Evaluación de métodos para incrementar la estabilidad de materiales de referencia de plaguicidas
ilustraciones, fotografías, gráficas, tablas
- Autores:
-
Morales Erazo, Laura Vanessa
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/80798
- Palabra clave:
- 540 - Química y ciencias afines
Avocado
Aguacate
Materiales de referencia
Plaguicidas
Estabilidad
Incertidumbre
Aditivos
Encapsulados
Trazabilidad metrológica
Reference material
Pesticides
Metrological traceability
Stability
Uncertainty
Additives
Encapsulates
Plaguicida
Producto fitoquímico
Pesticide
Phytochemicals
- Rights
- openAccess
- License
- Atribución-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_7abdbdf9323a9820d5a562f41541ddc3 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/80798 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluación de métodos para incrementar la estabilidad de materiales de referencia de plaguicidas |
dc.title.translated.eng.fl_str_mv |
Assessment of methods for improving the stability of pesticides reference materials |
title |
Evaluación de métodos para incrementar la estabilidad de materiales de referencia de plaguicidas |
spellingShingle |
Evaluación de métodos para incrementar la estabilidad de materiales de referencia de plaguicidas 540 - Química y ciencias afines Avocado Aguacate Materiales de referencia Plaguicidas Estabilidad Incertidumbre Aditivos Encapsulados Trazabilidad metrológica Reference material Pesticides Metrological traceability Stability Uncertainty Additives Encapsulates Plaguicida Producto fitoquímico Pesticide Phytochemicals |
title_short |
Evaluación de métodos para incrementar la estabilidad de materiales de referencia de plaguicidas |
title_full |
Evaluación de métodos para incrementar la estabilidad de materiales de referencia de plaguicidas |
title_fullStr |
Evaluación de métodos para incrementar la estabilidad de materiales de referencia de plaguicidas |
title_full_unstemmed |
Evaluación de métodos para incrementar la estabilidad de materiales de referencia de plaguicidas |
title_sort |
Evaluación de métodos para incrementar la estabilidad de materiales de referencia de plaguicidas |
dc.creator.fl_str_mv |
Morales Erazo, Laura Vanessa |
dc.contributor.advisor.spa.fl_str_mv |
Sinuco León, Diana Cristina Ahumada Forigua, Diego Alejandro |
dc.contributor.author.spa.fl_str_mv |
Morales Erazo, Laura Vanessa |
dc.contributor.financer.spa.fl_str_mv |
Instituto Nacional de Metrología de Colombia |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Metrología Química y Bioanálisis-GIMQB Grupo de Investigación en Metrología Química y LEA |
dc.subject.ddc.spa.fl_str_mv |
540 - Química y ciencias afines |
topic |
540 - Química y ciencias afines Avocado Aguacate Materiales de referencia Plaguicidas Estabilidad Incertidumbre Aditivos Encapsulados Trazabilidad metrológica Reference material Pesticides Metrological traceability Stability Uncertainty Additives Encapsulates Plaguicida Producto fitoquímico Pesticide Phytochemicals |
dc.subject.lemb.none.fl_str_mv |
Avocado Aguacate |
dc.subject.proposal.spa.fl_str_mv |
Materiales de referencia Plaguicidas Estabilidad Incertidumbre Aditivos Encapsulados Trazabilidad metrológica |
dc.subject.proposal.fra.fl_str_mv |
Reference material Pesticides |
dc.subject.proposal.eng.fl_str_mv |
Metrological traceability Stability Uncertainty Additives Encapsulates |
dc.subject.unesco.spa.fl_str_mv |
Plaguicida Producto fitoquímico |
dc.subject.unesco.eng.fl_str_mv |
Pesticide Phytochemicals |
description |
ilustraciones, fotografías, gráficas, tablas |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-12-30 |
dc.date.accessioned.none.fl_str_mv |
2022-01-11T17:31:11Z |
dc.date.available.none.fl_str_mv |
2022-01-11T17:31:11Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/80798 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/80798 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
S. A. Wise, “What is novel about certified reference materials?,” Anal. Bioanal. Chem., vol. 410, no. 8, pp. 2045–2049, 2018. Bundesanstalt für Materialforschung und -prüfung (BAM), “Certified Reference Materials COMAR Database.” [Online]. Available: https://www.comar.bam.de/home/search_applic.php. International Organization for Standarization (ISO), “ISO Guide 30:2015, Reference materials — Selected terms and definitions.” Geneva, 2015. M. del R. Arvizu Torres, E. Valle Moya, and A. Reyes del Valle, “Estudios de estabilidad en materiales de referencia ertificados en matriz acuosa empleando el método de pérdidas de transpiración,” in Simposio de Metrología, 2010, pp. 1–9. A. Lamberty, H. Schimmel, and J. Pauwels, “The study of the stability of reference materials by isochronous measurements,” Fresenius. J. Anal. Chem., vol. 360, no. 3, pp. 359–361, 1998. Federal Institute for Materials Research and Testing (BAM), “COMAR, International database for Certified Reference Materials,” 2014. . Organización de las Naciones Unidas para la Alimentación y la Agricultura and Organización Mundial de la Salud, Manual de procedimiento-Comisión del CODEX Alimentarius, 27th ed. Rome, 2019. International Organization for Standarization (ISO), “ISO GUIDE 35:2017 Reference materials — Guidance for the characterization and the assessment of the homogeneity and stability of the material.” Geneva, Switzerland, 2017. D. A. Ahumada Forigua, L. L. Soto Morales, L. V. Morales Erazo, and J. P. Abella Gamba, “Desarrollo de un material de referencia certificado para análisis elemental de agua potable,” Rev. Colomb. Química, vol. 48, no. 3 SE-, pp. 36–44, Sep. 2019. Joint Committee for Guides in Metrology, “JCGM 100:2008-Guide to the expression of uncertainty in measurement, GUM 1995, with minor modifications,” InBureau International des Poids et Mesures-BIPM, vol. 50, no. September. p. 134, 2008. T. P. J. Linsinger, J. Pauwels, A. M. H. van der Veen, H. Schimmel, and A. Lamberty, “Homogeneity and stability of reference materials,” Accredit. Qual. Assur., vol. 6, no. 1, pp. 20–25, 2001. J. W. Finley, A.-N. Kong, K. J. Hintze, E. H. Jeffery, L. L. Ji, and X. G. Lei, “Antioxidants in Foods: State of the Science Important to the Food Industry,” J. Agric. Food Chem., vol. 59, no. 13, pp. 6837–6846, Jul. 2011. F. Ibañez, P. Torre, and A. Irigoyen, “Aditivos alimentarios,” Pamplona, España, 2003. R. García-García and S. S. Searle, “Preservatives: Food Use,” B. Caballero, P. M. Finglas, and F. B. T.-E. of F. and H. Toldrá, Eds. Oxford: Academic Press, 2016, pp. 505–509 C. de la U. E. Parlamento Europeo, Reglamento (CE) n o 1333/2008 del Parlamento Europeo y del Consejo, de 16 de diciembre de 2008 , sobre aditivos alimentarios (Texto pertinente a efectos del EEE). 2008. N. J. Zuidam and E. Shimoni, “Overview of microencapsulates for use in food products or process and methods to make them,” in Encapsulation Technologies for Active Food Ingredients and Food Processing, 1st ed., N. J. Zuidam and V. Nedovic, Eds. Springer-Verlag New York, 2010, pp. 3–4. C. Wandrey, A. Bartkowiak, and S. E. Harding, “Materials for Encapsulation BT - Encapsulation Technologies for Active Food Ingredients and Food Processing,” N. J. Zuidam and V. Nedovic, Eds. New York, NY: Springer New York, 2010, pp. 31–100. J. Castro-Rosas et al., “Recent advances in microencapsulation of natural sources of antimicrobial compounds used in food - A review,” Food Res. Int., vol. 102, no. May, pp. 575–587, 2017. B. F. Gibbs, S. Kermasha, I. Alli, and C. N. Mulligan, “Encapsulation in the food industry: a review.,” Int. J. Food Sci. Nutr., vol. 50, no. 3, pp. 213–224, May 1999 Z. Fang and B. Bhandari, “Spray drying, freeze drying and related processes for food ingredient and nutraceutical encapsulation,” in Woodhead Publishing Series in Food Science, Technology and Nutrition, N. Garti and D. J. B. T.-E. T. and D. S. for F. I. and N. McClements, Eds. Woodhead Publishing, 2012, pp. 73–109. J. L. Villacrez, “Desarrollo de microencapsulados por SPRAY DRYING a partir de frutos de mora de castilla ( Rubus glaucus Benth ).,” p. 92, 2013. C. Quan, “Establishment of the purity values of carbohydrate certified reference materials using quantitative nuclear magnetic resonance and mass balance approach,” Food Chem., vol. 153, pp. 378–386, 2014. T. Saito et al., “A new traceability scheme for the development of international system-traceable persistent organic pollutant reference materials by quantitative nuclear magnetic resonance,” Accredit. Qual. Assur., vol. 14, no. 2, pp. 79–86, 2009. H. Wang, K. Ma, W. Zhang, J. Li, G. Sun, and H. Li, “Certification of the reference material of water content in water saturated 1-octanol by Karl Fischer coulometry, Karl Fischer volumetry and quantitative nuclear magnetic resonance,” Food Chem., vol. 134, no. 4, pp. 2362–2366, 2012. K. A. Lippa, D. L. Duewer, M. A. Nelson, S. R. Davies, and L. G. Mackay, “The role of the CCQM OAWG in providing SI traceable calibrators for organic chemical measurements,” Accredit. Qual. Assur., vol. 24, no. 6, pp. 407–415, 2019. S. Richter et al., “Certification of a new series of gravimetrically prepared synthetic reference materials for n(236U)/n(238U) isotope ratio measurements,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 268, no. 7, pp. 956–959, 2010. K. Ishikawa et al., “Preparation and characterization of organic calibration solutions for development of certified reference materials at the National Metrology Institute of Japan,” Accredit. Qual. Assur., vol. 13, no. 7, pp. 397–408, 2008. S. Iqbal, M. Rafique Asi, U. Hanif, M. Zuber, and S. Jinap, “The presence of aflatoxins and ochratoxin A in rice and rice products; And evaluation of dietary intake,” Food Chem., vol. 210, pp. 135–140, Nov. 2016. I. R. B. Olivares, G. B. Souza, A. R. A. Nogueira, G. T. K. Toledo, and D. C. Marcki, “Trends in developments of certified reference materials for chemical analysis - Focus on food, water, soil, and sediment matrices,” TrAC - Trends Anal. Chem., vol. 100, pp. 53–64, 2018. E. C. P. do Rego, E. de F. Guimarães, J. M. Rodrigues, R. C. Scarlato, R. I. Nogueira, and A. D. Pereira Netto, “Feasibility study for development of candidate reference material for food analysis: Chloramphenicol in milk powder,” Meas. J. Int. Meas. Confed., vol. 98, pp. 300–304, 2017. S. A. Wise et al., “Two new marine sediment standard reference materials (SRMs) for the determination of organic contaminants,” Anal. Bioanal. Chem., vol. 378, no. 5, pp. 1251–1264, 2004 S. Grimalt et al., “Development of a new cucumber reference material for pesticide residue analysis: Feasibility study for material processing, homogeneity and stability assessment,” Anal. Bioanal. Chem., vol. 407, no. 11, pp. 3083–3091, 2015. B. Sejerøe-Olsen, R. Zeleny, H. Emons, F. Ulberth, and H. Saldanha, “Feasibility study for producing a carrot/potato matrix reference material for 11 selected pesticides at EU MRL level: Material processing, homogeneity and stability assessment,” Food Chem., 2011. National Institute of Standards and technology NIST, “Standard reference material SRM2261- Chloridated pesticides in hexane,” Gaithersburg, Meryland, 2018. National Institute of Standards and technology NIST, “Standard reference material SRM2275 chlorinated pesticide solution in 2,2,24-trimethylpentane,” Gaithersburg, Meryland, 2020. Chemical Metrology & Analytical Science Division-National Institute of Metrology, “National Sharing Platform for Refernce Materials.” [Online]. Available: https://www.ncrm.org.cn/Web/MaterialEn/Components?autoID=7126&pageIndex=1. T. Otake et al., “Development of green onion and cabbage certified reference materials for quantification of organophosphorus and pyrethroid pesticides,” J. Agric. Food Chem., 2011. T. Otake et al., “Development of apple certified reference material for quantification of organophosphorus and pyrethroid pesticides,” Food Chem., vol. 138, no. 2–3, pp. 1243–1249, 2013. T. Yarita et al., “Development of soybean certified reference material for pesticide residue analysis,” Talanta, vol. 119, pp. 255–261, 2014. T. Otake, Y. Aoyagi, T. Yarita, and M. Numata, “Characterization of certified reference material for quantification of polychlorinated biphenyls and organochlorine pesticides in fish,” Anal. Bioanal. Chem., vol. 397, pp. 2569–2577, Jul. 2010. T. Otake et al., “Development of certified reference material for quantification of two pesticides in brown rice.,” J. Agric. Food Chem., vol. 57, no. 18, pp. 8208–8212, Sep. 2009. M. Numata et al., “Sediment certified reference materials for the determination of polychlorinated biphenyls and organochlorine pesticides from the National Metrology Institute of Japan (NMIJ),” Anal. Bioanal. Chem., vol. 387, no. 7, pp. 2313–2323, 2007. J. S. M. Dabrio, S. Grimalt Brea, P. Shegunova, S. Harbeck, B. Sejerøe-Olsen, A.R. Fernández-Alba, “The certification of the mass fraction of pesticides in cucumber: ERM®-BC403 EUR 29243 EN,” 2018. D. W. M. Sin et al., “Development of a candidate certified reference material of cypermethrin in green tea,” Anal. Chim. Acta, vol. 721, pp. 110–114, 2012. D. W. M. Sin et al., “S1 certification of alpha-endosulfan, beta-endosulfan, and endosulfan sulfate in a candidate certified reference material (organochlorine pesticides in tea) by isotope dilution gas chromatography-mass spectrometry,” Anal. Bioanal. Chem., 2015. European Comission-Standards Measurements and Testing Programm, “The certification of the contents (mass fraction) of organochlorine pesticides in animal feed-BCR 115,” Brussels, Belgium, 1996. European Comission-Standards Measurements and Testing Programm, “The certification of the contents (mass fraction) of organochlorine pesticides in animal feed-BCR 187-188,” Luxembourg city, Luxembourg, 1989 National Institute of Standards and technology NIST, “Certificate of Analysis Standard Reference Material SRM1947- Lake Michigan Fish Tissue,” Gaithersburg, Meryland, 2007. S. Ahn, B. Kim, and E. Hwang, “Stability monitoring of pesticide residues in a Chinese cabbage certified reference material,” Bull. Korean Chem. Soc., vol. 32, no. 4, pp. 1365–1367, 2011. U. Faure and P. J. Wagstaffe, “Stability of reference materials,” Fresenius. J. Anal. Chem., 1993. P. McCarron, E. Wright, H. Emteborg, and M. A. Quilliam, “A mussel tissue certified reference material for multiple phycotoxins. Part 4: certification,” Anal. Bioanal. Chem., vol. 409, no. 1, pp. 95–106, 2017. F. G. M. Violante, C. de O. Rosas, E. de F. Guimarães, H. de C. Vital, N. O. C. Zúniga, and F. R. de Aquino Neto, “Feasibility study for the development of a certified reference material of nitrofuran metabolites in chicken breast muscle from incurred samples,” Measurement, vol. 129, pp. 368–374, 2018. H. Kodamatani, C. Maeda, S. J. Balogh, Y. H. Nollet, R. Kanzaki, and T. Tomiyasu, “The influence of sample drying and storage conditions on methylmercury determination in soils and sediments,” Chemosphere, vol. 173, pp. 380–386, 2017. D. L. Ellisor, W. C. Davis, and R. S. Pugh, “Spiking and homogenization of biological matrices for production of reference materials using cryogenic processes,” Anal. Bioanal. Chem., vol. 412, no. 22, pp. 5447–5451, 2020. E. Kurniawati, B. Ibrahim, and Desniar, “Homogeneity and stability of a secondary microbiological reference material candidate for Salmonella in fish matrix,” IOP Conf. Ser. Earth Environ. Sci., vol. 404, no. 1, 2019. T. A. Dang and H.-J. Lunk, “Freeze drying: a novel method for preparation of solid analytical tungsten and molybdenum standards,” ChemTexts, vol. 4, no. 3, p. 11, 2018. S.-W. Hyung, C.-H. Lee, and B. Kim, “Development of certified reference materials for accurate determination of fluoroquinolone antibiotics in chicken meat,” Food Chem., vol. 229, pp. 472–478, 2017. J. H. Kim, S. G. Choi, Y. S. Kwon, S. M. Hong, and J. S. Seo, “Development of cabbage reference material for multi-residue pesticide analysis,” Appl. Biol. Chem., vol. 61, no. 1, pp. 15–23, 2018. B. Sejerøe-Olsen et al., “PAHs in baby food: assessment of three different processing techniques for the preparation of reference materials,” Anal. Bioanal. Chem., 2015. W. R. Hardstaff, W. D. Jamieson, J. E. Milley, M. A. Quilliam, and P. G. Sim, “Reference materials for domoic acid, a marine neurotoxin,” Fresenius. J. Anal. Chem., vol. 338, no. 4, pp. 520–525, 1990. C. A. Fraser et al., “Preparation and certification of a biological reference material (CARP-1) for polychlorinated dibenzo-p-dioxin and dibenzofuran congeners,” Fresenius. J. Anal. Chem., vol. 352, no. 1, pp. 143–147, 1995 P. Armishaw, J. M. Majewski, P. J. McLay, and R. G. Millar, “Development and certification of reference materials for residues of organochlorine and organophosphorus pesticides in beef fat ACSL CRM 1 and 2,” Fresenius. J. Anal. Chem., vol. 360, no. 6, pp. 630–639, 1998. A. Kiełbasa, R. Gadzała-Kopciuch, and B. Buszewski, “Reference Materials: Significance, General Requirements, and Demand,” Critical Reviews in Analytical Chemistry. 2016 R. A. Perez et al., “The preparation of certified calibration solutions for azaspiracid-1, -2, and -3, potent marine biotoxins found in shellfish,” Anal. Bioanal. Chem., vol. 398, no. 5, pp. 2243–2252, 2010. J. L. Bernal, M. J. Del Nozal, and J. J. Jiménez, “Influence of solvent and storage conditions on the stability of acaricide standard stock solutions,” J. Chromatogr. A, vol. 765, no. 1, pp. 109–114, 1997. K. Maštovská and S. J. Lehotay, “Evaluation of common organic solvents for gas chromatographic analysis and stability of multiclass pesticide residues,” J. Chromatogr. A, vol. 1040, no. 2, pp. 259–272, 2004. K. K. Sharma et al., “Monitoring of purity and stability of CRMs of multiclass pesticides during prolonged storage before and after expiration,” Accredit. Qual. Assur., vol. 25, pp. 89–97, 2020 Y. Bian, Y. Wang, F. Liu, X. Li, and B. Wang, The stability of four organophosphorus insecticides in stored cucumber samples is affected by additives. Elsevier Ltd, 2020. E. Lugo Medina, C. García Gutiérrez, and R. D. Ruelas Ayala, “Nanotecnología y nanoencapsulación de plaguicidas,” Rev. Soc. Cult. y Desarro. Sustentable, vol. 6, no. 1, pp. 57–62, 2010. M. Nuruzzaman, M. M. Rahman, Y. Liu, and R. Naidu, “Nanoencapsulation, Nano-guard for Pesticides: A New Window for Safe Application,” J. Agric. Food Chem., vol. 64, no. 7, pp. 1447–1483, 2016. L. Wang, X. Li, G. Zhang, J. Dong, and J. Eastoe, “Oil-in-water nanoemulsions for pesticide formulations.,” J. Colloid Interface Sci., vol. 314, no. 1, pp. 230–235, Oct. 2007. S. Song, X. Liu, J. Jiang, Y. Qian, N. Zhang, and Q. Wu, “Stability of triazophos in self-nanoemulsifying pesticide delivery system,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 350, no. 1–3, pp. 57–62, 2009. X. Zhang and J. Liu, “Effect of Arabic Gum and Xanthan Gum on the Stability of Pesticide in Water Emulsion,” J. Agric. Food Chem., vol. 59, no. 4, pp. 1308–1315, Feb. 2011. Food and Agricultural Organization, “The International Code of Conduct on Pesticide Management,” Rome, 2014. OCDE/FAO, “OCDE/FAO Perspectivas agrícolas 2012-2021,” Universidad Autónoma de Chapingo, Texcoco, 2013. V. Bardwick, Ed., Eurachem/CITAC Guide: Guide to Quality in Analytical Chemistry: An Aid to Accreditation, 3rd ed. 2016. Chemisches und Veterinäruntersuchungsamt Stuttgart/EU Reference Laboratories for Residues of Pesticides, “DataPool EURL database,” 2006. Instituto Colombiano Agropecuario-ICA, “Estadisticas de plaguicidas 2019,” Bogotá, 2019. RStudio Team, “RStudio: Integrated Development for R.” Boston, 2020. D. A. Ahumada Forigua, “Reducción del efecto matriz en el análisis de residuos de Plaguicidas mediante Cromatografía de gases,” Universidad Nacional De Colombia, 2010. EU Reference Laboratory for Pesticides Requiring Single Residue Methods, “Analysis of Captan, Folpet and their respective metabolites Phthalimide and Tetrahydrophthalimide via LC-MS/MS either directly or following hydrolysis,” Stuttgart, 2019. J. L. Gastwirth, Y. R. Gel, and W. Miao, “The Impact of Levene’s Test of Equality of Variances on Statistical Theory and Practice,” Stat. Sci., vol. 24, no. 3, pp. 343–360, 2009. D. Sud, J. Kumar, P. Kaur, and P. Bansal, “Toxicity, natural and induced degradation of chlorpyrifos,” J. Chil. Chem. Soc., vol. 65, pp. 4807–4816, 2020. C. M. Menzie, “Metabolism of pesticides: update III,” 1980. S. E. Duirk and T. W. Collette, “Degradation of Chlorpyrifos in Aqueous Chlorine Solutions: Pathways, Kinetics, and Modeling,” Environ. Sci. Technol., vol. 40, no. 2, pp. 546–551, Jan. 2006. H. Liu et al., “Oxidative degradation of chlorpyrifos using ferrate(VI): Kinetics and reaction mechanism,” Ecotoxicol. Environ. Saf., vol. 170, pp. 259–266, 2019. T. Lazarević-Pašti, B. Nastasijević, and V. Vasić, “Oxidation of chlorpyrifos, azinphos-methyl and phorate by myeloperoxidase,” Pestic. Biochem. Physiol., vol. 101, no. 3, pp. 220–226, 2011. Chemisches und Veterinäruntersuchungsamt Stuttgart/EU Reference Laboratories for Residues of Pesticides, “DataPool EURL database,” 2006. [Online]. Available: https://www.eurl-pesticides-datapool.eu/Member/Compound/StabilityData. R. Djouaka et al., “The Rapid Degradation of Lambda-Cyhalothrin Makes Treated Vegetables Relatively Safe for Consumption,” Int. J. Environ. Res. Public Health, vol. 15, no. 7, p. 1536, Jul. 2018. R. Colombo, J. Yariwake, and M. Lanza, “Degradation Products of Lambda-Cyhalothrin in Aqueous Solution as Determined by SBSE-GC-IT-MS,” J. Braz. Chem. Soc., vol. 29, pp. 2207–2212, 2018. Z. Chen, F. Maartens, H. Vega, S. Kunene, J. Gumede, and R. I. Krieger, “2,2-bis(4-Chlorophenyl)Acetic Acid (DDA), a Water-Soluble Urine Biomarker of DDT Metabolism in Humans,” Int. J. Toxicol., vol. 28, no. 6, pp. 528–533, Nov. 2009. H. Huang et al., “Sources and transformation pathways for dichlorodiphenyltrichloroethane (DDT) and metabolites in soils from Northwest Fujian, China.,” Environ. Pollut., vol. 235, pp. 560–570, Apr. 2018 O`Brien, “DDT and related compounds,” in Handbook of pollution prevention adn cleaner production:best prractices in agrochemical industry, 1st ed., N. P. Cheremisinoff and P. E. Rosenfeld, Eds. Oxford: Academic Press, 2011, pp. 247–259. J. R. Plimmer, U. I. Klingebiel, and B. E. Hummer, “Photooxidation of DDT and DDE,” Science (80-. )., vol. 167, no. 3914, pp. 67 LP – 69, Jan. 1970. J. E. Thomas, L.-T. Ou, and A. All-Agely, “DDE remediation and degradation.,” Rev. Environ. Contam. Toxicol., vol. 194, pp. 55–69, 2008. A. S. Purnomo, T. Mori, I. Kamei, and R. Kondo, “Basic studies and applications on bioremediation of DDT: A review,” Int. Biodeterior. Biodegrad., vol. 65, no. 7, pp. 921–930, 2011 J. Wang et al., “Degradation pathway of triazole fungicides and synchronous removal of transformation products via photo-electrocatalytic oxidation tandem MoS2 adsorption,” Environ. Sci. Pollut. Res., vol. 28, no. 13, pp. 16480–16491, 2021. E. Ueyama, N. Suzuki, and K. Kano, “Mechanistic study of the oxidative degradation of the triazole antifungal agent CS-758 in an amorphous form.,” J. Pharm. Sci., vol. 102, no. 1, pp. 104–113, Jan. 2013. Y. Akiyama, N. Yoshioka, and M. Tsuji, “Pesticide Residues in Agricultural Products Monitored in Hyogo Prefecture, Japan, FYs 1995–1999,” J. AOAC Int., vol. 85, no. 3, pp. 692–703, May 2002. J. Morales, J. A. Manso, A. Cid, and J. C. Mejuto, “Degradation of carbofuran and carbofuran-derivatives in presence of humic substances under basic conditions,” Chemosphere, vol. 89, no. 11, pp. 1267–1271, 2012. L. P. de Melo Plese, L. C. Paraiba, L. L. Foloni, and L. R. Pimentel Trevizan, “Kinetics of carbosulfan hydrolysis to carbofuran and the subsequent degradation of this last compound in irrigated rice fields,” Chemosphere, vol. 60, no. 2, pp. 149–156, 2005. Q. S. Lin, S. H. Chen, M. Y. Hu, M. R. U. Haq, L. Yang, and H. Li, “Biodegradation of Cypermethrin by a newly isolated actinomycetes HU-S-01 from wastewater sludge,” Int. J. Environ. Sci. Technol., vol. 8, no. 1, pp. 45–56, 2011. K. I. Al-Mughrabi, I. K. Nazer, and Y. T. Al-Shuraiqi, “Effect of pH of water from the King Abdallah Canal in Jordan on the stability of cypermethrin,” Crop Prot., vol. 11, no. 4, pp. 341–344, 1992. Á. Ambrus, “International Harmonization of Food Safety Assessment of Pesticide Residues,” J. Agric. Food Chem., vol. 64, no. 1, pp. 21–29, 2016 M. W. Aktar, D. Sengupta, and A. Chowdhury, “Impact of pesticides use in agriculture: their benefits and hazards,” Interdiscip. Toxicol., vol. 2, no. 1, pp. 1–12, Mar. 2009. The European Union, “RASFF-The Rapid Alert System for Food and Feed-Annual Report,” 2020. P. Atkins, J. Blount, T. Grim, M. Phillips, and J. Wong, “Reference Material Use in Trace Analysis,” 2021. S. Rückold, K. H. Grobecker, and H.-D. Isengard, “Water as a source of errors in reference materials,” Fresenius. J. Anal. Chem., vol. 370, no. 2, pp. 189–193, 2001. P. McCarron, S. Burrell, and P. Hess, “Effect of addition of antibiotics and an antioxidant on the stability of tissue reference materials for domoic acid, the amnesic shellfish poison,” in Analytical and Bioanalytical Chemistry, 2007. A. Marulanda, M. Ruiz-Ruiz, and M. Cortes-Rodríguez, “Influence of spray drying process on the quality of avocado powder: A functional food with great industrial potential,” Vitae, vol. 25, no. 1, pp. 37–48, 2018 Asociación Española de Normalización, Método múltiple para la determinación de residuos de plaguicidas mediante análisis basados en GC y LC tras extracción con acetonitrilo y limpieza mediante SPE por dispersión- Método QuEChERs. España, 2019. B. Akdeniz, G. Sumnu, and S. Sahin, “The effects of maltodextrin and gum Arabic on encapsulation of onion skin phenolic compounds,” Chem. Eng. Trans., vol. 57, pp. 1891–1896, 2017. M. Najaf Najafi, R. Kadkhodaee, and S. A. Mortazavi, “Effect of Drying Process and Wall Material on the Properties of Encapsulated Cardamom Oil,” Food Biophys., vol. 6, no. 1, pp. 68–76, 2011. A. Wilkowska, W. Ambroziak, A. Czyżowska, and J. Adamiec, “Effect of Microencapsulation by Spray Drying and Freeze Drying Technique on the Antioxidant Properties of Blueberry (Vaccinium myrtillus) Juice Polyphenolic Compounds,” Polish J. Food Nutr. Sci., vol. 66, no. 1, pp. 11–16, 2016. D. Ogrodowska, M. Tańska, W. Brandt, and S. Czaplicki, “Impact of the Encapsulation Process by Spray- and Freeze-Drying on the Properties and Composition of Powders Obtained from Cold-Pressed Seed Oils with Various Unsaturated Fatty Acids,” Polish J. Food Nutr. Sci., vol. 70, no. 3, pp. 241–252, 2020. E. F. do E. Santo, L. K. F. de Lima, A. P. C. Torres, G. de Oliveira, and E. H. G. Ponsano, “Comparison between freeze and spray drying to obtain powder Rubrivivax gelatinosus biomass,” Food Sci. Technol., vol. 33, no. 1, pp. 47–51, Feb. 2013. M. S. Levenson et al., “An Approach to Combining Results From Multiple Methods Motivated by the ISO GUM,” J. Res. Natl. Inst. Stand. Technol., vol. 105, no. 4, pp. 571–579, Aug. 2000. A. A. Veroniki et al., “Methods to estimate the between-study variance and its uncertainty in meta-analysis,” Res. Synth. Methods, vol. 7, no. 1, pp. 55–79, Mar. 2016. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xxi, 138 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Química |
dc.publisher.department.spa.fl_str_mv |
Departamento de Química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/80798/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/80798/2/1094925645.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/80798/3/1094925645.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
8153f7789df02f0a4c9e079953658ab2 cf282f4eafcb77915bfe9325971a3468 5a75931144fade3b9a565b70008cd605 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090176087982080 |
spelling |
Atribución-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sinuco León, Diana Cristinaa1af680f163664333cf6d2c0a06eed39600Ahumada Forigua, Diego Alejandro010dad49ae795bd18069f6926bac6319600Morales Erazo, Laura Vanessa60f8ea8967a9b5421a87efb556571a8fInstituto Nacional de Metrología de ColombiaGrupo de Investigación en Metrología Química y Bioanálisis-GIMQBGrupo de Investigación en Metrología Química y LEA2022-01-11T17:31:11Z2022-01-11T17:31:11Z2021-12-30https://repositorio.unal.edu.co/handle/unal/80798Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, gráficas, tablasEn la presente investigación se estudió el efecto del uso de diferentes estrategias sobre la estabilidad de plaguicidas seleccionados en candidatos a materiales de referencia (MR). En una primera parte, se evaluó el efecto de aditivos sobre plaguicidas en soluciones de calibración y en una segunda parte, se evaluó la influencia del uso de aditivos, matrices encapsulantes y procesos de secado, sobre la estabilidad de materiales de referencia de plaguicidas en aguacate hass. Para los estudios de soluciones calibrantes de plaguicidas, se desarrollaron y validaron diferentes métodos a través de cromatografía de gases; posteriormente, se realizaron estudios de estabilidad, los cuales evidenciaron que las estrategias de estabilización propuestas fueron efectivas, logrando estabilizar todos los plaguicidas que se mostraron inestables, lo cual se tradujo en una mejora de la incertidumbre por estabilidad de hasta 286 veces. Por otro lado, se emplearon cuatro diferentes estrategias de estabilización sobre MR de plaguicidas en aguacate liofilizado. Los resultados mostraron que el uso de antioxidantes y conservantes, permiten incrementar la vida útil de los MR. Igualmente, se evidenció que el empleo de tecnologías de encapsulación permitió mejorar la estabilidad de los materiales; sin embargo, se encontró que, aunque la encapsulación a través de secado por aspersión permite obtener materiales con menores incertidumbres, el material obtenido es de difícil reconstitución, lo que podría conllevar a mayores errores en su uso. Por su parte, la encapsulación a través del uso de liofilización permitió establecer que la mezcla de goma arábiga-maltodextrina, proporciona un material de fácil reconstitución y con incertidumbres inferiores que el material sin ningún tratamiento. (Texto tomado de la fuente).This research aims to study the effect of the use of different strategies in the stability of the selected pesticides in Reference Materials candidates. In the first part, the effect of pesticides additives in calibration solutions was evaluated. The second part is focused on the evaluation of the influence of using additives, encapsulating matrices, and drying processes on the stability of reference materials of Hass avocado pesticides. Four methods were developed and validated for the study of pesticides in calibrant solutions. Gas chromatography coupled to mass spectrometry was the analytical technique selected. Subsequently, the stability of the materials was evaluated; these studies showed satisfactory results confirming that the proposed stabilization strategies were effective, achieving stabilizing in all the instable pesticides, representing an improvement of the uncertainty due to instability up to 286 times. Additionally, four strategies were used to stabilize avocado pesticides undergoing freeze drying over Reference Materials-RM. The results showed that the use of additives such as antioxidants and preservatives allowed the increasing of the useful life of the RM. Also, it has been seen that the use of encapsulation technologies improves the stability of materials. However, it was found that that although spray drying obtains materials with smaller uncertainties, the material obtained is difficult to reconstitute, which could lead to greater errors during its use. On the other hand, encapsulating through freeze drying established that the mixture of gum Arabic and maltodextrin provides a material of easy reconstitution and with lower uncertainties compared with the material without any treatment.Incluye anexosMaestríaMagíster en Ciencias - QuímicaMetrología química aplicadaxxi, 138 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - QuímicaDepartamento de QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afinesAvocadoAguacateMateriales de referenciaPlaguicidasEstabilidadIncertidumbreAditivosEncapsuladosTrazabilidad metrológicaReference materialPesticidesMetrological traceabilityStabilityUncertaintyAdditivesEncapsulatesPlaguicidaProducto fitoquímicoPesticidePhytochemicalsEvaluación de métodos para incrementar la estabilidad de materiales de referencia de plaguicidasAssessment of methods for improving the stability of pesticides reference materialsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMS. A. Wise, “What is novel about certified reference materials?,” Anal. Bioanal. Chem., vol. 410, no. 8, pp. 2045–2049, 2018.Bundesanstalt für Materialforschung und -prüfung (BAM), “Certified Reference Materials COMAR Database.” [Online]. Available: https://www.comar.bam.de/home/search_applic.php.International Organization for Standarization (ISO), “ISO Guide 30:2015, Reference materials — Selected terms and definitions.” Geneva, 2015.M. del R. Arvizu Torres, E. Valle Moya, and A. Reyes del Valle, “Estudios de estabilidad en materiales de referencia ertificados en matriz acuosa empleando el método de pérdidas de transpiración,” in Simposio de Metrología, 2010, pp. 1–9.A. Lamberty, H. Schimmel, and J. Pauwels, “The study of the stability of reference materials by isochronous measurements,” Fresenius. J. Anal. Chem., vol. 360, no. 3, pp. 359–361, 1998.Federal Institute for Materials Research and Testing (BAM), “COMAR, International database for Certified Reference Materials,” 2014. .Organización de las Naciones Unidas para la Alimentación y la Agricultura and Organización Mundial de la Salud, Manual de procedimiento-Comisión del CODEX Alimentarius, 27th ed. Rome, 2019.International Organization for Standarization (ISO), “ISO GUIDE 35:2017 Reference materials — Guidance for the characterization and the assessment of the homogeneity and stability of the material.” Geneva, Switzerland, 2017.D. A. Ahumada Forigua, L. L. Soto Morales, L. V. Morales Erazo, and J. P. Abella Gamba, “Desarrollo de un material de referencia certificado para análisis elemental de agua potable,” Rev. Colomb. Química, vol. 48, no. 3 SE-, pp. 36–44, Sep. 2019.Joint Committee for Guides in Metrology, “JCGM 100:2008-Guide to the expression of uncertainty in measurement, GUM 1995, with minor modifications,” InBureau International des Poids et Mesures-BIPM, vol. 50, no. September. p. 134, 2008.T. P. J. Linsinger, J. Pauwels, A. M. H. van der Veen, H. Schimmel, and A. Lamberty, “Homogeneity and stability of reference materials,” Accredit. Qual. Assur., vol. 6, no. 1, pp. 20–25, 2001.J. W. Finley, A.-N. Kong, K. J. Hintze, E. H. Jeffery, L. L. Ji, and X. G. Lei, “Antioxidants in Foods: State of the Science Important to the Food Industry,” J. Agric. Food Chem., vol. 59, no. 13, pp. 6837–6846, Jul. 2011.F. Ibañez, P. Torre, and A. Irigoyen, “Aditivos alimentarios,” Pamplona, España, 2003.R. García-García and S. S. Searle, “Preservatives: Food Use,” B. Caballero, P. M. Finglas, and F. B. T.-E. of F. and H. Toldrá, Eds. Oxford: Academic Press, 2016, pp. 505–509C. de la U. E. Parlamento Europeo, Reglamento (CE) n o 1333/2008 del Parlamento Europeo y del Consejo, de 16 de diciembre de 2008 , sobre aditivos alimentarios (Texto pertinente a efectos del EEE). 2008.N. J. Zuidam and E. Shimoni, “Overview of microencapsulates for use in food products or process and methods to make them,” in Encapsulation Technologies for Active Food Ingredients and Food Processing, 1st ed., N. J. Zuidam and V. Nedovic, Eds. Springer-Verlag New York, 2010, pp. 3–4.C. Wandrey, A. Bartkowiak, and S. E. Harding, “Materials for Encapsulation BT - Encapsulation Technologies for Active Food Ingredients and Food Processing,” N. J. Zuidam and V. Nedovic, Eds. New York, NY: Springer New York, 2010, pp. 31–100.J. Castro-Rosas et al., “Recent advances in microencapsulation of natural sources of antimicrobial compounds used in food - A review,” Food Res. Int., vol. 102, no. May, pp. 575–587, 2017.B. F. Gibbs, S. Kermasha, I. Alli, and C. N. Mulligan, “Encapsulation in the food industry: a review.,” Int. J. Food Sci. Nutr., vol. 50, no. 3, pp. 213–224, May 1999Z. Fang and B. Bhandari, “Spray drying, freeze drying and related processes for food ingredient and nutraceutical encapsulation,” in Woodhead Publishing Series in Food Science, Technology and Nutrition, N. Garti and D. J. B. T.-E. T. and D. S. for F. I. and N. McClements, Eds. Woodhead Publishing, 2012, pp. 73–109.J. L. Villacrez, “Desarrollo de microencapsulados por SPRAY DRYING a partir de frutos de mora de castilla ( Rubus glaucus Benth ).,” p. 92, 2013.C. Quan, “Establishment of the purity values of carbohydrate certified reference materials using quantitative nuclear magnetic resonance and mass balance approach,” Food Chem., vol. 153, pp. 378–386, 2014.T. Saito et al., “A new traceability scheme for the development of international system-traceable persistent organic pollutant reference materials by quantitative nuclear magnetic resonance,” Accredit. Qual. Assur., vol. 14, no. 2, pp. 79–86, 2009.H. Wang, K. Ma, W. Zhang, J. Li, G. Sun, and H. Li, “Certification of the reference material of water content in water saturated 1-octanol by Karl Fischer coulometry, Karl Fischer volumetry and quantitative nuclear magnetic resonance,” Food Chem., vol. 134, no. 4, pp. 2362–2366, 2012.K. A. Lippa, D. L. Duewer, M. A. Nelson, S. R. Davies, and L. G. Mackay, “The role of the CCQM OAWG in providing SI traceable calibrators for organic chemical measurements,” Accredit. Qual. Assur., vol. 24, no. 6, pp. 407–415, 2019.S. Richter et al., “Certification of a new series of gravimetrically prepared synthetic reference materials for n(236U)/n(238U) isotope ratio measurements,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 268, no. 7, pp. 956–959, 2010.K. Ishikawa et al., “Preparation and characterization of organic calibration solutions for development of certified reference materials at the National Metrology Institute of Japan,” Accredit. Qual. Assur., vol. 13, no. 7, pp. 397–408, 2008.S. Iqbal, M. Rafique Asi, U. Hanif, M. Zuber, and S. Jinap, “The presence of aflatoxins and ochratoxin A in rice and rice products; And evaluation of dietary intake,” Food Chem., vol. 210, pp. 135–140, Nov. 2016.I. R. B. Olivares, G. B. Souza, A. R. A. Nogueira, G. T. K. Toledo, and D. C. Marcki, “Trends in developments of certified reference materials for chemical analysis - Focus on food, water, soil, and sediment matrices,” TrAC - Trends Anal. Chem., vol. 100, pp. 53–64, 2018.E. C. P. do Rego, E. de F. Guimarães, J. M. Rodrigues, R. C. Scarlato, R. I. Nogueira, and A. D. Pereira Netto, “Feasibility study for development of candidate reference material for food analysis: Chloramphenicol in milk powder,” Meas. J. Int. Meas. Confed., vol. 98, pp. 300–304, 2017.S. A. Wise et al., “Two new marine sediment standard reference materials (SRMs) for the determination of organic contaminants,” Anal. Bioanal. Chem., vol. 378, no. 5, pp. 1251–1264, 2004S. Grimalt et al., “Development of a new cucumber reference material for pesticide residue analysis: Feasibility study for material processing, homogeneity and stability assessment,” Anal. Bioanal. Chem., vol. 407, no. 11, pp. 3083–3091, 2015.B. Sejerøe-Olsen, R. Zeleny, H. Emons, F. Ulberth, and H. Saldanha, “Feasibility study for producing a carrot/potato matrix reference material for 11 selected pesticides at EU MRL level: Material processing, homogeneity and stability assessment,” Food Chem., 2011.National Institute of Standards and technology NIST, “Standard reference material SRM2261- Chloridated pesticides in hexane,” Gaithersburg, Meryland, 2018.National Institute of Standards and technology NIST, “Standard reference material SRM2275 chlorinated pesticide solution in 2,2,24-trimethylpentane,” Gaithersburg, Meryland, 2020.Chemical Metrology & Analytical Science Division-National Institute of Metrology, “National Sharing Platform for Refernce Materials.” [Online]. Available: https://www.ncrm.org.cn/Web/MaterialEn/Components?autoID=7126&pageIndex=1.T. Otake et al., “Development of green onion and cabbage certified reference materials for quantification of organophosphorus and pyrethroid pesticides,” J. Agric. Food Chem., 2011.T. Otake et al., “Development of apple certified reference material for quantification of organophosphorus and pyrethroid pesticides,” Food Chem., vol. 138, no. 2–3, pp. 1243–1249, 2013.T. Yarita et al., “Development of soybean certified reference material for pesticide residue analysis,” Talanta, vol. 119, pp. 255–261, 2014.T. Otake, Y. Aoyagi, T. Yarita, and M. Numata, “Characterization of certified reference material for quantification of polychlorinated biphenyls and organochlorine pesticides in fish,” Anal. Bioanal. Chem., vol. 397, pp. 2569–2577, Jul. 2010.T. Otake et al., “Development of certified reference material for quantification of two pesticides in brown rice.,” J. Agric. Food Chem., vol. 57, no. 18, pp. 8208–8212, Sep. 2009.M. Numata et al., “Sediment certified reference materials for the determination of polychlorinated biphenyls and organochlorine pesticides from the National Metrology Institute of Japan (NMIJ),” Anal. Bioanal. Chem., vol. 387, no. 7, pp. 2313–2323, 2007.J. S. M. Dabrio, S. Grimalt Brea, P. Shegunova, S. Harbeck, B. Sejerøe-Olsen, A.R. Fernández-Alba, “The certification of the mass fraction of pesticides in cucumber: ERM®-BC403 EUR 29243 EN,” 2018.D. W. M. Sin et al., “Development of a candidate certified reference material of cypermethrin in green tea,” Anal. Chim. Acta, vol. 721, pp. 110–114, 2012.D. W. M. Sin et al., “S1 certification of alpha-endosulfan, beta-endosulfan, and endosulfan sulfate in a candidate certified reference material (organochlorine pesticides in tea) by isotope dilution gas chromatography-mass spectrometry,” Anal. Bioanal. Chem., 2015.European Comission-Standards Measurements and Testing Programm, “The certification of the contents (mass fraction) of organochlorine pesticides in animal feed-BCR 115,” Brussels, Belgium, 1996.European Comission-Standards Measurements and Testing Programm, “The certification of the contents (mass fraction) of organochlorine pesticides in animal feed-BCR 187-188,” Luxembourg city, Luxembourg, 1989National Institute of Standards and technology NIST, “Certificate of Analysis Standard Reference Material SRM1947- Lake Michigan Fish Tissue,” Gaithersburg, Meryland, 2007.S. Ahn, B. Kim, and E. Hwang, “Stability monitoring of pesticide residues in a Chinese cabbage certified reference material,” Bull. Korean Chem. Soc., vol. 32, no. 4, pp. 1365–1367, 2011.U. Faure and P. J. Wagstaffe, “Stability of reference materials,” Fresenius. J. Anal. Chem., 1993.P. McCarron, E. Wright, H. Emteborg, and M. A. Quilliam, “A mussel tissue certified reference material for multiple phycotoxins. Part 4: certification,” Anal. Bioanal. Chem., vol. 409, no. 1, pp. 95–106, 2017.F. G. M. Violante, C. de O. Rosas, E. de F. Guimarães, H. de C. Vital, N. O. C. Zúniga, and F. R. de Aquino Neto, “Feasibility study for the development of a certified reference material of nitrofuran metabolites in chicken breast muscle from incurred samples,” Measurement, vol. 129, pp. 368–374, 2018.H. Kodamatani, C. Maeda, S. J. Balogh, Y. H. Nollet, R. Kanzaki, and T. Tomiyasu, “The influence of sample drying and storage conditions on methylmercury determination in soils and sediments,” Chemosphere, vol. 173, pp. 380–386, 2017.D. L. Ellisor, W. C. Davis, and R. S. Pugh, “Spiking and homogenization of biological matrices for production of reference materials using cryogenic processes,” Anal. Bioanal. Chem., vol. 412, no. 22, pp. 5447–5451, 2020.E. Kurniawati, B. Ibrahim, and Desniar, “Homogeneity and stability of a secondary microbiological reference material candidate for Salmonella in fish matrix,” IOP Conf. Ser. Earth Environ. Sci., vol. 404, no. 1, 2019.T. A. Dang and H.-J. Lunk, “Freeze drying: a novel method for preparation of solid analytical tungsten and molybdenum standards,” ChemTexts, vol. 4, no. 3, p. 11, 2018.S.-W. Hyung, C.-H. Lee, and B. Kim, “Development of certified reference materials for accurate determination of fluoroquinolone antibiotics in chicken meat,” Food Chem., vol. 229, pp. 472–478, 2017.J. H. Kim, S. G. Choi, Y. S. Kwon, S. M. Hong, and J. S. Seo, “Development of cabbage reference material for multi-residue pesticide analysis,” Appl. Biol. Chem., vol. 61, no. 1, pp. 15–23, 2018.B. Sejerøe-Olsen et al., “PAHs in baby food: assessment of three different processing techniques for the preparation of reference materials,” Anal. Bioanal. Chem., 2015.W. R. Hardstaff, W. D. Jamieson, J. E. Milley, M. A. Quilliam, and P. G. Sim, “Reference materials for domoic acid, a marine neurotoxin,” Fresenius. J. Anal. Chem., vol. 338, no. 4, pp. 520–525, 1990.C. A. Fraser et al., “Preparation and certification of a biological reference material (CARP-1) for polychlorinated dibenzo-p-dioxin and dibenzofuran congeners,” Fresenius. J. Anal. Chem., vol. 352, no. 1, pp. 143–147, 1995P. Armishaw, J. M. Majewski, P. J. McLay, and R. G. Millar, “Development and certification of reference materials for residues of organochlorine and organophosphorus pesticides in beef fat ACSL CRM 1 and 2,” Fresenius. J. Anal. Chem., vol. 360, no. 6, pp. 630–639, 1998.A. Kiełbasa, R. Gadzała-Kopciuch, and B. Buszewski, “Reference Materials: Significance, General Requirements, and Demand,” Critical Reviews in Analytical Chemistry. 2016R. A. Perez et al., “The preparation of certified calibration solutions for azaspiracid-1, -2, and -3, potent marine biotoxins found in shellfish,” Anal. Bioanal. Chem., vol. 398, no. 5, pp. 2243–2252, 2010.J. L. Bernal, M. J. Del Nozal, and J. J. Jiménez, “Influence of solvent and storage conditions on the stability of acaricide standard stock solutions,” J. Chromatogr. A, vol. 765, no. 1, pp. 109–114, 1997.K. Maštovská and S. J. Lehotay, “Evaluation of common organic solvents for gas chromatographic analysis and stability of multiclass pesticide residues,” J. Chromatogr. A, vol. 1040, no. 2, pp. 259–272, 2004.K. K. Sharma et al., “Monitoring of purity and stability of CRMs of multiclass pesticides during prolonged storage before and after expiration,” Accredit. Qual. Assur., vol. 25, pp. 89–97, 2020Y. Bian, Y. Wang, F. Liu, X. Li, and B. Wang, The stability of four organophosphorus insecticides in stored cucumber samples is affected by additives. Elsevier Ltd, 2020.E. Lugo Medina, C. García Gutiérrez, and R. D. Ruelas Ayala, “Nanotecnología y nanoencapsulación de plaguicidas,” Rev. Soc. Cult. y Desarro. Sustentable, vol. 6, no. 1, pp. 57–62, 2010.M. Nuruzzaman, M. M. Rahman, Y. Liu, and R. Naidu, “Nanoencapsulation, Nano-guard for Pesticides: A New Window for Safe Application,” J. Agric. Food Chem., vol. 64, no. 7, pp. 1447–1483, 2016.L. Wang, X. Li, G. Zhang, J. Dong, and J. Eastoe, “Oil-in-water nanoemulsions for pesticide formulations.,” J. Colloid Interface Sci., vol. 314, no. 1, pp. 230–235, Oct. 2007.S. Song, X. Liu, J. Jiang, Y. Qian, N. Zhang, and Q. Wu, “Stability of triazophos in self-nanoemulsifying pesticide delivery system,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 350, no. 1–3, pp. 57–62, 2009.X. Zhang and J. Liu, “Effect of Arabic Gum and Xanthan Gum on the Stability of Pesticide in Water Emulsion,” J. Agric. Food Chem., vol. 59, no. 4, pp. 1308–1315, Feb. 2011.Food and Agricultural Organization, “The International Code of Conduct on Pesticide Management,” Rome, 2014.OCDE/FAO, “OCDE/FAO Perspectivas agrícolas 2012-2021,” Universidad Autónoma de Chapingo, Texcoco, 2013.V. Bardwick, Ed., Eurachem/CITAC Guide: Guide to Quality in Analytical Chemistry: An Aid to Accreditation, 3rd ed. 2016.Chemisches und Veterinäruntersuchungsamt Stuttgart/EU Reference Laboratories for Residues of Pesticides, “DataPool EURL database,” 2006.Instituto Colombiano Agropecuario-ICA, “Estadisticas de plaguicidas 2019,” Bogotá, 2019.RStudio Team, “RStudio: Integrated Development for R.” Boston, 2020.D. A. Ahumada Forigua, “Reducción del efecto matriz en el análisis de residuos de Plaguicidas mediante Cromatografía de gases,” Universidad Nacional De Colombia, 2010.EU Reference Laboratory for Pesticides Requiring Single Residue Methods, “Analysis of Captan, Folpet and their respective metabolites Phthalimide and Tetrahydrophthalimide via LC-MS/MS either directly or following hydrolysis,” Stuttgart, 2019.J. L. Gastwirth, Y. R. Gel, and W. Miao, “The Impact of Levene’s Test of Equality of Variances on Statistical Theory and Practice,” Stat. Sci., vol. 24, no. 3, pp. 343–360, 2009.D. Sud, J. Kumar, P. Kaur, and P. Bansal, “Toxicity, natural and induced degradation of chlorpyrifos,” J. Chil. Chem. Soc., vol. 65, pp. 4807–4816, 2020.C. M. Menzie, “Metabolism of pesticides: update III,” 1980.S. E. Duirk and T. W. Collette, “Degradation of Chlorpyrifos in Aqueous Chlorine Solutions: Pathways, Kinetics, and Modeling,” Environ. Sci. Technol., vol. 40, no. 2, pp. 546–551, Jan. 2006.H. Liu et al., “Oxidative degradation of chlorpyrifos using ferrate(VI): Kinetics and reaction mechanism,” Ecotoxicol. Environ. Saf., vol. 170, pp. 259–266, 2019.T. Lazarević-Pašti, B. Nastasijević, and V. Vasić, “Oxidation of chlorpyrifos, azinphos-methyl and phorate by myeloperoxidase,” Pestic. Biochem. Physiol., vol. 101, no. 3, pp. 220–226, 2011.Chemisches und Veterinäruntersuchungsamt Stuttgart/EU Reference Laboratories for Residues of Pesticides, “DataPool EURL database,” 2006. [Online]. Available: https://www.eurl-pesticides-datapool.eu/Member/Compound/StabilityData.R. Djouaka et al., “The Rapid Degradation of Lambda-Cyhalothrin Makes Treated Vegetables Relatively Safe for Consumption,” Int. J. Environ. Res. Public Health, vol. 15, no. 7, p. 1536, Jul. 2018.R. Colombo, J. Yariwake, and M. Lanza, “Degradation Products of Lambda-Cyhalothrin in Aqueous Solution as Determined by SBSE-GC-IT-MS,” J. Braz. Chem. Soc., vol. 29, pp. 2207–2212, 2018.Z. Chen, F. Maartens, H. Vega, S. Kunene, J. Gumede, and R. I. Krieger, “2,2-bis(4-Chlorophenyl)Acetic Acid (DDA), a Water-Soluble Urine Biomarker of DDT Metabolism in Humans,” Int. J. Toxicol., vol. 28, no. 6, pp. 528–533, Nov. 2009.H. Huang et al., “Sources and transformation pathways for dichlorodiphenyltrichloroethane (DDT) and metabolites in soils from Northwest Fujian, China.,” Environ. Pollut., vol. 235, pp. 560–570, Apr. 2018O`Brien, “DDT and related compounds,” in Handbook of pollution prevention adn cleaner production:best prractices in agrochemical industry, 1st ed., N. P. Cheremisinoff and P. E. Rosenfeld, Eds. Oxford: Academic Press, 2011, pp. 247–259.J. R. Plimmer, U. I. Klingebiel, and B. E. Hummer, “Photooxidation of DDT and DDE,” Science (80-. )., vol. 167, no. 3914, pp. 67 LP – 69, Jan. 1970.J. E. Thomas, L.-T. Ou, and A. All-Agely, “DDE remediation and degradation.,” Rev. Environ. Contam. Toxicol., vol. 194, pp. 55–69, 2008.A. S. Purnomo, T. Mori, I. Kamei, and R. Kondo, “Basic studies and applications on bioremediation of DDT: A review,” Int. Biodeterior. Biodegrad., vol. 65, no. 7, pp. 921–930, 2011J. Wang et al., “Degradation pathway of triazole fungicides and synchronous removal of transformation products via photo-electrocatalytic oxidation tandem MoS2 adsorption,” Environ. Sci. Pollut. Res., vol. 28, no. 13, pp. 16480–16491, 2021.E. Ueyama, N. Suzuki, and K. Kano, “Mechanistic study of the oxidative degradation of the triazole antifungal agent CS-758 in an amorphous form.,” J. Pharm. Sci., vol. 102, no. 1, pp. 104–113, Jan. 2013.Y. Akiyama, N. Yoshioka, and M. Tsuji, “Pesticide Residues in Agricultural Products Monitored in Hyogo Prefecture, Japan, FYs 1995–1999,” J. AOAC Int., vol. 85, no. 3, pp. 692–703, May 2002.J. Morales, J. A. Manso, A. Cid, and J. C. Mejuto, “Degradation of carbofuran and carbofuran-derivatives in presence of humic substances under basic conditions,” Chemosphere, vol. 89, no. 11, pp. 1267–1271, 2012.L. P. de Melo Plese, L. C. Paraiba, L. L. Foloni, and L. R. Pimentel Trevizan, “Kinetics of carbosulfan hydrolysis to carbofuran and the subsequent degradation of this last compound in irrigated rice fields,” Chemosphere, vol. 60, no. 2, pp. 149–156, 2005.Q. S. Lin, S. H. Chen, M. Y. Hu, M. R. U. Haq, L. Yang, and H. Li, “Biodegradation of Cypermethrin by a newly isolated actinomycetes HU-S-01 from wastewater sludge,” Int. J. Environ. Sci. Technol., vol. 8, no. 1, pp. 45–56, 2011.K. I. Al-Mughrabi, I. K. Nazer, and Y. T. Al-Shuraiqi, “Effect of pH of water from the King Abdallah Canal in Jordan on the stability of cypermethrin,” Crop Prot., vol. 11, no. 4, pp. 341–344, 1992.Á. Ambrus, “International Harmonization of Food Safety Assessment of Pesticide Residues,” J. Agric. Food Chem., vol. 64, no. 1, pp. 21–29, 2016M. W. Aktar, D. Sengupta, and A. Chowdhury, “Impact of pesticides use in agriculture: their benefits and hazards,” Interdiscip. Toxicol., vol. 2, no. 1, pp. 1–12, Mar. 2009.The European Union, “RASFF-The Rapid Alert System for Food and Feed-Annual Report,” 2020.P. Atkins, J. Blount, T. Grim, M. Phillips, and J. Wong, “Reference Material Use in Trace Analysis,” 2021.S. Rückold, K. H. Grobecker, and H.-D. Isengard, “Water as a source of errors in reference materials,” Fresenius. J. Anal. Chem., vol. 370, no. 2, pp. 189–193, 2001.P. McCarron, S. Burrell, and P. Hess, “Effect of addition of antibiotics and an antioxidant on the stability of tissue reference materials for domoic acid, the amnesic shellfish poison,” in Analytical and Bioanalytical Chemistry, 2007.A. Marulanda, M. Ruiz-Ruiz, and M. Cortes-Rodríguez, “Influence of spray drying process on the quality of avocado powder: A functional food with great industrial potential,” Vitae, vol. 25, no. 1, pp. 37–48, 2018Asociación Española de Normalización, Método múltiple para la determinación de residuos de plaguicidas mediante análisis basados en GC y LC tras extracción con acetonitrilo y limpieza mediante SPE por dispersión- Método QuEChERs. España, 2019.B. Akdeniz, G. Sumnu, and S. Sahin, “The effects of maltodextrin and gum Arabic on encapsulation of onion skin phenolic compounds,” Chem. Eng. Trans., vol. 57, pp. 1891–1896, 2017.M. Najaf Najafi, R. Kadkhodaee, and S. A. Mortazavi, “Effect of Drying Process and Wall Material on the Properties of Encapsulated Cardamom Oil,” Food Biophys., vol. 6, no. 1, pp. 68–76, 2011.A. Wilkowska, W. Ambroziak, A. Czyżowska, and J. Adamiec, “Effect of Microencapsulation by Spray Drying and Freeze Drying Technique on the Antioxidant Properties of Blueberry (Vaccinium myrtillus) Juice Polyphenolic Compounds,” Polish J. Food Nutr. Sci., vol. 66, no. 1, pp. 11–16, 2016.D. Ogrodowska, M. Tańska, W. Brandt, and S. Czaplicki, “Impact of the Encapsulation Process by Spray- and Freeze-Drying on the Properties and Composition of Powders Obtained from Cold-Pressed Seed Oils with Various Unsaturated Fatty Acids,” Polish J. Food Nutr. Sci., vol. 70, no. 3, pp. 241–252, 2020.E. F. do E. Santo, L. K. F. de Lima, A. P. C. Torres, G. de Oliveira, and E. H. G. Ponsano, “Comparison between freeze and spray drying to obtain powder Rubrivivax gelatinosus biomass,” Food Sci. Technol., vol. 33, no. 1, pp. 47–51, Feb. 2013.M. S. Levenson et al., “An Approach to Combining Results From Multiple Methods Motivated by the ISO GUM,” J. Res. Natl. Inst. Stand. Technol., vol. 105, no. 4, pp. 571–579, Aug. 2000.A. A. Veroniki et al., “Methods to estimate the between-study variance and its uncertainty in meta-analysis,” Res. Synth. Methods, vol. 7, no. 1, pp. 55–79, Mar. 2016.ColombiaMide:"Calidad para la competitividad – Reduciendo las brechas de calidad en Micro, Pequeñas y Medianas Empresas en regiones de Colombia"Global Quality and Standards Programme-GQSPInstituto Nacional de Metrología de ColombiaUnión EuropeaMinisterio de Industria y ComercioCooperación Económica y Desarrollo-SECOEstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/80798/1/license.txt8153f7789df02f0a4c9e079953658ab2MD51ORIGINAL1094925645.2021.pdf1094925645.2021.pdfTesis de Maestría en Ciencias - Químicaapplication/pdf4062778https://repositorio.unal.edu.co/bitstream/unal/80798/2/1094925645.2021.pdfcf282f4eafcb77915bfe9325971a3468MD52THUMBNAIL1094925645.2021.pdf.jpg1094925645.2021.pdf.jpgGenerated Thumbnailimage/jpeg4960https://repositorio.unal.edu.co/bitstream/unal/80798/3/1094925645.2021.pdf.jpg5a75931144fade3b9a565b70008cd605MD53unal/80798oai:repositorio.unal.edu.co:unal/807982024-08-02 23:10:29.859Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |