Un modelo de recomendación de protocolos experimentales basado en el contexto de uso del usuario

El protocolo experimental es un instrumento que formaliza el quehacer experimental describiendo las particularidades y las entidades convergentes en el diseño de experimentos y permite la reproducibilidad de los mismos como piedra angular de la práctica científica (Soldatova et al., 2014a). En esta...

Full description

Autores:
Muñoz Fernández, Juan Felipe
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79598
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79598
https://repositorio.unal.edu.co/
Palabra clave:
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Ingeniería civil
Protocolo experimental
Sistemas de recomendación
Ingeniería civil
Experimental protocol
Recommendation systems
Civil engineering
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_7a28ba473f03f780ac7748ac4cc4569f
oai_identifier_str oai:repositorio.unal.edu.co:unal/79598
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Un modelo de recomendación de protocolos experimentales basado en el contexto de uso del usuario
dc.title.translated.eng.fl_str_mv A recommendation model of experimental protocols based on the user context of use
title Un modelo de recomendación de protocolos experimentales basado en el contexto de uso del usuario
spellingShingle Un modelo de recomendación de protocolos experimentales basado en el contexto de uso del usuario
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Ingeniería civil
Protocolo experimental
Sistemas de recomendación
Ingeniería civil
Experimental protocol
Recommendation systems
Civil engineering
title_short Un modelo de recomendación de protocolos experimentales basado en el contexto de uso del usuario
title_full Un modelo de recomendación de protocolos experimentales basado en el contexto de uso del usuario
title_fullStr Un modelo de recomendación de protocolos experimentales basado en el contexto de uso del usuario
title_full_unstemmed Un modelo de recomendación de protocolos experimentales basado en el contexto de uso del usuario
title_sort Un modelo de recomendación de protocolos experimentales basado en el contexto de uso del usuario
dc.creator.fl_str_mv Muñoz Fernández, Juan Felipe
dc.contributor.advisor.none.fl_str_mv Guzmán-Luna, Jaime Alberto
dc.contributor.author.none.fl_str_mv Muñoz Fernández, Juan Felipe
dc.contributor.researchgroup.spa.fl_str_mv SISTEMAS INTELIGENTES WEB (SINTELWEB)
dc.subject.ddc.spa.fl_str_mv 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
topic 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Ingeniería civil
Protocolo experimental
Sistemas de recomendación
Ingeniería civil
Experimental protocol
Recommendation systems
Civil engineering
dc.subject.lemb.none.fl_str_mv Ingeniería civil
dc.subject.proposal.spa.fl_str_mv Protocolo experimental
Sistemas de recomendación
Ingeniería civil
dc.subject.proposal.eng.fl_str_mv Experimental protocol
Recommendation systems
Civil engineering
description El protocolo experimental es un instrumento que formaliza el quehacer experimental describiendo las particularidades y las entidades convergentes en el diseño de experimentos y permite la reproducibilidad de los mismos como piedra angular de la práctica científica (Soldatova et al., 2014a). En esta tesis se propone un modelo de recomendación de protocolos experimentales basado en el contexto de uso del usuario. Como caso de estudio se analizan los protocolos experimentales de los ensayos de laboratorio de Ingeniería Civil que están normalizados en los estándares ASTM (American Society for Testing and Materials). Partiendo desde la especificación formal del protocolo experimental se obtiene un modelo de representación que permite describir de manera individual, las diferentes entidades (y sus relaciones) que convergen en este producto de la actividad científica, contribuyendo a la formalización de los protocolos experimentales en un dominio de conocimiento que ha sido poco explorado desde esta perspectiva. Con el resultado anterior, se propone un modelo de recomendación que aprovecha el concepto del contexto de uso para destacar dentro del protocolo experimental, aquellas entidades que caracterizan el contexto en el que un usuario realiza un nuevo experimento, reproduce, repite o audita experimentos previamente realizados. Con esto también se contribuye a considerar la recomendación de este tipo de productos, propuesta que aún no aparece visible en los repositorios de protocolos experimentales explorados en esta tesis. Con los resultados anteriores se construye un prototipo de software que implementa la especificación formal obtenida y el modelo de recomendación, y sirve de punto de partida para considerar el diseño de un sistema de información que facilite el curado de la información resultante de la actividad experimental de un laboratorio de ingeniería civil y la recuperación personalizada de ésta. Mediante unos casos de prueba se valida el modelo de la especificación formal y el modelo de recomendación con resultados satisfactorios en la estrategia basada en el contenido para lograr una recomendación al usuario.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-06-02T17:10:48Z
dc.date.available.none.fl_str_mv 2021-06-02T17:10:48Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79598
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79598
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv N/A
dc.relation.references.spa.fl_str_mv Adomavicius, G., & Tuzhilin, A. (2015). Context-aware recommender systems. In Recommender Systems Handbook, Second Edition (pp. 191–226). https://doi.org/10.1007/978-1-4899-7637-6_6
Adomavicius, Gediminas, Sankaranarayanan, R., Sen, S., & Tuzhilin, A. (2005). Incorporating contextual information in recommender systems using a multidimensional approach. ACM Trans. Inf. Syst., 23(1), 103–145. https://doi.org/doi: 10.1145/1055709.1055714
Adomavicius, Gediminas, & Tuzhilin, A. (2015). Context-aware recommender systems. In F. Ricci, S. Bracha, L. Rokach, & P. B. Rokach (Eds.), Recommender Systems Handbook, Second Edition (pp. 191–226). Springer. https://doi.org/10.1007/978-1-4899-7637-6_6
Aggarwal, C. C. (2016). Content-Based Recommender Systems. In Recommender Systems. The Textbook (pp. 139–166). Springer International Publishing.
Ajmani, S., Ghosh, H., Mallik, A., & Chaudhury, S. (2013). An ontology based personalized garment recommendation system. Proceedings - 2013 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology - Workshops, WI-IATW 2013, 3, 17–20. https://doi.org/10.1109/WI-IAT.2013.143
Allemang, D., & Hendler, J. (2011). Semantic Web for the Working Ontologist: Effective modeling in RDFS and OWL. In Semantic Web for the Working Ontologist (pp. 2–12). Elsevier.
Asaduzzaman, M., Roy, C. K., Monir, S., & Schneider, K. A. (2015). Exploring API method parameter recommendations. 2015 IEEE 31st International Conference on Software Maintenance and Evolution, ICSME 2015 - Proceedings, 271–280. https://doi.org/10.1109/ICSM.2015.7332473
Asanov, D. (2011). Algorithms and Methods in Recommender Systems. Other Conferences. https://doi.org/10.1146/annurev-psych-113011-143823
Assante, M. (2015). Science 2.0 Repositories. UNIVERSITÀ DI PISA.
Assante, M., Candela, L., Castelli, D., Manghi, P., & Pagano, P. (2015a). Science 2.0 repositories: Time for a change in scholarly communication. D-Lib Magazine. https://doi.org/10.1045/january2015-assante
Assante, M., Candela, L., Castelli, D., Manghi, P., & Pagano, P. (2015b). Repositories for Open Science: The SciRepo Reference Model. In E. Garoufallou, R. J. Hartley, & P. Gaitanou (Eds.), Metadata and Semantics Research (pp. 298–311). Springer International Publishing.
ASTM International. (n.d.). Geotechnical Engineering Standards. Retrieved April 25, 2018, from https://www.astm.org/Standards/geotechnical-engineering-standards.html
ASTM International. (2008). ASTM Form and Style for ASTM Standars. https://www.astm.org/ILS/PDFS/blue_book.pdf
ASTM D2216-10 - Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass, ASTM International 1 (2010). https://doi.org/10.1520/D2216-10.N
ASTM International. (2017). Form of ASTM Test Methods. In Form and Style of ASTM Standars (pp. 7–24).
ASTM Standard D2216-10. (2010). Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. In ASTM International. https://doi.org/10.1520/D2216-10.N
Bandrowski, A., Brinkman, R., Brochhausen, M., Brush, M. H., Bug, B., Chibucos, M. C., Clancy, K., Courtot, M., Derom, D., Dumontier, M., Fan, L., Fostel, J., Fragoso, G., Gibson, F., Gonzalez-Beltran, A., Haendel, M. A., He, Y., Heiskanen, M., Hernandez-Boussard, T., … Zheng, J. (2016). The Ontology for Biomedical Investigations. PLoS One, 11(4), e0154556. https://doi.org/10.1371/journal.pone.0154556
Bartling, S., & Friesike, S. (2014). Towards Another Scientific Revolution. In S. Bartling & S. Friesike (Eds.), Opening Science: The Evolving Guide on How the Internet is Changing Research, Collaboration and Scholarly Publishing (pp. 3–15). Springer International Publishing. https://doi.org/10.1007/978-3-319-00026-8_1
Becker, M., & Laue, R. (2012). A comparative survey of business process similarity measures. Computers in Industry, 63(2), 148–167. https://doi.org/10.1016/j.compind.2011.11.003
Belhajjame, K., Corcho, O., Garijo, D., Zhao, J., Missier, P., Newman, D., Palma, R., Bechhofer, S., García Cuesta, E., Gómez-Pérez, J. M., Klyne, G., Page, K., Roos, M., Ruiz, J. E., Soiland-Reyes, S., Verdes-Montenegro, L., De Roure, D., & Goble, C. A. (2012). Workflow-centric research objects: First class citizens in scholarly discourse. CEUR Workshop Proceedings, 903, 1–12. https://doi.org/10.1.1.383.203
Belhajjame, K., Goble, C., & De Roure, D. (2012). Research object management: opportunities and challenges. Data Intensive Collaboration in Science and Engineering (DISCOSE) Workshop, Collocated with ACM CSCW.
Belhajjame, K., Zhao, J., Garijo, D., Gamble, M., Hettne, K., Palma, R., Mina, E., Corcho, O., Gómez-Pérez, J. M., Bechhofer, S., Klyne, G., & Goble, C. (2015). Using a suite of ontologies for preserving workflow-centric research objects. Journal of Web Semantics, 32, 16–42. https://doi.org/10.1016/j.websem.2015.01.003
Benchling Inc. (2018). Benchling. https://benchling.com
Bergmann, R., & Gil, Y. (2014). Similarity assessment and efficient retrieval of semantic workflows. Information Systems, 40, 115–127. https://doi.org/10.1016/j.is.2012.07.005
Berners-Lee, T., Hendler, J., Lassila, O., & others. (2001). The semantic web. Scientific American, 284(5), 28–37.
Bielefeld University. (n.d.). What is BASE. Retrieved September 13, 2018, from https://www.base-search.net/about/en/index.php
Bio-protocol LLC. (2018). Bio-Protocol. https://bio-protocol.org
BMC. (2018). Biological Procedures Online. https://biologicalproceduresonline.biomedcentral.com/
Bologna, C., De Rosa, A. C., De Vivo, A., Gaeta, M., Sansonetti, G., & Viserta, V. (2013). Personality-based recommendation in E-commerce. CEUR Workshop Proceedings, 997.
Bourne, P. E., Clark, T. W., Dale, R., Waard, A. De, Herman, I., Hovy, E. H., & Shotton, D. (2012). Improving The Future of Research Communications and e-scholarship. Dagstuhl Manifestos. https://doi.org/10.4230/DagMan.1.1.41
Bunge, M. (1989). Capítulo 14. Experimento. In Ariel (Ed.), La Investigación Cientifica: Su Estrategia y Su Filosofía (2nd ed., pp. 819–858). Ariel.
Carrillo-Ramos, A., Villanova-Oliver, M., Gensel, J., & Martin, H. (2007). Profiling nomadic users considering preferences and context of use. ON THE MOVE TO MEANINGFUL INTERNET SYSTEMS 2007: OTM 2007 WORKSHOPS, PT 1, PROCEEDINGS, 4805, 457–466.
Chamorro-Koc, M. (2007). Experience, Context-of-use and the Design of Product Usability [Queensland University of Technology]. https://eprints.qut.edu.au/16360/1/Marianella_Chamorro-Koc_Thesis.pdf
Crabu, S. (2014). Give us a protocol and we will rise a lab. The shaping of the infra-structuring objects. Information Infrastructure(s): Boundaries, Contexts, Ecologies, 120–165.
D’Agostino, D., Gasparetti, F., Micarelli, A., & Sansonetti, G. (2016). A social context-aware recommender of itineraries between relevant points of interest. Communications in Computer and Information Science, 618, 354–359. https://doi.org/10.1007/978-3-319-40542-1_58
De Roure, D., Goble, C., Aleksejevs, S., Bechhofer, S., Bhagat, J., Cruickshank, D., Fisher, P., Hull, D., Michaelides, D., Newman, D., Procter, R., Lin, Y., & Poschen, M. (2010). Towards open science: The myExperiment approach. Concurrency Computation Practice and Experience. https://doi.org/10.1002/cpe.1601
Deisenroth, M. P., Faisal, A., & Ong, C. S. (2020). Mathematics for Machine Learning. Cambridge University Press.
Delatte, N. (2009). Las normas y la ingeniería en las aulas universitarias. ASTM Standardization News. https://www.astm.org/SNEWS/SPANISH/SPMJ09/provocative_spmj09.html
Dey, A. K. (2001). Understanding and Using Context. Personal and Ubiquitous Computing 5 (1), 4–7. https://doi.org/10.1007/s007790170019
Dryad Digital Repository. (2016). Dryad. http://datadryad.org
Eyharabide, V., Gasparini, I., Schiaffino, S., Pimenta, M., & Amandi, A. (2009). Personalized e-learning environments: Considering students’ contexts. IFIP Advances in Information and Communication Technology, 302 AICT, 48–57. https://doi.org/10.1007/978-3-642-03115-1_5
Fecher, B., & Friesike, S. (2014). Open Science: One Term, Five Schools of Thought. In S. Bartling & S. Friesike (Eds.), Opening Science: The Evolving Guide on How the Internet is Changing Research, Collaboration and Scholarly Publishing (pp. 17–47). Springer International Publishing. https://doi.org/10.1007/978-3-319-00026-8_2
Ferreras-Fernández, T., Merlo-Vega, J. A., & García-Peñalvo, F. J. (2013). Science 2.0 supported by open access repositories and open linked data. Proceedings of the First International Conference on Technological Ecosystem for Enhancing Multiculturality - TEEM ’13. https://doi.org/10.1145/2536536.2536586
Fonseca, J. M. C., Calleros, J. M. G., Meixner, G., Paternò, F., Pullmann, J., Raggett, D., Schwabe, D., & Vanderdonckt, J. (2010). Model-Based UI XG Final Report. W3C Incubator Group Report, May, 32. https://www.w3.org/2005/Incubator/model-based-ui/XGR-mbui/#the-context-of-use
Franciosa, J. A. (2012). Protocol Development and Preparation for a Clinical Trial. In P. G. Supino & J. S. Bore (Eds.), Principles of Research Methodology (pp. 111–129). Springer. https://doi.org/10.1007/978-1-4614-3360-6
Friedrich, M., Niemann, K., Scheffel, M., Schmitz, H. C., & Wolpers, M. (2007). Object Recommendation based on Usage Context. Educational Technology & Society, 3(10), 106–121.
Garcia-Silva, A., Gomez-Perez, J. M., Palma, R., Marcin, K., Mantovani, S., Foglini, F., Grande, V., De Leo, F., Salvi, S., Trasati, E., Romaniello, V., Albani, M., Silvagni, C., Leone, R., Marelli, F., Albani, S., Lazzarini, M., Napier, H. J., Glaves, H. M., … Ilkay. (2018). Enabling FAIR Research in Earth Science through Research Objects (pp. 1–19). arXiv.
García J., Y., García Y.S., M., & González B., S. M. (2012). Semantic Characterization of Context of Use and Contents for User-Centric Media Retrieval. User Centric Media. UCMEDIA 2010, 60, 20–25. https://doi.org/978-3-642-35145-7_3
Garijo, D., & Gil, Y. (2012). Augmenting PROV with plans in P-PLAN: Scientific processes as linked data. CEUR Workshop Proceedings, 951.
Giles, C. L., Bollacker, K. D., & Lawrence, S. (1998). CiteSeer: An Automatic Citation Indexing System. Digital Libraries 98: Third ACM Conference on Digital Libraries. https://doi.org/10.1145/276675.276685
Gipp, B., Beel, J., & Hentschel, C. (2009). Scienstein : A Research Paper Recommender System. Scienstein : A Research Paper Recommender System. https://doi.org/10.1109/WI.2006.149
Giraldo, O. (2017). SMART Protocols. http://vocab.linkeddata.es/SMARTProtocols/
Giraldo, O., Garcia, A., & Corcho, O. (2018). A guideline for reporting experimental protocols in life sciences. PeerJ, 6, e4795. https://doi.org/10.7717/peerj.4795
Giraldo, O., García, A., & Corcho, O. (2014). SMART protocols: SeMAntic representation for experimental protocols. CEUR Workshop Proceedings, 1282, 36–47.
Giraldo, O., García, A., López, F., & Corcho, O. (2017). Using semantics for representing experimental protocols. Journal of Biomedical Semantics, 8(1). https://doi.org/10.1186/s13326-017-0160-y
Goderis, A., Li, P., & Goble, C. (2006). Workflow discovery: The problem, a case study from e-Science and a graph-based solution. Proceedings - ICWS 2006: 2006 IEEE International Conference on Web Services, 312–319. https://doi.org/10.1109/ICWS.2006.147
Golub H, G., & Van Loan, C. F. (1996). Matrix Computations (1985 (ed.)). Johns Hopkins University Press.
Gomez-Perez, J. M., Palma, R., & Garcia-Silva, A. (2017). Towards a human-machine scientific partnership based on semantically rich research objects. Proceedings - 13th IEEE International Conference on EScience, EScience 2017. https://doi.org/10.1109/eScience.2017.40
Gomez-Uribe, C. A., & Hunt, N. (2015). The Netflix Recommender System. ACM Transactions on Management Information Systems. https://doi.org/10.1145/2843948
Hane, P. J. (2013). Sharing Research Data—New figshare For Institutions. Against The Grain. http://www.against-the-grain.com/2013/09/sharing-research-data-new-figshare-for-institutions-2/
Holmes, J. (2015). How Methods Videos Are Making Science Smarter. The New Yorker. https://www.newyorker.com/tech/elements/how-methods-videos-are-making-science-smarter
Imran, H., Belghis-Zadeh, M., Chang, T.-W., Kinshuk, & Graf, S. (2016). PLORS: a personalized learning object recommender system. Vietnam Journal of Computer Science, 3(1), 3–13. https://doi.org/10.1007/s40595-015-0049-6
Inzunza, S., Juárez-Ramírez, R., & Ramírez-Noriega, A. (2016). User and Context Information in Context-Aware Recommender Systems: A Systematic Literature Review. In New Advances in Information Systems and Technologies (Issue 444, pp. 649–658). Springer International. https://doi.org/10.1007/978-3-319-31232-3_61
Isinkaye, F. O., Folajimi, Y. O., & Ojokoh, B. A. (2015). Recommendation systems: Principles, methods and evaluation. Egyptian Informatics Journal, 16(3), 261–273. https://doi.org/https://doi.org/10.1016/j.eij.2015.06.005
ISO. (1998). ISO 9241-11. Ergonomic Requirements for Office Work with Visual Display Terminals (VDTs) -- Part 11: Guidance on Usability. http://www.iso.org/iso/catalogue_detail.htm?csnumber=16883
Ivanov, G.-B. (2018). Introduction to NLTK. In Natural Language Processing For Hackers (pp. 1–13). Manning Publications.
Jack, K., Hammerton, J., Harvey, D., Hoyt, J. J., Reichelt, J., & Henning, V. (2010). Mendeley’s Reply to the DataTEL Challenge. Procedia Computer Science. https://doi.org/doi:10.1037/rmh0000008
Jannach, D., Zanker, M., Felfernig, A., & Friedrich, G. (2010). Recommender Systems: An Introduction (1st ed.). Cambridge University Press.
Jannach, D., Zanker, M., Felfernig, A., & Gerhard, F. (2012). Content-Based Recomendation. In Recommender Systems an Introduction. Cambridge University Press.
JoVE. (2018). JoVE - Video Journal. https://www.jove.com/
Kandogan, E., Roth, M., Schwarz, P., Hui, J., Terrizzano, I., Christodoulakis, C., & Miller, R. J. (2015). LabBook: Metadata-driven social collaborative data analysis. 2015 IEEE International Conference on Big Data (Big Data), 431–440. https://doi.org/10.1109/BigData.2015.7363784
Knoth, P., Anastasiou, L., Charalampous, A., Cancellieri, M., Pearce, S., Pontika, N., & Bayer, V. (2017). Towards effective research recommender systems for repositories. ArXiv Preprint ArXiv:1705.00578. https://arxiv.org/ftp/arxiv/papers/1705/1705.00578.pdf
Kunert, T. (2009). Interactive TV Applications and Their Context of Use. In User-centered Interaction Design Patterns for Interactive Digital Television Applications (pp. 19–47). Springer-Verlag. https://doi.org/10.1007/978-1-84882-275-7
LabArchives LLC. (2018). LabArchives - Notebook. https://www.labarchives.com
Lane, H., Howard, C., & Hapke, M. H. (2019a). Build your vocabulary (word tokenization). In Natural Language Processing in Action. (pp. 30–69).
Lane, H., Howard, C., & Hapke, M. H. (2019b). Math with words (TD-IDF vectors). In Natural Language Processing in Action (pp. 70–96). Manning Publications.
Lee, H., Choi, Y., & Kim, Y.-J. (2011). An adaptive user interface based on spatiotemporal structure learning. IEEE Communications Magazine, 49(6), 118–124. https://doi.org/10.1109/MCOM.2011.5783996
Lichtnow, D., Gasparini, I., Bouzeghoub, A., De Oliveira, J. P. M., & Pimenta, M. S. (2011). Recommendation of learning material through studentś collaboration and user modeling in an adaptive e-learning environment. In Studies In Computational Intelligence (Vol. 350, pp. 257–278). Springer-Verlag. https://doi.org/10.1007/978-3-642-19814-4_12
Lika, B., Kolomvatsos, K., & Hadjiefthymiades, S. (2014). Facing the cold start problem in recommender systems. Expert Systems with Applications, 41(4), 2065–2073. https://doi.org/10.1016/J.ESWA.2013.09.005
Lops, P., de Gemmis, M., & Semeraro, G. (2011). Content-based Recommender Systems: State of the Art and Trends. In Recommender Systems Handbook (pp. 73–105). Springer Science+Business Media. https://doi.org/10.1007/978-0-387-85820-3_3
Lynch, M. (2002). Protocols, practices, and the reproduction of technique in molecular biology. British Journal of Sociology, 53(2), 203–220. https://doi.org/10.1080/00071310220133304
Maccagnan, A., Riva, M., Feltrin, E., Simionati, B., Vardanega, T., Valle, G., & Cannata, N. (2010). Combining ontologies and workflows to design formal protocols for biological laboratories. Automated Experimentation, 2, 3. https://doi.org/10.1186/1759-4499-2-3
Maguire, M. (2001). Context of use within usability activities. International Journal of Human Computer Studies, 55(4), 453–483. https://doi.org/10.1006/ijhc.2001.0486
Meza Ochoa, V. E. (2013). Guía de Laboratorio de Mecánica de Suelos. Politécnico Colombiano Jaime Isaza Cadavid.
Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed Representations of Words and Phrases and their Compositionality.
Miller, B. N., Albert, I., Lam, S. K., Konstan, J. A., & Riedl, J. (2003). MovieLens Unplugged: Experiences with an OccasionallyConnected Recommender Systems. IUI ’03: Proceedings of the 8th International Conference on Intelligent User Interfaces.
Molina Fernández, L. E. (2018). Recommendation System for Netflix. Vrije Universiteit Faculty of Science Business Analytics.
Nature. (2012). Access all areas. Nature. https://doi.org/10.1038/481409a
Nature Publishing Group. (2018). Protocol Exchange. https://www.nature.com/protocolexchange/protocols/
Niemann, K. (2015). Automatic tagging of learning objects based on their usage in web portals. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9307, 240–253. https://doi.org/10.1007/978-3-319-24258-3_18
Niemann, K., & Wolpers, M. (2015). Creating Usage Context-Based Object Similarities to Boost Recommender Systems in Technology Enhanced Learning. IEEE Transactions on Learning Technologies, 8(3), 274–285. https://doi.org/10.1109/TLT.2014.2379261
Olmedo B., C. (2015). RESSIST: A Research Object-based Recommender System. Universidad Politécnica de Madrid.
Opentrons. (2018). Opentrons. https://opentrons.com/
OpenWetWare Contributors. (2017). OpenWetWare. https://openwetware.org
Orthmann, M. A., Friedrich, M., Kirschenmann, U., Niemann, K., Scheffel, M., Schmitz, H. C., & Wolpers, M. (2011). Usage-based clustering of learning objects for recommendation. Proceedings of the 2011 11th IEEE International Conference on Advanced Learning Technologies, ICALT 2011, 553–557. https://doi.org/10.1109/ICALT.2011.169
Palma, R., Holubowicz, P., Corcho, O., Gómez-Pérez, J. M., & Mazurek, C. (2014). Rohub - A digital library of research objects supporting scientists towards reproducible science. Communications in Computer and Information Science. https://doi.org/10.1007/978-3-319-12024-9_9
Pardo M., C. I. (2017). Los nuevos retos para generar conocimiento en Colombia. Portafolio. http://www.portafolio.co/economia/la-ciencia-abierta-el-elemento-clave-de-la-del-conocimiento-508673
Parker, J., & Hollister, D. (2014). The Cognitive Science Basis for Contex. In Context in Computing (pp. 205–219). Springer. https://doi.org/978-1-4939-1887-4_14
Pazzani, M., & Billsus, D. (2007). Content-Based Recommendation Systems The Adaptive Web. In The Adaptive Web (Vol. 4321, pp. 325–341). https://doi.org/10.1007/978-3-540-72079-9_10
Peska, L. (2016). Using the Context of User Feedback in Recommender Systems. In J. Bouda, L. Hol\’\ik, J. Kofron, J. Strejcek, & A. Rambousek (Eds.), Proceedings 11th Doctoral Workshop on Mathematical and Engineering Methods in Computer Science, {MEMICS} 2016, Telč, Czech Republic, 21st-23rd October 2016. (Vol. 233, pp. 1–12). https://doi.org/10.4204/EPTCS.233.1
Petertonkoker, J., Reinhardt, W., Surve, J., & Sureka, P. (2014). Scientific recommendations to enhance scholarly awareness and foster collaboration. In Recommender Systems for Technology Enhanced Learning: Research Trends and Applications. https://doi.org/10.1007/978-1-4939-0530-0_14
Pinheiro, M. K. (2006). Adaptation Contextuelle et Personnalisée de l’Information de Conscience de Groupe au sein des Systèmes d’Information Coopératifs. Université Joseph-Fourier - Grenoble I.
Ricci, F., Rokach, L., & Shapira, B. (2015a). Introduction to Recommender Systems Handbook. Recommender Systems Handbook, 54(OCTOBER), 1–35. https://doi.org/10.1007/978-0-387-85820-3_1
Ricci, F., Rokach, L., & Shapira, B. (2015b). Recommender Systems Handbook. In Springer-Verlag. https://doi.org/10.1007/978-0-387-85820-3
Salton, G., Wong, A., & Yang, C. S. (1975). A vector space model for automatic indexing. Communications of the ACM. https://doi.org/10.1145/361219.361220
San Raffaele Ospedale. (n.d.). Experimental protocol and data tracking. Retrieved September 13, 2018, from http://research.hsr.it/en/research-integrity/experimental-protocol-and-data-tracking.html
Schafer, J. Ben, Konstan, J. A., & Riedl, J. (2001). E-Commerce Recommendation Applications. In Applications of Data Mining to Electronic Commerce. https://doi.org/10.1007/978-1-4615-1627-9_6
SciNote. (2018). SciNote. https://scinote.net/
Shani, G., & Gunawardana, A. (2011). Evaluating Recommendation Systems. In Recommender Systems Handbook (p. 283). Springer New York Dordrecht Heidelberg London.
Sitek, D., & Bertelmann, R. (2014). Open Access: A State of the Art. In S. Bartling & S. Friesike (Eds.), Opening Science: The Evolving Guide on How the Internet is Changing Research, Collaboration and Scholarly Publishing (pp. 139–153). Springer International Publishing. https://doi.org/10.1007/978-3-319-00026-8_9
Soldatova, L. N., Aubrey, W., King, R. D., & Clare, A. (2008). The EXACT description of biomedical protocols. Bioinformatics, 24(13), 295–303. https://doi.org/10.1093/bioinformatics/btn156
Soldatova, L. N., & King, R. D. (2006). An ontology of scientific experiments. Journal of Royal Society Interface, 3(June), 795–803. https://doi.org/10.1098/rsif.2006.0134
Soldatova, L. N., Nadis, D., King, R. D., Basu, P. S., Haddi, E., Baumlé, V., Saunders, N. J., Marwan, W., & Rudkin, B. B. (2014a). EXACT2: the semantics of biomedical protocols. BMC Bioinformatics, 15 Suppl 1(Suppl 14), S5. https://doi.org/10.1186/1471-2105-15-S14-S5
Soldatova, L. N., Nadis, D., King, R. D., Basu, P. S., Haddi, E., Baumlé, V., Saunders, N. J., Marwan, W., & Rudkin, B. B. (2014b). EXACT2: The semantics of biomedical protocols. BMC Bioinformatics, 15(14). https://doi.org/10.1186/1471-2105-15-S14-S5
Son, L. H. (2016). Dealing with the new user cold-start problem in recommender systems: A comparative review. Information Systems, 58, 87–104. https://doi.org/10.1016/j.is.2014.10.001
Spidlen, J., Breuer, K., Rosenberg, C., Kotecha, N., & Brinkman, R. R. (2012). FlowRepository: A resource of annotated flow cytometry datasets associated with peer-reviewed publications. Cytometry Part A, 81A(9), 727–731. https://doi.org/10.1002/cyto.a.22106
Springer Nature. (2018). Springer Nature Experiments. https://experiments.springernature.com/
Studer, R., Benjamins, V., & Fensel, D. (1998). Knowledge engineering: principles and methods. Data Knowledge Engineering, 25(1–2), 161–197. https://doi.org/10.1016/S0169-023X(97)00056-6
Swiss Institute of Bioinformatics. (2018). Swiss-Model. https://swissmodel.expasy.org/repository
Teytelman, L., Stoliartchouk, A., Kindler, L., & Hurwitz, B. L. (2016). Protocols.io: Virtual Communities for Protocol Development and Discussion. PLoS Biology. https://doi.org/10.1371/journal.pbio.1002538
The CellML Project. (2018). cellML. https://www.cellml.org
Ting, K. M. (2010). Precision and Recall. In C. Sammut & G. I. Webb (Eds.), Encyclopedia of Machine Learning (p. 781). Springer US. https://doi.org/10.1007/978-0-387-30164-8_652
Torres, I.-D., Guzmán-Luna, J., & Moreno, F. (2018). Automatic Workflow Scientific Model for Lab Test in Civil Engineering. International Journal of Applied Engineering Research, 13(9), 6529–6535. https://www.ripublication.com/ijaer18/ijaerv13n9_06.pdf
Torres, I., Guzmán, J., & Moreno, F. (2017). Semántica para un sistema de recuperación de protocolos experimentales en ingeniería civil. Coloquio de Investigación Multidisciplinaria, 5(2), 753.
Treat-NMD Neuromuscular Network. (2018). Experimental Protocols for DMD animal models. http://www.treat-nmd.eu/research/preclinical/dmd-sops/
UC San Diego. (2018). The Metabolomics Workbench. http://www.metabolomicsworkbench.org/
Utrecht University. (2018). Search Repository. https://uilots-labs.wp.hum.uu.nl/resources/search-resources/
Väätäjä, H. (2015). Characterizing the context of use in mobile work. IFIP Advances in Information and Communication Technology, 468, 97–113. https://doi.org/10.1007/978-3-319-27048-7_7
Valdestilhas, A., Kosch, H., & Marcotti, P. (2014). User-centric and personalized access to mobile multimedia systems based on a multimedia middleware. Proceedings - 14th International Conference on Computational Science and Its Applications, ICCSA 2014, 260–263. https://doi.org/10.1109/ICCSA.2014.60
Verbert K.; Manouselis, N. . O. X. . W. M. . D. H. . B. I. . D. E. (2012). Context-Aware Recommender Systems for Learning: A Survey and Future Challenges. Learning Technologies, IEEE Transactions On, 5(4), 318–335. https://doi.org/10.1109/TLT.2012.11
Wolstencroft, K., Krebs, O., Snoep, J. L., Stanford, N. J., Bacall, F., Golebiewski, M., Kuzyakiv, R., Nguyen, Q., Owen, S., Soiland-Reyes, S., Straszewski, J., Van Niekerk, D. D., Williams, A. R., Malmström, L., Rinn, B., Müller, W., & Goble, C. (2017). FAIRDOMHub: A repository and collaboration environment for sharing systems biology research. Nucleic Acids Research. https://doi.org/10.1093/nar/gkw1032
Xu, Z., Zhang, F., Wang, W., Liu, H., & Kong, X. (2016). Exploiting Trust and Usage Context for Cross-Domain Recommendation. IEEE Access, 4, 2398–2407. https://doi.org/10.1109/ACCESS.2016.2566658
Xue, N., Jia, S. ling, Hao, J. xing, & Wang, Q. (2013). Ontology based scientific keywords recommendation system under web 2.0. International Journal of Emerging Technologies in Learning. https://doi.org/10.3991/ijet.v8i4.2942
Yachie, N., Consortium, R. B., & Natsume, T. (2017). Robotic crowd biology with Maholo LabDroids. In Nature Biotechnology. https://doi.org/10.1038/nbt.3758
Zakrzewska, D. (2009). Cluster analysis in personalized e-learning systems. Studies in Computational Intelligence, 252, 229–250. https://doi.org/10.1007/978-3-642-04170-9_10
Zakrzewska, D. (2011). Building context-aware group recommendations in E-learning systems. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6922 LNAI(PART 1), 132–141. https://doi.org/10.1007/978-3-642-23935-9_13
Zheng, Y. (2016). Tutorial: Context-Awareness In Information Retrieval and Recommender Systems. The 16th IEEE/WIC/ACM Conference on Web Intelligence. https://yongzhengme.wordpress.com/publications/
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 257 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Ingeniería de Sistemas
dc.publisher.department.spa.fl_str_mv Departamento de la Computación y la Decisión
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79598/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79598/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79598/5/98668527.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/79598/6/98668527.2021.pdf.jpg
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
cccfe52f796b7c63423298c2d3365fc6
5b6134156efda2ab019ec9d970eef76c
64f307b8e610e8e2e95bf8ff2ff95e46
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090134807642112
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Guzmán-Luna, Jaime Alberto53949f6ef7468dff38d03f3b56e13f31600Muñoz Fernández, Juan Felipeffd94c63da74ee3169854c074e39b476SISTEMAS INTELIGENTES WEB (SINTELWEB)2021-06-02T17:10:48Z2021-06-02T17:10:48Z2021https://repositorio.unal.edu.co/handle/unal/79598Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/El protocolo experimental es un instrumento que formaliza el quehacer experimental describiendo las particularidades y las entidades convergentes en el diseño de experimentos y permite la reproducibilidad de los mismos como piedra angular de la práctica científica (Soldatova et al., 2014a). En esta tesis se propone un modelo de recomendación de protocolos experimentales basado en el contexto de uso del usuario. Como caso de estudio se analizan los protocolos experimentales de los ensayos de laboratorio de Ingeniería Civil que están normalizados en los estándares ASTM (American Society for Testing and Materials). Partiendo desde la especificación formal del protocolo experimental se obtiene un modelo de representación que permite describir de manera individual, las diferentes entidades (y sus relaciones) que convergen en este producto de la actividad científica, contribuyendo a la formalización de los protocolos experimentales en un dominio de conocimiento que ha sido poco explorado desde esta perspectiva. Con el resultado anterior, se propone un modelo de recomendación que aprovecha el concepto del contexto de uso para destacar dentro del protocolo experimental, aquellas entidades que caracterizan el contexto en el que un usuario realiza un nuevo experimento, reproduce, repite o audita experimentos previamente realizados. Con esto también se contribuye a considerar la recomendación de este tipo de productos, propuesta que aún no aparece visible en los repositorios de protocolos experimentales explorados en esta tesis. Con los resultados anteriores se construye un prototipo de software que implementa la especificación formal obtenida y el modelo de recomendación, y sirve de punto de partida para considerar el diseño de un sistema de información que facilite el curado de la información resultante de la actividad experimental de un laboratorio de ingeniería civil y la recuperación personalizada de ésta. Mediante unos casos de prueba se valida el modelo de la especificación formal y el modelo de recomendación con resultados satisfactorios en la estrategia basada en el contenido para lograr una recomendación al usuario.The experimental protocol is an instrument that formalizes the experimental work, describing the particularities and entities that converge in the design of experiments and allows their reproducibility as a cornerstone of scientific practice (Soldatova et al., 2014a). In this thesis a model of recommendation of experimental protocols is proposed based on the context of use of the user. As a case study, the experimental protocols of the Civil Engineering laboratory tests in the ASTM (American Society for Testing and Materials) standards are analyzed. Starting from the formal specification of the experimental protocol, a representation model is obtained. This model allows to describe individually, the different entities (and their relationships) that converge in this product of scientific activity, contributing to the formalization of experimental protocols in a domain of knowledge that has been little explored from this perspective. With the previous result, a recommendation model is proposed taking advantage of the concept of the context of use to highlight within the experimental protocol, those entities that characterize the context in which a user performs a new experiment, reproduces, repeats or audits previously performed experiments. This also contributes to considering the recommendation of this type of product, a proposal that is not yet visible in the repositories of experimental protocols explored in this thesis. With the previous results, a software prototype is built using the obtained formal specification and the recommendation model and serves as a starting point to consider the design of an information system that facilitates the curation of the information resulting from the experimental activity of a civil engineering laboratory and its personalized recovery. Finally, and through test cases, the formal specification model and the recommendation model are validated with satisfactory results in the content-based strategy to achieve a recommendation to the user.MaestríaMagíster en Ingeniería – Ingeniería de SistemasSistemas de recomendación257 páginasapplication/pdfspaUniversidad Nacional de Colombia - Sede MedellínMedellín - Minas - Maestría en Ingeniería - Ingeniería de SistemasDepartamento de la Computación y la DecisiónFacultad de MinasMedellínUniversidad Nacional de Colombia - Sede Medellín000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresIngeniería civilProtocolo experimentalSistemas de recomendaciónIngeniería civilExperimental protocolRecommendation systemsCivil engineeringUn modelo de recomendación de protocolos experimentales basado en el contexto de uso del usuarioA recommendation model of experimental protocols based on the user context of useTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMN/AAdomavicius, G., & Tuzhilin, A. (2015). Context-aware recommender systems. In Recommender Systems Handbook, Second Edition (pp. 191–226). https://doi.org/10.1007/978-1-4899-7637-6_6Adomavicius, Gediminas, Sankaranarayanan, R., Sen, S., & Tuzhilin, A. (2005). Incorporating contextual information in recommender systems using a multidimensional approach. ACM Trans. Inf. Syst., 23(1), 103–145. https://doi.org/doi: 10.1145/1055709.1055714Adomavicius, Gediminas, & Tuzhilin, A. (2015). Context-aware recommender systems. In F. Ricci, S. Bracha, L. Rokach, & P. B. Rokach (Eds.), Recommender Systems Handbook, Second Edition (pp. 191–226). Springer. https://doi.org/10.1007/978-1-4899-7637-6_6Aggarwal, C. C. (2016). Content-Based Recommender Systems. In Recommender Systems. The Textbook (pp. 139–166). Springer International Publishing.Ajmani, S., Ghosh, H., Mallik, A., & Chaudhury, S. (2013). An ontology based personalized garment recommendation system. Proceedings - 2013 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology - Workshops, WI-IATW 2013, 3, 17–20. https://doi.org/10.1109/WI-IAT.2013.143Allemang, D., & Hendler, J. (2011). Semantic Web for the Working Ontologist: Effective modeling in RDFS and OWL. In Semantic Web for the Working Ontologist (pp. 2–12). Elsevier.Asaduzzaman, M., Roy, C. K., Monir, S., & Schneider, K. A. (2015). Exploring API method parameter recommendations. 2015 IEEE 31st International Conference on Software Maintenance and Evolution, ICSME 2015 - Proceedings, 271–280. https://doi.org/10.1109/ICSM.2015.7332473Asanov, D. (2011). Algorithms and Methods in Recommender Systems. Other Conferences. https://doi.org/10.1146/annurev-psych-113011-143823Assante, M. (2015). Science 2.0 Repositories. UNIVERSITÀ DI PISA.Assante, M., Candela, L., Castelli, D., Manghi, P., & Pagano, P. (2015a). Science 2.0 repositories: Time for a change in scholarly communication. D-Lib Magazine. https://doi.org/10.1045/january2015-assanteAssante, M., Candela, L., Castelli, D., Manghi, P., & Pagano, P. (2015b). Repositories for Open Science: The SciRepo Reference Model. In E. Garoufallou, R. J. Hartley, & P. Gaitanou (Eds.), Metadata and Semantics Research (pp. 298–311). Springer International Publishing.ASTM International. (n.d.). Geotechnical Engineering Standards. Retrieved April 25, 2018, from https://www.astm.org/Standards/geotechnical-engineering-standards.htmlASTM International. (2008). ASTM Form and Style for ASTM Standars. https://www.astm.org/ILS/PDFS/blue_book.pdfASTM D2216-10 - Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass, ASTM International 1 (2010). https://doi.org/10.1520/D2216-10.NASTM International. (2017). Form of ASTM Test Methods. In Form and Style of ASTM Standars (pp. 7–24).ASTM Standard D2216-10. (2010). Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. In ASTM International. https://doi.org/10.1520/D2216-10.NBandrowski, A., Brinkman, R., Brochhausen, M., Brush, M. H., Bug, B., Chibucos, M. C., Clancy, K., Courtot, M., Derom, D., Dumontier, M., Fan, L., Fostel, J., Fragoso, G., Gibson, F., Gonzalez-Beltran, A., Haendel, M. A., He, Y., Heiskanen, M., Hernandez-Boussard, T., … Zheng, J. (2016). The Ontology for Biomedical Investigations. PLoS One, 11(4), e0154556. https://doi.org/10.1371/journal.pone.0154556Bartling, S., & Friesike, S. (2014). Towards Another Scientific Revolution. In S. Bartling & S. Friesike (Eds.), Opening Science: The Evolving Guide on How the Internet is Changing Research, Collaboration and Scholarly Publishing (pp. 3–15). Springer International Publishing. https://doi.org/10.1007/978-3-319-00026-8_1Becker, M., & Laue, R. (2012). A comparative survey of business process similarity measures. Computers in Industry, 63(2), 148–167. https://doi.org/10.1016/j.compind.2011.11.003Belhajjame, K., Corcho, O., Garijo, D., Zhao, J., Missier, P., Newman, D., Palma, R., Bechhofer, S., García Cuesta, E., Gómez-Pérez, J. M., Klyne, G., Page, K., Roos, M., Ruiz, J. E., Soiland-Reyes, S., Verdes-Montenegro, L., De Roure, D., & Goble, C. A. (2012). Workflow-centric research objects: First class citizens in scholarly discourse. CEUR Workshop Proceedings, 903, 1–12. https://doi.org/10.1.1.383.203Belhajjame, K., Goble, C., & De Roure, D. (2012). Research object management: opportunities and challenges. Data Intensive Collaboration in Science and Engineering (DISCOSE) Workshop, Collocated with ACM CSCW.Belhajjame, K., Zhao, J., Garijo, D., Gamble, M., Hettne, K., Palma, R., Mina, E., Corcho, O., Gómez-Pérez, J. M., Bechhofer, S., Klyne, G., & Goble, C. (2015). Using a suite of ontologies for preserving workflow-centric research objects. Journal of Web Semantics, 32, 16–42. https://doi.org/10.1016/j.websem.2015.01.003Benchling Inc. (2018). Benchling. https://benchling.comBergmann, R., & Gil, Y. (2014). Similarity assessment and efficient retrieval of semantic workflows. Information Systems, 40, 115–127. https://doi.org/10.1016/j.is.2012.07.005Berners-Lee, T., Hendler, J., Lassila, O., & others. (2001). The semantic web. Scientific American, 284(5), 28–37.Bielefeld University. (n.d.). What is BASE. Retrieved September 13, 2018, from https://www.base-search.net/about/en/index.phpBio-protocol LLC. (2018). Bio-Protocol. https://bio-protocol.orgBMC. (2018). Biological Procedures Online. https://biologicalproceduresonline.biomedcentral.com/Bologna, C., De Rosa, A. C., De Vivo, A., Gaeta, M., Sansonetti, G., & Viserta, V. (2013). Personality-based recommendation in E-commerce. CEUR Workshop Proceedings, 997.Bourne, P. E., Clark, T. W., Dale, R., Waard, A. De, Herman, I., Hovy, E. H., & Shotton, D. (2012). Improving The Future of Research Communications and e-scholarship. Dagstuhl Manifestos. https://doi.org/10.4230/DagMan.1.1.41Bunge, M. (1989). Capítulo 14. Experimento. In Ariel (Ed.), La Investigación Cientifica: Su Estrategia y Su Filosofía (2nd ed., pp. 819–858). Ariel.Carrillo-Ramos, A., Villanova-Oliver, M., Gensel, J., & Martin, H. (2007). Profiling nomadic users considering preferences and context of use. ON THE MOVE TO MEANINGFUL INTERNET SYSTEMS 2007: OTM 2007 WORKSHOPS, PT 1, PROCEEDINGS, 4805, 457–466.Chamorro-Koc, M. (2007). Experience, Context-of-use and the Design of Product Usability [Queensland University of Technology]. https://eprints.qut.edu.au/16360/1/Marianella_Chamorro-Koc_Thesis.pdfCrabu, S. (2014). Give us a protocol and we will rise a lab. The shaping of the infra-structuring objects. Information Infrastructure(s): Boundaries, Contexts, Ecologies, 120–165.D’Agostino, D., Gasparetti, F., Micarelli, A., & Sansonetti, G. (2016). A social context-aware recommender of itineraries between relevant points of interest. Communications in Computer and Information Science, 618, 354–359. https://doi.org/10.1007/978-3-319-40542-1_58De Roure, D., Goble, C., Aleksejevs, S., Bechhofer, S., Bhagat, J., Cruickshank, D., Fisher, P., Hull, D., Michaelides, D., Newman, D., Procter, R., Lin, Y., & Poschen, M. (2010). Towards open science: The myExperiment approach. Concurrency Computation Practice and Experience. https://doi.org/10.1002/cpe.1601Deisenroth, M. P., Faisal, A., & Ong, C. S. (2020). Mathematics for Machine Learning. Cambridge University Press.Delatte, N. (2009). Las normas y la ingeniería en las aulas universitarias. ASTM Standardization News. https://www.astm.org/SNEWS/SPANISH/SPMJ09/provocative_spmj09.htmlDey, A. K. (2001). Understanding and Using Context. Personal and Ubiquitous Computing 5 (1), 4–7. https://doi.org/10.1007/s007790170019Dryad Digital Repository. (2016). Dryad. http://datadryad.orgEyharabide, V., Gasparini, I., Schiaffino, S., Pimenta, M., & Amandi, A. (2009). Personalized e-learning environments: Considering students’ contexts. IFIP Advances in Information and Communication Technology, 302 AICT, 48–57. https://doi.org/10.1007/978-3-642-03115-1_5Fecher, B., & Friesike, S. (2014). Open Science: One Term, Five Schools of Thought. In S. Bartling & S. Friesike (Eds.), Opening Science: The Evolving Guide on How the Internet is Changing Research, Collaboration and Scholarly Publishing (pp. 17–47). Springer International Publishing. https://doi.org/10.1007/978-3-319-00026-8_2Ferreras-Fernández, T., Merlo-Vega, J. A., & García-Peñalvo, F. J. (2013). Science 2.0 supported by open access repositories and open linked data. Proceedings of the First International Conference on Technological Ecosystem for Enhancing Multiculturality - TEEM ’13. https://doi.org/10.1145/2536536.2536586Fonseca, J. M. C., Calleros, J. M. G., Meixner, G., Paternò, F., Pullmann, J., Raggett, D., Schwabe, D., & Vanderdonckt, J. (2010). Model-Based UI XG Final Report. W3C Incubator Group Report, May, 32. https://www.w3.org/2005/Incubator/model-based-ui/XGR-mbui/#the-context-of-useFranciosa, J. A. (2012). Protocol Development and Preparation for a Clinical Trial. In P. G. Supino & J. S. Bore (Eds.), Principles of Research Methodology (pp. 111–129). Springer. https://doi.org/10.1007/978-1-4614-3360-6Friedrich, M., Niemann, K., Scheffel, M., Schmitz, H. C., & Wolpers, M. (2007). Object Recommendation based on Usage Context. Educational Technology & Society, 3(10), 106–121.Garcia-Silva, A., Gomez-Perez, J. M., Palma, R., Marcin, K., Mantovani, S., Foglini, F., Grande, V., De Leo, F., Salvi, S., Trasati, E., Romaniello, V., Albani, M., Silvagni, C., Leone, R., Marelli, F., Albani, S., Lazzarini, M., Napier, H. J., Glaves, H. M., … Ilkay. (2018). Enabling FAIR Research in Earth Science through Research Objects (pp. 1–19). arXiv.García J., Y., García Y.S., M., & González B., S. M. (2012). Semantic Characterization of Context of Use and Contents for User-Centric Media Retrieval. User Centric Media. UCMEDIA 2010, 60, 20–25. https://doi.org/978-3-642-35145-7_3Garijo, D., & Gil, Y. (2012). Augmenting PROV with plans in P-PLAN: Scientific processes as linked data. CEUR Workshop Proceedings, 951.Giles, C. L., Bollacker, K. D., & Lawrence, S. (1998). CiteSeer: An Automatic Citation Indexing System. Digital Libraries 98: Third ACM Conference on Digital Libraries. https://doi.org/10.1145/276675.276685Gipp, B., Beel, J., & Hentschel, C. (2009). Scienstein : A Research Paper Recommender System. Scienstein : A Research Paper Recommender System. https://doi.org/10.1109/WI.2006.149Giraldo, O. (2017). SMART Protocols. http://vocab.linkeddata.es/SMARTProtocols/Giraldo, O., Garcia, A., & Corcho, O. (2018). A guideline for reporting experimental protocols in life sciences. PeerJ, 6, e4795. https://doi.org/10.7717/peerj.4795Giraldo, O., García, A., & Corcho, O. (2014). SMART protocols: SeMAntic representation for experimental protocols. CEUR Workshop Proceedings, 1282, 36–47.Giraldo, O., García, A., López, F., & Corcho, O. (2017). Using semantics for representing experimental protocols. Journal of Biomedical Semantics, 8(1). https://doi.org/10.1186/s13326-017-0160-yGoderis, A., Li, P., & Goble, C. (2006). Workflow discovery: The problem, a case study from e-Science and a graph-based solution. Proceedings - ICWS 2006: 2006 IEEE International Conference on Web Services, 312–319. https://doi.org/10.1109/ICWS.2006.147Golub H, G., & Van Loan, C. F. (1996). Matrix Computations (1985 (ed.)). Johns Hopkins University Press.Gomez-Perez, J. M., Palma, R., & Garcia-Silva, A. (2017). Towards a human-machine scientific partnership based on semantically rich research objects. Proceedings - 13th IEEE International Conference on EScience, EScience 2017. https://doi.org/10.1109/eScience.2017.40Gomez-Uribe, C. A., & Hunt, N. (2015). The Netflix Recommender System. ACM Transactions on Management Information Systems. https://doi.org/10.1145/2843948Hane, P. J. (2013). Sharing Research Data—New figshare For Institutions. Against The Grain. http://www.against-the-grain.com/2013/09/sharing-research-data-new-figshare-for-institutions-2/Holmes, J. (2015). How Methods Videos Are Making Science Smarter. The New Yorker. https://www.newyorker.com/tech/elements/how-methods-videos-are-making-science-smarterImran, H., Belghis-Zadeh, M., Chang, T.-W., Kinshuk, & Graf, S. (2016). PLORS: a personalized learning object recommender system. Vietnam Journal of Computer Science, 3(1), 3–13. https://doi.org/10.1007/s40595-015-0049-6Inzunza, S., Juárez-Ramírez, R., & Ramírez-Noriega, A. (2016). User and Context Information in Context-Aware Recommender Systems: A Systematic Literature Review. In New Advances in Information Systems and Technologies (Issue 444, pp. 649–658). Springer International. https://doi.org/10.1007/978-3-319-31232-3_61Isinkaye, F. O., Folajimi, Y. O., & Ojokoh, B. A. (2015). Recommendation systems: Principles, methods and evaluation. Egyptian Informatics Journal, 16(3), 261–273. https://doi.org/https://doi.org/10.1016/j.eij.2015.06.005ISO. (1998). ISO 9241-11. Ergonomic Requirements for Office Work with Visual Display Terminals (VDTs) -- Part 11: Guidance on Usability. http://www.iso.org/iso/catalogue_detail.htm?csnumber=16883Ivanov, G.-B. (2018). Introduction to NLTK. In Natural Language Processing For Hackers (pp. 1–13). Manning Publications.Jack, K., Hammerton, J., Harvey, D., Hoyt, J. J., Reichelt, J., & Henning, V. (2010). Mendeley’s Reply to the DataTEL Challenge. Procedia Computer Science. https://doi.org/doi:10.1037/rmh0000008Jannach, D., Zanker, M., Felfernig, A., & Friedrich, G. (2010). Recommender Systems: An Introduction (1st ed.). Cambridge University Press.Jannach, D., Zanker, M., Felfernig, A., & Gerhard, F. (2012). Content-Based Recomendation. In Recommender Systems an Introduction. Cambridge University Press.JoVE. (2018). JoVE - Video Journal. https://www.jove.com/Kandogan, E., Roth, M., Schwarz, P., Hui, J., Terrizzano, I., Christodoulakis, C., & Miller, R. J. (2015). LabBook: Metadata-driven social collaborative data analysis. 2015 IEEE International Conference on Big Data (Big Data), 431–440. https://doi.org/10.1109/BigData.2015.7363784Knoth, P., Anastasiou, L., Charalampous, A., Cancellieri, M., Pearce, S., Pontika, N., & Bayer, V. (2017). Towards effective research recommender systems for repositories. ArXiv Preprint ArXiv:1705.00578. https://arxiv.org/ftp/arxiv/papers/1705/1705.00578.pdfKunert, T. (2009). Interactive TV Applications and Their Context of Use. In User-centered Interaction Design Patterns for Interactive Digital Television Applications (pp. 19–47). Springer-Verlag. https://doi.org/10.1007/978-1-84882-275-7LabArchives LLC. (2018). LabArchives - Notebook. https://www.labarchives.comLane, H., Howard, C., & Hapke, M. H. (2019a). Build your vocabulary (word tokenization). In Natural Language Processing in Action. (pp. 30–69).Lane, H., Howard, C., & Hapke, M. H. (2019b). Math with words (TD-IDF vectors). In Natural Language Processing in Action (pp. 70–96). Manning Publications.Lee, H., Choi, Y., & Kim, Y.-J. (2011). An adaptive user interface based on spatiotemporal structure learning. IEEE Communications Magazine, 49(6), 118–124. https://doi.org/10.1109/MCOM.2011.5783996Lichtnow, D., Gasparini, I., Bouzeghoub, A., De Oliveira, J. P. M., & Pimenta, M. S. (2011). Recommendation of learning material through studentś collaboration and user modeling in an adaptive e-learning environment. In Studies In Computational Intelligence (Vol. 350, pp. 257–278). Springer-Verlag. https://doi.org/10.1007/978-3-642-19814-4_12Lika, B., Kolomvatsos, K., & Hadjiefthymiades, S. (2014). Facing the cold start problem in recommender systems. Expert Systems with Applications, 41(4), 2065–2073. https://doi.org/10.1016/J.ESWA.2013.09.005Lops, P., de Gemmis, M., & Semeraro, G. (2011). Content-based Recommender Systems: State of the Art and Trends. In Recommender Systems Handbook (pp. 73–105). Springer Science+Business Media. https://doi.org/10.1007/978-0-387-85820-3_3Lynch, M. (2002). Protocols, practices, and the reproduction of technique in molecular biology. British Journal of Sociology, 53(2), 203–220. https://doi.org/10.1080/00071310220133304Maccagnan, A., Riva, M., Feltrin, E., Simionati, B., Vardanega, T., Valle, G., & Cannata, N. (2010). Combining ontologies and workflows to design formal protocols for biological laboratories. Automated Experimentation, 2, 3. https://doi.org/10.1186/1759-4499-2-3Maguire, M. (2001). Context of use within usability activities. International Journal of Human Computer Studies, 55(4), 453–483. https://doi.org/10.1006/ijhc.2001.0486Meza Ochoa, V. E. (2013). Guía de Laboratorio de Mecánica de Suelos. Politécnico Colombiano Jaime Isaza Cadavid.Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed Representations of Words and Phrases and their Compositionality.Miller, B. N., Albert, I., Lam, S. K., Konstan, J. A., & Riedl, J. (2003). MovieLens Unplugged: Experiences with an OccasionallyConnected Recommender Systems. IUI ’03: Proceedings of the 8th International Conference on Intelligent User Interfaces.Molina Fernández, L. E. (2018). Recommendation System for Netflix. Vrije Universiteit Faculty of Science Business Analytics.Nature. (2012). Access all areas. Nature. https://doi.org/10.1038/481409aNature Publishing Group. (2018). Protocol Exchange. https://www.nature.com/protocolexchange/protocols/Niemann, K. (2015). Automatic tagging of learning objects based on their usage in web portals. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9307, 240–253. https://doi.org/10.1007/978-3-319-24258-3_18Niemann, K., & Wolpers, M. (2015). Creating Usage Context-Based Object Similarities to Boost Recommender Systems in Technology Enhanced Learning. IEEE Transactions on Learning Technologies, 8(3), 274–285. https://doi.org/10.1109/TLT.2014.2379261Olmedo B., C. (2015). RESSIST: A Research Object-based Recommender System. Universidad Politécnica de Madrid.Opentrons. (2018). Opentrons. https://opentrons.com/OpenWetWare Contributors. (2017). OpenWetWare. https://openwetware.orgOrthmann, M. A., Friedrich, M., Kirschenmann, U., Niemann, K., Scheffel, M., Schmitz, H. C., & Wolpers, M. (2011). Usage-based clustering of learning objects for recommendation. Proceedings of the 2011 11th IEEE International Conference on Advanced Learning Technologies, ICALT 2011, 553–557. https://doi.org/10.1109/ICALT.2011.169Palma, R., Holubowicz, P., Corcho, O., Gómez-Pérez, J. M., & Mazurek, C. (2014). Rohub - A digital library of research objects supporting scientists towards reproducible science. Communications in Computer and Information Science. https://doi.org/10.1007/978-3-319-12024-9_9Pardo M., C. I. (2017). Los nuevos retos para generar conocimiento en Colombia. Portafolio. http://www.portafolio.co/economia/la-ciencia-abierta-el-elemento-clave-de-la-del-conocimiento-508673Parker, J., & Hollister, D. (2014). The Cognitive Science Basis for Contex. In Context in Computing (pp. 205–219). Springer. https://doi.org/978-1-4939-1887-4_14Pazzani, M., & Billsus, D. (2007). Content-Based Recommendation Systems The Adaptive Web. In The Adaptive Web (Vol. 4321, pp. 325–341). https://doi.org/10.1007/978-3-540-72079-9_10Peska, L. (2016). Using the Context of User Feedback in Recommender Systems. In J. Bouda, L. Hol\’\ik, J. Kofron, J. Strejcek, & A. Rambousek (Eds.), Proceedings 11th Doctoral Workshop on Mathematical and Engineering Methods in Computer Science, {MEMICS} 2016, Telč, Czech Republic, 21st-23rd October 2016. (Vol. 233, pp. 1–12). https://doi.org/10.4204/EPTCS.233.1Petertonkoker, J., Reinhardt, W., Surve, J., & Sureka, P. (2014). Scientific recommendations to enhance scholarly awareness and foster collaboration. In Recommender Systems for Technology Enhanced Learning: Research Trends and Applications. https://doi.org/10.1007/978-1-4939-0530-0_14Pinheiro, M. K. (2006). Adaptation Contextuelle et Personnalisée de l’Information de Conscience de Groupe au sein des Systèmes d’Information Coopératifs. Université Joseph-Fourier - Grenoble I.Ricci, F., Rokach, L., & Shapira, B. (2015a). Introduction to Recommender Systems Handbook. Recommender Systems Handbook, 54(OCTOBER), 1–35. https://doi.org/10.1007/978-0-387-85820-3_1Ricci, F., Rokach, L., & Shapira, B. (2015b). Recommender Systems Handbook. In Springer-Verlag. https://doi.org/10.1007/978-0-387-85820-3Salton, G., Wong, A., & Yang, C. S. (1975). A vector space model for automatic indexing. Communications of the ACM. https://doi.org/10.1145/361219.361220San Raffaele Ospedale. (n.d.). Experimental protocol and data tracking. Retrieved September 13, 2018, from http://research.hsr.it/en/research-integrity/experimental-protocol-and-data-tracking.htmlSchafer, J. Ben, Konstan, J. A., & Riedl, J. (2001). E-Commerce Recommendation Applications. In Applications of Data Mining to Electronic Commerce. https://doi.org/10.1007/978-1-4615-1627-9_6SciNote. (2018). SciNote. https://scinote.net/Shani, G., & Gunawardana, A. (2011). Evaluating Recommendation Systems. In Recommender Systems Handbook (p. 283). Springer New York Dordrecht Heidelberg London.Sitek, D., & Bertelmann, R. (2014). Open Access: A State of the Art. In S. Bartling & S. Friesike (Eds.), Opening Science: The Evolving Guide on How the Internet is Changing Research, Collaboration and Scholarly Publishing (pp. 139–153). Springer International Publishing. https://doi.org/10.1007/978-3-319-00026-8_9Soldatova, L. N., Aubrey, W., King, R. D., & Clare, A. (2008). The EXACT description of biomedical protocols. Bioinformatics, 24(13), 295–303. https://doi.org/10.1093/bioinformatics/btn156Soldatova, L. N., & King, R. D. (2006). An ontology of scientific experiments. Journal of Royal Society Interface, 3(June), 795–803. https://doi.org/10.1098/rsif.2006.0134Soldatova, L. N., Nadis, D., King, R. D., Basu, P. S., Haddi, E., Baumlé, V., Saunders, N. J., Marwan, W., & Rudkin, B. B. (2014a). EXACT2: the semantics of biomedical protocols. BMC Bioinformatics, 15 Suppl 1(Suppl 14), S5. https://doi.org/10.1186/1471-2105-15-S14-S5Soldatova, L. N., Nadis, D., King, R. D., Basu, P. S., Haddi, E., Baumlé, V., Saunders, N. J., Marwan, W., & Rudkin, B. B. (2014b). EXACT2: The semantics of biomedical protocols. BMC Bioinformatics, 15(14). https://doi.org/10.1186/1471-2105-15-S14-S5Son, L. H. (2016). Dealing with the new user cold-start problem in recommender systems: A comparative review. Information Systems, 58, 87–104. https://doi.org/10.1016/j.is.2014.10.001Spidlen, J., Breuer, K., Rosenberg, C., Kotecha, N., & Brinkman, R. R. (2012). FlowRepository: A resource of annotated flow cytometry datasets associated with peer-reviewed publications. Cytometry Part A, 81A(9), 727–731. https://doi.org/10.1002/cyto.a.22106Springer Nature. (2018). Springer Nature Experiments. https://experiments.springernature.com/Studer, R., Benjamins, V., & Fensel, D. (1998). Knowledge engineering: principles and methods. Data Knowledge Engineering, 25(1–2), 161–197. https://doi.org/10.1016/S0169-023X(97)00056-6Swiss Institute of Bioinformatics. (2018). Swiss-Model. https://swissmodel.expasy.org/repositoryTeytelman, L., Stoliartchouk, A., Kindler, L., & Hurwitz, B. L. (2016). Protocols.io: Virtual Communities for Protocol Development and Discussion. PLoS Biology. https://doi.org/10.1371/journal.pbio.1002538The CellML Project. (2018). cellML. https://www.cellml.orgTing, K. M. (2010). Precision and Recall. In C. Sammut & G. I. Webb (Eds.), Encyclopedia of Machine Learning (p. 781). Springer US. https://doi.org/10.1007/978-0-387-30164-8_652Torres, I.-D., Guzmán-Luna, J., & Moreno, F. (2018). Automatic Workflow Scientific Model for Lab Test in Civil Engineering. International Journal of Applied Engineering Research, 13(9), 6529–6535. https://www.ripublication.com/ijaer18/ijaerv13n9_06.pdfTorres, I., Guzmán, J., & Moreno, F. (2017). Semántica para un sistema de recuperación de protocolos experimentales en ingeniería civil. Coloquio de Investigación Multidisciplinaria, 5(2), 753.Treat-NMD Neuromuscular Network. (2018). Experimental Protocols for DMD animal models. http://www.treat-nmd.eu/research/preclinical/dmd-sops/UC San Diego. (2018). The Metabolomics Workbench. http://www.metabolomicsworkbench.org/Utrecht University. (2018). Search Repository. https://uilots-labs.wp.hum.uu.nl/resources/search-resources/Väätäjä, H. (2015). Characterizing the context of use in mobile work. IFIP Advances in Information and Communication Technology, 468, 97–113. https://doi.org/10.1007/978-3-319-27048-7_7Valdestilhas, A., Kosch, H., & Marcotti, P. (2014). User-centric and personalized access to mobile multimedia systems based on a multimedia middleware. Proceedings - 14th International Conference on Computational Science and Its Applications, ICCSA 2014, 260–263. https://doi.org/10.1109/ICCSA.2014.60Verbert K.; Manouselis, N. . O. X. . W. M. . D. H. . B. I. . D. E. (2012). Context-Aware Recommender Systems for Learning: A Survey and Future Challenges. Learning Technologies, IEEE Transactions On, 5(4), 318–335. https://doi.org/10.1109/TLT.2012.11Wolstencroft, K., Krebs, O., Snoep, J. L., Stanford, N. J., Bacall, F., Golebiewski, M., Kuzyakiv, R., Nguyen, Q., Owen, S., Soiland-Reyes, S., Straszewski, J., Van Niekerk, D. D., Williams, A. R., Malmström, L., Rinn, B., Müller, W., & Goble, C. (2017). FAIRDOMHub: A repository and collaboration environment for sharing systems biology research. Nucleic Acids Research. https://doi.org/10.1093/nar/gkw1032Xu, Z., Zhang, F., Wang, W., Liu, H., & Kong, X. (2016). Exploiting Trust and Usage Context for Cross-Domain Recommendation. IEEE Access, 4, 2398–2407. https://doi.org/10.1109/ACCESS.2016.2566658Xue, N., Jia, S. ling, Hao, J. xing, & Wang, Q. (2013). Ontology based scientific keywords recommendation system under web 2.0. International Journal of Emerging Technologies in Learning. https://doi.org/10.3991/ijet.v8i4.2942Yachie, N., Consortium, R. B., & Natsume, T. (2017). Robotic crowd biology with Maholo LabDroids. In Nature Biotechnology. https://doi.org/10.1038/nbt.3758Zakrzewska, D. (2009). Cluster analysis in personalized e-learning systems. Studies in Computational Intelligence, 252, 229–250. https://doi.org/10.1007/978-3-642-04170-9_10Zakrzewska, D. (2011). Building context-aware group recommendations in E-learning systems. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6922 LNAI(PART 1), 132–141. https://doi.org/10.1007/978-3-642-23935-9_13Zheng, Y. (2016). Tutorial: Context-Awareness In Information Retrieval and Recommender Systems. The 16th IEEE/WIC/ACM Conference on Web Intelligence. https://yongzhengme.wordpress.com/publications/CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/79598/3/license_rdf4460e5956bc1d1639be9ae6146a50347MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79598/4/license.txtcccfe52f796b7c63423298c2d3365fc6MD54ORIGINAL98668527.2021.pdf98668527.2021.pdfMaestría en Ingeniería – Ingeniería de Sistemasapplication/pdf8283992https://repositorio.unal.edu.co/bitstream/unal/79598/5/98668527.2021.pdf5b6134156efda2ab019ec9d970eef76cMD55THUMBNAIL98668527.2021.pdf.jpg98668527.2021.pdf.jpgGenerated Thumbnailimage/jpeg4495https://repositorio.unal.edu.co/bitstream/unal/79598/6/98668527.2021.pdf.jpg64f307b8e610e8e2e95bf8ff2ff95e46MD56unal/79598oai:repositorio.unal.edu.co:unal/795982024-07-20 23:10:51.915Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==