Efecto de los ciclos de humedecimiento y secado en la succión, de un suelo residual de anfibolita proveniente del occidente de Medellín en estado natural y compactado

ilustraciones

Autores:
Patiño Restrepo, Juliana
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81228
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81228
https://repositorio.unal.edu.co/
Palabra clave:
550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur
Soil stabilization
Estabilización de suelos
Permeabilidad de suelos
Succión
Suelos parcialmente saturados
Estabilidad de taludes
Humedecimiento-secado
Partially saturated soils
Slope stability
Wetting-drying
Rights
openAccess
License
Atribución-SinDerivadas 4.0 Internacional
id UNACIONAL2_7a636b83b207bac5d42306939e97b9d1
oai_identifier_str oai:repositorio.unal.edu.co:unal/81228
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Efecto de los ciclos de humedecimiento y secado en la succión, de un suelo residual de anfibolita proveniente del occidente de Medellín en estado natural y compactado
dc.title.translated.eng.fl_str_mv Effect of wetting-drying cycles on a residual amphibolite soil's suction from western Medellin in a natural and compacted state
title Efecto de los ciclos de humedecimiento y secado en la succión, de un suelo residual de anfibolita proveniente del occidente de Medellín en estado natural y compactado
spellingShingle Efecto de los ciclos de humedecimiento y secado en la succión, de un suelo residual de anfibolita proveniente del occidente de Medellín en estado natural y compactado
550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur
Soil stabilization
Estabilización de suelos
Permeabilidad de suelos
Succión
Suelos parcialmente saturados
Estabilidad de taludes
Humedecimiento-secado
Partially saturated soils
Slope stability
Wetting-drying
title_short Efecto de los ciclos de humedecimiento y secado en la succión, de un suelo residual de anfibolita proveniente del occidente de Medellín en estado natural y compactado
title_full Efecto de los ciclos de humedecimiento y secado en la succión, de un suelo residual de anfibolita proveniente del occidente de Medellín en estado natural y compactado
title_fullStr Efecto de los ciclos de humedecimiento y secado en la succión, de un suelo residual de anfibolita proveniente del occidente de Medellín en estado natural y compactado
title_full_unstemmed Efecto de los ciclos de humedecimiento y secado en la succión, de un suelo residual de anfibolita proveniente del occidente de Medellín en estado natural y compactado
title_sort Efecto de los ciclos de humedecimiento y secado en la succión, de un suelo residual de anfibolita proveniente del occidente de Medellín en estado natural y compactado
dc.creator.fl_str_mv Patiño Restrepo, Juliana
dc.contributor.advisor.none.fl_str_mv Echeverri Ramírez, Óscar
Valencia González, Yamile
dc.contributor.author.none.fl_str_mv Patiño Restrepo, Juliana
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Geotecnia
dc.subject.ddc.spa.fl_str_mv 550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur
topic 550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur
Soil stabilization
Estabilización de suelos
Permeabilidad de suelos
Succión
Suelos parcialmente saturados
Estabilidad de taludes
Humedecimiento-secado
Partially saturated soils
Slope stability
Wetting-drying
dc.subject.armarc.none.fl_str_mv Soil stabilization
dc.subject.lemb.none.fl_str_mv Estabilización de suelos
Permeabilidad de suelos
dc.subject.proposal.spa.fl_str_mv Succión
Suelos parcialmente saturados
Estabilidad de taludes
Humedecimiento-secado
dc.subject.proposal.eng.fl_str_mv Partially saturated soils
Slope stability
Wetting-drying
description ilustraciones
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-09
dc.date.accessioned.none.fl_str_mv 2022-03-15T19:57:32Z
dc.date.available.none.fl_str_mv 2022-03-15T19:57:32Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81228
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81228
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Aitchison, G. D., & Bishop, A. W. (1961). Pore pressure and suction in soils: Conference discussion. Pore Pressure and Suction in Soils: Conference Organised by the British National Society of the International Society of Soil Mechanics and Foundation Engineering, 150–151.
Arbhabhirama, A., & Kridakorn, C. (1968). Steady Downward Flow to a Water Table. Water Resources Research, 4(6), 1249–1257. https://doi.org/https://doi.org/10.1029/WR004i006p01249
Área Metropolitana del Valle de Aburrá. (2021). SIATA Sistema de Alerta Temprana de Medellín y el Valle de Aburrá. https://siata.gov.co
Aristizábal Giraldo, E. V., González, T., Montoya, J. D., Vélez Upegui, J. I., Martínez Carvajal, H. E., & Guerra, A. (2011). Análisis de umbrales empíricos de lluvia para el pronóstico de movimientos en masa en el valle de Aburrá, Colombia. Revista EIA, 95–111.
Aristizábal Giraldo, E. V., Martínez Carvajal, H. E., & Vélez, J. I. (2010). Una revisión sobre el estudio de movimientos en masa detonados por lluvias. Revista de La Academia Colombiana de Ciencias, 34(53), 209–227.
Aristizábal Giraldo, E. V., Vélez Upegui, J. I., & Martínez Carvajal, H. E. (2016a). A comparison of linear and nonlinear model performance of SHIA_Landslide: A forecasting model for rainfall-induced landslides. Revista Facultad de Ingenieria, 2016(80), 74–88. https://doi.org/10.17533/udea.redin.n80a09
Aristizábal Giraldo, E. V., Vélez Upegui, J. I., & Martínez Carvajal, H. E. (2016b). Influences of Antecedent Rainfall and Hydraulic Conductivity on Landslides Triggered By Rainfall Occurrence Using the Model Shia_Landslide. Revista EIA, 13(26), 31–46.
ASTM D698-12(21). (2021). Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International.
ASTM D854-14. (2014). Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. ASTM International.
ASTM D2216-19. (2019). Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM International.
ASTM D4221-18. (2018). Standard Test Method for Dispersive Characteristics of Clay Soil by Double Hydrometer. ASTM International.
ASTM D4318-17e1. (2017). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International.
ASTM D4943-18. (2018). Standard Test Method for Shrinkage Factors of Cohesive Soils by the Water Submersion. ASTM International.
ASTM D5298-16. (2016). Standard Test Method for Measurement of Soil Potential (Suction) Using Filter Paper. ASTM International. https://doi.org/10.1520/D5298-16
Azmi, M., Ramli, M. H., Hezmi, M. A., Mohd Yusoff, S. A. N., & Alel, M. N. A. (2019). Estimation of Soil Water Characteristic Curves (SWCC) of mining sand using soil suction modelling. IOP Conference Series: Materials Science and Engineering, 527(1). https://doi.org/10.1088/1757-899X/527/1/012016
Barrera Bucio, M., & Garnica Anguas, P. (2002). Introducción a la mecánica de suelos no saturados en vías terrestres. Publicación Técnica, 198, 143.
Bishop, A. W. (1959). The principle of effective stress (Norges Geotekniske Inst, Ed.).
Blight, G. E., & Leong, E. C. (2012). Mechanics of Residual Soils. In CRC Press (Ed.), Environmental & Engineering Geoscience. https://doi.org/10.2113/gseegeosci.v.2.255
Brand, E. W. (1984). Landslides in Southeast Asia: A State-of-the-Art Report. 4th International Symposium on Landslides, 17–59.
Brand, E. W., Phillipson, H. B., Borrie, G. W., & Clover, A. W. (1983). In-situ direct shear tests on Hong Kong residual soils. Int. Symp. on Soil and Rock Investigations by In-Situ Testing, 13–17.
Brooks, R. H., & Corey, A. T. (1966). Properties of Porous Media Affecting Fluid Flow. Journal of the Irrigation and Drainage Division, 92(2). https://doi.org/10.1061/jrcea4.0000425
Buol, S. W., Hole, F. D., & McCracken, R. J. (1983). Génesis y clasificación de suelos. Trillas.
Camapun de Carvallo, J., De Farias Neves, G., Lemos Machado, S., Mascarenha, M., & Chagas da Silva, F. (2015). Solos não saturados no contexto geotécnico (Associação Brasileira de Mecânica dos Solos e Engenharia Geotécnica, Ed.).
Campbell, J. D. (1974). A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci, 117, 311–314.
Cardona Giraldo, I. C. (2016). Validation of landslide assessment models by means of landslide inventories at sub-regional scales. Universidad Nacional de Colombia Sede Medellín.
Chandler, R. J., & Gutierrez, C. I. (1986). The filter-paper method of suction measurement. Geotechnique, 36(2), 265–268. https://doi.org/10.1680/geot.1986.36.2.265
Chipp, P. N., Clare, D. G., Henkel, D. J., & Pope, R. G. (1982). Field measurement of suction in colluvium covered slopes in Hong Kong. 7th South East Asian Geotechnical Conference, 22-26 November 1982, 49-62.
Das, B. M. (2015). Fundamentos de Ingeniería Geotécnica (C. Learning, Ed.; 4th ed.).
Departamento Administrativo de Planeación de Medellín;, & Corporación Penca de Sábila. (2006). Plan de Desarrollo San Cristóbal 2006-2016 (pp. 12–15).
Espitia, C. J., Quintero, J., Rodriguez, A., Bernal, F. I., Romero, F., Mojica, J., Cabezas, H., Hernández, M., Pachón, M., Múnera, M. H., & Ramirez, J. (2003). Catálogo de propiedades físicas, químicas y mineralógicas de las arcillas para cerámica roja en los centros urbanos de Medellín, Ibagué y sabana de Bogotá.hb (p. 203). Ingeominas.
Fredlund, D. G. (1987). Slope Stability Chapter 4 Slope Stability Analysis Incorporating the Effect of Soil Suction.
Fredlund, D. G. (2016). State Variables in Saturated-Unsaturated Soil Mechanics. Soils and Rocks, 39(1), 3–17. https://doi.org/10.28927/sr.391003
Fredlund, D. G., & Morgenstern, N. R. (1977). Stress State Variables for Unsaturated Soils. Journal of the Geotechnical Engineering Division, 103(5), 447–466. https://doi.org/10.1061/AJGEB6.0000423
Fredlund, D. G., Rahardjo, H., & Fredlund, M. D. (2012). Unsaturated Soil Mechanics in Engineering Practice. In Unsaturated Soil Mechanics in Engineering Practice. https://doi.org/10.1002/9781118280492
Fredlund, D. G., Rahardjo, H., & J.K.M., G. (1987). Non-linearity of strength envelope for unsaturated soils.
Fredlund, D. G., & Xing, A. (1994). Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, 31(4), 521–532. https://doi.org/10.1139/t94-061
Gardner, W. R. (1958). Mathematics of Isothermal in Water Conduction Unsaturated Soil. Soil and Water Conservation Research Division, Agricultural Research Service, U.S. Department of Agriculture, Riverside, California, 78–87.
H&G Consultores. (n.d.). MapGIS. Retrieved March 18, 2015, from https://www.medellin.gov.co/MapGIS/web/swf/MAPGIS_FLEX.jsp
Hoyos Patiño, F. (2004). Suelos Residuales Tropicales (P. G. Fookes, Ed.).
Huat, B. B. K., Ali, F. H. J., & Low, T. H. (2006). Water infiltration characteristics of unsaturated soil slope and its effect on suction and stability. Geotechnical and Geological Engineering, 24(5), 1293–1306. https://doi.org/10.1007/s10706-005-1881-8
Johnson, K. A., & Sitar, N. (1990). Hydrologic conditions leading to debris-flow initiation. Canadian Geotechnical Journal, 27(6), 789–801. https://doi.org/10.1139/t90-092
Keng, J. C. W., & Uehara, G. (1974). Chemistry, mineralogy, and taxonomy of Oxisols and Uttisol s. [Soils]. In Proc Soil Crop Sci Soc Fla: Vol. v. 1974, 3.
Kim, J., Kim, Y., Jeong, S., & Hong, M. (2017). Rainfall-induced landslides by deficit field matric suction in unsaturated soil slopes. Environmental Earth Sciences, 76(23), 1–17. https://doi.org/10.1007/s12665-017-7127-2
Li, J. H., Lu, Z., Guo, L. B., & Zhang, L. M. (2017). Experimental study on soil-water characteristic curve for silty clay with desiccation cracks. Engineering Geology, 218, 70–76. https://doi.org/10.1016/j.enggeo.2017.01.004
Lim, L. L., Chang, M. F., Fredlund, D. G., & Rahardjo, H. (1996). Effect of rainfall on matric suctions in a residual soil slope. NATL RESEARCH COUNCIL OF CANADA, OTTAWA, (CAN).
Lu, N., & Likos, W. J. (2004). Unsaturated soil mechanics. J. Wiley.
Malaver Soto, N. M., & Tafur Tafur, R. (2018). Lineamientos básicos para la clasificación de suelos tropicales en Colombia orientado a pavimentos. Universidad Católica de Colombia.
Malaya, C., & Sreedeep, S. (2010). A Study on Wetting Soil-Water Characteristic Curve of a Sandy Soil. Indian Geotechnical Conference, 2–3.
Meza Ochoa, V. (2012). Suelos parcialmente saturados: De la investigación a la cátedra universitaria. Boletín de Ciencias de La Tierra, 0(31), 23–38.
Mitchell, J. K., & Soga, K. (2005). Fundamentals of Soil Behavior. In Soil Science (Tercera Ed, Vol. 158, Issue 1). John Wiley & Sons, Inc. https://doi.org/10.1097/00010694-199407000-00009
Monsalve, G., Villarraga, C., & Vallejo, J. (2010). Inferences about the seismic structure of the upper lithosphere beneath the Aburrá Valley using data from accelerometer networks. Boletín de Ciencias de La Tierra, 77–94.
Nascimento, Í., Alencar, T., Santos, C., Assis, R., & Mota, J. (2018). Effect of sample re-saturation on soil-water characteristic curve. Revista Caatinga, 31, 446–454. https://doi.org/10.1590/1983-21252018v31n221rc
Ng, C. W. W., & Shi, Q. (1998). A numerical investigation of the stability of unsaturated soil slopes subjected to transient seepage. Computers and Geotechnics, 22(1), 1–28. https://doi.org/https://doi.org/10.1016/S0266-352X(97)00036-0
Nogami, J. S., & Villibor, D. F. P. P.-S. P. (1995). Pavimentacao de baixo custo com solos lateriticos. Vilibor.
Pasculli, A., Sciarra, N., Esposito, L., & Esposito, A. W. (2017). Effects of wetting and drying cycles on mechanical properties of pyroclastic soils. Catena, 156(April), 113–123. https://doi.org/10.1016/j.catena.2017.04.004
Perez Garcia, N., Garnica Anguas, P., & Pola Velazquez, J. C. (2013). Predicción de la curva característica con el modelo de proporcionalidad natural. Publicación Técnica, 361, 78.
Pitts, J. (1983). The form and causes of slope failures in an area of west Singapore Island. Journal of Tropical Geography, 4, 162–168.
Pitts, J. (1984). A survey of engineering geology in Singapore. J. of Southeast Asian Geotechnical Society, 15, 1–20.
Pitts, J., & Cy, S. (1987). Insitu soil suction measurements in relation to slope stability investigations in Singapore. In E. T. Hanrahan, T. L. L. Orr, & T. F. Widdis (Eds.), 9th European Conf. on Soil Mechanics and Foundation Engineering (pp. 79–82.).
Rahardjo, H., Lim, T. T., Chang, M. F., & Fredlund, D. G. (1995). Shear-strength characteristics of a residual soil. Canadian Geotechnical Journal, 32(1), 60–77. https://doi.org/10.1139/t95-005
Ridley, A. M. (1993). The measurement of soil moisture suction. In University of London. University of London.
Ridley, A. M., & Burland, J. B. (1993). A new instrument for the measurement of soil moisture suction. Géotechnique, 43(2), 321–324. https://doi.org/10.1680/geot.1993.43.2.321
Schofield, R. K. (1935). The pF of the water in soil. 3rd Int. Congr. Soil Science, 37–48.
Skempton, A. W., & Hutchinson, J. N. (1969). Stability of natural slopes and embankment foundations. In Sociedad Mexicana de Mecánica de Suelos (Ed.), VII Congreso Internacional de Mecánica de Suelos e Ingeniería de Cimentaciones (pp. 291–340). https://doi.org/10.1007/978-3-319-73568-9_174
Sweeney, D. J., & Robertson, P. K. (1979). A fundamental approach to slope stability problems in Hong Kong. Hong Kong Engineer, 7, 35–44.
Tan, S. B., Tan, S. L., Lim, T. L., & Yang, K. S. (1987). Landslide problems and their control in Singapore. 9th Southeast Asian Geotechnical Conf., Southeast Asian Geotechnical Soc., 25–36.
Van Genuchten, M. (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils1. Soil Science Society of America Journal, 44. https://doi.org/10.2136/sssaj1980.03615995004400050002x
Vanapalli, S., Fredlund, D. G., Pufahl, D. E., & Clifton, A. W. (1996). Model for the prediction of shear strength with respect to soil suction. Canadian Geotechnical Journal - CAN GEOTECH J, 33, 379–392. https://doi.org/10.1139/t96-060
Zapata, C., Houston, W., Houston, S., & Walsh, K. (2000). Soil–Water Characteristic Curve Variability. In Geotechnical Special Publication (Vol. 287). https://doi.org/10.1061/40510(287)7
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 76 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.country.none.fl_str_mv Colombia
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Geotecnia
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Civil
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81228/3/1035858397.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/81228/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81228/5/1035858397.2021.pdf.jpg
bitstream.checksum.fl_str_mv b3ab0b6ffd8b88d9c5ffe074a20d5283
8153f7789df02f0a4c9e079953658ab2
cd4ffcc2dbf0020fcdc2d749e5fa737b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090174073667584
spelling Atribución-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Echeverri Ramírez, Óscar4866540acb1361d250d2e573b1408e2e600Valencia González, Yamile6fcbabee67ca0af52b9cf9c3965ebd23600Patiño Restrepo, Julianaafe83ef2631834453413d568e4486d47600Grupo de Geotecnia2022-03-15T19:57:32Z2022-03-15T19:57:32Z2021-09https://repositorio.unal.edu.co/handle/unal/81228Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesLa estabilidad de los taludes se ve afectada por diversidad de fenómenos físicos y químicos, el clima es uno de los factores más relevantes en este aspecto. En las zonas tropicales existen grandes variaciones meteorológicas durante todo el año, y son los suelos superficiales los más susceptibles a cambio de humedad y temperatura que repercuten en su comportamiento y resistencia. Para evaluar la influencia de estas variaciones, se desarrollaron varios ciclos de humedecimiento y secado para el suelo de un talud vial localizado al occidente del Valle de Aburra. Las pruebas de laboratorio se realizaron inicialmente en muestras inalteradas y compactadas y posteriormente en muestras sometidas a humedecimiento por goteo y secado al horno a 30°C. Se realiza inicialmente la caracterización física y química del suelo y se mide la curva de succión por el método del papel filtro, la permeabilidad y los parámetros de resistencia para cada ciclo de humedecimiento y secado. Los resultados mostraron que la succión del suelo disminuye gradualmente con el número de ciclos de humedecimiento y secado para ambas muestras, más notorio en la natural que en la compactada ya que esta última tiene una estructura con poros de menor tamaño y las variaciones se perciben en menor grado. Los resultados de la investigación incluyen un análisis de estabilidad de taludes donde se incluyen las propiedades hidráulicas y de resistencia de ambas muestras, obteniéndose una disminución del factor de seguridad después de los ciclos de humedecimiento y secado, en comparación con la muestra inicial, tanto para la muestra natural y compactada. Con los resultados se da un paso adelante en el estudio de los movimientos en masa detonados por lluvia ya que a través de la metodología experimental por la cual se recrean los ciclos de humedecimiento a partir de datos de campo como humedad, temperatura y precipitación, se puede anticipar la variación en los parámetros que influyen en la estabilidad del talud. 8Texto tomado de la fuente)Slope stability is affected by a variety of physical and chemical phenomena, climate is one of the most relevant factors in this regard. In tropical areas there are great meteorological variations throughout the year, and surface soils are the most susceptible to changes in humidity and temperature that affect their behavior and resistance. To evaluate the influence of these variations, several moistening and drying cycles were developed for the soil of a road slope located west of the Aburra Valley. Laboratory tests were initially performed on undisturbed and compacted samples and subsequently on samples subjected to drip wetting and oven drying at 30 ° C. The physical and chemical characterization of the soil is initially carried out and the suction curve is measured by the filter paper method, the permeability and the resistance parameters for each wetting and drying cycle. The results showed that the soil suction gradually decreases with the number of wetting and drying cycles for both samples, more noticeable in the natural than in the compacted sample since the latter has a structure with smaller pores and the variations are perceived in less. The results of the research include a slope stability analysis that includes the hydraulic and resistance properties of both samples, obtaining a decrease in the safety factor after the wetting and drying cycles, compared to the initial sample, both for the natural and compacted sample. With the results, a step forward is taken in the study of mass movements triggered by rain since through the experimental methodology by which the moistening cycles are recreated from field data such as humidity, temperature and precipitation, it is can anticipate variation in parameters that influence slope stability.MaestríaMagíster en Ingeniería - GeotecniaSuelos tropicalesMovimientos en masa detonados por lluviaÁrea Curricular de Ingeniería Civil76 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - GeotecniaDepartamento de Ingeniería CivilFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del SurSoil stabilizationEstabilización de suelosPermeabilidad de suelosSucciónSuelos parcialmente saturadosEstabilidad de taludesHumedecimiento-secadoPartially saturated soilsSlope stabilityWetting-dryingEfecto de los ciclos de humedecimiento y secado en la succión, de un suelo residual de anfibolita proveniente del occidente de Medellín en estado natural y compactadoEffect of wetting-drying cycles on a residual amphibolite soil's suction from western Medellin in a natural and compacted stateTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMColombiaAitchison, G. D., & Bishop, A. W. (1961). Pore pressure and suction in soils: Conference discussion. Pore Pressure and Suction in Soils: Conference Organised by the British National Society of the International Society of Soil Mechanics and Foundation Engineering, 150–151.Arbhabhirama, A., & Kridakorn, C. (1968). Steady Downward Flow to a Water Table. Water Resources Research, 4(6), 1249–1257. https://doi.org/https://doi.org/10.1029/WR004i006p01249Área Metropolitana del Valle de Aburrá. (2021). SIATA Sistema de Alerta Temprana de Medellín y el Valle de Aburrá. https://siata.gov.coAristizábal Giraldo, E. V., González, T., Montoya, J. D., Vélez Upegui, J. I., Martínez Carvajal, H. E., & Guerra, A. (2011). Análisis de umbrales empíricos de lluvia para el pronóstico de movimientos en masa en el valle de Aburrá, Colombia. Revista EIA, 95–111.Aristizábal Giraldo, E. V., Martínez Carvajal, H. E., & Vélez, J. I. (2010). Una revisión sobre el estudio de movimientos en masa detonados por lluvias. Revista de La Academia Colombiana de Ciencias, 34(53), 209–227.Aristizábal Giraldo, E. V., Vélez Upegui, J. I., & Martínez Carvajal, H. E. (2016a). A comparison of linear and nonlinear model performance of SHIA_Landslide: A forecasting model for rainfall-induced landslides. Revista Facultad de Ingenieria, 2016(80), 74–88. https://doi.org/10.17533/udea.redin.n80a09Aristizábal Giraldo, E. V., Vélez Upegui, J. I., & Martínez Carvajal, H. E. (2016b). Influences of Antecedent Rainfall and Hydraulic Conductivity on Landslides Triggered By Rainfall Occurrence Using the Model Shia_Landslide. Revista EIA, 13(26), 31–46.ASTM D698-12(21). (2021). Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International.ASTM D854-14. (2014). Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. ASTM International.ASTM D2216-19. (2019). Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM International.ASTM D4221-18. (2018). Standard Test Method for Dispersive Characteristics of Clay Soil by Double Hydrometer. ASTM International.ASTM D4318-17e1. (2017). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International.ASTM D4943-18. (2018). Standard Test Method for Shrinkage Factors of Cohesive Soils by the Water Submersion. ASTM International.ASTM D5298-16. (2016). Standard Test Method for Measurement of Soil Potential (Suction) Using Filter Paper. ASTM International. https://doi.org/10.1520/D5298-16Azmi, M., Ramli, M. H., Hezmi, M. A., Mohd Yusoff, S. A. N., & Alel, M. N. A. (2019). Estimation of Soil Water Characteristic Curves (SWCC) of mining sand using soil suction modelling. IOP Conference Series: Materials Science and Engineering, 527(1). https://doi.org/10.1088/1757-899X/527/1/012016Barrera Bucio, M., & Garnica Anguas, P. (2002). Introducción a la mecánica de suelos no saturados en vías terrestres. Publicación Técnica, 198, 143.Bishop, A. W. (1959). The principle of effective stress (Norges Geotekniske Inst, Ed.).Blight, G. E., & Leong, E. C. (2012). Mechanics of Residual Soils. In CRC Press (Ed.), Environmental & Engineering Geoscience. https://doi.org/10.2113/gseegeosci.v.2.255Brand, E. W. (1984). Landslides in Southeast Asia: A State-of-the-Art Report. 4th International Symposium on Landslides, 17–59.Brand, E. W., Phillipson, H. B., Borrie, G. W., & Clover, A. W. (1983). In-situ direct shear tests on Hong Kong residual soils. Int. Symp. on Soil and Rock Investigations by In-Situ Testing, 13–17.Brooks, R. H., & Corey, A. T. (1966). Properties of Porous Media Affecting Fluid Flow. Journal of the Irrigation and Drainage Division, 92(2). https://doi.org/10.1061/jrcea4.0000425Buol, S. W., Hole, F. D., & McCracken, R. J. (1983). Génesis y clasificación de suelos. Trillas.Camapun de Carvallo, J., De Farias Neves, G., Lemos Machado, S., Mascarenha, M., & Chagas da Silva, F. (2015). Solos não saturados no contexto geotécnico (Associação Brasileira de Mecânica dos Solos e Engenharia Geotécnica, Ed.).Campbell, J. D. (1974). A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci, 117, 311–314.Cardona Giraldo, I. C. (2016). Validation of landslide assessment models by means of landslide inventories at sub-regional scales. Universidad Nacional de Colombia Sede Medellín.Chandler, R. J., & Gutierrez, C. I. (1986). The filter-paper method of suction measurement. Geotechnique, 36(2), 265–268. https://doi.org/10.1680/geot.1986.36.2.265Chipp, P. N., Clare, D. G., Henkel, D. J., & Pope, R. G. (1982). Field measurement of suction in colluvium covered slopes in Hong Kong. 7th South East Asian Geotechnical Conference, 22-26 November 1982, 49-62.Das, B. M. (2015). Fundamentos de Ingeniería Geotécnica (C. Learning, Ed.; 4th ed.).Departamento Administrativo de Planeación de Medellín;, & Corporación Penca de Sábila. (2006). Plan de Desarrollo San Cristóbal 2006-2016 (pp. 12–15).Espitia, C. J., Quintero, J., Rodriguez, A., Bernal, F. I., Romero, F., Mojica, J., Cabezas, H., Hernández, M., Pachón, M., Múnera, M. H., & Ramirez, J. (2003). Catálogo de propiedades físicas, químicas y mineralógicas de las arcillas para cerámica roja en los centros urbanos de Medellín, Ibagué y sabana de Bogotá.hb (p. 203). Ingeominas.Fredlund, D. G. (1987). Slope Stability Chapter 4 Slope Stability Analysis Incorporating the Effect of Soil Suction.Fredlund, D. G. (2016). State Variables in Saturated-Unsaturated Soil Mechanics. Soils and Rocks, 39(1), 3–17. https://doi.org/10.28927/sr.391003Fredlund, D. G., & Morgenstern, N. R. (1977). Stress State Variables for Unsaturated Soils. Journal of the Geotechnical Engineering Division, 103(5), 447–466. https://doi.org/10.1061/AJGEB6.0000423Fredlund, D. G., Rahardjo, H., & Fredlund, M. D. (2012). Unsaturated Soil Mechanics in Engineering Practice. In Unsaturated Soil Mechanics in Engineering Practice. https://doi.org/10.1002/9781118280492Fredlund, D. G., Rahardjo, H., & J.K.M., G. (1987). Non-linearity of strength envelope for unsaturated soils.Fredlund, D. G., & Xing, A. (1994). Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, 31(4), 521–532. https://doi.org/10.1139/t94-061Gardner, W. R. (1958). Mathematics of Isothermal in Water Conduction Unsaturated Soil. Soil and Water Conservation Research Division, Agricultural Research Service, U.S. Department of Agriculture, Riverside, California, 78–87.H&G Consultores. (n.d.). MapGIS. Retrieved March 18, 2015, from https://www.medellin.gov.co/MapGIS/web/swf/MAPGIS_FLEX.jspHoyos Patiño, F. (2004). Suelos Residuales Tropicales (P. G. Fookes, Ed.).Huat, B. B. K., Ali, F. H. J., & Low, T. H. (2006). Water infiltration characteristics of unsaturated soil slope and its effect on suction and stability. Geotechnical and Geological Engineering, 24(5), 1293–1306. https://doi.org/10.1007/s10706-005-1881-8Johnson, K. A., & Sitar, N. (1990). Hydrologic conditions leading to debris-flow initiation. Canadian Geotechnical Journal, 27(6), 789–801. https://doi.org/10.1139/t90-092Keng, J. C. W., & Uehara, G. (1974). Chemistry, mineralogy, and taxonomy of Oxisols and Uttisol s. [Soils]. In Proc Soil Crop Sci Soc Fla: Vol. v. 1974, 3.Kim, J., Kim, Y., Jeong, S., & Hong, M. (2017). Rainfall-induced landslides by deficit field matric suction in unsaturated soil slopes. Environmental Earth Sciences, 76(23), 1–17. https://doi.org/10.1007/s12665-017-7127-2Li, J. H., Lu, Z., Guo, L. B., & Zhang, L. M. (2017). Experimental study on soil-water characteristic curve for silty clay with desiccation cracks. Engineering Geology, 218, 70–76. https://doi.org/10.1016/j.enggeo.2017.01.004Lim, L. L., Chang, M. F., Fredlund, D. G., & Rahardjo, H. (1996). Effect of rainfall on matric suctions in a residual soil slope. NATL RESEARCH COUNCIL OF CANADA, OTTAWA, (CAN).Lu, N., & Likos, W. J. (2004). Unsaturated soil mechanics. J. Wiley.Malaver Soto, N. M., & Tafur Tafur, R. (2018). Lineamientos básicos para la clasificación de suelos tropicales en Colombia orientado a pavimentos. Universidad Católica de Colombia.Malaya, C., & Sreedeep, S. (2010). A Study on Wetting Soil-Water Characteristic Curve of a Sandy Soil. Indian Geotechnical Conference, 2–3.Meza Ochoa, V. (2012). Suelos parcialmente saturados: De la investigación a la cátedra universitaria. Boletín de Ciencias de La Tierra, 0(31), 23–38.Mitchell, J. K., & Soga, K. (2005). Fundamentals of Soil Behavior. In Soil Science (Tercera Ed, Vol. 158, Issue 1). John Wiley & Sons, Inc. https://doi.org/10.1097/00010694-199407000-00009Monsalve, G., Villarraga, C., & Vallejo, J. (2010). Inferences about the seismic structure of the upper lithosphere beneath the Aburrá Valley using data from accelerometer networks. Boletín de Ciencias de La Tierra, 77–94.Nascimento, Í., Alencar, T., Santos, C., Assis, R., & Mota, J. (2018). Effect of sample re-saturation on soil-water characteristic curve. Revista Caatinga, 31, 446–454. https://doi.org/10.1590/1983-21252018v31n221rcNg, C. W. W., & Shi, Q. (1998). A numerical investigation of the stability of unsaturated soil slopes subjected to transient seepage. Computers and Geotechnics, 22(1), 1–28. https://doi.org/https://doi.org/10.1016/S0266-352X(97)00036-0Nogami, J. S., & Villibor, D. F. P. P.-S. P. (1995). Pavimentacao de baixo custo com solos lateriticos. Vilibor.Pasculli, A., Sciarra, N., Esposito, L., & Esposito, A. W. (2017). Effects of wetting and drying cycles on mechanical properties of pyroclastic soils. Catena, 156(April), 113–123. https://doi.org/10.1016/j.catena.2017.04.004Perez Garcia, N., Garnica Anguas, P., & Pola Velazquez, J. C. (2013). Predicción de la curva característica con el modelo de proporcionalidad natural. Publicación Técnica, 361, 78.Pitts, J. (1983). The form and causes of slope failures in an area of west Singapore Island. Journal of Tropical Geography, 4, 162–168.Pitts, J. (1984). A survey of engineering geology in Singapore. J. of Southeast Asian Geotechnical Society, 15, 1–20.Pitts, J., & Cy, S. (1987). Insitu soil suction measurements in relation to slope stability investigations in Singapore. In E. T. Hanrahan, T. L. L. Orr, & T. F. Widdis (Eds.), 9th European Conf. on Soil Mechanics and Foundation Engineering (pp. 79–82.).Rahardjo, H., Lim, T. T., Chang, M. F., & Fredlund, D. G. (1995). Shear-strength characteristics of a residual soil. Canadian Geotechnical Journal, 32(1), 60–77. https://doi.org/10.1139/t95-005Ridley, A. M. (1993). The measurement of soil moisture suction. In University of London. University of London.Ridley, A. M., & Burland, J. B. (1993). A new instrument for the measurement of soil moisture suction. Géotechnique, 43(2), 321–324. https://doi.org/10.1680/geot.1993.43.2.321Schofield, R. K. (1935). The pF of the water in soil. 3rd Int. Congr. Soil Science, 37–48.Skempton, A. W., & Hutchinson, J. N. (1969). Stability of natural slopes and embankment foundations. In Sociedad Mexicana de Mecánica de Suelos (Ed.), VII Congreso Internacional de Mecánica de Suelos e Ingeniería de Cimentaciones (pp. 291–340). https://doi.org/10.1007/978-3-319-73568-9_174Sweeney, D. J., & Robertson, P. K. (1979). A fundamental approach to slope stability problems in Hong Kong. Hong Kong Engineer, 7, 35–44.Tan, S. B., Tan, S. L., Lim, T. L., & Yang, K. S. (1987). Landslide problems and their control in Singapore. 9th Southeast Asian Geotechnical Conf., Southeast Asian Geotechnical Soc., 25–36.Van Genuchten, M. (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils1. Soil Science Society of America Journal, 44. https://doi.org/10.2136/sssaj1980.03615995004400050002xVanapalli, S., Fredlund, D. G., Pufahl, D. E., & Clifton, A. W. (1996). Model for the prediction of shear strength with respect to soil suction. Canadian Geotechnical Journal - CAN GEOTECH J, 33, 379–392. https://doi.org/10.1139/t96-060Zapata, C., Houston, W., Houston, S., & Walsh, K. (2000). Soil–Water Characteristic Curve Variability. In Geotechnical Special Publication (Vol. 287). https://doi.org/10.1061/40510(287)7EstudiantesORIGINAL1035858397.2021.pdf1035858397.2021.pdfTesis de Maestría en Ingeniería - Geotecniaapplication/pdf2474267https://repositorio.unal.edu.co/bitstream/unal/81228/3/1035858397.2021.pdfb3ab0b6ffd8b88d9c5ffe074a20d5283MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81228/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1035858397.2021.pdf.jpg1035858397.2021.pdf.jpgGenerated Thumbnailimage/jpeg4015https://repositorio.unal.edu.co/bitstream/unal/81228/5/1035858397.2021.pdf.jpgcd4ffcc2dbf0020fcdc2d749e5fa737bMD55unal/81228oai:repositorio.unal.edu.co:unal/812282023-08-03 23:03:29.62Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK