Un modelo de recomendación de protocolos experimentales basado en el contexto de uso del usuario
El protocolo experimental es un instrumento que formaliza el quehacer experimental describiendo las particularidades y las entidades convergentes en el diseño de experimentos y permite la reproducibilidad de los mismos como piedra angular de la práctica científica (Soldatova et al., 2014a). En esta...
- Autores:
-
Muñoz Fernández, Juan Felipe
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/79598
- Palabra clave:
- 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Ingeniería civil
Protocolo experimental
Sistemas de recomendación
Ingeniería civil
Experimental protocol
Recommendation systems
Civil engineering
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_7a28ba473f03f780ac7748ac4cc4569f |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/79598 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Un modelo de recomendación de protocolos experimentales basado en el contexto de uso del usuario |
dc.title.translated.eng.fl_str_mv |
A recommendation model of experimental protocols based on the user context of use |
title |
Un modelo de recomendación de protocolos experimentales basado en el contexto de uso del usuario |
spellingShingle |
Un modelo de recomendación de protocolos experimentales basado en el contexto de uso del usuario 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores Ingeniería civil Protocolo experimental Sistemas de recomendación Ingeniería civil Experimental protocol Recommendation systems Civil engineering |
title_short |
Un modelo de recomendación de protocolos experimentales basado en el contexto de uso del usuario |
title_full |
Un modelo de recomendación de protocolos experimentales basado en el contexto de uso del usuario |
title_fullStr |
Un modelo de recomendación de protocolos experimentales basado en el contexto de uso del usuario |
title_full_unstemmed |
Un modelo de recomendación de protocolos experimentales basado en el contexto de uso del usuario |
title_sort |
Un modelo de recomendación de protocolos experimentales basado en el contexto de uso del usuario |
dc.creator.fl_str_mv |
Muñoz Fernández, Juan Felipe |
dc.contributor.advisor.none.fl_str_mv |
Guzmán-Luna, Jaime Alberto |
dc.contributor.author.none.fl_str_mv |
Muñoz Fernández, Juan Felipe |
dc.contributor.researchgroup.spa.fl_str_mv |
SISTEMAS INTELIGENTES WEB (SINTELWEB) |
dc.subject.ddc.spa.fl_str_mv |
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores |
topic |
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores Ingeniería civil Protocolo experimental Sistemas de recomendación Ingeniería civil Experimental protocol Recommendation systems Civil engineering |
dc.subject.lemb.none.fl_str_mv |
Ingeniería civil |
dc.subject.proposal.spa.fl_str_mv |
Protocolo experimental Sistemas de recomendación Ingeniería civil |
dc.subject.proposal.eng.fl_str_mv |
Experimental protocol Recommendation systems Civil engineering |
description |
El protocolo experimental es un instrumento que formaliza el quehacer experimental describiendo las particularidades y las entidades convergentes en el diseño de experimentos y permite la reproducibilidad de los mismos como piedra angular de la práctica científica (Soldatova et al., 2014a). En esta tesis se propone un modelo de recomendación de protocolos experimentales basado en el contexto de uso del usuario. Como caso de estudio se analizan los protocolos experimentales de los ensayos de laboratorio de Ingeniería Civil que están normalizados en los estándares ASTM (American Society for Testing and Materials). Partiendo desde la especificación formal del protocolo experimental se obtiene un modelo de representación que permite describir de manera individual, las diferentes entidades (y sus relaciones) que convergen en este producto de la actividad científica, contribuyendo a la formalización de los protocolos experimentales en un dominio de conocimiento que ha sido poco explorado desde esta perspectiva. Con el resultado anterior, se propone un modelo de recomendación que aprovecha el concepto del contexto de uso para destacar dentro del protocolo experimental, aquellas entidades que caracterizan el contexto en el que un usuario realiza un nuevo experimento, reproduce, repite o audita experimentos previamente realizados. Con esto también se contribuye a considerar la recomendación de este tipo de productos, propuesta que aún no aparece visible en los repositorios de protocolos experimentales explorados en esta tesis. Con los resultados anteriores se construye un prototipo de software que implementa la especificación formal obtenida y el modelo de recomendación, y sirve de punto de partida para considerar el diseño de un sistema de información que facilite el curado de la información resultante de la actividad experimental de un laboratorio de ingeniería civil y la recuperación personalizada de ésta. Mediante unos casos de prueba se valida el modelo de la especificación formal y el modelo de recomendación con resultados satisfactorios en la estrategia basada en el contenido para lograr una recomendación al usuario. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-06-02T17:10:48Z |
dc.date.available.none.fl_str_mv |
2021-06-02T17:10:48Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/79598 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/79598 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
N/A |
dc.relation.references.spa.fl_str_mv |
Adomavicius, G., & Tuzhilin, A. (2015). Context-aware recommender systems. In Recommender Systems Handbook, Second Edition (pp. 191–226). https://doi.org/10.1007/978-1-4899-7637-6_6 Adomavicius, Gediminas, Sankaranarayanan, R., Sen, S., & Tuzhilin, A. (2005). Incorporating contextual information in recommender systems using a multidimensional approach. ACM Trans. Inf. Syst., 23(1), 103–145. https://doi.org/doi: 10.1145/1055709.1055714 Adomavicius, Gediminas, & Tuzhilin, A. (2015). Context-aware recommender systems. In F. Ricci, S. Bracha, L. Rokach, & P. B. Rokach (Eds.), Recommender Systems Handbook, Second Edition (pp. 191–226). Springer. https://doi.org/10.1007/978-1-4899-7637-6_6 Aggarwal, C. C. (2016). Content-Based Recommender Systems. In Recommender Systems. The Textbook (pp. 139–166). Springer International Publishing. Ajmani, S., Ghosh, H., Mallik, A., & Chaudhury, S. (2013). An ontology based personalized garment recommendation system. Proceedings - 2013 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology - Workshops, WI-IATW 2013, 3, 17–20. https://doi.org/10.1109/WI-IAT.2013.143 Allemang, D., & Hendler, J. (2011). Semantic Web for the Working Ontologist: Effective modeling in RDFS and OWL. In Semantic Web for the Working Ontologist (pp. 2–12). Elsevier. Asaduzzaman, M., Roy, C. K., Monir, S., & Schneider, K. A. (2015). Exploring API method parameter recommendations. 2015 IEEE 31st International Conference on Software Maintenance and Evolution, ICSME 2015 - Proceedings, 271–280. https://doi.org/10.1109/ICSM.2015.7332473 Asanov, D. (2011). Algorithms and Methods in Recommender Systems. Other Conferences. https://doi.org/10.1146/annurev-psych-113011-143823 Assante, M. (2015). Science 2.0 Repositories. UNIVERSITÀ DI PISA. Assante, M., Candela, L., Castelli, D., Manghi, P., & Pagano, P. (2015a). Science 2.0 repositories: Time for a change in scholarly communication. D-Lib Magazine. https://doi.org/10.1045/january2015-assante Assante, M., Candela, L., Castelli, D., Manghi, P., & Pagano, P. (2015b). Repositories for Open Science: The SciRepo Reference Model. In E. Garoufallou, R. J. Hartley, & P. Gaitanou (Eds.), Metadata and Semantics Research (pp. 298–311). Springer International Publishing. ASTM International. (n.d.). Geotechnical Engineering Standards. Retrieved April 25, 2018, from https://www.astm.org/Standards/geotechnical-engineering-standards.html ASTM International. (2008). ASTM Form and Style for ASTM Standars. https://www.astm.org/ILS/PDFS/blue_book.pdf ASTM D2216-10 - Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass, ASTM International 1 (2010). https://doi.org/10.1520/D2216-10.N ASTM International. (2017). Form of ASTM Test Methods. In Form and Style of ASTM Standars (pp. 7–24). ASTM Standard D2216-10. (2010). Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. In ASTM International. https://doi.org/10.1520/D2216-10.N Bandrowski, A., Brinkman, R., Brochhausen, M., Brush, M. H., Bug, B., Chibucos, M. C., Clancy, K., Courtot, M., Derom, D., Dumontier, M., Fan, L., Fostel, J., Fragoso, G., Gibson, F., Gonzalez-Beltran, A., Haendel, M. A., He, Y., Heiskanen, M., Hernandez-Boussard, T., … Zheng, J. (2016). The Ontology for Biomedical Investigations. PLoS One, 11(4), e0154556. https://doi.org/10.1371/journal.pone.0154556 Bartling, S., & Friesike, S. (2014). Towards Another Scientific Revolution. In S. Bartling & S. Friesike (Eds.), Opening Science: The Evolving Guide on How the Internet is Changing Research, Collaboration and Scholarly Publishing (pp. 3–15). Springer International Publishing. https://doi.org/10.1007/978-3-319-00026-8_1 Becker, M., & Laue, R. (2012). A comparative survey of business process similarity measures. Computers in Industry, 63(2), 148–167. https://doi.org/10.1016/j.compind.2011.11.003 Belhajjame, K., Corcho, O., Garijo, D., Zhao, J., Missier, P., Newman, D., Palma, R., Bechhofer, S., García Cuesta, E., Gómez-Pérez, J. M., Klyne, G., Page, K., Roos, M., Ruiz, J. E., Soiland-Reyes, S., Verdes-Montenegro, L., De Roure, D., & Goble, C. A. (2012). Workflow-centric research objects: First class citizens in scholarly discourse. CEUR Workshop Proceedings, 903, 1–12. https://doi.org/10.1.1.383.203 Belhajjame, K., Goble, C., & De Roure, D. (2012). Research object management: opportunities and challenges. Data Intensive Collaboration in Science and Engineering (DISCOSE) Workshop, Collocated with ACM CSCW. Belhajjame, K., Zhao, J., Garijo, D., Gamble, M., Hettne, K., Palma, R., Mina, E., Corcho, O., Gómez-Pérez, J. M., Bechhofer, S., Klyne, G., & Goble, C. (2015). Using a suite of ontologies for preserving workflow-centric research objects. Journal of Web Semantics, 32, 16–42. https://doi.org/10.1016/j.websem.2015.01.003 Benchling Inc. (2018). Benchling. https://benchling.com Bergmann, R., & Gil, Y. (2014). Similarity assessment and efficient retrieval of semantic workflows. Information Systems, 40, 115–127. https://doi.org/10.1016/j.is.2012.07.005 Berners-Lee, T., Hendler, J., Lassila, O., & others. (2001). The semantic web. Scientific American, 284(5), 28–37. Bielefeld University. (n.d.). What is BASE. Retrieved September 13, 2018, from https://www.base-search.net/about/en/index.php Bio-protocol LLC. (2018). Bio-Protocol. https://bio-protocol.org BMC. (2018). Biological Procedures Online. https://biologicalproceduresonline.biomedcentral.com/ Bologna, C., De Rosa, A. C., De Vivo, A., Gaeta, M., Sansonetti, G., & Viserta, V. (2013). Personality-based recommendation in E-commerce. CEUR Workshop Proceedings, 997. Bourne, P. E., Clark, T. W., Dale, R., Waard, A. De, Herman, I., Hovy, E. H., & Shotton, D. (2012). Improving The Future of Research Communications and e-scholarship. Dagstuhl Manifestos. https://doi.org/10.4230/DagMan.1.1.41 Bunge, M. (1989). Capítulo 14. Experimento. In Ariel (Ed.), La Investigación Cientifica: Su Estrategia y Su Filosofía (2nd ed., pp. 819–858). Ariel. Carrillo-Ramos, A., Villanova-Oliver, M., Gensel, J., & Martin, H. (2007). Profiling nomadic users considering preferences and context of use. ON THE MOVE TO MEANINGFUL INTERNET SYSTEMS 2007: OTM 2007 WORKSHOPS, PT 1, PROCEEDINGS, 4805, 457–466. Chamorro-Koc, M. (2007). Experience, Context-of-use and the Design of Product Usability [Queensland University of Technology]. https://eprints.qut.edu.au/16360/1/Marianella_Chamorro-Koc_Thesis.pdf Crabu, S. (2014). Give us a protocol and we will rise a lab. The shaping of the infra-structuring objects. Information Infrastructure(s): Boundaries, Contexts, Ecologies, 120–165. D’Agostino, D., Gasparetti, F., Micarelli, A., & Sansonetti, G. (2016). A social context-aware recommender of itineraries between relevant points of interest. Communications in Computer and Information Science, 618, 354–359. https://doi.org/10.1007/978-3-319-40542-1_58 De Roure, D., Goble, C., Aleksejevs, S., Bechhofer, S., Bhagat, J., Cruickshank, D., Fisher, P., Hull, D., Michaelides, D., Newman, D., Procter, R., Lin, Y., & Poschen, M. (2010). Towards open science: The myExperiment approach. Concurrency Computation Practice and Experience. https://doi.org/10.1002/cpe.1601 Deisenroth, M. P., Faisal, A., & Ong, C. S. (2020). Mathematics for Machine Learning. Cambridge University Press. Delatte, N. (2009). Las normas y la ingeniería en las aulas universitarias. ASTM Standardization News. https://www.astm.org/SNEWS/SPANISH/SPMJ09/provocative_spmj09.html Dey, A. K. (2001). Understanding and Using Context. Personal and Ubiquitous Computing 5 (1), 4–7. https://doi.org/10.1007/s007790170019 Dryad Digital Repository. (2016). Dryad. http://datadryad.org Eyharabide, V., Gasparini, I., Schiaffino, S., Pimenta, M., & Amandi, A. (2009). Personalized e-learning environments: Considering students’ contexts. IFIP Advances in Information and Communication Technology, 302 AICT, 48–57. https://doi.org/10.1007/978-3-642-03115-1_5 Fecher, B., & Friesike, S. (2014). Open Science: One Term, Five Schools of Thought. In S. Bartling & S. Friesike (Eds.), Opening Science: The Evolving Guide on How the Internet is Changing Research, Collaboration and Scholarly Publishing (pp. 17–47). Springer International Publishing. https://doi.org/10.1007/978-3-319-00026-8_2 Ferreras-Fernández, T., Merlo-Vega, J. A., & García-Peñalvo, F. J. (2013). Science 2.0 supported by open access repositories and open linked data. Proceedings of the First International Conference on Technological Ecosystem for Enhancing Multiculturality - TEEM ’13. https://doi.org/10.1145/2536536.2536586 Fonseca, J. M. C., Calleros, J. M. G., Meixner, G., Paternò, F., Pullmann, J., Raggett, D., Schwabe, D., & Vanderdonckt, J. (2010). Model-Based UI XG Final Report. W3C Incubator Group Report, May, 32. https://www.w3.org/2005/Incubator/model-based-ui/XGR-mbui/#the-context-of-use Franciosa, J. A. (2012). Protocol Development and Preparation for a Clinical Trial. In P. G. Supino & J. S. Bore (Eds.), Principles of Research Methodology (pp. 111–129). Springer. https://doi.org/10.1007/978-1-4614-3360-6 Friedrich, M., Niemann, K., Scheffel, M., Schmitz, H. C., & Wolpers, M. (2007). Object Recommendation based on Usage Context. Educational Technology & Society, 3(10), 106–121. Garcia-Silva, A., Gomez-Perez, J. M., Palma, R., Marcin, K., Mantovani, S., Foglini, F., Grande, V., De Leo, F., Salvi, S., Trasati, E., Romaniello, V., Albani, M., Silvagni, C., Leone, R., Marelli, F., Albani, S., Lazzarini, M., Napier, H. J., Glaves, H. M., … Ilkay. (2018). Enabling FAIR Research in Earth Science through Research Objects (pp. 1–19). arXiv. García J., Y., García Y.S., M., & González B., S. M. (2012). Semantic Characterization of Context of Use and Contents for User-Centric Media Retrieval. User Centric Media. UCMEDIA 2010, 60, 20–25. https://doi.org/978-3-642-35145-7_3 Garijo, D., & Gil, Y. (2012). Augmenting PROV with plans in P-PLAN: Scientific processes as linked data. CEUR Workshop Proceedings, 951. Giles, C. L., Bollacker, K. D., & Lawrence, S. (1998). CiteSeer: An Automatic Citation Indexing System. Digital Libraries 98: Third ACM Conference on Digital Libraries. https://doi.org/10.1145/276675.276685 Gipp, B., Beel, J., & Hentschel, C. (2009). Scienstein : A Research Paper Recommender System. Scienstein : A Research Paper Recommender System. https://doi.org/10.1109/WI.2006.149 Giraldo, O. (2017). SMART Protocols. http://vocab.linkeddata.es/SMARTProtocols/ Giraldo, O., Garcia, A., & Corcho, O. (2018). A guideline for reporting experimental protocols in life sciences. PeerJ, 6, e4795. https://doi.org/10.7717/peerj.4795 Giraldo, O., García, A., & Corcho, O. (2014). SMART protocols: SeMAntic representation for experimental protocols. CEUR Workshop Proceedings, 1282, 36–47. Giraldo, O., García, A., López, F., & Corcho, O. (2017). Using semantics for representing