotermal carbonization
Liquid Hot Water
Kinetics
title_short Biorrefinería hidrotermal para la obtención de productos químicos plataforma, a partir de residuos agroindustriales de café: escala laboratorio
title_full Biorrefinería hidrotermal para la obtención de productos químicos plataforma, a partir de residuos agroindustriales de café: escala laboratorio
title_fullStr Biorrefinería hidrotermal para la obtención de productos químicos plataforma, a partir de residuos agroindustriales de café: escala laboratorio
title_full_unstemmed Biorrefinería hidrotermal para la obtención de productos químicos plataforma, a partir de residuos agroindustriales de café: escala laboratorio
title_sort Biorrefinería hidrotermal para la obtención de productos químicos plataforma, a partir de residuos agroindustriales de café: escala laboratorio
dc.creator.fl_str_mv Lozano Pérez, Alejandra Sophia
dc.contributor.advisor.none.fl_str_mv Guerrero Fajardo, Carlos Alberto
dc.contributor.author.none.fl_str_mv Lozano Pérez, Alejandra Sophia
dc.contributor.researchgroup.spa.fl_str_mv Aprovechamiento Energético de Recursos Naturales
dc.contributor.orcid.spa.fl_str_mv Lozano Pérez, Alejandra Sophia [0000000244691312]
dc.contributor.cvlac.spa.fl_str_mv LOZANO PÉREZ, ALEJANDRA SOPHIA [0001922132]
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines::546 - Química inorgánica
topic 540 - Química y ciencias afines::546 - Química inorgánica
Productos Quimicos
Productos quimicos de la biomasa
Residuos del cafe
Chemicals
Biomass chemicals
Coffee waste
Valorización hidrotermal
Residuos de café
HTC
LHW
Productos Químicos plataforma
Catalizadores
Cinética
Biomass
Hydrotermal valorization
Coffee Waste
Hydrotermal carbonization
Liquid Hot Water
Kinetics
dc.subject.lemb.spa.fl_str_mv Productos Quimicos
Productos quimicos de la biomasa
Residuos del cafe
dc.subject.lemb.eng.fl_str_mv Chemicals
Biomass chemicals
Coffee waste
dc.subject.proposal.spa.fl_str_mv Valorización hidrotermal
Residuos de café
HTC
LHW
Productos Químicos plataforma
Catalizadores
Cinética
dc.subject.proposal.eng.fl_str_mv Biomass
Hydrotermal valorization
Coffee Waste
Hydrotermal carbonization
Liquid Hot Water
Kinetics
description ilustraciones, fotografías, diagramas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-03-19T15:12:11Z
dc.date.available.none.fl_str_mv 2024-03-19T15:12:11Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85816
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85816
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Environmental and Energy Study Institute, “Fossil Fuels,” https://www.eesi.org/topics/fossil-fuels/description.
United Nations, “Causes and Effects of Climate Change,” https://www.un.org/en/climatechange/science/causes-effects-climate-change.
United Nations Climate Change, “Key aspects of the Paris Agreement,” https://unfccc.int/most-requested/key-aspects-of-the-paris agreement#:~:text=The%20Paris%20Agreement’s%20central%20aim,further%20to%201.5%20degrees%20Celsius.
Z. Anwar, M. Gulfraz, and M. Irshad, “Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review,” J Radiat Res Appl Sci, vol. 7, no. 2, pp. 163–173, Apr. 2014, doi: 10.1016/j.jrras.2014.02.003.
M. Mujtaba et al., “Lignocellulosic biomass from agricultural waste to the circular economy: a review with focus on biofuels, biocomposites and bioplastics,” J Clean Prod, vol. 402, p. 136815, May 2023, doi: 10.1016/j.jclepro.2023.136815.
S. Nanda, J. A. Kozinski, and A. K. Dalai, “Lignocellulosic Biomass: A Review of Conversion Technologies and Fuel Products,” Current Biochemical Engineering, vol. 3, no. 1, pp. 24–36, Nov. 2015, doi: 10.2174/2213385203666150219232000.
M. V. Rodionova et al., “A comprehensive review on lignocellulosic biomass biorefinery for sustainable biofuel production,” Int J Hydrogen Energy, vol. 47, no. 3, pp. 1481–1498, Jan. 2022, doi: 10.1016/j.ijhydene.2021.10.122.
U.S Energy Information Administration, “Country Analysis Executive Summary: Colombia,” 2022.
J. A. Serna-Jiménez, L. S. Torres-Valenzuela, K. Martínez Cortínez, and M. C. Hernández Sandoval, “Aprovechamiento de la pulpa de café como alternativa de valorización de subproductos.,” Revista ION, vol. 31, no. 1, pp. 37–42, Nov. 2018, doi: 10.18273/revion.v31n1-2018006.
International Coffee Organization, “COFFEE REPORT AND OUTLOOK (CRO) APRIL 2023,” 2023.
P. Navarro, “Volume of coffee production in Colombia from marketing year 2015/16 to 2023/24.”
Café de Colombia, “REGIONES CAFETERAS,” https://www.cafedecolombia.com/particulares/regiones-cafeteras/.
O. L. Ocampo Lopez and L. M. Alvarez-Herrera, “Tendencia de la producción y el consumo del café en Colombia,” Apuntes del Cenes, vol. 36, no. 64, pp. 139–165, Jun. 2017, doi: 10.19053/01203053.v36.n64.2017.5419.
LatinA International Commerce, “Regiones Cafeteras en Colombia,” https://latinaintrade.com/es/regiones-cafeteras-en-colombia/.
A. Iriondo-DeHond, M. Iriondo-DeHond, and M. D. del Castillo, “Applications of Compounds from Coffee Processing By-Products,” Biomolecules, vol. 10, no. 9, p. 1219, Aug. 2020, doi: 10.3390/biom10091219.
M. Rebollo-Hernanz et al., “Biorefinery and Stepwise Strategies for Valorizing Coffee By-Products as Bioactive Food Ingredients and Nutraceuticals,” Applied Sciences, vol. 13, no. 14, p. 8326, Jul. 2023, doi: 10.3390/app13148326.
S. I. Mussatto, E. M. S. Machado, S. Martins, and J. A. Teixeira, “Production, Composition, and Application of Coffee and Its Industrial Residues,” Food Bioproc Tech, vol. 4, no. 5, pp. 661–672, Jul. 2011, doi: 10.1007/s11947-011-0565-z.
R. C. Alves, F. Rodrigues, M. Antónia Nunes, A. F. Vinha, and M. B. P. P. Oliveira, “State of the art in coffee processing by-products,” in Handbook of Coffee Processing By-Products, Elsevier, 2017, pp. 1–26. doi: 10.1016/B978-0-12-811290-8.00001-3.
P. S. Murthy and M. Madhava Naidu, “Sustainable management of coffee industry by-products and value addition—A review,” Resour Conserv Recycl, vol. 66, pp. 45–58, Sep. 2012, doi: 10.1016/j.resconrec.2012.06.005.
International Coffee Organization, “Total production by all exporting countries,” 2020.
B. M. Gouvea, C. Torres, A. S. Franca, L. S. Oliveira, and E. S. Oliveira, “Feasibility of ethanol production from coffee husks,” Biotechnol Lett, vol. 31, no. 9, pp. 1315–1319, Sep. 2009, doi: 10.1007/s10529-009-0023-4.
A. de C. Souza, “A importância do café para São Tomé e Príncipe frente à proibição do comércio de escravizados pela Inglaterra,” Afro-Ásia, no. 63, Jun. 2021, doi: 10.9771/aa.v0i63.38370.
V. A. Mirón-Mérida, J. Yáñez-Fernández, B. Montañez-Barragán, and B. E. Barragán Huerta, “Valorization of coffee parchment waste (Coffea arabica) as a source of caffeine and phenolic compounds in antifungal gellan gum films,” LWT, vol. 101, pp. 167–174, Mar. 2019, doi: 10.1016/j.lwt.2018.11.013.
T. Klingel, J. I. Kremer, V. Gottstein, T. Rajcic de Rezende, S. Schwarz, and D. W. Lachenmeier, “A Review of Coffee By-Products Including Leaf, Flower, Cherry, Husk, Silver Skin, and Spent Grounds as Novel Foods within the European Union,” Foods, vol. 9, no. 5, p. 665, May 2020, doi: 10.3390/foods9050665.
Y. Narita and K. Inouye, “Review on utilization and composition of coffee silverskin,” Food Research International, vol. 61, pp. 16–22, Jul. 2014, doi: 10.1016/j.foodres.2014.01.023.
A. S. G. Costa et al., “Optimization of antioxidants extraction from coffee silverskin, a roasting by-product, having in view a sustainable process,” Ind Crops Prod, vol. 53, pp. 350–357, Feb. 2014, doi: 10.1016/j.indcrop.2014.01.006.
M. A. Amran et al., “Value-Added Metabolites from Agricultural Waste and Application of Green Extraction Techniques,” Sustainability, vol. 13, no. 20, p. 11432, Oct. 2021, doi: 10.3390/su132011432.
M. Martuscelli, L. Esposito, C. Di Mattia, A. Ricci, and D. Mastrocola, “Characterization of Coffee Silver Skin as Potential Food-Safe Ingredient,” Foods, vol. 10, no. 6, p. 1367, Jun. 2021, doi: 10.3390/foods10061367.
M. C. Echeverria and M. Nuti, “Valorisation of the Residues of Coffee Agro-industry: Perspectives and Limitations,” The Open Waste Management Journal, vol. 10, no. 1, pp. 13–22, Jan. 2017, doi: 10.2174/1876400201710010013.
National Geographic Society, “Biomass Energy,” https://education.nationalgeographic.org/resource/biomass-energy/.
J. Moncada, J. A. Tamayo, and C. A. Cardona, “Integrating first, second, and third generation biorefineries: Incorporating microalgae into the sugarcane biorefinery,” Chem Eng Sci, vol. 118, pp. 126–140, Oct. 2014, doi: 10.1016/j.ces.2014.07.035.
T. Kalak, “Potential Use of Industrial Biomass Waste as a Sustainable Energy Source in the Future,” Energies (Basel), vol. 16, no. 4, p. 1783, Feb. 2023, doi: 10.3390/en16041783.
M. Pande and A. N. Bhaskarwar, “Biomass Conversion to Energy,” in Biomass Conversion, Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 1–90. doi: 10.1007/978-3-642-28418-2_1.
G. Zeng et al., “Pretreatment technology of lignocellulose,” E3S Web of Conferences, vol. 271, p. 04010, Jun. 2021, doi: 10.1051/e3sconf/202127104010.
M. Gavrilescu, “Biorefinery Systems,” in Bioenergy Research: Advances and Applications, Elsevier, 2014, pp. 219–241. doi: 10.1016/B978-0-444-59561-4.00014-0.
H. K. Sharma, C. Xu, and W. Qin, “Biological Pretreatment of Lignocellulosic Biomass for Biofuels and Bioproducts: An Overview,” Waste Biomass Valorization, vol. 10, no. 2, pp. 235–251, Feb. 2019, doi: 10.1007/s12649-017-0059-y.
P. McKendry, “Energy production from biomass (part 1): overview of biomass,” Bioresour Technol, vol. 83, no. 1, pp. 37–46, May 2002, doi: 10.1016/S0960-8524(01)00118-3.
C. G. Yoo et al., “Insights of biomass recalcitrance in natural Populus trichocarpa variants for biomass conversion,” Green Chemistry, vol. 19, no. 22, pp. 5467–5478, 2017, doi: 10.1039/C7GC02219K.
A. K. Chandel, V. K. Garlapati, A. K. Singh, F. A. F. Antunes, and S. S. da Silva, “The path forward for lignocellulose biorefineries: Bottlenecks, solutions, and perspective on commercialization,” Bioresour Technol, vol. 264, pp. 370–381, Sep. 2018, doi: 10.1016/j.biortech.2018.06.004.
A. K. Chandel, V. K. Garlapati, A. K. Singh, F. A. F. Antunes, and S. S. da Silva, “The path forward for lignocellulose biorefineries: Bottlenecks, solutions, and perspective on commercialization,” Bioresour Technol, vol. 264, pp. 370–381, Sep. 2018, doi: 10.1016/j.biortech.2018.06.004.
J. Kruyeniski, P. J. T. Ferreira, M. da G. Videira Sousa Carvalho, M. E. Vallejos, F. E. Felissia, and M. C. Area, “Physical and chemical characteristics of pretreated slash pine sawdust influence its enzymatic hydrolysis,” Ind Crops Prod, vol. 130, pp. 528–536, Apr. 2019, doi: 10.1016/j.indcrop.2018.12.075.
A. J. Ragauskas et al., “Lignin Valorization: Improving Lignin Processing in the Biorefinery,” Science (1979), vol. 344, no. 6185, May 2014, doi: 10.1126/science.1246843.
N. Giummarella, Y. Pu, A. J. Ragauskas, and M. Lawoko, “A critical review on the analysis of lignin carbohydrate bonds,” Green Chemistry, vol. 21, no. 7, pp. 1573–1595, 2019, doi: 10.1039/C8GC03606C.
H. V. Lee, S. B. A. Hamid, and S. K. Zain, “Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process,” The Scientific World Journal, vol. 2014, pp. 1–20, 2014, doi: 10.1155/2014/631013.
H. V. Lee, S. B. A. Hamid, and S. K. Zain, “Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process,” The Scientific World Journal, vol. 2014, pp. 1–20, 2014, doi: 10.1155/2014/631013.
S. Kim, “Evaluation of Alkali-Pretreated Soybean Straw for Lignocellulosic Bioethanol Production,” Int J Polym Sci, vol. 2018, pp. 1–7, 2018, doi: 10.1155/2018/5241748.
A. Kumar, A. Gautam, and D. Dutt, “Biotechnological Transformation of Lignocellulosic Biomass in to Industrial Products: An Overview,” Advances in Bioscience and Biotechnology, vol. 07, no. 03, pp. 149–168, 2016, doi: 10.4236/abb.2016.73014.
C. Sánchez, “Lignocellulosic residues: Biodegradation and bioconversion by fungi,” Biotechnol Adv, vol. 27, no. 2, pp. 185–194, Mar. 2009, doi: 10.1016/j.biotechadv.2008.11.001.
A. P. de Souza, A. Grandis, D. C. C. Leite, and M. S. Buckeridge, “Sugarcane as a Bioenergy Source: History, Performance, and Perspectives for Second-Generation Bioethanol,” Bioenergy Res, vol. 7, no. 1, pp. 24–35, Mar. 2014, doi: 10.1007/s12155-013-9366-8.
T. Happi Emaga, C. Robert, S. N. Ronkart, B. Wathelet, and M. Paquot, “Dietary fibre components and pectin chemical features of peels during ripening in banana and plantain varieties,” Bioresour Technol, vol. 99, no. 10, pp. 4346–4354, Jul. 2008, doi: 10.1016/j.biortech.2007.08.030.
H. Rabemanolontsoa and S. Saka, “Comparative study on chemical composition of various biomass species,” RSC Adv, vol. 3, no. 12, p. 3946, 2013, doi: 10.1039/c3ra22958k.
H. Rabemanolontsoa and S. Saka, “Comparative study on chemical composition of various biomass species,” RSC Adv, vol. 3, no. 12, p. 3946, 2013, doi: 10.1039/c3ra22958k.
M. Boluda-Aguilar, L. García-Vidal, F. del P. González-Castañeda, and A. López-Gómez, “Mandarin peel wastes pretreatment with steam explosion for bioethanol production,” Bioresour Technol, vol. 101, no. 10, pp. 3506–3513, May 2010, doi: 10.1016/j.biortech.2009.12.063.
C. Di Blasi, C. Branca, and A. Galgano, “Biomass Screening for the Production of Furfural via Thermal Decomposition,” Ind Eng Chem Res, vol. 49, no. 6, pp. 2658–2671, Mar. 2010, doi: 10.1021/ie901731u.
D. Jose, N. Kitiborwornkul, M. Sriariyanun, and K. Keerthi, “A Review on Chemical Pretreatment Methods of Lignocellulosic Biomass: Recent Advances and Progress,” Applied Science and Engineering Progress, Aug. 2022, doi: 10.14416/j.asep.2022.08.001.
J. Vasco-Correa, X. Ge, and Y. Li, “Biological Pretreatment of Lignocellulosic Biomass,” in Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery, Elsevier, 2016, pp. 561–585. doi: 10.1016/B978-0-12-802323-5.00024-4.
M. Jędrzejczyk, E. Soszka, M. Czapnik, A. M. Ruppert, and J. Grams, “Physical and chemical pretreatment of lignocellulosic biomass,” in Second and Third Generation of Feedstocks, Elsevier, 2019, pp. 143–196. doi: 10.1016/B978-0-12-815162-4.00006-9.
F. R. Amin et al., “Pretreatment methods of lignocellulosic biomass for anaerobic digestion,” AMB Express, vol. 7, no. 1, p. 72, Dec. 2017, doi: 10.1186/s13568-017-0375-4.
Y. Sun and J. Cheng, “Hydrolysis of lignocellulosic materials for ethanol production: a review,” Bioresour Technol, vol. 83, no. 1, pp. 1–11, May 2002, doi: 10.1016/S0960-8524(01)00212-7.
M. Kumar, Y. Sun, R. Rathour, A. Pandey, I. S. Thakur, and D. C. W. Tsang, “Algae as potential feedstock for the production of biofuels and value-added products: Opportunities and challenges,” Science of The Total Environment, vol. 716, p. 137116, May 2020, doi: 10.1016/j.scitotenv.2020.137116.
Barranco Cristian, J. Ortega, J. Mendoza, and Gonzalez Yahir, “Elaboración de biocombustibles sólidos densificados a partir de tusa de maíz, bioaglomerante de yuca y carbón mineral del departamento de Córdoba,” Revista chilena de ingeniería, vol. 25, no. 4, 2017.
M. K. Pasha, L. Dai, D. Liu, M. Guo, and W. Du, “An overview to process design, simulation and sustainability evaluation of biodiesel production,” Biotechnol Biofuels, vol. 14, no. 1, p. 129, Jun. 2021, doi: 10.1186/s13068-021-01977-z.
Krzysztof Ziemiński, “Methane fermentation process as anaerobic digestion of biomass: Transformations, stages and microorganisms,” Afr J Biotechnol, vol. 11, no. 18, Mar. 2012, doi: 10.5897/AJBX11.054.
E. J. Cho, L. T. P. Trinh, Y. Song, Y. G. Lee, and H.-J. Bae, “Bioconversion of biomass waste into high value chemicals,” Bioresour Technol, vol. 298, p. 122386, Feb. 2020, doi: 10.1016/j.biortech.2019.122386.
L. Rani et al., “Recent advances in the production of renewable biofuels using microalgae,” in Artificial Intelligence for Renewable Energy Systems, Elsevier, 2022, pp. 173–187. doi: 10.1016/B978-0-323-90396-7.00012-2.
L. Zhang, C. (Charles) Xu, and P. Champagne, “Overview of recent advances in thermo-chemical conversion of biomass,” Energy Convers Manag, vol. 51, no. 5, pp. 969–982, May 2010, doi: 10.1016/j.enconman.2009.11.038.
H. WIKBERG et al., “Hydrothermal refining of biomass - an overview and future perspectives,” Tappi J, vol. 14, no. 3, pp. 195–207, Apr. 2015, doi: 10.32964/TJ14.3.195.
S. Czarnecki and R.-A. Düring, “Closed-vessel miniaturised microwave-assisted EDTA extraction to determine trace metals in plant materials,” Int J Environ Anal Chem, vol. 94, no. 8, pp. 801–811, Jun. 2014, doi: 10.1080/03067319.2013.879299.
P. Srivastava and R. Malviya, “Sources of pectin, extraction and its applications in pharmaceutical industry - An overview,” Indian J Nat Prod Resour, vol. 2, no. 1, pp. 10–18, 2011.
M. F. Adams and B. Ettling, in Industrial Gums – Polysaccharides and their Derivates , 2nd ed. New York: Academic Press Inc , 1973.
J. V. Rissanen, H. Grénman, C. Xu, S. Willför, D. Y. Murzin, and T. Salmi, “Obtaining Spruce Hemicelluloses of Desired Molar Mass by using Pressurized Hot Water Extraction,” ChemSusChem, vol. 7, no. 10, pp. 2947–2953, Oct. 2014, doi: 10.1002/cssc.201402282.
V. B. Agbor, N. Cicek, R. Sparling, A. Berlin, and D. B. Levin, “Biomass pretreatment: Fundamentals toward application,” Biotechnol Adv, vol. 29, no. 6, pp. 675–685, Nov. 2011, doi: 10.1016/j.biotechadv.2011.05.005.
A. Funke and F. Ziegler, “Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering,” Biofuels, Bioproducts and Biorefining, vol. 4, no. 2, pp. 160–177, Mar. 2010, doi: 10.1002/bbb.198.
B. Hu, S.-H. Yu, K. Wang, L. Liu, and X.-W. Xu, “Functional carbonaceous materials from hydrothermal carbonization of biomass: an effective chemical process,” Dalton Transactions, no. 40, p. 5414, 2008, doi: 10.1039/b804644c.
D. C. Elliott, P. Biller, A. B. Ross, A. J. Schmidt, and S. B. Jones, “Hydrothermal liquefaction of biomass: Developments from batch to continuous process,” Bioresour Technol, vol. 178, pp. 147–156, Feb. 2015, doi: 10.1016/j.biortech.2014.09.132.
O. Boutin and J. Lédé, “Use of a Concentrated Radiation for the Determination of Cellulose Thermal Decomposition Mechanisms,” in Progress in Thermochemical Biomass Conversion, Wiley, 2001, pp. 1034–1045. doi: 10.1002/9780470694954.ch84
F. H. Isikgor and C. R. Becer, “Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers,” Polym Chem, vol. 6, no. 25, pp. 4497–4559, 2015, doi: 10.1039/C5PY00263J.
F. Cherubini and A. H. Strømman, “Chemicals from lignocellulosic biomass: opportunities, perspectives, and potential of biorefinery systems,” Biofuels, Bioproducts and Biorefining, vol. 5, no. 5, pp. 548–561, Sep. 2011, doi: 10.1002/bbb.297.
R. S. Assary, T. Kim, J. J. Low, J. Greeley, and L. A. Curtiss, “Glucose and fructose to platform chemicals: understanding the thermodynamic landscapes of acid-catalysed reactions using high-level ab initio methods,” Physical Chemistry Chemical Physics, vol. 14, no. 48, p. 16603, 2012, doi: 10.1039/c2cp41842h.
L. Li, F. Shen, R. L. Smith, and X. Qi, “Quantitative chemocatalytic production of lactic acid from glucose under anaerobic conditions at room temperature,” Green Chemistry, vol. 19, no. 1, pp. 76–81, 2017, doi: 10.1039/C6GC02443B.
P. Patakova et al., “Microbial production of butanol from food industry waste,” in Food Industry Wastes, Elsevier, 2020, pp. 163–180. doi: 10.1016/B978-0-12-817121-9.00008-5.
B. García, A. Orozco-Saumell, M. López Granados, J. Moreno, and J. Iglesias, “Catalytic Transfer Hydrogenation of Glucose to Sorbitol with Raney Ni Catalysts Using Biomass-Derived Diols as Hydrogen Donors,” ACS Sustain Chem Eng, vol. 9, no. 44, pp. 14857–14867, Nov. 2021, doi: 10.1021/acssuschemeng.1c04957.
R. Ooms et al., “Conversion of sugars to ethylene glycol with nickel tungsten carbide in a fed-batch reactor: high productivity and reaction network elucidation,” Green Chem., vol. 16, no. 2, pp. 695–707, 2014, doi: 10.1039/C3GC41431K.
W. Fan, C. Verrier, Y. Queneau, and F. Popowycz, “5-Hydroxymethylfurfural (HMF) in Organic Synthesis: A Review of its Recent Applications Towards Fine Chemicals,” Curr Org Synth, vol. 16, no. 4, pp. 583–614, Jul. 2019, doi: 10.2174/1570179416666190412164738.
B. T. Olea, I. F. Nuñez, C. G. Sancho, J. A. Cecilia, R. M. Tost, and P. M. Torres, “Production of Biofuels by 5-Hydroxymethylfurfural Etherification Using Ion-Exchange Resins as Solid Acid Catalysts,” in The 1st International Electronic Conference on Catalysis Sciences, Basel Switzerland: MDPI, Nov. 2020, p. 34. doi: 10.3390/ECCS2020-07587.
U. M. Shapla, Md. Solayman, N. Alam, Md. I. Khalil, and S. H. Gan, “5-Hydroxymethylfurfural (HMF) levels in honey and other food products: effects on bees and human health,” Chem Cent J, vol. 12, no. 1, p. 35, Dec. 2018, doi: 10.1186/s13065-018-0408-3.
A. Phanopoulos, A. J. P. White, N. J. Long, and P. W. Miller, “Catalytic Transformation of Levulinic Acid to 2-Methyltetrahydrofuran Using Ruthenium– N -Triphos Complexes,” ACS Catal, vol. 5, no. 4, pp. 2500–2512, Apr. 2015, doi: 10.1021/cs502025t.
G. C. Hayes and C. R. Becer, “Levulinic acid: a sustainable platform chemical for novel polymer architectures,” Polym Chem, vol. 11, no. 25, pp. 4068–4077, 2020, doi: 10.1039/D0PY00705F.
A. Kumar, D. Z. Shende, and K. L. Wasewar, “Production of levulinic acid: A promising building block material for pharmaceutical and food industry,” Mater Today Proc, vol. 29, pp. 790–793, 2020, doi: 10.1016/j.matpr.2020.04.749.
P. S. Nigam and A. Singh, “Production of liquid biofuels from renewable resources,” Prog Energy Combust Sci, vol. 37, no. 1, pp. 52–68, Feb. 2011, doi: 10.1016/j.pecs.2010.01.003.
D. J. Hayes, S. Fitzpatrick, M. H. B. Hayes, and J. R. H. Ross, “The Biofine Process – Production of Levulinic Acid, Furfural, and Formic Acid from Lignocellulosic Feedstocks,” in Biorefineries‐Industrial Processes and Products, Wiley, 2005, pp. 139–164. doi: 10.1002/9783527619849.ch7.
J. Liesivuori, “Formic Acid,” in Encyclopedia of Toxicology, Elsevier, 2014, pp. 659–661. doi: 10.1016/B978-0-12-386454-3.00989-1.
J. Hietala, A. Vuori, P. Johnsson, I. Pollari, W. Reutemann, and H. Kieczka, “Formic Acid,” in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley, 2016, pp. 1–22. doi: 10.1002/14356007.a12_013.pub3.
N. Vivek, M. Christopher, M. K. Kumar, E. Castro, P. Binod, and A. Pandey, “Pentose rich acid pretreated liquor as co-substrate for 1,3-propanediol production,” Renew Energy, vol. 129, pp. 794–799, Dec. 2018, doi: 10.1016/j.renene.2017.01.055.
J. Jae et al., “Depolymerization of lignocellulosic biomass to fuel precursors: maximizing carbon efficiency by combining hydrolysis with pyrolysis,” Energy Environ Sci, vol. 3, no. 3, p. 358, 2010, doi: 10.1039/b924621p.
L. T. Mika, E. Cséfalvay, and Á. Németh, “Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability,” Chem Rev, vol. 118, no. 2, pp. 505–613, Jan. 2018, doi: 10.1021/acs.chemrev.7b00395.
D. Dasgupta, S. Bandhu, D. K. Adhikari, and D. Ghosh, “Challenges and prospects of xylitol production with whole cell bio-catalysis: A review,” Microbiol Res, vol. 197, pp. 9–21, Apr. 2017, doi: 10.1016/j.micres.2016.12.012.
J. Wisniak, M. Hershkowitz, R. Leibowitz, and S. Stein, “Hydrogenation of Xylose to Xylitol,” Product R&D, vol. 13, no. 1, pp. 75–79, Mar. 1974, doi: 10.1021/i360049a015.
DATAtab Team, “Design of Experiments (DoE),” https://datatab.net/statistics-calculator/design-of-experiments.
Chemistry steps, “Determining Reaction Order Using Graphs,” https://general.chemistrysteps.com/determining-reaction-order-using-graphs/.
International Labour Organization, “Fichas Internacionales de Seguridad Química (ICSCs),” https://www.ilo.org/dyn/icsc/showcard.listcards3?p_lang=es.
AEFI, Validación de métodos analíticos. 2001.
D. V. Phuong, L. P. Tan Quoc, P. Van Tan, and L. N. Doan Duy, “Production of bioethanol from Robusta coffee pulp (Coffea robusta L.) in Vietnam,” Foods and Raw Materials, pp. 10–17, Oct. 2019, doi: 10.21603/2308-4057-2019-1-10-17.
R. Manrique, D. Vásquez, C. Ceballos, F. Chejne, and A. Amell, “Evaluation of the Energy Density for Burning Disaggregated and Pelletized Coffee Husks,” ACS Omega, vol. 4, no. 2, pp. 2957–2963, Feb. 2019, doi: 10.1021/acsomega.8b02591.
J. E. Park, G. B. Lee, C. J. Jeong, H. Kim, and C. G. Kim, “Determination of Relationship between Higher Heating Value and Atomic Ratio of Hydrogen to Carbon in Spent Coffee Grounds by Hydrothermal Carbonization,” Energies (Basel), vol. 14, no. 20, p. 6551, Oct. 2021, doi: 10.3390/en14206551.
M. Boutaieb, M. Guiza, S. Román, B. Ledesma Cano, S. Nogales, and A. Ouederni, “Hydrothermal carbonization as a preliminary step to pine cone pyrolysis for bioenergy production,” Comptes Rendus. Chimie, vol. 23, no. 11–12, pp. 607–621, Feb. 2021, doi: 10.5802/crchim.47.
USDA Natural Resources Conservation Service, “Carbon to Nitrogen Ratios in Cropping Systems,” North Carolina, 2011.
R. A. R. Frómeta, J. L. Sánchez, and J. M. R. García, “Evaluation of coffee pulp as substrate for polygalacturonase production in solid state fermentation,” Emir J Food Agric, p. 117, Mar. 2020, doi: 10.9755/ejfa.2020.v32.i2.2068.
A. Colantoni et al., “Spent coffee ground characterization, pelletization test and emissions assessment in the combustion process,” Sci Rep, vol. 11, no. 1, p. 5119, Mar. 2021, doi: 10.1038/s41598-021-84772-y.
S. Cheng, A. Huang, S. Wang, and Q. Zhang, “Effect of Different Heat Treatment Temperatures on the Chemical Composition and Structure of Chinese Fir Wood,” Bioresources, vol. 11, no. 2, Mar. 2016, doi: 10.15376/biores.11.2.4006-4016.
D. A. Granados, R. A. Ruiz, L. Y. Vega, and F. Chejne, “Study of reactivity reduction in sugarcane bagasse as consequence of a torrefaction process,” Energy, vol. 139, pp. 818–827, Nov. 2017, doi: 10.1016/j.energy.2017.08.013.
J. M. Rodríguez-Díaz, J. O. P. García, L. R. B. Sánchez, M. G. C. da Silva, V. L. da Silva, and L. E. Arteaga-Pérez, “Comprehensive Characterization of Sugarcane Bagasse Ash for Its Use as an Adsorbent,” Bioenergy Res, vol. 8, no. 4, pp. 1885–1895, Dec. 2015, doi: 10.1007/s12155-015-9646-6.
A. A. Shah et al., “The Role of Catalysts in Biomass Hydrothermal Liquefaction and Biocrude Upgrading,” Processes, vol. 10, no. 2, p. 207, Jan. 2022, doi: 10.3390/pr10020207.
W. Yang, X. Li, S. Liu, and L. Feng, “Direct hydrothermal liquefaction of undried macroalgae Enteromorpha prolifera using acid catalysts,” Energy Convers Manag, vol. 87, pp. 938–945, Nov. 2014, doi: 10.1016/j.enconman.2014.08.004.
R. Kaur, B. Biswas, J. Kumar, M. K. Jha, and T. Bhaskar, “Catalytic hydrothermal liquefaction of castor residue to bio-oil: Effect of alkali catalysts and optimization study,” Ind Crops Prod, vol. 149, p. 112359, Jul. 2020, doi: 10.1016/j.indcrop.2020.112359.
S. Yin and Z. Tan, “Hydrothermal liquefaction of cellulose to bio-oil under acidic, neutral and alkaline conditions,” Appl Energy, vol. 92, pp. 234–239, Apr. 2012, doi: 10.1016/j.apenergy.2011.10.041.
S. Liu, K. Wang, H. Yu, B. Li, and S. Yu, “Catalytic preparation of levulinic acid from cellobiose via Brønsted-Lewis acidic ionic liquids functional catalysts,” Sci Rep, vol. 9, no. 1, p. 1810, Feb. 2019, doi: 10.1038/s41598-018-38051-y.
W. L. Marshall and E. U. Franck, “Ion product of water substance, 0–1000 °C, 1–10,000 bars New International Formulation and its background,” J Phys Chem Ref Data, vol. 10, no. 2, pp. 295–304, Apr. 1981, doi: 10.1063/1.555643.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvii, 133 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85816/2/1032500315_2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/85816/3/license.txt
bitstream.checksum.fl_str_mv beb9ccaf376cd85751766ff3e026b753
eb34b1cf90b7e1103fc9dfd26be24b4a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886633488777216
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Guerrero Fajardo, Carlos Alberto8158c2ed082a222d8fcff4117ee21159Lozano Pérez, Alejandra Sophiaf7bb95c788acea6b8c65d4ea36908543Aprovechamiento Energético de Recursos NaturalesLozano Pérez, Alejandra Sophia [0000000244691312]LOZANO PÉREZ, ALEJANDRA SOPHIA [0001922132]2024-03-19T15:12:11Z2024-03-19T15:12:11Z2024https://repositorio.unal.edu.co/handle/unal/85816Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, diagramasColombia es el principal productor mundial de café arábica lavado suave y produce 12,6 millones de sacos de café verde, pero al mismo tiempo se vierten en campo abierto 784 000 toneladas de biomasa residual, de las cuales sólo el 5% se valoriza o utiliza. El objetivo de este proyecto fue evaluar la obtención de productos químicos plataforma a partir de dichos residuos de café. Para lograr esto, se realizó la caracterización de la biomasa implementando el análisis próximo, análisis último y análisis estructural. Se hizo la valorización hidrotermal en rangos de temperatura de 120-180 ºC (LHW) y 180-260 ºC (HTC) a una hora, cuantificando los productos químicos plataforma obtenidos por HPLC-IR, haciendo su seguimiento por pH, conductividad, y caracterizando la fracción sólida por seguimientos en espectroscopía IR y análisis elemental. Se obtuvieron procesos de hidrólisis a partir de 150 ºC, producción de químicos plataforma a partir de 180 ºC y degradación a partir de 240 ºC. De la misma manera se analizó y describió la cinética de la hidrólisis de las estructuras lignocelulósicas a azúcares a 180 ºC (LHW) y 200 ºC (HTC), se obtuvieron órdenes de reacción de 1 y 3 respectivamente, aspecto que fue corroborado por HPLC-MS. Se evaluó la incidencia de catalizadores homogéneos ácidos y básicos en el proceso y la eficiencia y selectividad de estos, deduciendo una alta selectividad con CH3COOH, una alta eficiencia con H2SO4, y el uso de catalizadores básicos para la obtención de ácido fórmico y biochar. Finalmente, se evaluó el rendimiento de azúcares, ácido fórmico, ácido levulínico, HMF y furfural para finalmente reportar las condiciones óptimas para la obtención de estos a partir de residuos de cerezas de café. (Texto tomado de la fuente)Colombia is the world's leading producer of mild washed Arabica coffee and produces 12.6 million bags of green coffee, but at the same time 784,000 tons of residual biomass are dumped in open fields, of which only 5% is valorized or used. The objective of this project was to evaluate the production of platform chemicals from said coffee wastes. To achieve this, biomass characterization was carried out using proximate analysis, ultimate analysis and structural analysis. Hydrothermal valorization was carried out in temperature ranges of 120-180 ºC (LHW) and 180-260 ºC (HTC) at one hour, quantifying the platform chemicals obtained by HPLC-IR, monitoring them by pH, conductivity, and characterizing the solid fraction by IR spectroscopy and elemental analysis. Hydrolysis processes were obtained from 150 ºC onwards, production of platform chemicals from 180 ºC onwards and degradation from 240 ºC onwards. The kinetics of the hydrolysis of lignocellulosic structures to sugars at 180 ºC (LHW) and 200 ºC (HTC) were also analyzed and described. Reaction orders of 1 and 3, respectively, were obtained, which was corroborated by HPLC-MS. The incidence of acid and basic homogeneous catalysts in the process and their efficiency and selectivity were evaluated, deducing a high selectivity with CH3COOH, a high efficiency with H2SO4, and the use of basic catalysts to obtain formic acid and biochar. Finally, the yield of sugars, formic acid, levulinic acid, HMF and furfural was evaluated to finally report the optimal conditions for obtaining them from coffee cherry waste.FONDO NACIONAL DE FINANCIAMIENTO PARA LA CIENCIA, LA TECNOLOGÍA Y LA INNOVACIÓN FRANCISCO JOSÉ DE CALDASMaestríaMaster en Ciencias - QuímicaEnergía y biocombustiblesxvii, 133 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::546 - Química inorgánicaProductos QuimicosProductos quimicos de la biomasaResiduos del cafeChemicalsBiomass chemicalsCoffee wasteValorización hidrotermalResiduos de caféHTCLHWProductos Químicos plataformaCatalizadoresCinéticaBiomassHydrotermal valorizationCoffee WasteHydrotermal carbonizationLiquid Hot WaterKineticsBiorrefinería hidrotermal para la obtención de productos químicos plataforma, a partir de residuos agroindustriales de café: escala laboratorioHydrothermal biorefinery for the production of platform chemicals from agro-industrial coffee waste: laboratory scaleTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMEnvironmental and Energy Study Institute, “Fossil Fuels,” https://www.eesi.org/topics/fossil-fuels/description.United Nations, “Causes and Effects of Climate Change,” https://www.un.org/en/climatechange/science/causes-effects-climate-change.United Nations Climate Change, “Key aspects of the Paris Agreement,” https://unfccc.int/most-requested/key-aspects-of-the-paris agreement#:~:text=The%20Paris%20Agreement’s%20central%20aim,further%20to%201.5%20degrees%20Celsius.Z. Anwar, M. Gulfraz, and M. Irshad, “Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review,” J Radiat Res Appl Sci, vol. 7, no. 2, pp. 163–173, Apr. 2014, doi: 10.1016/j.jrras.2014.02.003.M. Mujtaba et al., “Lignocellulosic biomass from agricultural waste to the circular economy: a review with focus on biofuels, biocomposites and bioplastics,” J Clean Prod, vol. 402, p. 136815, May 2023, doi: 10.1016/j.jclepro.2023.136815.S. Nanda, J. A. Kozinski, and A. K. Dalai, “Lignocellulosic Biomass: A Review of Conversion Technologies and Fuel Products,” Current Biochemical Engineering, vol. 3, no. 1, pp. 24–36, Nov. 2015, doi: 10.2174/2213385203666150219232000.M. V. Rodionova et al., “A comprehensive review on lignocellulosic biomass biorefinery for sustainable biofuel production,” Int J Hydrogen Energy, vol. 47, no. 3, pp. 1481–1498, Jan. 2022, doi: 10.1016/j.ijhydene.2021.10.122.U.S Energy Information Administration, “Country Analysis Executive Summary: Colombia,” 2022.J. A. Serna-Jiménez, L. S. Torres-Valenzuela, K. Martínez Cortínez, and M. C. Hernández Sandoval, “Aprovechamiento de la pulpa de café como alternativa de valorización de subproductos.,” Revista ION, vol. 31, no. 1, pp. 37–42, Nov. 2018, doi: 10.18273/revion.v31n1-2018006.International Coffee Organization, “COFFEE REPORT AND OUTLOOK (CRO) APRIL 2023,” 2023.P. Navarro, “Volume of coffee production in Colombia from marketing year 2015/16 to 2023/24.”Café de Colombia, “REGIONES CAFETERAS,” https://www.cafedecolombia.com/particulares/regiones-cafeteras/.O. L. Ocampo Lopez and L. M. Alvarez-Herrera, “Tendencia de la producción y el consumo del café en Colombia,” Apuntes del Cenes, vol. 36, no. 64, pp. 139–165, Jun. 2017, doi: 10.19053/01203053.v36.n64.2017.5419.LatinA International Commerce, “Regiones Cafeteras en Colombia,” https://latinaintrade.com/es/regiones-cafeteras-en-colombia/.A. Iriondo-DeHond, M. Iriondo-DeHond, and M. D. del Castillo, “Applications of Compounds from Coffee Processing By-Products,” Biomolecules, vol. 10, no. 9, p. 1219, Aug. 2020, doi: 10.3390/biom10091219.M. Rebollo-Hernanz et al., “Biorefinery and Stepwise Strategies for Valorizing Coffee By-Products as Bioactive Food Ingredients and Nutraceuticals,” Applied Sciences, vol. 13, no. 14, p. 8326, Jul. 2023, doi: 10.3390/app13148326.S. I. Mussatto, E. M. S. Machado, S. Martins, and J. A. Teixeira, “Production, Composition, and Application of Coffee and Its Industrial Residues,” Food Bioproc Tech, vol. 4, no. 5, pp. 661–672, Jul. 2011, doi: 10.1007/s11947-011-0565-z.R. C. Alves, F. Rodrigues, M. Antónia Nunes, A. F. Vinha, and M. B. P. P. Oliveira, “State of the art in coffee processing by-products,” in Handbook of Coffee Processing By-Products, Elsevier, 2017, pp. 1–26. doi: 10.1016/B978-0-12-811290-8.00001-3.P. S. Murthy and M. Madhava Naidu, “Sustainable management of coffee industry by-products and value addition—A review,” Resour Conserv Recycl, vol. 66, pp. 45–58, Sep. 2012, doi: 10.1016/j.resconrec.2012.06.005.International Coffee Organization, “Total production by all exporting countries,” 2020.B. M. Gouvea, C. Torres, A. S. Franca, L. S. Oliveira, and E. S. Oliveira, “Feasibility of ethanol production from coffee husks,” Biotechnol Lett, vol. 31, no. 9, pp. 1315–1319, Sep. 2009, doi: 10.1007/s10529-009-0023-4.A. de C. Souza, “A importância do café para São Tomé e Príncipe frente à proibição do comércio de escravizados pela Inglaterra,” Afro-Ásia, no. 63, Jun. 2021, doi: 10.9771/aa.v0i63.38370.V. A. Mirón-Mérida, J. Yáñez-Fernández, B. Montañez-Barragán, and B. E. Barragán Huerta, “Valorization of coffee parchment waste (Coffea arabica) as a source of caffeine and phenolic compounds in antifungal gellan gum films,” LWT, vol. 101, pp. 167–174, Mar. 2019, doi: 10.1016/j.lwt.2018.11.013.T. Klingel, J. I. Kremer, V. Gottstein, T. Rajcic de Rezende, S. Schwarz, and D. W. Lachenmeier, “A Review of Coffee By-Products Including Leaf, Flower, Cherry, Husk, Silver Skin, and Spent Grounds as Novel Foods within the European Union,” Foods, vol. 9, no. 5, p. 665, May 2020, doi: 10.3390/foods9050665.Y. Narita and K. Inouye, “Review on utilization and composition of coffee silverskin,” Food Research International, vol. 61, pp. 16–22, Jul. 2014, doi: 10.1016/j.foodres.2014.01.023.A. S. G. Costa et al., “Optimization of antioxidants extraction from coffee silverskin, a roasting by-product, having in view a sustainable process,” Ind Crops Prod, vol. 53, pp. 350–357, Feb. 2014, doi: 10.1016/j.indcrop.2014.01.006.M. A. Amran et al., “Value-Added Metabolites from Agricultural Waste and Application of Green Extraction Techniques,” Sustainability, vol. 13, no. 20, p. 11432, Oct. 2021, doi: 10.3390/su132011432.M. Martuscelli, L. Esposito, C. Di Mattia, A. Ricci, and D. Mastrocola, “Characterization of Coffee Silver Skin as Potential Food-Safe Ingredient,” Foods, vol. 10, no. 6, p. 1367, Jun. 2021, doi: 10.3390/foods10061367.M. C. Echeverria and M. Nuti, “Valorisation of the Residues of Coffee Agro-industry: Perspectives and Limitations,” The Open Waste Management Journal, vol. 10, no. 1, pp. 13–22, Jan. 2017, doi: 10.2174/1876400201710010013.National Geographic Society, “Biomass Energy,” https://education.nationalgeographic.org/resource/biomass-energy/.J. Moncada, J. A. Tamayo, and C. A. Cardona, “Integrating first, second, and third generation biorefineries: Incorporating microalgae into the sugarcane biorefinery,” Chem Eng Sci, vol. 118, pp. 126–140, Oct. 2014, doi: 10.1016/j.ces.2014.07.035.T. Kalak, “Potential Use of Industrial Biomass Waste as a Sustainable Energy Source in the Future,” Energies (Basel), vol. 16, no. 4, p. 1783, Feb. 2023, doi: 10.3390/en16041783.M. Pande and A. N. Bhaskarwar, “Biomass Conversion to Energy,” in Biomass Conversion, Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 1–90. doi: 10.1007/978-3-642-28418-2_1.G. Zeng et al., “Pretreatment technology of lignocellulose,” E3S Web of Conferences, vol. 271, p. 04010, Jun. 2021, doi: 10.1051/e3sconf/202127104010.M. Gavrilescu, “Biorefinery Systems,” in Bioenergy Research: Advances and Applications, Elsevier, 2014, pp. 219–241. doi: 10.1016/B978-0-444-59561-4.00014-0.H. K. Sharma, C. Xu, and W. Qin, “Biological Pretreatment of Lignocellulosic Biomass for Biofuels and Bioproducts: An Overview,” Waste Biomass Valorization, vol. 10, no. 2, pp. 235–251, Feb. 2019, doi: 10.1007/s12649-017-0059-y.P. McKendry, “Energy production from biomass (part 1): overview of biomass,” Bioresour Technol, vol. 83, no. 1, pp. 37–46, May 2002, doi: 10.1016/S0960-8524(01)00118-3.C. G. Yoo et al., “Insights of biomass recalcitrance in natural Populus trichocarpa variants for biomass conversion,” Green Chemistry, vol. 19, no. 22, pp. 5467–5478, 2017, doi: 10.1039/C7GC02219K.A. K. Chandel, V. K. Garlapati, A. K. Singh, F. A. F. Antunes, and S. S. da Silva, “The path forward for lignocellulose biorefineries: Bottlenecks, solutions, and perspective on commercialization,” Bioresour Technol, vol. 264, pp. 370–381, Sep. 2018, doi: 10.1016/j.biortech.2018.06.004.A. K. Chandel, V. K. Garlapati, A. K. Singh, F. A. F. Antunes, and S. S. da Silva, “The path forward for lignocellulose biorefineries: Bottlenecks, solutions, and perspective on commercialization,” Bioresour Technol, vol. 264, pp. 370–381, Sep. 2018, doi: 10.1016/j.biortech.2018.06.004.J. Kruyeniski, P. J. T. Ferreira, M. da G. Videira Sousa Carvalho, M. E. Vallejos, F. E. Felissia, and M. C. Area, “Physical and chemical characteristics of pretreated slash pine sawdust influence its enzymatic hydrolysis,” Ind Crops Prod, vol. 130, pp. 528–536, Apr. 2019, doi: 10.1016/j.indcrop.2018.12.075.A. J. Ragauskas et al., “Lignin Valorization: Improving Lignin Processing in the Biorefinery,” Science (1979), vol. 344, no. 6185, May 2014, doi: 10.1126/science.1246843.N. Giummarella, Y. Pu, A. J. Ragauskas, and M. Lawoko, “A critical review on the analysis of lignin carbohydrate bonds,” Green Chemistry, vol. 21, no. 7, pp. 1573–1595, 2019, doi: 10.1039/C8GC03606C.H. V. Lee, S. B. A. Hamid, and S. K. Zain, “Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process,” The Scientific World Journal, vol. 2014, pp. 1–20, 2014, doi: 10.1155/2014/631013.H. V. Lee, S. B. A. Hamid, and S. K. Zain, “Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process,” The Scientific World Journal, vol. 2014, pp. 1–20, 2014, doi: 10.1155/2014/631013.S. Kim, “Evaluation of Alkali-Pretreated Soybean Straw for Lignocellulosic Bioethanol Production,” Int J Polym Sci, vol. 2018, pp. 1–7, 2018, doi: 10.1155/2018/5241748.A. Kumar, A. Gautam, and D. Dutt, “Biotechnological Transformation of Lignocellulosic Biomass in to Industrial Products: An Overview,” Advances in Bioscience and Biotechnology, vol. 07, no. 03, pp. 149–168, 2016, doi: 10.4236/abb.2016.73014.C. Sánchez, “Lignocellulosic residues: Biodegradation and bioconversion by fungi,” Biotechnol Adv, vol. 27, no. 2, pp. 185–194, Mar. 2009, doi: 10.1016/j.biotechadv.2008.11.001.A. P. de Souza, A. Grandis, D. C. C. Leite, and M. S. Buckeridge, “Sugarcane as a Bioenergy Source: History, Performance, and Perspectives for Second-Generation Bioethanol,” Bioenergy Res, vol. 7, no. 1, pp. 24–35, Mar. 2014, doi: 10.1007/s12155-013-9366-8.T. Happi Emaga, C. Robert, S. N. Ronkart, B. Wathelet, and M. Paquot, “Dietary fibre components and pectin chemical features of peels during ripening in banana and plantain varieties,” Bioresour Technol, vol. 99, no. 10, pp. 4346–4354, Jul. 2008, doi: 10.1016/j.biortech.2007.08.030.H. Rabemanolontsoa and S. Saka, “Comparative study on chemical composition of various biomass species,” RSC Adv, vol. 3, no. 12, p. 3946, 2013, doi: 10.1039/c3ra22958k.H. Rabemanolontsoa and S. Saka, “Comparative study on chemical composition of various biomass species,” RSC Adv, vol. 3, no. 12, p. 3946, 2013, doi: 10.1039/c3ra22958k.M. Boluda-Aguilar, L. García-Vidal, F. del P. González-Castañeda, and A. López-Gómez, “Mandarin peel wastes pretreatment with steam explosion for bioethanol production,” Bioresour Technol, vol. 101, no. 10, pp. 3506–3513, May 2010, doi: 10.1016/j.biortech.2009.12.063.C. Di Blasi, C. Branca, and A. Galgano, “Biomass Screening for the Production of Furfural via Thermal Decomposition,” Ind Eng Chem Res, vol. 49, no. 6, pp. 2658–2671, Mar. 2010, doi: 10.1021/ie901731u.D. Jose, N. Kitiborwornkul, M. Sriariyanun, and K. Keerthi, “A Review on Chemical Pretreatment Methods of Lignocellulosic Biomass: Recent Advances and Progress,” Applied Science and Engineering Progress, Aug. 2022, doi: 10.14416/j.asep.2022.08.001.J. Vasco-Correa, X. Ge, and Y. Li, “Biological Pretreatment of Lignocellulosic Biomass,” in Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery, Elsevier, 2016, pp. 561–585. doi: 10.1016/B978-0-12-802323-5.00024-4.M. Jędrzejczyk, E. Soszka, M. Czapnik, A. M. Ruppert, and J. Grams, “Physical and chemical pretreatment of lignocellulosic biomass,” in Second and Third Generation of Feedstocks, Elsevier, 2019, pp. 143–196. doi: 10.1016/B978-0-12-815162-4.00006-9.F. R. Amin et al., “Pretreatment methods of lignocellulosic biomass for anaerobic digestion,” AMB Express, vol. 7, no. 1, p. 72, Dec. 2017, doi: 10.1186/s13568-017-0375-4.Y. Sun and J. Cheng, “Hydrolysis of lignocellulosic materials for ethanol production: a review,” Bioresour Technol, vol. 83, no. 1, pp. 1–11, May 2002, doi: 10.1016/S0960-8524(01)00212-7.M. Kumar, Y. Sun, R. Rathour, A. Pandey, I. S. Thakur, and D. C. W. Tsang, “Algae as potential feedstock for the production of biofuels and value-added products: Opportunities and challenges,” Science of The Total Environment, vol. 716, p. 137116, May 2020, doi: 10.1016/j.scitotenv.2020.137116.Barranco Cristian, J. Ortega, J. Mendoza, and Gonzalez Yahir, “Elaboración de biocombustibles sólidos densificados a partir de tusa de maíz, bioaglomerante de yuca y carbón mineral del departamento de Córdoba,” Revista chilena de ingeniería, vol. 25, no. 4, 2017.M. K. Pasha, L. Dai, D. Liu, M. Guo, and W. Du, “An overview to process design, simulation and sustainability evaluation of biodiesel production,” Biotechnol Biofuels, vol. 14, no. 1, p. 129, Jun. 2021, doi: 10.1186/s13068-021-01977-z.Krzysztof Ziemiński, “Methane fermentation process as anaerobic digestion of biomass: Transformations, stages and microorganisms,” Afr J Biotechnol, vol. 11, no. 18, Mar. 2012, doi: 10.5897/AJBX11.054.E. J. Cho, L. T. P. Trinh, Y. Song, Y. G. Lee, and H.-J. Bae, “Bioconversion of biomass waste into high value chemicals,” Bioresour Technol, vol. 298, p. 122386, Feb. 2020, doi: 10.1016/j.biortech.2019.122386.L. Rani et al., “Recent advances in the production of renewable biofuels using microalgae,” in Artificial Intelligence for Renewable Energy Systems, Elsevier, 2022, pp. 173–187. doi: 10.1016/B978-0-323-90396-7.00012-2.L. Zhang, C. (Charles) Xu, and P. Champagne, “Overview of recent advances in thermo-chemical conversion of biomass,” Energy Convers Manag, vol. 51, no. 5, pp. 969–982, May 2010, doi: 10.1016/j.enconman.2009.11.038.H. WIKBERG et al., “Hydrothermal refining of biomass - an overview and future perspectives,” Tappi J, vol. 14, no. 3, pp. 195–207, Apr. 2015, doi: 10.32964/TJ14.3.195.S. Czarnecki and R.-A. Düring, “Closed-vessel miniaturised microwave-assisted EDTA extraction to determine trace metals in plant materials,” Int J Environ Anal Chem, vol. 94, no. 8, pp. 801–811, Jun. 2014, doi: 10.1080/03067319.2013.879299.P. Srivastava and R. Malviya, “Sources of pectin, extraction and its applications in pharmaceutical industry - An overview,” Indian J Nat Prod Resour, vol. 2, no. 1, pp. 10–18, 2011.M. F. Adams and B. Ettling, in Industrial Gums – Polysaccharides and their Derivates , 2nd ed. New York: Academic Press Inc , 1973.J. V. Rissanen, H. Grénman, C. Xu, S. Willför, D. Y. Murzin, and T. Salmi, “Obtaining Spruce Hemicelluloses of Desired Molar Mass by using Pressurized Hot Water Extraction,” ChemSusChem, vol. 7, no. 10, pp. 2947–2953, Oct. 2014, doi: 10.1002/cssc.201402282.V. B. Agbor, N. Cicek, R. Sparling, A. Berlin, and D. B. Levin, “Biomass pretreatment: Fundamentals toward application,” Biotechnol Adv, vol. 29, no. 6, pp. 675–685, Nov. 2011, doi: 10.1016/j.biotechadv.2011.05.005.A. Funke and F. Ziegler, “Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering,” Biofuels, Bioproducts and Biorefining, vol. 4, no. 2, pp. 160–177, Mar. 2010, doi: 10.1002/bbb.198.B. Hu, S.-H. Yu, K. Wang, L. Liu, and X.-W. Xu, “Functional carbonaceous materials from hydrothermal carbonization of biomass: an effective chemical process,” Dalton Transactions, no. 40, p. 5414, 2008, doi: 10.1039/b804644c.D. C. Elliott, P. Biller, A. B. Ross, A. J. Schmidt, and S. B. Jones, “Hydrothermal liquefaction of biomass: Developments from batch to continuous process,” Bioresour Technol, vol. 178, pp. 147–156, Feb. 2015, doi: 10.1016/j.biortech.2014.09.132.O. Boutin and J. Lédé, “Use of a Concentrated Radiation for the Determination of Cellulose Thermal Decomposition Mechanisms,” in Progress in Thermochemical Biomass Conversion, Wiley, 2001, pp. 1034–1045. doi: 10.1002/9780470694954.ch84F. H. Isikgor and C. R. Becer, “Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers,” Polym Chem, vol. 6, no. 25, pp. 4497–4559, 2015, doi: 10.1039/C5PY00263J.F. Cherubini and A. H. Strømman, “Chemicals from lignocellulosic biomass: opportunities, perspectives, and potential of biorefinery systems,” Biofuels, Bioproducts and Biorefining, vol. 5, no. 5, pp. 548–561, Sep. 2011, doi: 10.1002/bbb.297.R. S. Assary, T. Kim, J. J. Low, J. Greeley, and L. A. Curtiss, “Glucose and fructose to platform chemicals: understanding the thermodynamic landscapes of acid-catalysed reactions using high-level ab initio methods,” Physical Chemistry Chemical Physics, vol. 14, no. 48, p. 16603, 2012, doi: 10.1039/c2cp41842h.L. Li, F. Shen, R. L. Smith, and X. Qi, “Quantitative chemocatalytic production of lactic acid from glucose under anaerobic conditions at room temperature,” Green Chemistry, vol. 19, no. 1, pp. 76–81, 2017, doi: 10.1039/C6GC02443B.P. Patakova et al., “Microbial production of butanol from food industry waste,” in Food Industry Wastes, Elsevier, 2020, pp. 163–180. doi: 10.1016/B978-0-12-817121-9.00008-5.B. García, A. Orozco-Saumell, M. López Granados, J. Moreno, and J. Iglesias, “Catalytic Transfer Hydrogenation of Glucose to Sorbitol with Raney Ni Catalysts Using Biomass-Derived Diols as Hydrogen Donors,” ACS Sustain Chem Eng, vol. 9, no. 44, pp. 14857–14867, Nov. 2021, doi: 10.1021/acssuschemeng.1c04957.R. Ooms et al., “Conversion of sugars to ethylene glycol with nickel tungsten carbide in a fed-batch reactor: high productivity and reaction network elucidation,” Green Chem., vol. 16, no. 2, pp. 695–707, 2014, doi: 10.1039/C3GC41431K.W. Fan, C. Verrier, Y. Queneau, and F. Popowycz, “5-Hydroxymethylfurfural (HMF) in Organic Synthesis: A Review of its Recent Applications Towards Fine Chemicals,” Curr Org Synth, vol. 16, no. 4, pp. 583–614, Jul. 2019, doi: 10.2174/1570179416666190412164738.B. T. Olea, I. F. Nuñez, C. G. Sancho, J. A. Cecilia, R. M. Tost, and P. M. Torres, “Production of Biofuels by 5-Hydroxymethylfurfural Etherification Using Ion-Exchange Resins as Solid Acid Catalysts,” in The 1st International Electronic Conference on Catalysis Sciences, Basel Switzerland: MDPI, Nov. 2020, p. 34. doi: 10.3390/ECCS2020-07587.U. M. Shapla, Md. Solayman, N. Alam, Md. I. Khalil, and S. H. Gan, “5-Hydroxymethylfurfural (HMF) levels in honey and other food products: effects on bees and human health,” Chem Cent J, vol. 12, no. 1, p. 35, Dec. 2018, doi: 10.1186/s13065-018-0408-3.A. Phanopoulos, A. J. P. White, N. J. Long, and P. W. Miller, “Catalytic Transformation of Levulinic Acid to 2-Methyltetrahydrofuran Using Ruthenium– N -Triphos Complexes,” ACS Catal, vol. 5, no. 4, pp. 2500–2512, Apr. 2015, doi: 10.1021/cs502025t.G. C. Hayes and C. R. Becer, “Levulinic acid: a sustainable platform chemical for novel polymer architectures,” Polym Chem, vol. 11, no. 25, pp. 4068–4077, 2020, doi: 10.1039/D0PY00705F.A. Kumar, D. Z. Shende, and K. L. Wasewar, “Production of levulinic acid: A promising building block material for pharmaceutical and food industry,” Mater Today Proc, vol. 29, pp. 790–793, 2020, doi: 10.1016/j.matpr.2020.04.749.P. S. Nigam and A. Singh, “Production of liquid biofuels from renewable resources,” Prog Energy Combust Sci, vol. 37, no. 1, pp. 52–68, Feb. 2011, doi: 10.1016/j.pecs.2010.01.003.D. J. Hayes, S. Fitzpatrick, M. H. B. Hayes, and J. R. H. Ross, “The Biofine Process – Production of Levulinic Acid, Furfural, and Formic Acid from Lignocellulosic Feedstocks,” in Biorefineries‐Industrial Processes and Products, Wiley, 2005, pp. 139–164. doi: 10.1002/9783527619849.ch7.J. Liesivuori, “Formic Acid,” in Encyclopedia of Toxicology, Elsevier, 2014, pp. 659–661. doi: 10.1016/B978-0-12-386454-3.00989-1.J. Hietala, A. Vuori, P. Johnsson, I. Pollari, W. Reutemann, and H. Kieczka, “Formic Acid,” in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley, 2016, pp. 1–22. doi: 10.1002/14356007.a12_013.pub3.N. Vivek, M. Christopher, M. K. Kumar, E. Castro, P. Binod, and A. Pandey, “Pentose rich acid pretreated liquor as co-substrate for 1,3-propanediol production,” Renew Energy, vol. 129, pp. 794–799, Dec. 2018, doi: 10.1016/j.renene.2017.01.055.J. Jae et al., “Depolymerization of lignocellulosic biomass to fuel precursors: maximizing carbon efficiency by combining hydrolysis with pyrolysis,” Energy Environ Sci, vol. 3, no. 3, p. 358, 2010, doi: 10.1039/b924621p.L. T. Mika, E. Cséfalvay, and Á. Németh, “Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability,” Chem Rev, vol. 118, no. 2, pp. 505–613, Jan. 2018, doi: 10.1021/acs.chemrev.7b00395.D. Dasgupta, S. Bandhu, D. K. Adhikari, and D. Ghosh, “Challenges and prospects of xylitol production with whole cell bio-catalysis: A review,” Microbiol Res, vol. 197, pp. 9–21, Apr. 2017, doi: 10.1016/j.micres.2016.12.012.J. Wisniak, M. Hershkowitz, R. Leibowitz, and S. Stein, “Hydrogenation of Xylose to Xylitol,” Product R&D, vol. 13, no. 1, pp. 75–79, Mar. 1974, doi: 10.1021/i360049a015.DATAtab Team, “Design of Experiments (DoE),” https://datatab.net/statistics-calculator/design-of-experiments.Chemistry steps, “Determining Reaction Order Using Graphs,” https://general.chemistrysteps.com/determining-reaction-order-using-graphs/.International Labour Organization, “Fichas Internacionales de Seguridad Química (ICSCs),” https://www.ilo.org/dyn/icsc/showcard.listcards3?p_lang=es.AEFI, Validación de métodos analíticos. 2001.D. V. Phuong, L. P. Tan Quoc, P. Van Tan, and L. N. Doan Duy, “Production of bioethanol from Robusta coffee pulp (Coffea robusta L.) in Vietnam,” Foods and Raw Materials, pp. 10–17, Oct. 2019, doi: 10.21603/2308-4057-2019-1-10-17.R. Manrique, D. Vásquez, C. Ceballos, F. Chejne, and A. Amell, “Evaluation of the Energy Density for Burning Disaggregated and Pelletized Coffee Husks,” ACS Omega, vol. 4, no. 2, pp. 2957–2963, Feb. 2019, doi: 10.1021/acsomega.8b02591.J. E. Park, G. B. Lee, C. J. Jeong, H. Kim, and C. G. Kim, “Determination of Relationship between Higher Heating Value and Atomic Ratio of Hydrogen to Carbon in Spent Coffee Grounds by Hydrothermal Carbonization,” Energies (Basel), vol. 14, no. 20, p. 6551, Oct. 2021, doi: 10.3390/en14206551.M. Boutaieb, M. Guiza, S. Román, B. Ledesma Cano, S. Nogales, and A. Ouederni, “Hydrothermal carbonization as a preliminary step to pine cone pyrolysis for bioenergy production,” Comptes Rendus. Chimie, vol. 23, no. 11–12, pp. 607–621, Feb. 2021, doi: 10.5802/crchim.47.USDA Natural Resources Conservation Service, “Carbon to Nitrogen Ratios in Cropping Systems,” North Carolina, 2011.R. A. R. Frómeta, J. L. Sánchez, and J. M. R. García, “Evaluation of coffee pulp as substrate for polygalacturonase production in solid state fermentation,” Emir J Food Agric, p. 117, Mar. 2020, doi: 10.9755/ejfa.2020.v32.i2.2068.A. Colantoni et al., “Spent coffee ground characterization, pelletization test and emissions assessment in the combustion process,” Sci Rep, vol. 11, no. 1, p. 5119, Mar. 2021, doi: 10.1038/s41598-021-84772-y.S. Cheng, A. Huang, S. Wang, and Q. Zhang, “Effect of Different Heat Treatment Temperatures on the Chemical Composition and Structure of Chinese Fir Wood,” Bioresources, vol. 11, no. 2, Mar. 2016, doi: 10.15376/biores.11.2.4006-4016.D. A. Granados, R. A. Ruiz, L. Y. Vega, and F. Chejne, “Study of reactivity reduction in sugarcane bagasse as consequence of a torrefaction process,” Energy, vol. 139, pp. 818–827, Nov. 2017, doi: 10.1016/j.energy.2017.08.013.J. M. Rodríguez-Díaz, J. O. P. García, L. R. B. Sánchez, M. G. C. da Silva, V. L. da Silva, and L. E. Arteaga-Pérez, “Comprehensive Characterization of Sugarcane Bagasse Ash for Its Use as an Adsorbent,” Bioenergy Res, vol. 8, no. 4, pp. 1885–1895, Dec. 2015, doi: 10.1007/s12155-015-9646-6.A. A. Shah et al., “The Role of Catalysts in Biomass Hydrothermal Liquefaction and Biocrude Upgrading,” Processes, vol. 10, no. 2, p. 207, Jan. 2022, doi: 10.3390/pr10020207.W. Yang, X. Li, S. Liu, and L. Feng, “Direct hydrothermal liquefaction of undried macroalgae Enteromorpha prolifera using acid catalysts,” Energy Convers Manag, vol. 87, pp. 938–945, Nov. 2014, doi: 10.1016/j.enconman.2014.08.004.R. Kaur, B. Biswas, J. Kumar, M. K. Jha, and T. Bhaskar, “Catalytic hydrothermal liquefaction of castor residue to bio-oil: Effect of alkali catalysts and optimization study,” Ind Crops Prod, vol. 149, p. 112359, Jul. 2020, doi: 10.1016/j.indcrop.2020.112359.S. Yin and Z. Tan, “Hydrothermal liquefaction of cellulose to bio-oil under acidic, neutral and alkaline conditions,” Appl Energy, vol. 92, pp. 234–239, Apr. 2012, doi: 10.1016/j.apenergy.2011.10.041.S. Liu, K. Wang, H. Yu, B. Li, and S. Yu, “Catalytic preparation of levulinic acid from cellobiose via Brønsted-Lewis acidic ionic liquids functional catalysts,” Sci Rep, vol. 9, no. 1, p. 1810, Feb. 2019, doi: 10.1038/s41598-018-38051-y.W. L. Marshall and E. U. Franck, “Ion product of water substance, 0–1000 °C, 1–10,000 bars New International Formulation and its background,” J Phys Chem Ref Data, vol. 10, no. 2, pp. 295–304, Apr. 1981, doi: 10.1063/1.555643.Implementación de una biorrefinería hidrotermal para la producción de productos químicos de alto valor agregado, mediante el uso de biomasas residuales de procesos agroindustriales, en alianza intersectorial (academia-industria) - Código 1101-914-91642.MINCIENCIASEstudiantesInvestigadoresMaestrosMedios de comunicaciónPúblico generalORIGINAL1032500315_2024.pdf1032500315_2024.pdfTesis de Maestría en Ciencias - Químicaapplication/pdf5528667https://repositorio.unal.edu.co/bitstream/unal/85816/2/1032500315_2024.pdfbeb9ccaf376cd85751766ff3e026b753MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85816/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53unal/85816oai:repositorio.unal.edu.co:unal/858162024-03-19 10:14:38.691Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=