experimental protocols. Journal of Biomedical Semantics, 8(1). https://doi.org/10.1186/s13326-017-0160-y Goderis, A., Li, P., & Goble, C. (2006). Workflow discovery: The problem, a case study from e-Science and a graph-based solution. Proceedings - ICWS 2006: 2006 IEEE International Conference on Web Services, 312–319. https://doi.org/10.1109/ICWS.2006.147 Golub H, G., & Van Loan, C. F. (1996). Matrix Computations (1985 (ed.)). Johns Hopkins University Press. Gomez-Perez, J. M., Palma, R., & Garcia-Silva, A. (2017). Towards a human-machine scientific partnership based on semantically rich research objects. Proceedings - 13th IEEE International Conference on EScience, EScience 2017. https://doi.org/10.1109/eScience.2017.40 Gomez-Uribe, C. A., & Hunt, N. (2015). The Netflix Recommender System. ACM Transactions on Management Information Systems. https://doi.org/10.1145/2843948 Hane, P. J. (2013). Sharing Research Data—New figshare For Institutions. Against The Grain. http://www.against-the-grain.com/2013/09/sharing-research-data-new-figshare-for-institutions-2/ Holmes, J. (2015). How Methods Videos Are Making Science Smarter. The New Yorker. https://www.newyorker.com/tech/elements/how-methods-videos-are-making-science-smarter Imran, H., Belghis-Zadeh, M., Chang, T.-W., Kinshuk, & Graf, S. (2016). PLORS: a personalized learning object recommender system. Vietnam Journal of Computer Science, 3(1), 3–13. https://doi.org/10.1007/s40595-015-0049-6 Inzunza, S., Juárez-Ramírez, R., & Ramírez-Noriega, A. (2016). User and Context Information in Context-Aware Recommender Systems: A Systematic Literature Review. In New Advances in Information Systems and Technologies (Issue 444, pp. 649–658). Springer International. https://doi.org/10.1007/978-3-319-31232-3_61 Isinkaye, F. O., Folajimi, Y. O., & Ojokoh, B. A. (2015). Recommendation systems: Principles, methods and evaluation. Egyptian Informatics Journal, 16(3), 261–273. https://doi.org/https://doi.org/10.1016/j.eij.2015.06.005 ISO. (1998). ISO 9241-11. Ergonomic Requirements for Office Work with Visual Display Terminals (VDTs) -- Part 11: Guidance on Usability. http://www.iso.org/iso/catalogue_detail.htm?csnumber=16883 Ivanov, G.-B. (2018). Introduction to NLTK. In Natural Language Processing For Hackers (pp. 1–13). Manning Publications. Jack, K., Hammerton, J., Harvey, D., Hoyt, J. J., Reichelt, J., & Henning, V. (2010). Mendeley’s Reply to the DataTEL Challenge. Procedia Computer Science. https://doi.org/doi:10.1037/rmh0000008 Jannach, D., Zanker, M., Felfernig, A., & Friedrich, G. (2010). Recommender Systems: An Introduction (1st ed.). Cambridge University Press. Jannach, D., Zanker, M., Felfernig, A., & Gerhard, F. (2012). Content-Based Recomendation. In Recommender Systems an Introduction. Cambridge University Press. JoVE. (2018). JoVE - Video Journal. https://www.jove.com/ Kandogan, E., Roth, M., Schwarz, P., Hui, J., Terrizzano, I., Christodoulakis, C., & Miller, R. J. (2015). LabBook: Metadata-driven social collaborative data analysis. 2015 IEEE International Conference on Big Data (Big Data), 431–440. https://doi.org/10.1109/BigData.2015.7363784 Knoth, P., Anastasiou, L., Charalampous, A., Cancellieri, M., Pearce, S., Pontika, N., & Bayer, V. (2017). Towards effective research recommender systems for repositories. ArXiv Preprint ArXiv:1705.00578. https://arxiv.org/ftp/arxiv/papers/1705/1705.00578.pdf Kunert, T. (2009). Interactive TV Applications and Their Context of Use. In User-centered Interaction Design Patterns for Interactive Digital Television Applications (pp. 19–47). Springer-Verlag. https://doi.org/10.1007/978-1-84882-275-7 LabArchives LLC. (2018). LabArchives - Notebook. https://www.labarchives.com Lane, H., Howard, C., & Hapke, M. H. (2019a). Build your vocabulary (word tokenization). In Natural Language Processing in Action. (pp. 30–69). Lane, H., Howard, C., & Hapke, M. H. (2019b). Math with words (TD-IDF vectors). In Natural Language Processing in Action (pp. 70–96). Manning Publications. Lee, H., Choi, Y., & Kim, Y.-J. (2011). An adaptive user interface based on spatiotemporal structure learning. IEEE Communications Magazine, 49(6), 118–124. https://doi.org/10.1109/MCOM.2011.5783996 Lichtnow, D., Gasparini, I., Bouzeghoub, A., De Oliveira, J. P. M., & Pimenta, M. S. (2011). Recommendation of learning material through studentś collaboration and user modeling in an adaptive e-learning environment. In Studies In Computational Intelligence (Vol. 350, pp. 257–278). Springer-Verlag. https://doi.org/10.1007/978-3-642-19814-4_12 Lika, B., Kolomvatsos, K., & Hadjiefthymiades, S. (2014). Facing the cold start problem in recommender systems. Expert Systems with Applications, 41(4), 2065–2073. https://doi.org/10.1016/J.ESWA.2013.09.005 Lops, P., de Gemmis, M., & Semeraro, G. (2011). Content-based Recommender Systems: State of the Art and Trends. In Recommender Systems Handbook (pp. 73–105). Springer Science+Business Media. https://doi.org/10.1007/978-0-387-85820-3_3 Lynch, M. (2002). Protocols, practices, and the reproduction of technique in molecular biology. British Journal of Sociology, 53(2), 203–220. https://doi.org/10.1080/00071310220133304 Maccagnan, A., Riva, M., Feltrin, E., Simionati, B., Vardanega, T., Valle, G., & Cannata, N. (2010). Combining ontologies and workflows to design formal protocols for biological laboratories. Automated Experimentation, 2, 3. https://doi.org/10.1186/1759-4499-2-3 Maguire, M. (2001). Context of use within usability activities. International Journal of Human Computer Studies, 55(4), 453–483. https://doi.org/10.1006/ijhc.2001.0486 Meza Ochoa, V. E. (2013). Guía de Laboratorio de Mecánica de Suelos. Politécnico Colombiano Jaime Isaza Cadavid. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed Representations of Words and Phrases and their Compositionality. Miller, B. N., Albert, I., Lam, S. K., Konstan, J. A., & Riedl, J. (2003). MovieLens Unplugged: Experiences with an OccasionallyConnected Recommender Systems. IUI ’03: Proceedings of the 8th International Conference on Intelligent User Interfaces. Molina Fernández, L. E. (2018). Recommendation System for Netflix. Vrije Universiteit Faculty of Science Business Analytics. Nature. (2012). Access all areas. Nature. https://doi.org/10.1038/481409a Nature Publishing Group. (2018). Protocol Exchange. https://www.nature.com/protocolexchange/protocols/ Niemann, K. (2015). Automatic tagging of learning objects based on their usage in web portals. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9307, 240–253. https://doi.org/10.1007/978-3-319-24258-3_18 Niemann, K., & Wolpers, M. (2015). Creating Usage Context-Based Object Similarities to Boost Recommender Systems in Technology Enhanced Learning. IEEE Transactions on Learning Technologies, 8(3), 274–285. https://doi.org/10.1109/TLT.2014.2379261 Olmedo B., C. (2015). RESSIST: A Research Object-based Recommender System. Universidad Politécnica de Madrid. Opentrons. (2018). Opentrons. https://opentrons.com/ OpenWetWare Contributors. (2017). OpenWetWare. https://openwetware.org Orthmann, M. A., Friedrich, M., Kirschenmann, U., Niemann, K., Scheffel, M., Schmitz, H. C., & Wolpers, M. (2011). Usage-based clustering of learning objects for recommendation. Proceedings of the 2011 11th IEEE International Conference on Advanced Learning Technologies, ICALT 2011, 553–557. https://doi.org/10.1109/ICALT.2011.169 Palma, R., Holubowicz, P., Corcho, O., Gómez-Pérez, J. M., & Mazurek, C. (2014). Rohub - A digital library of research objects supporting scientists towards reproducible science. Communications in Computer and Information Science. https://doi.org/10.1007/978-3-319-12024-9_9 Pardo M., C. I. (2017). Los nuevos retos para generar conocimiento en Colombia. Portafolio. http://www.portafolio.co/economia/la-ciencia-abierta-el-elemento-clave-de-la-del-conocimiento-508673 Parker, J., & Hollister, D. (2014). The Cognitive Science Basis for Contex. In Context in Computing (pp. 205–219). Springer. https://doi.org/978-1-4939-1887-4_14 Pazzani, M., & Billsus, D. (2007). Content-Based Recommendation Systems The Adaptive Web. In The Adaptive Web (Vol. 4321, pp. 325–341). https://doi.org/10.1007/978-3-540-72079-9_10 Peska, L. (2016). Using the Context of User Feedback in Recommender Systems. In J. Bouda, L. Hol\’\ik, J. Kofron, J. Strejcek, & A. Rambousek (Eds.), Proceedings 11th Doctoral Workshop on Mathematical and Engineering Methods in Computer Science, {MEMICS} 2016, Telč, Czech Republic, 21st-23rd October 2016. (Vol. 233, pp. 1–12). https://doi.org/10.4204/EPTCS.233.1 Petertonkoker, J., Reinhardt, W., Surve, J., & Sureka, P. (2014). Scientific recommendations to enhance scholarly awareness and foster collaboration. In Recommender Systems for Technology Enhanced Learning: Research Trends and Applications. https://doi.org/10.1007/978-1-4939-0530-0_14 Pinheiro, M. K. (2006). Adaptation Contextuelle et Personnalisée de l’Information de Conscience de Groupe au sein des Systèmes d’Information Coopératifs. Université Joseph-Fourier - Grenoble I. Ricci, F., Rokach, L., & Shapira, B. (2015a). Introduction to Recommender Systems Handbook. Recommender Systems Handbook, 54(OCTOBER), 1–35. https://doi.org/10.1007/978-0-387-85820-3_1 Ricci, F., Rokach, L., & Shapira, B. (2015b). Recommender Systems Handbook. In Springer-Verlag. https://doi.org/10.1007/978-0-387-85820-3 Salton, G., Wong, A., & Yang, C. S. (1975). A vector space model for automatic indexing. Communications of the ACM. https://doi.org/10.1145/361219.361220 San Raffaele Ospedale. (n.d.). Experimental protocol and data tracking. Retrieved September 13, 2018, from http://research.hsr.it/en/research-integrity/experimental-protocol-and-data-tracking.html Schafer, J. Ben, Konstan, J. A., & Riedl, J. (2001). E-Commerce Recommendation Applications. In Applications of Data Mining to Electronic Commerce. https://doi.org/10.1007/978-1-4615-1627-9_6 SciNote. (2018). SciNote. https://scinote.net/ Shani, G., & Gunawardana, A. (2011). Evaluating Recommendation Systems. In Recommender Systems Handbook (p. 283). Springer New York Dordrecht Heidelberg London. Sitek, D., & Bertelmann, R. (2014). Open Access: A State of the Art. In S. Bartling & S. Friesike (Eds.), Opening Science: The Evolving Guide on How the Internet is Changing Research, Collaboration and Scholarly Publishing (pp. 139–153). Springer International Publishing. https://doi.org/10.1007/978-3-319-00026-8_9 Soldatova, L. N., Aubrey, W., King, R. D., & Clare, A. (2008). The EXACT description of biomedical protocols. Bioinformatics, 24(13), 295–303. https://doi.org/10.1093/bioinformatics/btn156 Soldatova, L. N., & King, R. D. (2006). An ontology of scientific experiments. Journal of Royal Society Interface, 3(June), 795–803. https://doi.org/10.1098/rsif.2006.0134 Soldatova, L. N., Nadis, D., King, R. D., Basu, P. S., Haddi, E., Baumlé, V., Saunders, N. J., Marwan, W., & Rudkin, B. B. (2014a). EXACT2: the semantics of biomedical protocols. BMC Bioinformatics, 15 Suppl 1(Suppl 14), S5. https://doi.org/10.1186/1471-2105-15-S14-S5 Soldatova, L. N., Nadis, D., King, R. D., Basu, P. S., Haddi, E., Baumlé, V., Saunders, N. J., Marwan, W., & Rudkin, B. B. (2014b). EXACT2: The semantics of biomedical protocols. BMC Bioinformatics, 15(14). https://doi.org/10.1186/1471-2105-15-S14-S5 Son, L. H. (2016). Dealing with the new user cold-start problem in recommender systems: A comparative review. Information Systems, 58, 87–104. https://doi.org/10.1016/j.is.2014.10.001 Spidlen, J., Breuer, K., Rosenberg, C., Kotecha, N., & Brinkman, R. R. (2012). FlowRepository: A resource of annotated flow cytometry datasets associated with peer-reviewed publications. Cytometry Part A, 81A(9), 727–731. https://doi.org/10.1002/cyto.a.22106 Springer Nature. (2018). Springer Nature Experiments. https://experiments.springernature.com/ Studer, R., Benjamins, V., & Fensel, D. (1998). Knowledge engineering: principles and methods. Data Knowledge Engineering, 25(1–2), 161–197. https://doi.org/10.1016/S0169-023X(97)00056-6 Swiss Institute of Bioinformatics. (2018). Swiss-Model. https://swissmodel.expasy.org/repository Teytelman, L., Stoliartchouk, A., Kindler, L., & Hurwitz, B. L. (2016). Protocols.io: Virtual Communities for Protocol Development and Discussion. PLoS Biology. https://doi.org/10.1371/journal.pbio.1002538 The CellML Project. (2018). cellML. https://www.cellml.org Ting, K. M. (2010). Precision and Recall. In C. Sammut & G. I. Webb (Eds.), Encyclopedia of Machine Learning (p. 781). Springer US. https://doi.org/10.1007/978-0-387-30164-8_652 Torres, I.-D., Guzmán-Luna, J., & Moreno, F. (2018). Automatic Workflow Scientific Model for Lab Test in Civil Engineering. International Journal of Applied Engineering Research, 13(9), 6529–6535. https://www.ripublication.com/ijaer18/ijaerv13n9_06.pdf Torres, I., Guzmán, J., & Moreno, F. (2017). Semántica para un sistema de recuperación de protocolos experimentales en ingeniería civil. Coloquio de Investigación Multidisciplinaria, 5(2), 753. Treat-NMD Neuromuscular Network. (2018). Experimental Protocols for DMD animal models. http://www.treat-nmd.eu/research/preclinical/dmd-sops/ UC San Diego. (2018). The Metabolomics Workbench. http://www.metabolomicsworkbench.org/ Utrecht University. (2018). Search Repository. https://uilots-labs.wp.hum.uu.nl/resources/search-resources/ Väätäjä, H. (2015). Characterizing the context of use in mobile work. IFIP Advances in Information and Communication Technology, 468, 97–113. https://doi.org/10.1007/978-3-319-27048-7_7 Valdestilhas, A., Kosch, H., & Marcotti, P. (2014). User-centric and personalized access to mobile multimedia systems based on a multimedia middleware. Proceedings - 14th International Conference on Computational Science and Its Applications, ICCSA 2014, 260–263. https://doi.org/10.1109/ICCSA.2014.60 Verbert K.; Manouselis, N. . O. X. . W. M. . D. H. . B. I. . D. E. (2012). Context-Aware Recommender Systems for Learning: A Survey and Future Challenges. Learning Technologies, IEEE Transactions On, 5(4), 318–335. https://doi.org/10.1109/TLT.2012.11 Wolstencroft, K., Krebs, O., Snoep, J. L., Stanford, N. J., Bacall, F., Golebiewski, M., Kuzyakiv, R., Nguyen, Q., Owen, S., Soiland-Reyes, S., Straszewski, J., Van Niekerk, D. D., Williams, A. R., Malmström, L., Rinn, B., Müller, W., & Goble, C. (2017). FAIRDOMHub: A repository and collaboration environment for sharing systems biology research. Nucleic Acids Research. https://doi.org/10.1093/nar/gkw1032 Xu, Z., Zhang, F., Wang, W., Liu, H., & Kong, X. (2016). Exploiting Trust and Usage Context for Cross-Domain Recommendation. IEEE Access, 4, 2398–2407. https://doi.org/10.1109/ACCESS.2016.2566658 Xue, N., Jia, S. ling, Hao, J. xing, & Wang, Q. (2013). Ontology based scientific keywords recommendation system under web 2.0. International Journal of Emerging Technologies in Learning. https://doi.org/10.3991/ijet.v8i4.2942 Yachie, N., Consortium, R. B., & Natsume, T. (2017). Robotic crowd biology with Maholo LabDroids. In Nature Biotechnology. https://doi.org/10.1038/nbt.3758 Zakrzewska, D. (2009). Cluster analysis in personalized e-learning systems. Studies in Computational Intelligence, 252, 229–250. https://doi.org/10.1007/978-3-642-04170-9_10 Zakrzewska, D. (2011). Building context-aware group recommendations in E-learning systems. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6922 LNAI(PART 1), 132–141. https://doi.org/10.1007/978-3-642-23935-9_13 Zheng, Y. (2016). Tutorial: Context-Awareness In Information Retrieval and Recommender Systems. The 16th IEEE/WIC/ACM Conference on Web Intelligence. https://yongzhengme.wordpress.com/publications/ |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
257 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Maestría en Ingeniería - Ingeniería de Sistemas |
dc.publisher.department.spa.fl_str_mv |
Departamento de la Computación y la Decisión |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/79598/3/license_rdf https://repositorio.unal.edu.co/bitstream/unal/79598/4/license.txt https://repositorio.unal.edu.co/bitstream/unal/79598/5/98668527.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/79598/6/98668527.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 cccfe52f796b7c63423298c2d3365fc6 5b6134156efda2ab019ec9d970eef76c 64f307b8e610e8e2e95bf8ff2ff95e46 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090134807642112 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Guzmán-Luna, Jaime Alberto53949f6ef7468dff38d03f3b56e13f31600Muñoz Fernández, Juan Felipeffd94c63da74ee3169854c074e39b476SISTEMAS INTELIGENTES WEB (SINTELWEB)2021-06-02T17:10:48Z2021-06-02T17:10:48Z2021https://repositorio.unal.edu.co/handle/unal/79598Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/El protocolo experimental es un instrumento que formaliza el quehacer experimental describiendo las particularidades y las entidades convergentes en el diseño de experimentos y permite la reproducibilidad de los mismos como piedra angular de la práctica científica (Soldatova et al., 2014a). En esta tesis se propone un modelo de recomendación de protocolos experimentales basado en el contexto de uso del usuario. Como caso de estudio se analizan los protocolos experimentales de los ensayos de laboratorio de Ingeniería Civil que están normalizados en los estándares ASTM (American Society for Testing and Materials). Partiendo desde la especificación formal del protocolo experimental se obtiene un modelo de representación que permite describir de manera individual, las diferentes entidades (y sus relaciones) que convergen en este producto de la actividad científica, contribuyendo a la formalización de los protocolos experimentales en un dominio de conocimiento que ha sido poco explorado desde esta perspectiva. Con el resultado anterior, se propone un modelo de recomendación que aprovecha el concepto del contexto de uso para destacar dentro del protocolo experimental, aquellas entidades que caracterizan el contexto en el que un usuario realiza un nuevo experimento, reproduce, repite o audita experimentos previamente realizados. Con esto también se contribuye a considerar la recomendación de este tipo de productos, propuesta que aún no aparece visible en los repositorios de protocolos experimentales explorados en esta tesis. Con los resultados anteriores se construye un prototipo de software que implementa la especificación formal obtenida y el modelo de recomendación, y sirve de punto de partida para considerar el diseño de un sistema de información que facilite el curado de la información resultante de la actividad experimental de un laboratorio de ingeniería civil y la recuperación personalizada de ésta. Mediante unos casos de prueba se valida el modelo de la especificación formal y el modelo de recomendación con resultados satisfactorios en la estrategia basada en el contenido para lograr una recomendación al usuario.The experimental protocol is an instrument that formalizes the experimental work, describing the particularities and entities that converge in the design of experiments and allows their reproducibility as a cornerstone of scientific practice (Soldatova et al., 2014a). In this thesis a model of recommendation of experimental protocols is proposed based on the context of use of the user. As a case study, the experimental protocols of the Civil Engineering laboratory tests in the ASTM (American Society for Testing and Materials) standards are analyzed. Starting from the formal specification of the experimental protocol, a representation model is obtained. This model allows to describe individually, the different entities (and their relationships) that converge in this product of scientific activity, contributing to the formalization of experimental protocols in a domain of knowledge that has been little explored from this perspective. With the previous result, a recommendation model is proposed taking advantage of the concept of the context of use to highlight within the experimental protocol, those entities that characterize the context in which a user performs a new experiment, reproduces, repeats or audits previously performed experiments. This also contributes to considering the recommendation of this type of product, a proposal that is not yet visible in the repositories of experimental protocols explored in this thesis. With the previous results, a software prototype is built using the obtained formal specification and the recommendation model and serves as a starting point to consider the design of an information system that facilitates the curation of the information resulting from the experimental activity of a civil engineering laboratory and its personalized recovery. Finally, and through test cases, the formal specification model and the recommendation model are validated with satisfactory results in the content-based strategy to achieve a recommendation to the user.MaestríaMagíster en Ingeniería – Ingeniería de SistemasSistemas de recomendación257 páginasapplication/pdfspaUniversidad Nacional de Colombia - Sede MedellínMedellín - Minas - Maestría en Ingeniería - Ingeniería de SistemasDepartamento de la Computación y la DecisiónFacultad de MinasMedellínUniversidad Nacional de Colombia - Sede Medellín000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresIngeniería civilProtocolo experimentalSistemas de recomendaciónIngeniería civilExperimental protocolRecommendation systemsCivil engineeringUn modelo de recomendación de protocolos experimentales basado en el contexto de uso del usuarioA recommendation model of experimental protocols based on the user context of useTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMN/AAdomavicius, G., & Tuzhilin, A. (2015). Context-aware recommender systems. In Recommender Systems Handbook, Second Edition (pp. 191–226). https://doi.org/10.1007/978-1-4899-7637-6_6Adomavicius, Gediminas, Sankaranarayanan, R., Sen, S., & Tuzhilin, A. (2005). Incorporating contextual information in recommender systems using a multidimensional approach. ACM Trans. Inf. Syst., 23(1), 103–145. https://doi.org/doi: 10.1145/1055709.1055714Adomavicius, Gediminas, & Tuzhilin, A. (2015). Context-aware recommender systems. In F. Ricci, S. Bracha, L. Rokach, & P. B. Rokach (Eds.), Recommender Systems Handbook, Second Edition (pp. 191–226). Springer. https://doi.org/10.1007/978-1-4899-7637-6_6Aggarwal, C. C. (2016). Content-Based Recommender Systems. In Recommender Systems. The Textbook (pp. 139–166). Springer International Publishing.Ajmani, S., Ghosh, H., Mallik, A., & Chaudhury, S. (2013). An ontology based personalized garment recommendation system. Proceedings - 2013 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology - Workshops, WI-IATW 2013, 3, 17–20. https://doi.org/10.1109/WI-IAT.2013.143Allemang, D., & Hendler, J. (2011). Semantic Web for the Working Ontologist: Effective modeling in RDFS and OWL. In Semantic Web for the Working Ontologist (pp. 2–12). Elsevier.Asaduzzaman, M., Roy, C. K., Monir, S., & Schneider, K. A. (2015). Exploring API method parameter recommendations. 2015 IEEE 31st International Conference on Software Maintenance and Evolution, ICSME 2015 - Proceedings, 271–280. https://doi.org/10.1109/ICSM.2015.7332473Asanov, D. (2011). Algorithms and Methods in Recommender Systems. Other Conferences. https://doi.org/10.1146/annurev-psych-113011-143823Assante, M. (2015). Science 2.0 Repositories. UNIVERSITÀ DI PISA.Assante, M., Candela, L., Castelli, D., Manghi, P., & Pagano, P. (2015a). Science 2.0 repositories: Time for a change in scholarly communication. D-Lib Magazine. https://doi.org/10.1045/january2015-assanteAssante, M., Candela, L., Castelli, D., Manghi, P., & Pagano, P. (2015b). Repositories for Open Science: The SciRepo Reference Model. In E. Garoufallou, R. J. Hartley, & P. Gaitanou (Eds.), Metadata and Semantics Research (pp. 298–311). Springer International Publishing.ASTM International. (n.d.). Geotechnical Engineering Standards. Retrieved April 25, 2018, from https://www.astm.org/Standards/geotechnical-engineering-standards.htmlASTM International. (2008). ASTM Form and Style for ASTM Standars. https://www.astm.org/ILS/PDFS/blue_book.pdfASTM D2216-10 - Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass, ASTM International 1 (2010). https://doi.org/10.1520/D2216-10.NASTM International. (2017). Form of ASTM Test Methods. In Form and Style of ASTM Standars (pp. 7–24).ASTM Standard D2216-10. (2010). Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. In ASTM International. https://doi.org/10.1520/D2216-10.NBandrowski, A., Brinkman, R., Brochhausen, M., Brush, M. H., Bug, B., Chibucos, M. C., Clancy, K., Courtot, M., Derom, D., Dumontier, M., Fan, L., Fostel, J., Fragoso, G., Gibson, F., Gonzalez-Beltran, A., Haendel, M. A., He, Y., Heiskanen, M., Hernandez-Boussard, T., … Zheng, J. (2016). The Ontology for Biomedical Investigations. PLoS One, 11(4), e0154556. https://doi.org/10.1371/journal.pone.0154556Bartling, S., & Friesike, S. (2014). Towards Another Scientific Revolution. In S. Bartling & S. Friesike (Eds.), Opening Science: The Evolving Guide on How the Internet is Changing Research, Collaboration and Scholarly Publishing (pp. 3–15). Springer International Publishing. https://doi.org/10.1007/978-3-319-00026-8_1Becker, M., & Laue, R. (2012). A comparative survey of business process similarity measures. Computers in Industry, 63(2), 148–167. https://doi.org/10.1016/j.compind.2011.11.003Belhajjame, K., Corcho, O., Garijo, D., Zhao, J., Missier, P., Newman, D., Palma, R., Bechhofer, S., García Cuesta, E., Gómez-Pérez, J. M., Klyne, G., Page, K., Roos, M., Ruiz, J. E., Soiland-Reyes, S., Verdes-Montenegro, L., De Roure, D., & Goble, C. A. (2012). Workflow-centric research objects: First class citizens in scholarly discourse. CEUR Workshop Proceedings, 903, 1–12. https://doi.org/10.1.1.383.203Belhajjame, K., Goble, C., & De Roure, D. (2012). Research object management: opportunities and challenges. Data Intensive Collaboration in Science and Engineering (DISCOSE) Workshop, Collocated with ACM CSCW.Belhajjame, K., Zhao, J., Garijo, D., Gamble, M., Hettne, K., Palma, R., Mina, E., Corcho, O., Gómez-Pérez, J. M., Bechhofer, S., Klyne, G., & Goble, C. (2015). Using a suite of ontologies for preserving workflow-centric research objects. Journal of Web Semantics, 32, 16–42. https://doi.org/10.1016/j.websem.2015.01.003Benchling Inc. (2018). Benchling. https://benchling.comBergmann, R., & Gil, Y. (2014). Similarity assessment and efficient retrieval of semantic workflows. Information Systems, 40, 115–127. https://doi.org/10.1016/j.is.2012.07.005Berners-Lee, T., Hendler, J., Lassila, O., & others. (2001). The semantic web. Scientific American, 284(5), 28–37.Bielefeld University. (n.d.). What is BASE. Retrieved September 13, 2018, from https://www.base-search.net/about/en/index.phpBio-protocol LLC. (2018). Bio-Protocol. https://bio-protocol.orgBMC. (2018). Biological Procedures Online. https://biologicalproceduresonline.biomedcentral.com/Bologna, C., De Rosa, A. C., De Vivo, A., Gaeta, M., Sansonetti, G., & Viserta, V. (2013). Personality-based recommendation in E-commerce. CEUR Workshop Proceedings, 997.Bourne, P. E., Clark, T. W., Dale, R., Waard, A. De, Herman, I., Hovy, E. H., & Shotton, D. (2012). Improving The Future of Research Communications and e-scholarship. Dagstuhl Manifestos. https://doi.org/10.4230/DagMan.1.1.41Bunge, M. (1989). Capítulo 14. Experimento. In Ariel (Ed.), La Investigación Cientifica: Su Estrategia y Su Filosofía (2nd ed., pp. 819–858). Ariel.Carrillo-Ramos, A., Villanova-Oliver, M., Gensel, J., & Martin, H. (2007). Profiling nomadic users considering preferences and context of use. ON THE MOVE TO MEANINGFUL INTERNET SYSTEMS 2007: OTM 2007 WORKSHOPS, PT 1, PROCEEDINGS, 4805, 457–466.Chamorro-Koc, M. (2007). Experience, Context-of-use and the Design of Product Usability [Queensland University of Technology]. https://eprints.qut.edu.au/16360/1/Marianella_Chamorro-Koc_Thesis.pdfCrabu, S. (2014). Give us a protocol and we will rise a lab. The shaping of the infra-structuring objects. Information Infrastructure(s): Boundaries, Contexts, Ecologies, 120–165.D’Agostino, D., Gasparetti, F., Micarelli, A., & Sansonetti, G. (2016). A social context-aware recommender of itineraries between relevant points of interest. Communications in Computer and Information Science, 618, 354–359. https://doi.org/10.1007/978-3-319-40542-1_58De Roure, D., Goble, C., Aleksejevs, S., Bechhofer, S., Bhagat, J., Cruickshank, D., Fisher, P., Hull, D., Michaelides, D., Newman, D., Procter, R., Lin, Y., & Poschen, M. (2010). Towards open science: The myExperiment approach. Concurrency Computation Practice and Experience. https://doi.org/10.1002/cpe.1601Deisenroth, M. P., Faisal, A., & Ong, C. S. (2020). Mathematics for Machine Learning. Cambridge University Press.Delatte, N. (2009). Las normas y la ingeniería en las aulas universitarias. ASTM Standardization News. https://www.astm.org/SNEWS/SPANISH/SPMJ09/provocative_spmj09.htmlDey, A. K. (2001). Understanding and Using Context. Personal and Ubiquitous Computing 5 (1), 4–7. https://doi.org/10.1007/s007790170019Dryad Digital Repository. (2016). Dryad. http://datadryad.orgEyharabide, V., Gasparini, I., Schiaffino, S., Pimenta, M., & Amandi, A. (2009). Personalized e-learning environments: Considering students’ contexts. IFIP Advances in Information and Communication Technology, 302 AICT, 48–57. https://doi.org/10.1007/978-3-642-03115-1_5Fecher, B., & Friesike, S. (2014). Open Science: One Term, Five Schools of Thought. In S. Bartling & S. Friesike (Eds.), Opening Science: The Evolving Guide on How the Internet is Changing Research, Collaboration and Scholarly Publishing (pp. 17–47). Springer International Publishing. https://doi.org/10.1007/978-3-319-00026-8_2Ferreras-Fernández, T., Merlo-Vega, J. A., & García-Peñalvo, F. J. (2013). Science 2.0 supported by open access repositories and open linked data. Proceedings of the First International Conference on Technological Ecosystem for Enhancing Multiculturality - TEEM ’13. https://doi.org/10.1145/2536536.2536586Fonseca, J. M. C., Calleros, J. M. G., Meixner, G., Paternò, F., Pullmann, J., Raggett, D., Schwabe, D., & Vanderdonckt, J. (2010). Model-Based UI XG Final Report. W3C Incubator Group Report, May, 32. https://www.w3.org/2005/Incubator/model-based-ui/XGR-mbui/#the-context-of-useFranciosa, J. A. (2012). Protocol Development and Preparation for a Clinical Trial. In P. G. Supino & J. S. Bore (Eds.), Principles of Research Methodology (pp. 111–129). Springer. https://doi.org/10.1007/978-1-4614-3360-6Friedrich, M., Niemann, K., Scheffel, M., Schmitz, H. C., & Wolpers, M. (2007). Object Recommendation based on Usage Context. Educational Technology & Society, 3(10), 106–121.Garcia-Silva, A., Gomez-Perez, J. M., Palma, R., Marcin, K., Mantovani, S., Foglini, F., Grande, V., De Leo, F., Salvi, S., Trasati, E., Romaniello, V., Albani, M., Silvagni, C., Leone, R., Marelli, F., Albani, S., Lazzarini, M., Napier, H. J., Glaves, H. M., … Ilkay. (2018). Enabling FAIR Research in Earth Science through Research Objects (pp. 1–19). arXiv.García J., Y., García Y.S., M., & González B., S. M. (2012). Semantic Characterization of Context of Use and Contents for User-Centric Media Retrieval. User Centric Media. UCMEDIA 2010, 60, 20–25. https://doi.org/978-3-642-35145-7_3Garijo, D., & Gil, Y. (2012). Augmenting PROV with plans in P-PLAN: Scientific processes as linked data. CEUR Workshop Proceedings, 951.Giles, C. L., Bollacker, K. D., & Lawrence, S. (1998). CiteSeer: An Automatic Citation Indexing System. Digital Libraries 98: Third ACM Conference on Digital Libraries. https://doi.org/10.1145/276675.276685Gipp, B., Beel, J., & Hentschel, C. (2009). Scienstein : A Research Paper Recommender System. Scienstein : A Research Paper Recommender System. https://doi.org/10.1109/WI.2006.149Giraldo, O. (2017). SMART Protocols. http://vocab.linkeddata.es/SMARTProtocols/Giraldo, O., Garcia, A., & Corcho, O. (2018). A guideline for reporting experimental protocols in life sciences. PeerJ, 6, e4795. https://doi.org/10.7717/peerj.4795Giraldo, O., García, A., & Corcho, O. (2014). SMART protocols: SeMAntic representation for experimental protocols. CEUR Workshop Proceedings, 1282, 36–47.Giraldo, O., García, A., López, F., & Corcho, O. (2017). Using semantics for representing experimental protocols. Journal of Biomedical Semantics, 8(1). https://doi.org/10.1186/s13326-017-0160-yGoderis, A., Li, P., & Goble, C. (2006). Workflow discovery: The problem, a case study from e-Science and a graph-based solution. Proceedings - ICWS 2006: 2006 IEEE International Conference on Web Services, 312–319. https://doi.org/10.1109/ICWS.2006.147Golub H, G., & Van Loan, C. F. (1996). Matrix Computations (1985 (ed.)). Johns Hopkins University Press.Gomez-Perez, J. M., Palma, R., & Garcia-Silva, A. (2017). Towards a human-machine scientific partnership based on semantically rich research objects. Proceedings - 13th IEEE International Conference on EScience, EScience 2017. https://doi.org/10.1109/eScience.2017.40Gomez-Uribe, C. A., & Hunt, N. (2015). The Netflix Recommender System. ACM Transactions on Management Information Systems. https://doi.org/10.1145/2843948Hane, P. J. (2013). Sharing Research Data—New figshare For Institutions. Against The Grain. http://www.against-the-grain.com/2013/09/sharing-research-data-new-figshare-for-institutions-2/Holmes, J. (2015). How Methods Videos Are Making Science Smarter. The New Yorker. https://www.newyorker.com/tech/elements/how-methods-videos-are-making-science-smarterImran, H., Belghis-Zadeh, M., Chang, T.-W., Kinshuk, & Graf, S. (2016). PLORS: a personalized learning object recommender system. Vietnam Journal of Computer Science, 3(1), 3–13. https://doi.org/10.1007/s40595-015-0049-6Inzunza, S., Juárez-Ramírez, R., & Ramírez-Noriega, A. (2016). User and Context Information in Context-Aware Recommender Systems: A Systematic Literature Review. In New Advances in Information Systems and Technologies (Issue 444, pp. 649–658). Springer International. https://doi.org/10.1007/978-3-319-31232-3_61Isinkaye, F. O., Folajimi, Y. O., & Ojokoh, B. A. (2015). Recommendation systems: Principles, methods and evaluation. Egyptian Informatics Journal, 16(3), 261–273. https://doi.org/https://doi.org/10.1016/j.eij.2015.06.005ISO. (1998). ISO 9241-11. Ergonomic Requirements for Office Work with Visual Display Terminals (VDTs) -- Part 11: Guidance on Usability. http://www.iso.org/iso/catalogue_detail.htm?csnumber=16883Ivanov, G.-B. (2018). Introduction to NLTK. In Natural Language Processing For Hackers (pp. 1–13). Manning Publications.Jack, K., Hammerton, J., Harvey, D., Hoyt, J. J., Reichelt, J., & Henning, V. (2010). Mendeley’s Reply to the DataTEL Challenge. Procedia Computer Science. https://doi.org/doi:10.1037/rmh0000008Jannach, D., Zanker, M., Felfernig, A., & Friedrich, G. (2010). Recommender Systems: An Introduction (1st ed.). Cambridge University Press.Jannach, D., Zanker, M., Felfernig, A., & Gerhard, F. (2012). Content-Based Recomendation. In Recommender Systems an Introduction. Cambridge University Press.JoVE. (2018). JoVE - Video Journal. https://www.jove.com/Kandogan, E., Roth, M., Schwarz, P., Hui, J., Terrizzano, I., Christodoulakis, C., & Miller, R. J. (2015). LabBook: Metadata-driven social collaborative data analysis. 2015 IEEE International Conference on Big Data (Big Data), 431–440. https://doi.org/10.1109/BigData.2015.7363784Knoth, P., Anastasiou, L., Charalampous, A., Cancellieri, M., Pearce, S., Pontika, N., & Bayer, V. (2017). Towards effective research recommender systems for repositories. ArXiv Preprint ArXiv:1705.00578. https://arxiv.org/ftp/arxiv/papers/1705/1705.00578.pdfKunert, T. (2009). Interactive TV Applications and Their Context of Use. In User-centered Interaction Design Patterns for Interactive Digital Television Applications (pp. 19–47). Springer-Verlag. https://doi.org/10.1007/978-1-84882-275-7LabArchives LLC. (2018). LabArchives - Notebook. https://www.labarchives.comLane, H., Howard, C., & Hapke, M. H. (2019a). Build your vocabulary (word tokenization). In Natural Language Processing in Action. (pp. 30–69).Lane, H., Howard, C., & Hapke, M. H. (2019b). Math with words (TD-IDF vectors). In Natural Language Processing in Action (pp. 70–96). Manning Publications.Lee, H., Choi, Y., & Kim, Y.-J. (2011). An adaptive user interface based on spatiotemporal structure learning. IEEE Communications Magazine, 49(6), 118–124. https://doi.org/10.1109/MCOM.2011.5783996Lichtnow, D., Gasparini, I., Bouzeghoub, A., De Oliveira, J. P. M., & Pimenta, M. S. (2011). Recommendation of learning material through studentś collaboration and user modeling in an adaptive e-learning environment. In Studies In Computational Intelligence (Vol. 350, pp. 257–278). Springer-Verlag. https://doi.org/10.1007/978-3-642-19814-4_12Lika, B., Kolomvatsos, K., & Hadjiefthymiades, S. (2014). Facing the cold start problem in recommender systems. Expert Systems with Applications, 41(4), 2065–2073. https://doi.org/10.1016/J.ESWA.2013.09.005Lops, P., de Gemmis, M., & Semeraro, G. (2011). Content-based Recommender Systems: State of the Art and Trends. In Recommender Systems Handbook (pp. 73–105). Springer Science+Business Media. https://doi.org/10.1007/978-0-387-85820-3_3Lynch, M. (2002). Protocols, practices, and the reproduction of technique in molecular biology. British Journal of Sociology, 53(2), 203–220. https://doi.org/10.1080/00071310220133304Maccagnan, A., Riva, M., Feltrin, E., Simionati, B., Vardanega, T., Valle, G., & Cannata, N. (2010). Combining ontologies and workflows to design formal protocols for biological laboratories. Automated Experimentation, 2, 3. https://doi.org/10.1186/1759-4499-2-3Maguire, M. (2001). Context of use within usability activities. International Journal of Human Computer Studies, 55(4), 453–483. https://doi.org/10.1006/ijhc.2001.0486Meza Ochoa, V. E. (2013). Guía de Laboratorio de Mecánica de Suelos. Politécnico Colombiano Jaime Isaza Cadavid.Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed Representations of Words and Phrases and their Compositionality.Miller, B. N., Albert, I., Lam, S. K., Konstan, J. A., & Riedl, J. (2003). MovieLens Unplugged: Experiences with an OccasionallyConnected Recommender Systems. IUI ’03: Proceedings of the 8th International Conference on Intelligent User Interfaces.Molina Fernández, L. E. (2018). Recommendation System for Netflix. Vrije Universiteit Faculty of Science Business Analytics.Nature. (2012). Access all areas. Nature. https://doi.org/10.1038/481409aNature Publishing Group. (2018). Protocol Exchange. https://www.nature.com/protocolexchange/protocols/Niemann, K. (2015). Automatic tagging of learning objects based on their usage in web portals. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9307, 240–253. https://doi.org/10.1007/978-3-319-24258-3_18Niemann, K., & Wolpers, M. (2015). Creating Usage Context-Based Object Similarities to Boost Recommender Systems in Technology Enhanced Learning. IEEE Transactions on Learning Technologies, 8(3), 274–285. https://doi.org/10.1109/TLT.2014.2379261Olmedo B., C. (2015). RESSIST: A Research Object-based Recommender System. Universidad Politécnica de Madrid.Opentrons. (2018). Opentrons. https://opentrons.com/OpenWetWare Contributors. (2017). OpenWetWare. https://openwetware.orgOrthmann, M. A., Friedrich, M., Kirschenmann, U., Niemann, K., Scheffel, M., Schmitz, H. C., & Wolpers, M. (2011). Usage-based clustering of learning objects for recommendation. Proceedings of the 2011 11th IEEE International Conference on Advanced Learning Technologies, ICALT 2011, 553–557. https://doi.org/10.1109/ICALT.2011.169Palma, R., Holubowicz, P., Corcho, O., Gómez-Pérez, J. M., & Mazurek, C. (2014). Rohub - A digital library of research objects supporting scientists towards reproducible science. Communications in Computer and Information Science. https://doi.org/10.1007/978-3-319-12024-9_9Pardo M., C. I. (2017). Los nuevos retos para generar conocimiento en Colombia. Portafolio. http://www.portafolio.co/economia/la-ciencia-abierta-el-elemento-clave-de-la-del-conocimiento-508673Parker, J., & Hollister, D. (2014). The Cognitive Science Basis for Contex. In Context in Computing (pp. 205–219). Springer. https://doi.org/978-1-4939-1887-4_14Pazzani, M., & Billsus, D. (2007). Content-Based Recommendation Systems The Adaptive Web. In The Adaptive Web (Vol. 4321, pp. 325–341). https://doi.org/10.1007/978-3-540-72079-9_10Peska, L. (2016). Using the Context of User Feedback in Recommender Systems. In J. Bouda, L. Hol\’\ik, J. Kofron, J. Strejcek, & A. Rambousek (Eds.), Proceedings 11th Doctoral Workshop on Mathematical and Engineering Methods in Computer Science, {MEMICS} 2016, Telč, Czech Republic, 21st-23rd October 2016. (Vol. 233, pp. 1–12). https://doi.org/10.4204/EPTCS.233.1Petertonkoker, J., Reinhardt, W., Surve, J., & Sureka, P. (2014). Scientific recommendations to enhance scholarly awareness and foster collaboration. In Recommender Systems for Technology Enhanced Learning: Research Trends and Applications. https://doi.org/10.1007/978-1-4939-0530-0_14Pinheiro, M. K. (2006). Adaptation Contextuelle et Personnalisée de l’Information de Conscience de Groupe au sein des Systèmes d’Information Coopératifs. Université Joseph-Fourier - Grenoble I.Ricci, F., Rokach, L., & Shapira, B. (2015a). Introduction to Recommender Systems Handbook. Recommender Systems Handbook, 54(OCTOBER), 1–35. https://doi.org/10.1007/978-0-387-85820-3_1Ricci, F., Rokach, L., & Shapira, B. (2015b). Recommender Systems Handbook. In Springer-Verlag. https://doi.org/10.1007/978-0-387-85820-3Salton, G., Wong, A., & Yang, C. S. (1975). A vector space model for automatic indexing. Communications of the ACM. https://doi.org/10.1145/361219.361220San Raffaele Ospedale. (n.d.). Experimental protocol and data tracking. Retrieved September 13, 2018, from http://research.hsr.it/en/research-integrity/experimental-protocol-and-data-tracking.htmlSchafer, J. Ben, Konstan, J. A., & Riedl, J. (2001). E-Commerce Recommendation Applications. In Applications of Data Mining to Electronic Commerce. https://doi.org/10.1007/978-1-4615-1627-9_6SciNote. (2018). SciNote. https://scinote.net/Shani, G., & Gunawardana, A. (2011). Evaluating Recommendation Systems. In Recommender Systems Handbook (p. 283). Springer New York Dordrecht Heidelberg London.Sitek, D., & Bertelmann, R. (2014). Open Access: A State of the Art. In S. Bartling & S. Friesike (Eds.), Opening Science: The Evolving Guide on How the Internet is Changing Research, Collaboration and Scholarly Publishing (pp. 139–153). Springer International Publishing. https://doi.org/10.1007/978-3-319-00026-8_9Soldatova, L. N., Aubrey, W., King, R. D., & Clare, A. (2008). The EXACT description of biomedical protocols. Bioinformatics, 24(13), 295–303. https://doi.org/10.1093/bioinformatics/btn156Soldatova, L. N., & King, R. D. (2006). An ontology of scientific experiments. Journal of Royal Society Interface, 3(June), 795–803. https://doi.org/10.1098/rsif.2006.0134Soldatova, L. N., Nadis, D., King, R. D., Basu, P. S., Haddi, E., Baumlé, V., Saunders, N. J., Marwan, W., & Rudkin, B. B. (2014a). EXACT2: the semantics of biomedical protocols. BMC Bioinformatics, 15 Suppl 1(Suppl 14), S5. https://doi.org/10.1186/1471-2105-15-S14-S5Soldatova, L. N., Nadis, D., King, R. D., Basu, P. S., Haddi, E., Baumlé, V., Saunders, N. J., Marwan, W., & Rudkin, B. B. (2014b). EXACT2: The semantics of biomedical protocols. BMC Bioinformatics, 15(14). https://doi.org/10.1186/1471-2105-15-S14-S5Son, L. H. (2016). Dealing with the new user cold-start problem in recommender systems: A comparative review. Information Systems, 58, 87–104. https://doi.org/10.1016/j.is.2014.10.001Spidlen, J., Breuer, K., Rosenberg, C., Kotecha, N., & Brinkman, R. R. (2012). FlowRepository: A resource of annotated flow cytometry datasets associated with peer-reviewed publications. Cytometry Part A, 81A(9), 727–731. https://doi.org/10.1002/cyto.a.22106Springer Nature. (2018). Springer Nature Experiments. https://experiments.springernature.com/Studer, R., Benjamins, V., & Fensel, D. (1998). Knowledge engineering: principles and methods. Data Knowledge Engineering, 25(1–2), 161–197. https://doi.org/10.1016/S0169-023X(97)00056-6Swiss Institute of Bioinformatics. (2018). Swiss-Model. https://swissmodel.expasy.org/repositoryTeytelman, L., Stoliartchouk, A., Kindler, L., & Hurwitz, B. L. (2016). Protocols.io: Virtual Communities for Protocol Development and Discussion. PLoS Biology. https://doi.org/10.1371/journal.pbio.1002538The CellML Project. (2018). cellML. https://www.cellml.orgTing, K. M. (2010). Precision and Recall. In C. Sammut & G. I. Webb (Eds.), Encyclopedia of Machine Learning (p. 781). Springer US. https://doi.org/10.1007/978-0-387-30164-8_652Torres, I.-D., Guzmán-Luna, J., & Moreno, F. (2018). Automatic Workflow Scientific Model for Lab Test in Civil Engineering. International Journal of Applied Engineering Research, 13(9), 6529–6535. https://www.ripublication.com/ijaer18/ijaerv13n9_06.pdfTorres, I., Guzmán, J., & Moreno, F. (2017). Semántica para un sistema de recuperación de protocolos experimentales en ingeniería civil. Coloquio de Investigación Multidisciplinaria, 5(2), 753.Treat-NMD Neuromuscular Network. (2018). Experimental Protocols for DMD animal models. http://www.treat-nmd.eu/research/preclinical/dmd-sops/UC San Diego. (2018). The Metabolomics Workbench. http://www.metabolomicsworkbench.org/Utrecht University. (2018). Search Repository. https://uilots-labs.wp.hum.uu.nl/resources/search-resources/Väätäjä, H. (2015). Characterizing the context of use in mobile work. IFIP Advances in Information and Communication Technology, 468, 97–113. https://doi.org/10.1007/978-3-319-27048-7_7Valdestilhas, A., Kosch, H., & Marcotti, P. (2014). User-centric and personalized access to mobile multimedia systems based on a multimedia middleware. Proceedings - 14th International Conference on Computational Science and Its Applications, ICCSA 2014, 260–263. https://doi.org/10.1109/ICCSA.2014.60Verbert K.; Manouselis, N. . O. X. . W. M. . D. H. . B. I. . D. E. (2012). Context-Aware Recommender Systems for Learning: A Survey and Future Challenges. Learning Technologies, IEEE Transactions On, 5(4), 318–335. https://doi.org/10.1109/TLT.2012.11Wolstencroft, K., Krebs, O., Snoep, J. L., Stanford, N. J., Bacall, F., Golebiewski, M., Kuzyakiv, R., Nguyen, Q., Owen, S., Soiland-Reyes, S., Straszewski, J., Van Niekerk, D. D., Williams, A. R., Malmström, L., Rinn, B., Müller, W., & Goble, C. (2017). FAIRDOMHub: A repository and collaboration environment for sharing systems biology research. Nucleic Acids Research. https://doi.org/10.1093/nar/gkw1032Xu, Z., Zhang, F., Wang, W., Liu, H., & Kong, X. (2016). Exploiting Trust and Usage Context for Cross-Domain Recommendation. IEEE Access, 4, 2398–2407. https://doi.org/10.1109/ACCESS.2016.2566658Xue, N., Jia, S. ling, Hao, J. xing, & Wang, Q. (2013). Ontology based scientific keywords recommendation system under web 2.0. International Journal of Emerging Technologies in Learning. https://doi.org/10.3991/ijet.v8i4.2942Yachie, N., Consortium, R. B., & Natsume, T. (2017). Robotic crowd biology with Maholo LabDroids. In Nature Biotechnology. https://doi.org/10.1038/nbt.3758Zakrzewska, D. (2009). Cluster analysis in personalized e-learning systems. Studies in Computational Intelligence, 252, 229–250. https://doi.org/10.1007/978-3-642-04170-9_10Zakrzewska, D. (2011). Building context-aware group recommendations in E-learning systems. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6922 LNAI(PART 1), 132–141. https://doi.org/10.1007/978-3-642-23935-9_13Zheng, Y. (2016). Tutorial: Context-Awareness In Information Retrieval and Recommender Systems. The 16th IEEE/WIC/ACM Conference on Web Intelligence. https://yongzhengme.wordpress.com/publications/CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/79598/3/license_rdf4460e5956bc1d1639be9ae6146a50347MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79598/4/license.txtcccfe52f796b7c63423298c2d3365fc6MD54ORIGINAL98668527.2021.pdf98668527.2021.pdfMaestría en Ingeniería – Ingeniería de Sistemasapplication/pdf8283992https://repositorio.unal.edu.co/bitstream/unal/79598/5/98668527.2021.pdf5b6134156efda2ab019ec9d970eef76cMD55THUMBNAIL98668527.2021.pdf.jpg98668527.2021.pdf.jpgGenerated Thumbnailimage/jpeg4495https://repositorio.unal.edu.co/bitstream/unal/79598/6/98668527.2021.pdf.jpg64f307b8e610e8e2e95bf8ff2ff95e46MD56unal/79598oai:repositorio.unal.edu.co:unal/795982024-07-20 23:10:51.915Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |