Efecto de la inoculación de bacterias promotoras del crecimiento en la dinámica del fósforo edáfico en kikuyo (Cenchrus clandestinum Hochst. ex Chiov.)

ilustraciones, graficas

Autores:
Torres Cuesta, Daniel Ricardo
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83861
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83861
https://repositorio.unal.edu.co/
Palabra clave:
630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
Pennisetum clandestinum
Inoculación del suelo
Soil inoculation
Actividad enzimática
Fosfato diamónico
Roca fosfórica
Compost
Inoculantes microbianos
BPCV
Fraccionamiento secuencial de fosfato
Diammonium Phosphate
Phosphate Rock
Compost
Microbial inoculants
PGPV
Phosphate sequential fractionation
Enzymatic activity
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_78edc4079ef0aee28c0e34557b3f8208
oai_identifier_str oai:repositorio.unal.edu.co:unal/83861
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Efecto de la inoculación de bacterias promotoras del crecimiento en la dinámica del fósforo edáfico en kikuyo (Cenchrus clandestinum Hochst. ex Chiov.)
dc.title.translated.eng.fl_str_mv Effect of growth promoting bacteria inoculation on soil phosphorus dynamics in kikuyo (Cenchrus clandestinum Hochst. ex Chiov.)
title Efecto de la inoculación de bacterias promotoras del crecimiento en la dinámica del fósforo edáfico en kikuyo (Cenchrus clandestinum Hochst. ex Chiov.)
spellingShingle Efecto de la inoculación de bacterias promotoras del crecimiento en la dinámica del fósforo edáfico en kikuyo (Cenchrus clandestinum Hochst. ex Chiov.)
630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
Pennisetum clandestinum
Inoculación del suelo
Soil inoculation
Actividad enzimática
Fosfato diamónico
Roca fosfórica
Compost
Inoculantes microbianos
BPCV
Fraccionamiento secuencial de fosfato
Diammonium Phosphate
Phosphate Rock
Compost
Microbial inoculants
PGPV
Phosphate sequential fractionation
Enzymatic activity
title_short Efecto de la inoculación de bacterias promotoras del crecimiento en la dinámica del fósforo edáfico en kikuyo (Cenchrus clandestinum Hochst. ex Chiov.)
title_full Efecto de la inoculación de bacterias promotoras del crecimiento en la dinámica del fósforo edáfico en kikuyo (Cenchrus clandestinum Hochst. ex Chiov.)
title_fullStr Efecto de la inoculación de bacterias promotoras del crecimiento en la dinámica del fósforo edáfico en kikuyo (Cenchrus clandestinum Hochst. ex Chiov.)
title_full_unstemmed Efecto de la inoculación de bacterias promotoras del crecimiento en la dinámica del fósforo edáfico en kikuyo (Cenchrus clandestinum Hochst. ex Chiov.)
title_sort Efecto de la inoculación de bacterias promotoras del crecimiento en la dinámica del fósforo edáfico en kikuyo (Cenchrus clandestinum Hochst. ex Chiov.)
dc.creator.fl_str_mv Torres Cuesta, Daniel Ricardo
dc.contributor.advisor.none.fl_str_mv Estrada Bonilla, German Andres
Bonilla, Carmen Rosa
dc.contributor.author.none.fl_str_mv Torres Cuesta, Daniel Ricardo
dc.contributor.researchgroup.spa.fl_str_mv Sistemas agropecuarios Sostenibles
dc.contributor.orcid.spa.fl_str_mv Daniel Ricardo Torres [0000-0001-9101-0543]
dc.subject.ddc.spa.fl_str_mv 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
topic 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
Pennisetum clandestinum
Inoculación del suelo
Soil inoculation
Actividad enzimática
Fosfato diamónico
Roca fosfórica
Compost
Inoculantes microbianos
BPCV
Fraccionamiento secuencial de fosfato
Diammonium Phosphate
Phosphate Rock
Compost
Microbial inoculants
PGPV
Phosphate sequential fractionation
Enzymatic activity
dc.subject.agrovoc.none.fl_str_mv Pennisetum clandestinum
dc.subject.agrovoc.spa.fl_str_mv Inoculación del suelo
dc.subject.agrovoc.eng.fl_str_mv Soil inoculation
dc.subject.proposal.spa.fl_str_mv Actividad enzimática
Fosfato diamónico
Roca fosfórica
Compost
Inoculantes microbianos
BPCV
Fraccionamiento secuencial de fosfato
dc.subject.proposal.eng.fl_str_mv Diammonium Phosphate
Phosphate Rock
Compost
Microbial inoculants
PGPV
Phosphate sequential fractionation
Enzymatic activity
description ilustraciones, graficas
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-05-24T21:07:08Z
dc.date.available.none.fl_str_mv 2023-05-24T21:07:08Z
dc.date.issued.none.fl_str_mv 2023-05-05
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83861
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83861
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Acevedo, O., Ortiz, E., Cruz, M y Cruz, E. 2004. El papel de óxidos de hierro en suelos Terra Latinoamericana, vol. 22, núm. 4, octubre-diciembre, 2004, pp. 485-497 Sociedad Mexicana de la Ciencia del Suelo, A.C. Chapingo, México. https://www.redalyc.org/pdf/573/57311096013.pdf
Abbasi, M., Musa, N & Manzoor, M., 2015. Mineralization of soluble P fertilizers and insoluble rock phosphate in response to phosphate-solubilizing bacteria and poultry manure and their effect on the growth and P utilization efficiency of Chilli (Capsicum annuum L.). Biogeosciences 12, 4607–4619. https://doi.org/10.5194/bg-12-4607-2015.
Adegoke, H., Adekola, F., Fatoki, O & Ximba, B. 2013. Sorptive interaction of oxyanions with iron oxides: a review. Polish Journal of Environmental Studies 22:7-24. http://www.pjoes.com/pdf-88948-22807?filename=Sorptive%20Interactión%20of.pdf.
Adesemoye, A., Torberto, H & Kloepper, J. 2009. Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb. Ecol. 2009, 58, 921–929. https://doi.org/10.1007/s00248-009-9531-y.
Ahmad, F., Ahmad, I & Khan, M. S. 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163, 173–181 (2008). doi: 10.1016/j.micres.2006.04.001.
Aipova, R., Aitkeldiyeva, S., Kurmanbayev, A., Sadanov, A & Topalova, O. 2010. Assessment of biotechnological potential of phosphate solubilizing bacteria isolated from soils of Southern Kazakhstan. Natural Science Vol.2 No.8, August 25, 2010. DOI: 10.4236/ns.2010.28105.
Albacete, M. 2014. Residuos orgánicos como fuentes de fósforo (Doctoral disertación, Universidad Politécnica de Madrid).
Alam, F., Khan, A., Fahad, S., Nawaz, S., Ahmed, N., Arif Ali, M., Adnan, M., Dawar, K., Saud, S., Hassan, S., Aown M., Raza, S., Naveed, K., Arif, M., Datta, R & Danish,S. 2022. Phosphate solubilizing bacteria optimize wheat yield in mineral phosphorus applied alkaline soil, Journal of the Saudi Society of Agricultural Sciences, Volume 21, Issue 5, 2022, Pages 339-348, ISSN 1658-077X, https://doi.org/10.1016/j.jssas.2021.10.007.
Alamzeb, M. 2022. Management of Phosphorus Sources in Combination with Rhizobium and Phosphate Solubilizing Bacteria Improve Nodulation, Yield and Phosphorus Uptake in Chickpea. Gesunde Pflanzen, 1-16. https://doi.org/10.1007/s10343-022-00722-2
Alori, E., Glick, B & Babalola, O. 2017. Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture. Front. Microbiol., 02 June 2017. Sec. Plant Pathogen Interactions. https://doi.org/10.3389/fmicb.2017.00971
Alvarado, A., Mata, R., Chinchilla, M. 2014. Arcillas identificadas en suelos de costa rica a nivel generalizado durante el período 1931-2014: i. Historia, metodología de análisis y mineralogía de arcillas en suelos derivados de cenizas volcánicas. Agronomía Costarricense 38(1):75-106. ISSN:0377-9424 / 2014.
Anda, M., Kasno, A., Ginting, C., Barus, P & Purwanto, S. 2021. Response of Andisols to intensive agricultural land use: Implication on changes in P accumulation and colloidal surface charge. Earth and Environmental Science648 (2021) 012016. Doi:10.1088/1755-1315/648/1/012016.
Arai, Y & Sparks, D. 2007. Phosphate reaction dynamics in soils and soil minerals: a multiscale approach. Adv Agron 94: 135–179. https://doi.org/10.1016/S0065-2113(06)94003-6
Arcand, M & Schneider, K. 2006. Plant- And microbial-based mechanisms to improve the agronomic effectiveness of phosphate rock: A review. In Anais da Academia Brasileira de Ciências (Vol. 78, Issue 4, pp. 791-807). Academia Brasileira de Ciências. https://doi.org/10.1590/S0001-37652006000400013.
Ariza-Nieto, C., Mayorga, O. L., Mojica, B., Parra, D., & Afanador-Tellez, G. 2018. Use of LOCAL algorithm with near infrared spectroscopy in forage resources for grazing systems in Colombia. Journal of Near Infrared Spectroscopy, 26(1), 44-52. https://journals.sagepub.com/doi/pdf/10.1177/0967033517746900?casa_token=7bneprh80isAAAAA:uVcRn63Yf2OiGcvy0gah9wTNQRtOZgLa2LlBtHeOBLcbOBXAsgDycWz0-qtDVtEh_VHhDuH5l-vl3oE.
Ávila, E. 2005. Los suelos de Colombia y sus estadísticas más recientes. Análisis Geográficos 29, pp. 13-21. http://documentación.ideam.gov.co/cgi-bin/koha/opac-MARCdetail.pl?bibliónumber=29015.
Azeem, M., Riaz, A., Chaudhary, A., Hayat, R., Hussain, Q., Tahir, M & Imran, M., 2014. Microbial phytase activity and their role in organic P mineralization. Archives of Agronomy and Soil Science 14, 1–16. https://doi.org/10.1080/03650340.2014.963796.
Bai, J., Ye, X., Jia, J., Zhang, G., Zhao, Q., Cui, B & Liu,X. 2017. Phosphorus sorption-desorption and effects of temperature, pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions, Chemosphere, Volume 188, 2017, Pages 677-688, ISSN 0045-6535, https://doi.org/10.1016/j.chemosphere.2017.08.117.
Barrow, N & Debnath, A. 2015. Effect of phosphate status and pH on sulphate sorption and desorption Eur. J. Soil Sci., 66 (2) (2015), pp. 286-297, https://doi.org/10.1111/ejss.12223.
Barrow, N. 2017. The effects of pH on phosphate uptake from the soil. Plant Soil, 410 (1-2) (2017), pp. 401-410, https://doi.org/10.1007/s11104-016-3008-9.
Barrow, N. 2020. Comparing two theories about the nature of soil phosphate Eur. J. Soil Sci., 72 (2) (2020), pp. 679-685. https://doi.org/10.1111/ejss.13027.
Behera, B., Singdevasachan, S., Mishra, R., Dutta, S & Thatoi, H. 2014. Diversity, mechanism and biotechnology of phosphate solubilising microorganism in mangrive – A review. Biocatal. Agr. Biotechn. (Netherlands). 3:97-110. https://doi.org/10.1016/j.bcab.2013.09.008.
Benavides, J., Avellaneda, Y., Buitrago, C., Castro, E., Castillo, J., Rendón, C., Romero, J., Torres, D., Vargas, J., Zuñiga, A., Benavides, G., Carrillo, J., Díaz, J., Gómez, C., Hernández, D., Porras, A & Vela, J. 2019. Guías de mejores prácticas en sistemas de producción de leche con base en pasturas para el trópico alto colombiano. Mosquera, Colombia: Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA) y The Agribusiness Group. http://hdl.handle.net/20.500.12324/35641.
Beltrán, M. 2014. La solubilización de fosfatos como estrategia microbiana para promover el crecimiento vegetal. Artículo de revisión. Corpoica Cienc. Tecnol. Agropecu. (2014) 15(1) 101-113. http://www.scielo.org.co/pdf/ccta/v15n1/v15n1a09.pdf.
Beltran-Medina, J. I., Romero-Perdomo, F., Molano-Chavez, L., Silva, A. M., & Estrada-Bonilla, G. A. 2022. Differential Plant Growth Promotion Under Reduced Phosphate Rates in Two Genotypes of Maize by a Rhizobial Phosphate-Solubilizing Strain. Frontiers in Sustainable Food Systems, 6, 1-13. https://www.researchgate.net/profile/German-Estrada-Bonilla/publication/361847066_Differential_Plant_Growth_Promotion_Under_Reduced_Phosphate_Rates_in_Two_Genotypes_of_Maize_by_a_Rhizobial_Phosphate-Solubilizing_Strain/links/62c975f8cab7ba7426dfedf7/Differential-Plant-Growth-Promotion-Under-Reduced-Phosphate-Rates-in-Two-Genotypes-of-Maize-by-a-Rhizobial-Phosphate-Solubilizing-Strain.pdf.
Belgaroui, N., Berthomieu, P., Rouached, H., & Hanin, M. 2016. The secretion of the bacterial phytase PHY‐US 417 by Arabidopsis roots reveals its potential for increasing phosphate acquisition and biomass production during co‐growth. Plant biotechnology journal, 14(9), 1914-1924. https://doi.org/10.1111/pbi.12552.
Bernal, J. 1998. Fertilización de pastos mejorados. En: Guerrero, R. (ed). Fertilización de cultivos en clima frío. Ed. Sáenz y Cía. Ltda. Bogotá, Colombia. p. 278-328.
Billah, M., Khan, M., Bano, A., Hassan, T. U., Munir, A., & Gurmani, A. 2019. Phosphorus and phosphate solubilizing bacteria: Keys for sustainable agriculture. Geomicrobiology Journal, 1–13. https://doi:10.1080/01490451.2019.1654043.
Bobadilla, C y Rincón, S. 2008. Aislamiento y producción de Bacterias Fosfatosolubilizadoras a partir de compost obtenido de residuos de plaza. Trabajo de grado para obtener el título de Microbiología Industrial, Pontificia Universidad Javeriana, Facultad de Ciencias. Junio 2008. https://repository.javeriana.edu.co/handle/10554/8433.
Borggaard, O., Szilas, C., Gimsing, A & Rasmussen, L. 2004. Estimation of soil phosphate absorption capacity by means of a pedotransfer function. Geoderma. Volume 118,issue 1-2; 55-61. https://doi.org/10.1016/S0016-7061(03)00183-6.
Bol, R., Bolger, T., Cully, R., & Little, D. 2003. Recalcitrant soil organic materials mineralize more efficiently at higher temperatures. Journal of Plant Nutrition and Soil Science, 166(3), 300–307. https://doi.org/10.1002/jpln.200390047.
Bolland, M., Gilkes, R & Brennan, R. 2001. The influence of soil proper- ties on the effectiveness of phosphate rock fertilizers. Soil Res 39:773–798. https://doi.org/10.1071/SR00025.
Bonatotzky, T., Ottner, F., Erlendsson, E & Gísladottir, G. 2021. Weathering of tephra and the formation of pedogenic minerals in young andosols, South East Iceland. Catena 198, 105030 (2021). https://doi.org/10.1016/j.catena.2020.105030.
Borie, F., Rubio, R. 2003. Total and organic phosphorus in Chilean volcanic soils. Gayana Botanica. 60, 69-78. http://dx.doi.org/10.4067/S0717-66432003000100011.
Briceño, M., Escudey, M., Galindo, G., Borchardt, D., Chang, A. 2004. Characterization of chemical phosphorus forms in volcanic soils using 31P-NMR spectroscopy. Commun.Soil Sci. Plan. 35, 1323-1337. https://doi.org/10.1081/CSS-120037549.
Bunemann, E. 2015. Assessment of gross and net mineralization rates of soil organic phosphorus–A review. Soil Biology and Biochemistry, 89, 82–98. https://doi.org/10.1016/j.soilbio.2015.06.026.
Burns, R., DeForest, J., Marxsen, J., Sinsabaugh, R., Stromberger, M., Wallenstein, M., Weintraub, M & Zoppini, A. 2013. Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biology and Biochemistry, Volume 58, 2013, Pages 216-234. ISSN 0038-0717. https://doi.org/10.1016/j.soilbio.2012.11.009.
Carulla, J., Cárdenas, E., Sánchez, N., Riveros, C. 2004. Valor nutricional de los forrajes más usados en los sistemas de producción lechera especializada de la zona andina colombiana; En: Eventos y Asesorías Agropecuarias EU (editores), Seminario Nacional de Lechería Especializada: “Bases Nutricionales y su Impacto en la Productividad”. Medellín, 21 – 38 p.
Carpenter, S. 2008. Phosphorus control is critical to mitigating eutrophicatión. Proceedings of the Natiónal Academy of Sciences of the United States of America, 105, 11039–11040. https://doi.org/10.1073/pnas.0806112105.
Chandler, D., Davidson, G., Grant, W.P., Greaves, J & Tatchell, G. 2008. Microbial biopesticides for integrated crop management: an assessment of environmental and regulatory sustainability: Trends Food Sci. Tec,. 19: 275-283. https://doi.org/10.1016/j.tifs.2007.12.009.
Chaverra, G., Davila, S., Villamizar, R & Bernal, J. 1967. El cultivo de los pastos en la Sabana de Bogotá. ICA. Bogotá, Colombia. Cursillo sobre manejo de praderas y cultivo de pastos de clima frío. Sociedad de Agricultores de Colombia. Aedita Editores Ltda., Bogotá, COL.
Chapin, F. 1980. The mineral nutrition of wild plants. Annual review of ecology and systematics, Alaska, p. 233-260, 1980. https://doi.org/10.1146/annurev.es.11.110180.001313.
Chen, Y., Rekha, P., Arun, A., Shen, F., Lai, W & Young, C. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. App Soil Ecol 34:33–41. doi.org/10.1016/j.apsoil.2005.12.002.
Chiu, C., Baillie, I., Jien, S., Hallett, L & Hallett, S. 2021. Sequestration of P fractions in the soils of an incipient ferralisation chronosequence on a humid tropical volcanic island. Bot Stud. 2021 Dec 2;62(1):20. doi: 10.1186/s40529-021-00326-5. PMID: 34855017; PMCID: PMC8639856.
Colf, J., Truter, W & Botha, P. 2014. The production potential of Kikuyu (Pennisetum clandestinum) pastures over-sown with Ryegrass (Lolium spp.); “University of Pretoria. https://repository.up.ac.za/bitstream/handle/2263/25770/dissertation.pdf?sequence=1.
Condron, L., Turner, B., Cade-Menun, B. 2005. Chemistry and dynamics of soil organic phosphorus. In: Sims, J.T., Sharpley, A.N. (Eds.), Phosphorus: agriculture and the environment. ASA/CSSA/SSSA, Madison, Wisconsin. United States of America, pp 87-121. https://doi.org/10.2134/agronmonogr46.c4.
Condron, L & Newman, S. 2011. Revisiting the fundamentals of phosphorus fractionation in soils and sediments. J. Soils Sediments. 11, 830-840. https://doi.org/10.1007/s11368-011-0363-2.
Conant, R., Paustian, K., & Elliott, E. 2001. Grassland Management and Conversion into Grassland: Effects on Soil Carbon. Ecological Applications, 11(2), 343–355. https://doi.org/10.2307/3060893.
Correa, H., Pabón, M., Sánchez, M., Carulla, J. 2018a. Efecto del nivel de suplementación sobre el uso de nitrógeno, el volumen y la calidad de la leche en vacas Holstein de primer y segundo tercio de lactancia en el trópico alto de Antioquia. Livestock Research and Rural Development 2011; 23:77. URL: http://www.lrrd.org/lrrd23/4/corr23077.htm.
Cortés-Patiño, S., Vargas, C., Álvarez-Flórez, F., Bonilla, R., Estrada-Bonilla, G. 2021. Potential of Herbaspirillum and Azospirillum Consortium to Promote Growth of Perennial Ryegrass under Water Deficit. Microorganisms 2021, 9, 91. https://doi.org/10.3390/microorganisms9010091.
Cortés-Patiño, S., Vargas, C., Alvarez-Flórez, F., Estrada-Bonilla, G. 2022. Co-Inoculation of Plant-Growth Promoting Bacteria Modulates Physiological and Biochemical Responses of Perennial Ryegrass to Water Deficit. Plants 2022, 11, 2543. https://doi.org/10.3390/
Crews. T & Brookes, P. 2014. Changes in soil phosphorus forms through time in perennial versus annual agroecosystems. Agriculture, Ecosystems and Environment, 184: 168–181 http://dx.doi.org/10.1016/j.agee.2013.11.022.
Dahlgren, R., Saigusa, M & Ugolini, F. 2004. The Nature, Properties and management of Volcanic Soils. Glob. In Advances in Agronomy, Vol 82, 113-181. https://books.google.com.co/books?hl=es&lr=&id=_19ObhE8rRoC&oi=fnd&pg=PA113&dq=Ugolini,+F.C.,+Dahlgren,+R.A.,+2003.+Soil+development+in+volcanic+ash.&ots=vikujWDo1V&sig=zRL8YGGSKBrDaj4eCYEz0YWd4To#v=onepage&q=Ugolini%2C%20F.C.%2C%20Dahlgren%2C%20R.A.%2C%202003.%20Soil%20development%20in%20volcanic%20ash.&f=false.
Davidson, J & Milthorpe, F. 1966. Leaf Growth in Dactylis glomerate after Defoliation, Annals of Botany, Volume 30, Issue 2, April 1966, Pages 173–184. https://doi.org/10.1093/oxfordjournals.aob.a084065.
De Bolle, S. 2013. Phosphate saturation and phosphate leaching of acidic sandy soils in Flanders: analysis and mitigation options. Ghent University, Faculty of Bioscience Engineering, Ghent, Belgium. Doctoral dissertation, Thesis submitted for degree of Doctor (PhD) in Applied Biological Sciences. https://biblio.ugent.be/publicatión/4143518/file/4143536.
Del Campillo, M., Van der Zee, S & Torrent, J. 1999.Modelling long-term phosphorus leaching and changes in phosphorus fertility in excessively fertilized acid sandy soils. European Journal of Soil Science. Volume 50, issue 3;391-399. https://doi.org/10.1046/j.1365-2389.1999.00244.x.
Delfim, J., Schoebitz, M., Paulino, L., Hirzel, J & Zagal, E. 2018. Phosphorus Availability in Wheat, in Volcanic Soils Inoculated with Phosphate-Solubilizing Bacillus thuringiensis. Sustainability 2018, 10, 144. https://doi.org/10.3390/su10010144.
Delmelle, P., Opfergelt, S and Cornelis, J. 2015. The Encyclopedia of Volcanoes || Volcanic Soils. , (), 1253–1264. https://doi.org/10.1016/B978-0-12-385938-9.00072-9.
Devau, N., Le Cadre, E., Hinsinger, P & Gérard, F. 2010. A mechanistic model for understanding root-induced chemical changes controlling phosphorus availability. Annals of Botanic (Lond), Volume 105: 1183–1197. https://doi.org/10.1093/aob/mcq098.
Dodd, I. & Ruiz, J. 2012. Microbial enhancement of crop resource use efficiency. Curr. Opin. Biotechnol. 2012, 23, 236–242. https://doi.org/10.1016/j.copbio.2011.09.005.
Ebelhar, S. 2008. Labile pool. In: Chesworth, W. (eds) Encyclopedia of Soil Science. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3995-9_313.
Echeverri, J; Restrepo, L y Parra, J. 2010. Evaluación comparativa de los parámetros productivos y agronómicos del pasto kikuyo Pennisetum clandestinum bajo dos metodologías de fertilización. Revista Lasallista de Investigación, vol. 7, núm. 2, julio-diciembre, 2010, pp. 94 - 100. Corporación Universitaria Lasallista Antioquia, Colombia.
Elhaissoufi, W., Khourchi, S., Ibnyasser, A., Ghoulam, C., Rchiad, Z., Zeroual, Y., Ehrlich, H., Newman, D., Kappler, A., editors. 2016. Ehrlich´s Geomicrobiology book. 6 th edition. Boca Raton: Taylor & Francis Group; 2016. Geomicrobial Interactions with Phosphorus. ISBN 9780367658724, Published March 30, 2021 by CRC Press 668 Pages. https://books.google.com.co/books?hl=es&lr=&id=0NWYCgAAQBAJ&oi=fnd&pg=PP1&dq=Ehrlich,+H.,+Newman,+D.,+Kappler,+A.,+editors.+2016.+Ehrlich%C2%B4s+Geomicrobiology+&ots=DMXLgS7k0F&sig=lYvdkry3bFC0B850BohT8eTX_TM&redir_esc=y#v=onepage&q&f=false.
Escudey, M., Galindo, G., Föster, J., Briceño, M., Diaz, P., Chang, A. 2001. Chemical forms of phosphorus of volcanic ash derived soils in Chile. Commun. Soil Sci. Plant. 32, 601-606. https://doi.org/10.1081/CSS-100103895.
Espinoza, J. 2004. Fijación de fósforo en suelos derivados de ceniza volcánica. informaciones agronómicas 55:5-8. 2004. https://www.researchgate.net/publicatión/237118666_FIJACIÓN_DE_FOSFORO_EN_SUELOS_DERIVADOS_DE_CENIZA_VOLCANICA.
Espinoza, J y Rubiano, Y. 2015. Procesos específicos de formación en Andisoles, Alfisoles y Ultisoles en Colombia. Revista Escuela de Ingeniería de Antioquia - EIA, ISSN 1794-1237 / Año XII / Volumen 12 / Edición Especial N.2 / junio 2015/ pp. E85-E97. https://revistas.eia.edu.co/index.php/reveia/article/view/709/664.
Estrada, G., Baldani, V., De Oliveira, D. et al. 2013. Selection of phosphate-solubilizing diazotrophic Herbaspirillum and Burkholderia strains and their effect on rice crop yield and nutrient uptake. Plant Soil 369, 115–129 (2013). https://doi.org/10.1007/s11104-012-1550-7.
Estrada-Bonilla, G., Durrer, A., & Cardoso, E. 2021. Use of compost and phosphate-solubilizing bacteria affect sugarcane mineral nutrition, phosphorus availability, and the soil bacterial community. Applied Soil Ecology, 157, 103760. https://doi.org/10.1016/j.apsoil.2020.103760.
Estrada, G., Durrer, A & Cardoso, E. 2021. Use of compost and phosphate-solubilizing bacteria affect sugarcane mineral nutrition, phosphorus availability, and the soil bacterial community. Appl. Soil Ecol. 157, 103760. https://doi.org/10.1016/j.apsoil.2020.103760.
Fageria, V. 2001. Nutrient interactions in crop plants, Journal of Plant Nutrition, 24:8, 1269-1290, https://doi.org/10.1081/PLN-100106981.
Fassbender, H. 1982. Química de suelos; con énfasis en suelos de América Latina. 1ed. 3 reimpresión. San José de Costa Rica, IICA. 422 p.
Fujii, K., Sukartiningsih, Hayakawa, C. et al. 2020. Effects of land use change on turnover and storage of soil organic matter in a tropical forest. Plant Soil 446, 425–439 (2020). https://doi.org/10.1007/s11104-019-04367-5.
Fisher, R & Schmincke, H. 1984. Pyroclastic Rocks. Spronger-Verlag, Berlin. https://www.geokniga.org/bookfiles/geokniga-pyroclastic-rocks.pdf
Fink, J., Inda, A., Tiecher, T & Barrón, V. 2016.Iron oxides and organic matter on soil phosphorus availability Cienc. e Agrotecnologia, 40 (4) (2016), pp. 369-379. https://doi.org/10.1590/1413-70542016404023016.
Fonseca, C., Balocchi, O., Keim, J. P., & Rodríguez, C. 2016. Effect of defoliation frequency on yield and nutritional composition of Pennisetum clandestinum Hochst. ex Chiov. Agro Sur, 44(3), 67-76. http://revistas.uach.cl/pdf/agrosur/v44n3/art07.pdf.
Frossard, E., Sinaj, S., Bangerter, F & Traore, O. 2002. Forms and exchangeability of inorganic phosphate in composted solid organic waste. Nutr Cycle Agroecosyst 62:103–113.https://www.research- collectión.ethz.ch/bitstream/handle/20.500.11850/422919/1/10705_2004_Article_323297.pdf.
Fontes, M., Weed, S & Bowen, L. 1992. Association of Microcrystalline Goethite and Humic Acid in Some Oxisols from Brazil. Soil Science Society of America Journal, 56: 982-990. https://doi.org/10.2136/sssaj1992.03615995005600030050x.
Fox, R & Searle, P. 1978. Phosphate Adsorption by Soils of the Tropics. In Diversity of Soils in the Tropics (eds J.J. Nicholaides and L.D. Swindale). https://doi.org/10.2134/asaspecpub34.c7.
Fu, H., Yang, Y., Zhu, R., Liu, J., Usman, M., Chen, Q., & He, H. 2018. Superior adsorption of phosphate by ferrihydrite-coated and lanthanum-decorated magnetite. Journal of Colloid and Interface Science, 530, 704-713. https://doi.org/10.1016/j.jcis.2018.07.025.
Fulkerson, B., Griffiths, N., Sinclair, K., & Beale, P. 2010. Milk production from kikuyu grass-based pastures. Primefacts, 1068(May), 1–13. https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0012/359949/Milk-productión-from-kikuyu-grass-based-pastures.pdf.
Fulkerson, W & Donaghy, D. 2001. Plant-soluble carbohydrate reserves and senescence- Key criteria for developing an effective grazing management system or Ryegrass-based pastures: A review. Australian Journal of Experimental Agriculture. 41: 261-275. https://doi.org/10.1071/EA00062.
García, S., Islam, M., Clark, E & Martin, P. 2014. Kikuyu based pasture for dairy production: A review. Crop and Pasture Science 65(8). https://doi.org/10.1071/CP13414.
Gasparatos, D., Haidouti, C., Haroulis, A & Tsaousidou, P. 2006. Estimation of phosphorus status of soil Fe-enriched concretions with the acid ammonium oxalate method. Communications in Soil Science and Plant Analysis 37:2375-2387. https://doi.org/10.1080/00103620600819891.
Gatiboni, L & Condron, L. 2021. A rapid fractionation method for assessing key soil phosphorus parameters in agroecosystems, Geoderma, Volume 385, 2021, 114893, ISSN 0016-7061, https://doi.org/10.1016/j.geoderma.2020.114893.
Goldstein, A. 1995. Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria. Biological Agriculture & Horticulture Vol 12:185–193. https://doi.org/10.1080/01448765.1995.9754736.
Gyaneshwar, P., Kumar, G., Parekh, L., Poole, P. 2002. Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245: 83-93. https://doi.org/10.1023/A:1020663916259.
He, Z., Bian, W & Zhu, J. 2002. Screening and identification of microorganisms capable of utilizing phosphate adsorbed by goethite. Comm. Soil Sci. Plant Anal., 33: 647-663. https://doi.org/:10.1081/CSS-120003057.
Gueçaimburu, J., Vázquez, J., Tancredi, F., Reposo, G., Rojo, V., Martínez, M & Introcaso, R. 2019. Evolución del fósforo disponible a distintos niveles de compactación por tráfico agrícola en un argiudol típico. Chilean journal of agricultural & animal sciences, 35(1), 81-89. https://dx.doi.org/10.4067/S0719-38902019005000203.
Hedley, M., Steward, J., Chauhuan, B. 1982. Changes in organic and inorganic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci. Soc. Am. J. 46, 970-976. https://doi.org/10.2136/sssaj1982.03615995004600050017x.
Hernández, G., Cabrera, G., Izquierdo, I., Socarrás, A., Hernández, L., Sánchez, J. 2018. Indicadores edáficos después de la conversión de un pastizal a sistemas Agroecológicos. Pastos y Forrajes, Vol. 41, No. 1, pp 3-12. enero-marzo, 2018.
Herrera, M. 2006. Suelos derivados de cenizas volcánicas en Colombia: Estudio fundamental e implicaciones en ingeniería. Trabajo presentado para obtener el título de Doctor en ingeniería. Universidad de los Andes, Facultad de Ingeniería. https://repositorio.uniandes.edu.co/bitstream/handle/1992/7812/u277084.pdf?sequence=1&isAllowed=y.
Hinsinger, P. 2001. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and Soil, 237(2), 173-195. https://doi.org/10.1023/A:1013351617532.
Huygens, D., Boeckx, P., Van Cleemput, O., Oyarzún, C., & Godoy, R. 2005. Aggregate and soil organic carbon dynamics in South Chilean Andisols, Biogeosciences, 2, 159–174, https://doi.org/10.5194/bg-2-159-2005.
Hutchins, D., Qu, P., Fu, F., Kling, J., Huh, M., Wang, X. 2019. Distinct responses of the nitrogen-fixing marine cyanobacterium Trichodesmium to a thermally-variable environment as a function of phosphorus availability. Front Microbiol 10:1282. https://doi.org/10.3389/fmicb.2019.01282.
Ibrahim, M., Anwar-Ul-Hassan, Iqbal, M & Valeem, E. 2008. Response of wheat growth and yield to various levels of compost and organic manure. Pakistan J Bot 40(5):2135–2141.https://www.researchgate.net/publicatión/222101716_Response_of_wheat_growth_and_yield_to_various_levels_of_compost_and_organic_manure.
Illmer, P & Schinner, F. 1995. Solubilizatión of inorganic calcium phosphates—solubilizatión mechanisms Soil Biology and Biochemistry. Vol 27, 257–263. https://doi.org/10.1016/0038-0717(94)00190-C.
Instituto geográfico Agustín Codazzi (IGAC). 2012. Levantamiento Detallado de Suelos en las Áreas Planas de 14 municipios de la Sabana de Bogotá. Departamento de Cundinamarca. Escala 1:10.000.
Insuasti, G., Parra, A. S., & Salazar, J. J. 2014. Producción de materia seca y calidad del pasto Kikuyo Pennisetum clandestinum en diferentes niveles de fertilización nitrogenada y en asocio con aliso Alnus acuminata en el trópico alto colombiano. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/123660/1/p32-41-Doc.-268-Anais.pdf.
Janes, V., Blackwell, M., Blair, G., Davies, J., Haygarth, P., Mezeli, M & Stewart, G. 2022. A meta-analysis of phosphatase activity in agricultural settings in response to phosphorus deficiency. Soil Biology and Biochemistry, Volume 165, 2022, 108537, ISSN 0038-0717. https://doi.org/10.1016/j.soilbio.2021.108537.
Jahnke, R. 1992. The Phosphorus Cycle. International Geophysics, Volume 50, 1992, Pages 301-315. https://doi.org/10.1016/S0074-6142(08)62697-2.
Jiang, X., Peng, C., Fu, D., Chen, Z., Shen, L., Li, Q., Ouyang, T & Wang, Y. 2015. Removal of arsenate by ferrihydrite via surface complexation and surface precipitation. Applied Surface Science 353:1087-1094. https://doi.org/10.1016/j.apsusc.2015.06.190.
Jorquera, M., Crowley, D., Marschner, P., Greiner, R., Fernández, M., Romero, D., Menezes-Blackburn, D & De La Luz Mora, M. 2011.Identificatión of β-propeller phytase-encoding genes in culturable Paenibacillus and Bacillus spp. from the rhizosphere of pasture plants on volcanic soils. FEMS Microbiol. Ecol. 2011, 75, 163–172. https://doi.org/10.1111/j.1574-6941.2010.00995.x.
Kalayu, G. 2019. Phosphate Solubilizing Microorganisms: Promising Approach as Biofertilizers. Int. J. Agron. Volume 2019 | Article ID 4917256 | https://doi.org/10.1155/2019/4917256.
Kavanová, M., Lattanzi, F., Grimoldi, A & Schnyder, H. 2006. Phosphorus deficiency decreases cell division and elongation in grass leaves. Plant Physiol. 2006 Jun;141(2):766-75. https://doi.org/10.1104/pp.106.079699.
Kwesi, S. 2020. Processes and Factors Affecting Phosphorus Sorption in Soils. Sorption in 2020s. https://doi.org/10.5772/intechopen.90719.
Khan, M., Zaidi, A., Ahemad, M., Oves, M., Wani, P. 2010. Plant growth promotion by phosphate solubilizing fungi—current perspective. Arch Agron Soil Sci 56:73–98.. https://doi.org/10.1080/03650340902806469.
Khan, I., Zada, S., Rafiq, M. et al. 2022. Phosphate solubilizing epilithic and endolithic bacteria isolated from clastic sedimentary rocks, Murree lower Himalaya, Pakistan. Arch Microbiol 204, 332 (2022). https://doi.org/10.1007/s00203-022-02946-2.
Kishore, N., Pindi, P.K., Ram Reddy, S. 2015. Phosphate-Solubilizing Microorganisms: A Critical Review. In: Bahadur, B., Venkat Rajam, M., Sahijram, L., Krishnamurthy, K. (eds) Plant Biology and Biotechnology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2286-6_12.
Konietzny, U & Greiner, R. 2004. Bacterial phytase: potential application, in vivo function and regulation of its synthesis. Brazilian Journal of Microbiology. Vol. 35 p. 11–18. https://doi.org/10.1590/S1517-83822004000100002.
Kruse, J., Abraham, M., Amelung, W., Baum, C., Bol, R., Kühn, O., Lewandowski, H., Niederberger, J., Oelmann, Y., Rüger, C., Santner, J., Siebers, M., Siebers, N., Spohn, M., Vestergren, J., Vogts, A & Leinweber, P. 2015. Innovative methods in soil phosphorus research: A review. J. Plant Nutr. Soil Sci., 178 (1) (2015), pp. 43-88. https://doi.org/10.1002/jpln.201400327.
Kumar, R., Kumar, R., Mittal, S., Arora, M & Babu, J. 2016. Role of soil physicochemical characteristics on the present state of arsenic and its absorption in alluvial soils of two agri-intensive region of Bathinda, Punjab, India. Journal of Soils and Sediments 16:605-620. https://doi.org/10.1007/s11368-015-1262-8.
Kumar, A & Patel, H. 2018. Role of microbes in phosphorus availability and acquisition by plants. International Journal of Current Microbiology and Applied Sciences, vol. 7, no. 5, pp. 1344–1347, 2018. https://doi.org/10.20546/ijcmas.2018.705.161.
Lambers, H & Plaxton, W. 2018. P: back to the roots. Annu. Plant Rev. 48,3–22. https://doi.org/10.1146/annurev-arplant-102720.
Larsen S. 1967. Soil phosphorus. In Adv Agron, Volume 19: 151–210. https://doi.org/10.1016/S0065-2113(08)60735-X.
Leamy, M. 1984. Andisols of the world In: Congreso internacional de suelos volcánicos comunicaciones Universidad de la Laguna Secretariado de Publicaciones serie informes 13 pp 368–387. https://escholarship.org/content/qt0xw6q794/qt0xw6q794_noSplash_9f88f13468576cabd293c6888416e1a3.pdf.
Leirós, M., Trasar-Cepeda, C., Seoane, S & Gil-Sotres, F. 1999. Dependence of mineralization of soil organic matter on temperature and moisture, Soil Biology and Biochemistry, Volume 31, Issue 3, Pages 327-335, ISSN 0038-0717, https://doi.org/10.1016/S0038-0717(98)00129-1.
Leite, M. 2009. Fungos Filamentosos do Lodo de Esgoto: Impacto na Microbiana Fúngica e Potencial Enzimático. 65 f. Dissertação (Mestrado em Desenvolvimento de Processos Ambientais) — Universidade Católica de Pernambuco, Recife. http://tede2.unicap.br:8080/bitstream/tede/590/1/dissertacao_marcela_leite.pdf.
Li, X., Luo, L., Yang, J., Li, B & Yuan, H. 2015. Mechanisms for solubilization of various insoluble phosphates and activation of immobilized phosphates in different soils by an efficient and salinity-tolerant Aspergillus niger strain An2. Appl. Biochem. Biotechnol. 2015, 175, 2755–2768. https://doi.org/10.1007/s12010-014-1465-2.
Lindsay, W. 1979. Chemical equilibria in soils. New York: Wiley. http://catalog.hathitrust.org/api/volumes/oclc/4883190.html.
Lindsay, W., Vlek, P & Chien, S. 1989. Phosphate minerals. In Minerals in Soil Environment - Dixon JB Weed SB eds, Ed 2. Soil Science Society of America, Madison, WI, pp 1089–1130. https://doi.org/10.2136/sssabookser1.2ed.c22.
Luengo, C., Brigante, M., Antelo, J & Avena, M. 2006. Kinetics of phosphate adsorption on goethite: comparing batch adsorption and ATR-IR measurements. J Colloid Interface Sci 300: 511–518. https://doi.org/10.1016/j.jcis.2006.04.015.
Mahfud, A., Devnita, M., Anda, M., Goenadi, D & Nugraha, A. 2022. "Characteristics of Andisols Developed from Andesitic and Basaltic Volcanic Ash in Different Agro-Climatic Zones" Soil Systems 6, no. 4: 78. https://doi.org/10.3390/soilsystems6040078.
Masuco, M., Miranda, A., Estrada, G., Ferraz, R., Vilela, J., Otto, R., Vitti, G & Nogueira, E. 2021. Improving the fertilizer value of sugarcane wastes through phosphate rock amendment and phosphate-solubilizing bacteria inoculation. Journal of Cleaner Production 298 (2021) 126821. https://doi.org/10.1016/j.jclepro.2021.126821.
Mears, P. 1970. Kikuyu (Pennisetum clandestinum) as a pasture grass - a review. Tropical Grasslands 4, 139-152. https://www.doc-developpement-durable.org/file/Culture/Fertilisation-des-Terres-et-des-Sols/eaux-et-sols-salins/plantes-pour-sols-salins/Pennisetum%20clandestinum/Pennisetum%20clandestinum%20as%20a%20pasture%20grass_review.pdf.
MADR. 2014. Resultados del primer censo de Unidades Productoras de leche en la Región del Valle de Ubaté y Chiquinquirá. Ministerio de agricultura y desarrollo rural; Unidad de seguimiento de precios de la leche, USP; Corporación Colombia Internacional, CCI.
McGill, W & Cole, C. 1981. Comparative aspects of cycling of organic C, N, S and P through soil organic matter, Geoderma, Volume 26, Issue 4, 1981, Pages 267-286, ISSN 0016-7061, https://doi.org/10.1016/0016-7061(81)90024-0.
Malagón, D. 2003. Ensayo sobre tipología de suelos colombianos -Énfasis en génesis y aspectos ambientales- Rev. Acad. Colomb. Cienc. 27(104): 319-341. 2003. ISSN 0370-3908. https://www.accefyn.com/revista/Vol_27/104/319-341.pdf.
Marais, J. 2001. Factors affecting the nutritive value of kikuyu grass (Cenchrus clandestinus) a review. Tropical Grasslands 35: 65-84. https://www.tropicalgrasslands.info/public/journals/4/Historic/Tropical%20Grasslands%20Journal%20archive/PDFs/Vol_35_2001/Vol_35_02_01_pp65_84.pdf.
Mason, J & Zanner, C. 2005. Grassland Soils, Editor(s): Daniel Hillel, Encyclopedia of Soils in the Environment, Elsevier, 2005, Pages 138-145, ISBN 9780123485304, https://doi.org/10.1016/B0-12-348530-4/00028-X.
Mejía, A., Ochoa, R., & Medina, M. 2014. Efecto de diferentes dosis de fertilizante compuesto en la calidad del pasto kikuyo (Pennisetum clandestinum Hochst. Ex Chiov.). Obtenido de Grupo de investigación en ciencias agrarias (GRICA), Universidad de Antioquia: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03942014000100004.
Miles, N. 1997. Responses of productive and unproductive kikuyu pastures to top ‐ dressed nitrogen and phosphorus fertilizer. African Journal of Range and Forage Science 14: 1–6. https://doi.org/10.1080/10220119.1997.9647911.
Mojica, J., Castro, E., León, J., Cárdenas, E., Pabón, M., & Carulla, J. 2009. Efecto de la oferta de pasto kikuyo y ensilaje de avena sobre la producción y calidad composicional de la leche bovina. Ciencia y Tecnología Agropecuaria, 10(1), 81-90.
Mokula, R., Krishnaveni, M & Charyulu, P. 2019. Phosphate-Solubilizing Microorganisms and Their Emerging Role in Sustainable Agriculture. Recent Developments in Applied Microbiology and Biochemistry, Pages 223-233. https://doi.org/10.1016/B978-0-12-816328-3.00017-9.
Mukhametzyanova, A., Akhmetova, A & Sharipova, M. 2012. Microorganisms as phytase producers. Microbiology 81, 267–275 (2012). https://doi.org/10.1134/S0026261712030095.
Nanzyo, M. 2002. Unique Properties of Volcanic Ash Soils. Global Environmental Research, 6, pp. 99-112. https://d1wqtxts1xzle7.cloudfront.net/43820929/06_2-11-with-cover-page-v2.pdf?Expires=1661605700&Signature=YPFozXInu0CNjrSHS-rqYAmBMmICAZfFTUA3kWrAPiwAmtJj6IO8VEPcl13h0bP-YajkLkx7cWIQQXQrCrgZZ2P5pdWhxEzpRrC7ko4xE68k92aEJ~4IdwFzQ6yO3UWpYXp0m3JpnBs~uLtuYYTeD12aC-2i~SDZH6lsmtbcLIIUrtTTAJG5pAubisbIUv4-~DYNwV0dYc9N0CZpjKgZ8Ud7ZIprsnOJMrtbHOi2HCe5rKRYsiviRjaW9YH9kIIY-BDZjfSUITps8QDhpu~~UE~VyLy1sOETQFl3-1RyWvnFjU7M6B6DJXcOZzQcWoSZzz~rioH1PvW6kwkZSfuPNw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA.
Nannipieri, P., Giagnoni, L., Landi, L., Renella, G. 2011. Role of Phosphatase Enzymes in Soil. In: Bünemann, E., Oberson, A., Frossard, E. (eds) Phosphorus in Actión. Soil Biology, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15271-9_9.
Nesme, T; Metson, G & Bennett, E. 2018. Global P flows through agricultural trade. Glob. Environ. Change 50, 133–141. https://doi.org/10.1016/j.gloenvcha.2018.04.004.
Nieuwenhuis, E & Elbersen, G. 1972. Algunas observaciones sobre las cenizas volcánicas en Colombia. Revista Centro Interamericano de Fotointerpretación – CIAF.
Ohel, F., Frossard, E., Fliessbach, A., Dubois, D. 2004. Basal organic phosphorus mineralization in soils under different farming systems. Soil Biol. Biochem, 36: 667-675. https://doi.org/10.1016/j.soilbio.2003.12.010.
Pardo-Díaz, S., et al. 2021. Endophytic PGPB Improves Plant Growth and Quality, and Modulates the Bacterial Community of an Intercropping System. Front. Sustain. Food Syst. 5:715270. https://doi.org/10.3389/fsufs.2021.715270.
Pérez, L., Peyraud, J & Delagarde, R. 2011. Pasture intake, milk production and grazing behavior of dairy cows grazing low-mass pastures at three daily allowances in winter. Livestock Science, 137(1-3), 151–160. https://doi.org/10.1016/j.livsci.2010.10.013.
Pierzynski, G., McDowell, R & Sims, T. 2005. Chemistry, cycling, and potential movement of inorganic phosphorus in soils. In: Sims JT, Sharpley AN (eds) Phosphorus: agriculture and the environment. vol phosphorus agric. American Society of Agronomy, pp 53-86. https://doi.org/10.2134/agronmonogr46.c3.
Prabhu, N., Borkar, S., & Garg, S. 2019. Phosphate solubilization by microorganisms: overview, mechanisms, applicatións and advances. Advances in biological science research, 161-176. https://doi.org/10.1016/B978-0-12-817497-5.00011-2Get.
Pradhan, N & Sukla, L. 2005. Solubilization of inorganic phosphate by fungi isolated from agriculture soil. African Journal of Biotechnology, vol. 5, pp. 850–854, 2005. https://www.ajol.info/index.php/ajb/article/view/42884.
Prisca, J., Osumanu, A., Latifah, O & Aainaa, H. 2021. Phosphorus Transformation in Soils Following Co-Application of Charcoal and Wood Ash. Agronomy. 11. 2010. https://doi.org/10.3390/agronomy11102010.
Quintero, C. & Boschetti, N. 2003. Manejo del fósforo en pasturas. Disponible on line.
Rafi, M. 2019. Recent Developments in Applied Microbiology and Biochemistry || Phosphate-Solubilizing Microorganisms and Their Emerging Role in Sustainable Agriculture. 223–233. https://doi.org/10.1016 /B978-0-12-816328-3.00017-9.
Rawat, P., Das, S., Shankhdhar, D & Shankhdhar, S. 2021. Phosphate-Solubilizing Microorganisms: Mechanism and Their Role in Phosphate Solubilization and Uptake. J Soil Sci Plant Nutr 21, 49–68 (2021). https://doi.org/10.1007/s42729-020-00342-7.
Raymond, N., Gomez, B., Van der Bom, F., Nybroe, O., Jensen, L.S., Muller-Stover, D., Oberson, A & Richardson, A. 2021.Phosphate-solubilising microorganisms for improved crop productivity: A critical assessment. New Phytol. 2021, 229, 1268–1277. https://doi.org/10.1111/nph.16924.
Redel, Y., Rubio, R., Rouanet, J & Borie, F. 2007. Phosphorus bioavailability affected by tillage and crop rotation on a Chilean volcanic derived Ultisol. Geoderma. 139. 388-396. https://doi.org/10.1016/j.geoderma.2007.02.018.
Redel, Y., Staunton, S., Durán, P. et al. 2019. Fertilizer P Uptake Determined by Soil P Fractionation and Phosphatase Activity. J Soil Sci Plant Nutr 19, 166–174 (2019). https://doi.org/10.1007/s42729-019-00024-z.
Región Andina de Colombia. (20 de octubre de 2014). En Wikipedia. https://commons.wikimedia.org/w/index.php?title=File:Mapa_de_Colombia_(regi%C3%B3n_Andina).svg&oldid=615248045.
Rheinheimer, D., Fornari, M., Bastos, M., Fernandes, G., Santanna, M. A., et al. 2019. Phosphorus distribution after three decades of different soil management and cover crops in subtropical region. Soil Tillage Res. 192, 33–41. https://doi.org/10.1016/j.still.2019.04.018.
Richardson, A & Simpson, R. 2011. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol. 2011, 156, 989–996. https://doi.org/10.1104/pp.111.175448.
Rodrigues, Y., Andreote, F., Miranda, M., Franco, A., Taketani, R & Cotta, S. 2023. Disentangling the role of soil bacterial diversity in phosphorus transformation in the maize rhizosphere. Applied Soil Ecology, Volume 182, 2023, 104739, ISSN 0929-1393, https://doi.org/10.1016/j.apsoil.2022.104739.
Rodríguez, H & Fraga, R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotión. Biotechnol Adv. 1999 Oct;17(4-5):319-39. https://doi.org/10.1016/s0734-9750(99)00014-2.
Romero-Perdomo, F., Beltrán, I., Mendoza-Labrador, J., Estrada-Bonilla, G., & Bonilla, R. 2021. Phosphorus nutrition and growth of cotton plants inoculated with growth-promoting bacteria under low phosphate availability. Frontiers in Sustainable Food Systems, 4, 618425. https://doi.org/10.3389/fsufs.2020.618425.
Rooney, D & Clipson, N. 2009. Phosphate Addition and Plant Species Alters Microbial Community Structure in Acidic Upland Grassland Soil. Microb Ecol 57, 4–13 (2009). https://doi.org/10.1007/s00248-008-9399-2.
Rumpel, C., Rodríguez, A., González, J., Arbelo, C., Chabbi, A., Nunan, N., & González-Vila, F. 2012. Contrasting composition of free and mineral-bound organic matter in top-and subsoil horizons of Andosols. Biology and Fertility of Soils, 48, 401-411. https://doi.org/10.1007/s00374-011-0635-4.
Sánchez, P. 2010. Tripling crop yields in tropical Africa. Nature Geoscience, 3(5), 299-300. https://doi.org/10.1038/ngeo853.
Santos, M. 2020. Mejoramiento de la fertilización fosfatada en la asociación ryegrass y trébol rojo mediante el uso de bacterias solubilizadoras de fosfato. Trabajo de investigación presentada(o) como requisito parcial para optar al título de Magister en Ciencias – Microbiología. Universidad Nacional de Colombia Facultad de Ciencias, Instituto de Biotecnología. Bogotá, Colombia.
Santos, M., Romero, F., Mendoza, J., Gutiérrez, A., Vargas, C., Castro, E., Caro, A., Uribe, D & Estrada, G. 2021. Genomic and phenotypic analysis of rock phosphate-solubilizing rhizobacteria, Rhizosphere, Volume 17, 2021, 100290, ISSN 2452-2198, https://doi.org/10.1016/j.rhisph.2020.100290.
Satyaprakash,M., Nikitha,T., Reddi, E., Sadhana, B & Vani, S. 2017. A review on phosphorous and phosphate solubilising bacteria and their role in plant nutrition. International Journal of Current Microbiology and Applied Scences, vol. 6, pp. 2133–2144, 2017. https://doi.org/10.20546/ijcmas.2017.604.251.
Selvi, K., Paul, J., Vijaya, V & Saraswathi, K. 2017. Phosphate solubilizing bacteria and arbuscular mycorrhizal fungi impacts on inorganic phosphorus fractions and wheat growth. World Applied Sciences Journal, vol. 15, pp. 1310–1318, 2011. https://doi.org/10.21767/2471-8084.100029.
Sengul, H., Ozer, A & Gulaboglu, M. 2006. Beneficiation of Mardin Mazıdagu (Turkey) calcareous phosphate rock using dilute acetic acid solutions. Chemical Eng J 122:135–140. journal ISSN : 1385-8947. https://doi.org/10.1016/j.cej.2006.06.005.
Schachtman, D., Reid, R & Ayling, S. 1998. Phosphorus uptake by plants: from soil to cell. Plant Physiology, Washington, v. 116, n. 2, p. 447-453, 1998. https://doi.org/10.1104/pp.116.2.447.
Schwertmann, U., Kodama, H & Fischer, W. 1986. Mutual interactions between organics iron oxides. In: Huang PM, Schnitzer M, editors. Interactions of Soil Minerals with Natural Organics and Microbes. Soil Science Society of America, Madison, WI. pp. 223-250. https://doi.org/10.2136/sssaspecpub17.c7.
Sharma, S., Sayyed, R., Trivedi, M & Gobi, T. 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, vol. 2, p. 587, 2013. https://doi.org/10.1186/2193-1801-2-587.
Shrivastava, M., Kale, S & D’Souza, S. 2011. Rock phosphate enriched post-methanation bio-sludge from kitchen waste based biogas plant as P source for mungbean and its effect on rhizosphere phosphatase activity. European J Soil Biol 47:205–212. https://doi.org/10.1016/j.ejsobi.2011.02.002.
Shrivastava, M., Srivastava, P & D’Souza, S.F. 2018. Phosphate-Solubilizing Microbes: Diversity and Phosphates Solubilization Mechanism. In: Meena, V. (eds) Role of Rhizospheric Microbes in Soil. Springer, Singapore. https://doi.org/10.1007/978-981-13-0044-8_5.
Shoji, S & Takahashi, T. 2002. Environmental and agricultural significance of volcanic ash soils. Global Environmental Research. 6. https://www.researchgate.net/publicatión/228767895_Environmental_and_agricultural_significance_of_volcanic_ash_soils.
Singh, H & Reddy, M. 2011. Effect of inoculation with phosphate solubilizing fungus on growth and nutrient uptake of wheat and maize plants fertilized with rock phosphate in alkaline soils. European Journal of Soil Biology, Volume 47, 30–34. https://doi.org/10.1016/j.ejsobi.2010.10.005.
Silva, F., Winck, B., Borges, C., Santos, F., Bataiolli, R., Backes, T., ... & Sá, E. 2020. Native rhizobia from southern Brazilian grassland promote the growth of grasses. Rhizosphere, 16, 100240. https://doi.org/10.1016/j.sajb.2019.09.019.
Singh, R Singh, P, Singh V & Yadav, R. 2018. Effect of phosphorus and PSB on growth parameters, yield, quality and economics of summer greengram (Vignia radiata L). International Journal of Chemical Studies 2018, 6(4): 2798-2803. https://doi.org/10.13140/RG.2.2.32764.26240.
Soil Survey Staff. 1999. Soil Taxonomy, a Basic System of Soil Classification for Making and Interpreting Soil Surveys. Second ed. Soil survey staff. USA, Natural Resources Conservation Service. Agriculture Handbook N. 436, Washington D.C., USA. 868p. https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/class/taxonomy/.
Sohm, J., Webb, E. & Capone, D. 2011. Emerging patterns of marine nitrogen fixation. Nat Rev Microbiol 9, Pg. 499–508 (2011). https://doi.org/10.1038/nrmicro2594.
Soltangheisi, A., Rodrigues, M., Coelho, M. J. A., Gasperini, A. M., Sartor, L. R., & Pavinato, P. 2018. Changes in soil phosphorus lability promoted by phosphate sources and cover crops. Soil and Tillage Research, 179, 20-28. https://doi.org/10.1016/j.still.2018.01.006.
Son, H., Park, G., Cha, M & Heo, M. 2006. Solubilization of insoluble inorganic phosphates by a novel salt- and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresources. Technology. Volume 97, Issue 2, Pages 204-210. https://doi.org/10.1016/j.biortech.2005.02.021.
Stevenson, F & Cole, M. 1999. Cycles of soils: carbon, nitrogen, phosphorus, sulfur, micronutrients. John Wiley & Sons. https://books.google.com.co/books?hl=es&lr=&id=KdnWIzM-OHIC&oi=fnd&pg=PR17&dq=Stevenson+%26+Cole,+1999&ots=97tYKtoFvf&sig=siMBw-0Aq9l9IG9trRqDkhfD_D0#v=onepage&q=Stevenson%20%26%20Cole%2C%201999&f=false.
Stephano, F & Mng'ong'o, M. 2022. On the tropical soils; The influence of organic matter (OM) on phosphate bioavailability, Saudi Journal of Biological Sciences, Volume 29, Issue 5, 2022, Pages 3635-3641, ISSN 1319-562X, https://doi.org/10.1016/j.sjbs.2022.02.056.
Stutter, M., Shand, C., George, T., Blackwell,M., Bol, R., MacKay, R., Richardson, R., Condron, L., Turner, B & Haygarth, P. 2012. Recovering phosphorus from soil: a root solution?. Environ Sci Technol 46:1977–1978. https://doi.org/10.1021/es2044745.
Sullivan, D., Bary, A., Thomas, D., Fransen, S & Cogger, C. 2002. Food waste compost effects on fertilizer nitrogen efficiency, available nitrogen, and tall fescue yield. Soil Sci Soci Am J 66:154–161. https://doi.org/10.2136/sssaj2002.1540ª.
Tabatabai, M & Bremner, J. 1969. Use of P-nitro phenyl phosphate for assay of phosphatase activity. Soil Biol Biochem. 1969; 1:301–307. https://doi.org/10.1016/0038-0717(69)90012-1.
Tabatabai, M. 1994. Soil enzymes. Methods of soil analysis: Part 2 Microbiological and biochemical properties, 5, 775-833. https://doi.org/10.2136/sssabookser5.2.c37.
Tahir, M et al. 2018. Combined application of bio-organic phosphate and phosphorus solubilizing bacteria (Bacillus strain MWT 14) improve the performance of bread wheat with low fertilizer input under an arid climate. Brazilian Journal of Microbiology [online]. 2018, v. 49, suppl 1 , pp. 15-24. Available from: <https://doi.org/10.1016/j.bjm.2017.11.005>. ISSN 1678-4405.
Tamad, M., Hanudin, E., Widada, J. 2021. The mechanism of phosphate bacteria in increasing the solubility of phosphorus in Indonesian Andisols. Journal of Water and Land Development. No. 49 (IV–VI) p. 188–194. https://doi.org/10.24425/jwld.2021.137111.
Takahashi, T., Shoji, S. 2003. Distributión and classificatión of volcani ash soils. Glob. Environ. Res. 6, 83–97. https://www.nasa.gov/centers/johnson/pdf/486016main_Takahashi.pdf.
Thomas, L., Hodgson, D., Wentzel, A., Nieselt, K., Ellingsen, T., Moore J, Morrissey, E., Legaie, R., Wohlleben, W., Rodríguez, A., Martín, J., Burroughs, N., Wellington, E & Smith, M. 2012. Metabolic switches and adaptations deduced from the proteomes of Streptomyces coelicolor wild type and phoP mutant grown in batch culture. Mol. Cell. Proteomics. https://doi.org/.1074/mcp.M111.013797.
Tiecher, T., Rheinheimer, D., & Calegari, A. 2012a. Soil organic phosphorus forms under different soil management systems and winter crops, in a long term experiment. Soil Till. Res. 124, 57–67. https://doi.org/10.1016/j.still.2012.05.001.
Timofeeva, A., Galyamova, M & Sedykh, S. 2022. Prospects for Using Phosphate-Solubilizing Microorganisms as Natural Fertilizers in Agriculture. Plants 2022, 11 (16), 2119. https://doi.org/10.3390/plants11162119.
Tsai, C., Chen, Z., Kao, C., Ottner, F., Kao, S & Zehetner, F. 2010. Pedogenic Development of Volcanic Ash Soils Along a Climosequence in Northern Taiwan. Contents Lists Available. Geoderma, 156, pp.48-59. https://doi.org/10.1016/j.geoderma.2010.01.007.
Ugolini, F & Dahlgren, R. 2003. Soil Development in Volcanic Ash. Global Environmental Research, Vol 6, N° 2. Association of International Research Initiatives for Environmental Studies (AIRIES), Japan. http://www.airies.or.jp>save>06_2_09.pdf.
Valenzuela, I & Visconti, E. 2018. Influence of climate, soil use and soil depth on soil organic carbon content at two Andean altitudinal sites in Norte de Santander, Colombia. Revista Colombiana de Ciencias Hortícolas, 12(1), 233–243. https://doi.org/10.17584/rcch.2018v12i1.7349.
Van-Straaten, P. 2002. Rocks for Crops: Agro-Minerals of Sub-Saharan Africa. Nairobi, Kenya: ICRAF, p338. http://apps.worldagroforestry.org/Units/Library/Books/PDFs/11_Rocks_for_crops.pdf.
Vargas, J., Sierra, A., Mancipe, E & Avellaneda, Y. 2018. El kikuyo, una gramínea presente en los sistemas de rumiantes en trópico alto colombiano. Rev. CES Med. Zootec. 2018; Vol 13 (2): 137-156. https://doi.org/10.21615/cesmvz.13.2.4.
Velasco, A. 2021. Inoculación de compost con microorganismos solubilizadores de fosfato y su efecto sobre la disponibilidad del fósforo. Universidad de Almería, Facultad de Ciencias Experimentales. Trabajo final de grado para optar por el título de Biotecnóloga. http://repositorio.ual.es/bitstream/handle/10835/13510/VELASCO%20SALAS%2C%20ANAHIS%20ISABEL.pdf?sequence=1&isAllowed=y.
Velásquez, G., Calabi, M., Poblete, P., Rumpel, C., Demanet, R., Condron, L & Mora, M. 2016. Fertilizer effects on phosphorus fractions and organic matter in Andisols. Journal of soil science and plant nutrition, 16(2), 294-309. Epub 04 de mayo de 2016. https://dx.doi.org/10.4067/S0718-95162016005000024.
Vijayakumar, A & Rajasekharan, R. 2016. Distinct Roles of Alpha/Beta Hydrolase Domain Containing Proteins. Biochem. Biochemistry & Molecular Biology Journal ISSN 2471-8084. Vol. 2 No. 3: 18. DOI: 10.21767/2471-8084.100027.
Walpola, B & Yoon, M. 2012. Prospectus of phosphate solubilizing microorganisms and phosphorus availability in agricultural soils: a review. African Journal of Microbiology Research, vol. 6, pp. 6600–6605, 2012. https://academicjournals.org/article/article1380799180_Walpola%20and%20Yoon.pdf.
Waldrip, H., He, Z., & Erich, M. 2011. Effects of poultry manure amendment on phosphorus uptake by ryegrass, soil phosphorus fractions and phosphatase activity. Biology and Fertility of Soils, 47, 407-418. https://doi.org/10.1007/s00374-011-0546-4.
Wang, L & Nancollas, G. 2008. Calcium orthophosphates: crystallization and dissolution. Chem Rev, Volume 108: 4628–4669. https://doi.org/10.1021/cr0782574.
Wu, C., Wei, X., Sun, H., Wang, Z. 2005. Phosphate availability alters lateral root anatomy and root architecture of Fraxinus mandshurica Rupr. Seedlings. J Integrative Plant Biol 7:292–301. https://doi.org/10.1111/j.1744-7909.2005.00021.x.
Wyngaard, N., Cabrera, M., Jarosch, K., Bunemann, E. 2016. Phosphorus in the coarse soil fraction is related to soil organic phosphorus mineralization measured by isotopic dilution. Soil Biol Biochem 96:107–118. https://pdf.sciencedirectassets.com/271195/1-s2.0-S0038071716X0003X/1-s2.0-S0038071716000377/Nicolas_Wyngaard_Organic_phosphorus_2016.pdf
Yang, Y., Tilman, D., Furey, G. et al. 2019. Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nat Commun 10, 718 (2019). https://doi.org/10.1038/s41467-019-08636-w.
Yang, Z., Zhang, Y., Wang, Y., Zhang, H., Zhu, Q., Yan, B., ... & Luo, G. 2022. Intercropping regulation of soil phosphorus composition and microbially-driven dynamics facilitates maize phosphorus uptake and productivity improvement. Field Crops Research, 287. https://doi.org/10.1016/j.fcr.2022.108666.
Yousefi, A., Khavazi, K., Moezi, A., Rejali, F & Nadian, H. 2011. Phosphate solubilizing bacteria and arbuscular mycorrhizal fungi impacts on inorganic phosphorus fractions and wheat growth. World Applied Sciences Journal, vol. 15, pp. 1310–1318, 2011. https://scholar.googleusercontent.com/scholar?q=cache:nzfphxZ-XtYJ:scholar.google.com/&hl=es&as_sdt=0,5.
Zeng, Q., Wu, X., Wang, J., Ding, X. 2017. Phosphate solubilization and gene expression of phosphate-solubilizing bacterium Burkholderia multivorans WS-FJ9 under different levels of soluble phosphate. J. Microbiol. Biotechnol. 2017; 27(4): 844-855. Published April 28, 2017 https://doi.org/10.4014/jmb.1611.11057.
Zou, X., Binkley, D., & Doxtader, K. G. 1992. A new method for estimating gross phosphorus mineralization and immobilization rates in soils. Plant and Soil, 147, 243-250. https://doi.org/10.1007/BF00029076.
Zhu, L., Fu, F., & Tang, B. 2018. Coexistence or aggression? Insight into the influence of phosphate on Cr (VI) adsorption onto aluminum-substituted ferrihydrite. Chemosphere, 212, 408-417. https://doi.org/10.1016/j.chemosphere.2018.08.085.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 107 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agrarias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83861/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83861/2/80350691.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/83861/3/80350691.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
9c7eaa2538e759ba9fa3a5781f00d30a
a7aed35b28da9f11810c31b8a4519534
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089302104080384
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Estrada Bonilla, German Andresd1af67c6ec32de27224f448a520fa26bBonilla, Carmen Rosa2d1f14d011f063db72c8af5a29369e6aTorres Cuesta, Daniel Ricardo81c6e0b32e0a7d5cec9bb96487e320efSistemas agropecuarios SosteniblesDaniel Ricardo Torres [0000-0001-9101-0543]2023-05-24T21:07:08Z2023-05-24T21:07:08Z2023-05-05https://repositorio.unal.edu.co/handle/unal/83861Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, graficasLa co-inoculación con bacterias solubilizadoras de fósforo (PGPB) en asocio con fuentes de fósforo (P) puede mejorar la disponibilidad de P en el suelo, generando sistemas de cultivos más sostenibles, eficientes en el aprovechamiento de nutrientes y de mayor productividad. La implementación de estas tecnologías en gramíneas de pastoreo como el kikuyo establecidas sobre suelos Andisoles con alta retención fosfórica ha sido poco explorada. El objetivo de esta investigación fue evaluar la respuesta productiva del pasto kikuyo y la dinámica del P en el suelo a la co-inoculación de PGPB con diferentes fuentes de P. El experimento se estableció sobre una pradera de kikuyo durante 18 meses, utilizando fuentes de P: alta solubilidad (fosfato diamónico-DAP), baja solubilidad (roca fosfórica-RF) y (compost-MO); y la co-inoculación de tres BSF (Herbaspirillum sp. AP21, Azospirillum brasilense D7, Rhizobium leguminosarum T88). Se encontró que la co-inoculación con BSF mejoró en 20% la disponibilidad de P en el suelo con una mayor actividad enzimática (64%), incrementando la productividad del kikuyo en 45,2% con la aplicación de RF. La co-inoculación con aplicación de MO aumentó la disponibilidad del P inorgánico en la reserva del P lábil. En conclusión, la co-inoculación de estas BSF mostró una mayor eficiencia en la solubilización y mineralización de fuentes de P de baja solubilidad, mejorando la disponibilidad del Fósforo inorgánico (Pi) en la solución del suelo y aumentando la producción del pasto kikuyo, representando una importante estrategia de manejo en praderas establecidas con esta gramínea de pastoreo. (Texto tomado de la fuente)Inoculation of Phosphorus Solubilizing Bacteria (PSB) in association with phosphorus (P) sources can improve the availability of P in the soil, generating more sustainable crop systems, efficient in the use of nutrients with higher productivity. The implementation of these technologies in grazing grasses such as kikuyo in Andisols with high phosphorus retention has been little explored. The objective of this research was to evaluate the productive response of kikuyo grass and soil P dynamics to BSF inoculation with different P sources. The experiment was established on a kikuyo pasture for ten and eight months, using P sources: high solubility (diammonium phosphate (DAP)), low solubility (rock phosphate (RF)) and (compost (MO)); and the co-inoculation of three BSF (Herbaspirillum sp. AP21, Azospirillum brasilense D7, Rhizobium leguminosarum T88). It was found that inoculation with BSF improved soil P availability by 20% with higher enzymatic activity (64%), increasing kikuyo productivity by 45.2% with RF application. Inoculation with MO application increased the availability of inorganic P in the labile P pool. In conclusion, the inoculation of these BSF showed greater efficiency in the solubilization of low solubility P sources, improving the availability of inorganic Phosphate (Pi) in the soil solution and increasing the production of kikuyo grass, representing an important management strategy in established pastures with this grazing grass.Ministerio de Agricultura y Desarrollo RuralMaestríaMagíster en Ciencias AgrariasCiencias Agrícolas - Agricultura, Silvicultura y Pesca - Agronomía107 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en Ciencias AgrariasFacultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesPennisetum clandestinumInoculación del sueloSoil inoculationActividad enzimáticaFosfato diamónicoRoca fosfóricaCompostInoculantes microbianosBPCVFraccionamiento secuencial de fosfatoDiammonium PhosphatePhosphate RockCompostMicrobial inoculantsPGPVPhosphate sequential fractionationEnzymatic activityEfecto de la inoculación de bacterias promotoras del crecimiento en la dinámica del fósforo edáfico en kikuyo (Cenchrus clandestinum Hochst. ex Chiov.)Effect of growth promoting bacteria inoculation on soil phosphorus dynamics in kikuyo (Cenchrus clandestinum Hochst. ex Chiov.)Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAcevedo, O., Ortiz, E., Cruz, M y Cruz, E. 2004. El papel de óxidos de hierro en suelos Terra Latinoamericana, vol. 22, núm. 4, octubre-diciembre, 2004, pp. 485-497 Sociedad Mexicana de la Ciencia del Suelo, A.C. Chapingo, México. https://www.redalyc.org/pdf/573/57311096013.pdfAbbasi, M., Musa, N & Manzoor, M., 2015. Mineralization of soluble P fertilizers and insoluble rock phosphate in response to phosphate-solubilizing bacteria and poultry manure and their effect on the growth and P utilization efficiency of Chilli (Capsicum annuum L.). Biogeosciences 12, 4607–4619. https://doi.org/10.5194/bg-12-4607-2015.Adegoke, H., Adekola, F., Fatoki, O & Ximba, B. 2013. Sorptive interaction of oxyanions with iron oxides: a review. Polish Journal of Environmental Studies 22:7-24. http://www.pjoes.com/pdf-88948-22807?filename=Sorptive%20Interactión%20of.pdf.Adesemoye, A., Torberto, H & Kloepper, J. 2009. Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb. Ecol. 2009, 58, 921–929. https://doi.org/10.1007/s00248-009-9531-y.Ahmad, F., Ahmad, I & Khan, M. S. 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163, 173–181 (2008). doi: 10.1016/j.micres.2006.04.001.Aipova, R., Aitkeldiyeva, S., Kurmanbayev, A., Sadanov, A & Topalova, O. 2010. Assessment of biotechnological potential of phosphate solubilizing bacteria isolated from soils of Southern Kazakhstan. Natural Science Vol.2 No.8, August 25, 2010. DOI: 10.4236/ns.2010.28105.Albacete, M. 2014. Residuos orgánicos como fuentes de fósforo (Doctoral disertación, Universidad Politécnica de Madrid).Alam, F., Khan, A., Fahad, S., Nawaz, S., Ahmed, N., Arif Ali, M., Adnan, M., Dawar, K., Saud, S., Hassan, S., Aown M., Raza, S., Naveed, K., Arif, M., Datta, R & Danish,S. 2022. Phosphate solubilizing bacteria optimize wheat yield in mineral phosphorus applied alkaline soil, Journal of the Saudi Society of Agricultural Sciences, Volume 21, Issue 5, 2022, Pages 339-348, ISSN 1658-077X, https://doi.org/10.1016/j.jssas.2021.10.007.Alamzeb, M. 2022. Management of Phosphorus Sources in Combination with Rhizobium and Phosphate Solubilizing Bacteria Improve Nodulation, Yield and Phosphorus Uptake in Chickpea. Gesunde Pflanzen, 1-16. https://doi.org/10.1007/s10343-022-00722-2Alori, E., Glick, B & Babalola, O. 2017. Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture. Front. Microbiol., 02 June 2017. Sec. Plant Pathogen Interactions. https://doi.org/10.3389/fmicb.2017.00971Alvarado, A., Mata, R., Chinchilla, M. 2014. Arcillas identificadas en suelos de costa rica a nivel generalizado durante el período 1931-2014: i. Historia, metodología de análisis y mineralogía de arcillas en suelos derivados de cenizas volcánicas. Agronomía Costarricense 38(1):75-106. ISSN:0377-9424 / 2014.Anda, M., Kasno, A., Ginting, C., Barus, P & Purwanto, S. 2021. Response of Andisols to intensive agricultural land use: Implication on changes in P accumulation and colloidal surface charge. Earth and Environmental Science648 (2021) 012016. Doi:10.1088/1755-1315/648/1/012016.Arai, Y & Sparks, D. 2007. Phosphate reaction dynamics in soils and soil minerals: a multiscale approach. Adv Agron 94: 135–179. https://doi.org/10.1016/S0065-2113(06)94003-6Arcand, M & Schneider, K. 2006. Plant- And microbial-based mechanisms to improve the agronomic effectiveness of phosphate rock: A review. In Anais da Academia Brasileira de Ciências (Vol. 78, Issue 4, pp. 791-807). Academia Brasileira de Ciências. https://doi.org/10.1590/S0001-37652006000400013.Ariza-Nieto, C., Mayorga, O. L., Mojica, B., Parra, D., & Afanador-Tellez, G. 2018. Use of LOCAL algorithm with near infrared spectroscopy in forage resources for grazing systems in Colombia. Journal of Near Infrared Spectroscopy, 26(1), 44-52. https://journals.sagepub.com/doi/pdf/10.1177/0967033517746900?casa_token=7bneprh80isAAAAA:uVcRn63Yf2OiGcvy0gah9wTNQRtOZgLa2LlBtHeOBLcbOBXAsgDycWz0-qtDVtEh_VHhDuH5l-vl3oE.Ávila, E. 2005. Los suelos de Colombia y sus estadísticas más recientes. Análisis Geográficos 29, pp. 13-21. http://documentación.ideam.gov.co/cgi-bin/koha/opac-MARCdetail.pl?bibliónumber=29015.Azeem, M., Riaz, A., Chaudhary, A., Hayat, R., Hussain, Q., Tahir, M & Imran, M., 2014. Microbial phytase activity and their role in organic P mineralization. Archives of Agronomy and Soil Science 14, 1–16. https://doi.org/10.1080/03650340.2014.963796.Bai, J., Ye, X., Jia, J., Zhang, G., Zhao, Q., Cui, B & Liu,X. 2017. Phosphorus sorption-desorption and effects of temperature, pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions, Chemosphere, Volume 188, 2017, Pages 677-688, ISSN 0045-6535, https://doi.org/10.1016/j.chemosphere.2017.08.117.Barrow, N & Debnath, A. 2015. Effect of phosphate status and pH on sulphate sorption and desorption Eur. J. Soil Sci., 66 (2) (2015), pp. 286-297, https://doi.org/10.1111/ejss.12223.Barrow, N. 2017. The effects of pH on phosphate uptake from the soil. Plant Soil, 410 (1-2) (2017), pp. 401-410, https://doi.org/10.1007/s11104-016-3008-9.Barrow, N. 2020. Comparing two theories about the nature of soil phosphate Eur. J. Soil Sci., 72 (2) (2020), pp. 679-685. https://doi.org/10.1111/ejss.13027.Behera, B., Singdevasachan, S., Mishra, R., Dutta, S & Thatoi, H. 2014. Diversity, mechanism and biotechnology of phosphate solubilising microorganism in mangrive – A review. Biocatal. Agr. Biotechn. (Netherlands). 3:97-110. https://doi.org/10.1016/j.bcab.2013.09.008.Benavides, J., Avellaneda, Y., Buitrago, C., Castro, E., Castillo, J., Rendón, C., Romero, J., Torres, D., Vargas, J., Zuñiga, A., Benavides, G., Carrillo, J., Díaz, J., Gómez, C., Hernández, D., Porras, A & Vela, J. 2019. Guías de mejores prácticas en sistemas de producción de leche con base en pasturas para el trópico alto colombiano. Mosquera, Colombia: Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA) y The Agribusiness Group. http://hdl.handle.net/20.500.12324/35641.Beltrán, M. 2014. La solubilización de fosfatos como estrategia microbiana para promover el crecimiento vegetal. Artículo de revisión. Corpoica Cienc. Tecnol. Agropecu. (2014) 15(1) 101-113. http://www.scielo.org.co/pdf/ccta/v15n1/v15n1a09.pdf.Beltran-Medina, J. I., Romero-Perdomo, F., Molano-Chavez, L., Silva, A. M., & Estrada-Bonilla, G. A. 2022. Differential Plant Growth Promotion Under Reduced Phosphate Rates in Two Genotypes of Maize by a Rhizobial Phosphate-Solubilizing Strain. Frontiers in Sustainable Food Systems, 6, 1-13. https://www.researchgate.net/profile/German-Estrada-Bonilla/publication/361847066_Differential_Plant_Growth_Promotion_Under_Reduced_Phosphate_Rates_in_Two_Genotypes_of_Maize_by_a_Rhizobial_Phosphate-Solubilizing_Strain/links/62c975f8cab7ba7426dfedf7/Differential-Plant-Growth-Promotion-Under-Reduced-Phosphate-Rates-in-Two-Genotypes-of-Maize-by-a-Rhizobial-Phosphate-Solubilizing-Strain.pdf.Belgaroui, N., Berthomieu, P., Rouached, H., & Hanin, M. 2016. The secretion of the bacterial phytase PHY‐US 417 by Arabidopsis roots reveals its potential for increasing phosphate acquisition and biomass production during co‐growth. Plant biotechnology journal, 14(9), 1914-1924. https://doi.org/10.1111/pbi.12552.Bernal, J. 1998. Fertilización de pastos mejorados. En: Guerrero, R. (ed). Fertilización de cultivos en clima frío. Ed. Sáenz y Cía. Ltda. Bogotá, Colombia. p. 278-328.Billah, M., Khan, M., Bano, A., Hassan, T. U., Munir, A., & Gurmani, A. 2019. Phosphorus and phosphate solubilizing bacteria: Keys for sustainable agriculture. Geomicrobiology Journal, 1–13. https://doi:10.1080/01490451.2019.1654043.Bobadilla, C y Rincón, S. 2008. Aislamiento y producción de Bacterias Fosfatosolubilizadoras a partir de compost obtenido de residuos de plaza. Trabajo de grado para obtener el título de Microbiología Industrial, Pontificia Universidad Javeriana, Facultad de Ciencias. Junio 2008. https://repository.javeriana.edu.co/handle/10554/8433.Borggaard, O., Szilas, C., Gimsing, A & Rasmussen, L. 2004. Estimation of soil phosphate absorption capacity by means of a pedotransfer function. Geoderma. Volume 118,issue 1-2; 55-61. https://doi.org/10.1016/S0016-7061(03)00183-6.Bol, R., Bolger, T., Cully, R., & Little, D. 2003. Recalcitrant soil organic materials mineralize more efficiently at higher temperatures. Journal of Plant Nutrition and Soil Science, 166(3), 300–307. https://doi.org/10.1002/jpln.200390047.Bolland, M., Gilkes, R & Brennan, R. 2001. The influence of soil proper- ties on the effectiveness of phosphate rock fertilizers. Soil Res 39:773–798. https://doi.org/10.1071/SR00025.Bonatotzky, T., Ottner, F., Erlendsson, E & Gísladottir, G. 2021. Weathering of tephra and the formation of pedogenic minerals in young andosols, South East Iceland. Catena 198, 105030 (2021). https://doi.org/10.1016/j.catena.2020.105030.Borie, F., Rubio, R. 2003. Total and organic phosphorus in Chilean volcanic soils. Gayana Botanica. 60, 69-78. http://dx.doi.org/10.4067/S0717-66432003000100011.Briceño, M., Escudey, M., Galindo, G., Borchardt, D., Chang, A. 2004. Characterization of chemical phosphorus forms in volcanic soils using 31P-NMR spectroscopy. Commun.Soil Sci. Plan. 35, 1323-1337. https://doi.org/10.1081/CSS-120037549.Bunemann, E. 2015. Assessment of gross and net mineralization rates of soil organic phosphorus–A review. Soil Biology and Biochemistry, 89, 82–98. https://doi.org/10.1016/j.soilbio.2015.06.026.Burns, R., DeForest, J., Marxsen, J., Sinsabaugh, R., Stromberger, M., Wallenstein, M., Weintraub, M & Zoppini, A. 2013. Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biology and Biochemistry, Volume 58, 2013, Pages 216-234. ISSN 0038-0717. https://doi.org/10.1016/j.soilbio.2012.11.009.Carulla, J., Cárdenas, E., Sánchez, N., Riveros, C. 2004. Valor nutricional de los forrajes más usados en los sistemas de producción lechera especializada de la zona andina colombiana; En: Eventos y Asesorías Agropecuarias EU (editores), Seminario Nacional de Lechería Especializada: “Bases Nutricionales y su Impacto en la Productividad”. Medellín, 21 – 38 p.Carpenter, S. 2008. Phosphorus control is critical to mitigating eutrophicatión. Proceedings of the Natiónal Academy of Sciences of the United States of America, 105, 11039–11040. https://doi.org/10.1073/pnas.0806112105.Chandler, D., Davidson, G., Grant, W.P., Greaves, J & Tatchell, G. 2008. Microbial biopesticides for integrated crop management: an assessment of environmental and regulatory sustainability: Trends Food Sci. Tec,. 19: 275-283. https://doi.org/10.1016/j.tifs.2007.12.009.Chaverra, G., Davila, S., Villamizar, R & Bernal, J. 1967. El cultivo de los pastos en la Sabana de Bogotá. ICA. Bogotá, Colombia. Cursillo sobre manejo de praderas y cultivo de pastos de clima frío. Sociedad de Agricultores de Colombia. Aedita Editores Ltda., Bogotá, COL.Chapin, F. 1980. The mineral nutrition of wild plants. Annual review of ecology and systematics, Alaska, p. 233-260, 1980. https://doi.org/10.1146/annurev.es.11.110180.001313.Chen, Y., Rekha, P., Arun, A., Shen, F., Lai, W & Young, C. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. App Soil Ecol 34:33–41. doi.org/10.1016/j.apsoil.2005.12.002.Chiu, C., Baillie, I., Jien, S., Hallett, L & Hallett, S. 2021. Sequestration of P fractions in the soils of an incipient ferralisation chronosequence on a humid tropical volcanic island. Bot Stud. 2021 Dec 2;62(1):20. doi: 10.1186/s40529-021-00326-5. PMID: 34855017; PMCID: PMC8639856.Colf, J., Truter, W & Botha, P. 2014. The production potential of Kikuyu (Pennisetum clandestinum) pastures over-sown with Ryegrass (Lolium spp.); “University of Pretoria. https://repository.up.ac.za/bitstream/handle/2263/25770/dissertation.pdf?sequence=1.Condron, L., Turner, B., Cade-Menun, B. 2005. Chemistry and dynamics of soil organic phosphorus. In: Sims, J.T., Sharpley, A.N. (Eds.), Phosphorus: agriculture and the environment. ASA/CSSA/SSSA, Madison, Wisconsin. United States of America, pp 87-121. https://doi.org/10.2134/agronmonogr46.c4.Condron, L & Newman, S. 2011. Revisiting the fundamentals of phosphorus fractionation in soils and sediments. J. Soils Sediments. 11, 830-840. https://doi.org/10.1007/s11368-011-0363-2.Conant, R., Paustian, K., & Elliott, E. 2001. Grassland Management and Conversion into Grassland: Effects on Soil Carbon. Ecological Applications, 11(2), 343–355. https://doi.org/10.2307/3060893.Correa, H., Pabón, M., Sánchez, M., Carulla, J. 2018a. Efecto del nivel de suplementación sobre el uso de nitrógeno, el volumen y la calidad de la leche en vacas Holstein de primer y segundo tercio de lactancia en el trópico alto de Antioquia. Livestock Research and Rural Development 2011; 23:77. URL: http://www.lrrd.org/lrrd23/4/corr23077.htm.Cortés-Patiño, S., Vargas, C., Álvarez-Flórez, F., Bonilla, R., Estrada-Bonilla, G. 2021. Potential of Herbaspirillum and Azospirillum Consortium to Promote Growth of Perennial Ryegrass under Water Deficit. Microorganisms 2021, 9, 91. https://doi.org/10.3390/microorganisms9010091.Cortés-Patiño, S., Vargas, C., Alvarez-Flórez, F., Estrada-Bonilla, G. 2022. Co-Inoculation of Plant-Growth Promoting Bacteria Modulates Physiological and Biochemical Responses of Perennial Ryegrass to Water Deficit. Plants 2022, 11, 2543. https://doi.org/10.3390/Crews. T & Brookes, P. 2014. Changes in soil phosphorus forms through time in perennial versus annual agroecosystems. Agriculture, Ecosystems and Environment, 184: 168–181 http://dx.doi.org/10.1016/j.agee.2013.11.022.Dahlgren, R., Saigusa, M & Ugolini, F. 2004. The Nature, Properties and management of Volcanic Soils. Glob. In Advances in Agronomy, Vol 82, 113-181. https://books.google.com.co/books?hl=es&lr=&id=_19ObhE8rRoC&oi=fnd&pg=PA113&dq=Ugolini,+F.C.,+Dahlgren,+R.A.,+2003.+Soil+development+in+volcanic+ash.&ots=vikujWDo1V&sig=zRL8YGGSKBrDaj4eCYEz0YWd4To#v=onepage&q=Ugolini%2C%20F.C.%2C%20Dahlgren%2C%20R.A.%2C%202003.%20Soil%20development%20in%20volcanic%20ash.&f=false.Davidson, J & Milthorpe, F. 1966. Leaf Growth in Dactylis glomerate after Defoliation, Annals of Botany, Volume 30, Issue 2, April 1966, Pages 173–184. https://doi.org/10.1093/oxfordjournals.aob.a084065.De Bolle, S. 2013. Phosphate saturation and phosphate leaching of acidic sandy soils in Flanders: analysis and mitigation options. Ghent University, Faculty of Bioscience Engineering, Ghent, Belgium. Doctoral dissertation, Thesis submitted for degree of Doctor (PhD) in Applied Biological Sciences. https://biblio.ugent.be/publicatión/4143518/file/4143536.Del Campillo, M., Van der Zee, S & Torrent, J. 1999.Modelling long-term phosphorus leaching and changes in phosphorus fertility in excessively fertilized acid sandy soils. European Journal of Soil Science. Volume 50, issue 3;391-399. https://doi.org/10.1046/j.1365-2389.1999.00244.x.Delfim, J., Schoebitz, M., Paulino, L., Hirzel, J & Zagal, E. 2018. Phosphorus Availability in Wheat, in Volcanic Soils Inoculated with Phosphate-Solubilizing Bacillus thuringiensis. Sustainability 2018, 10, 144. https://doi.org/10.3390/su10010144.Delmelle, P., Opfergelt, S and Cornelis, J. 2015. The Encyclopedia of Volcanoes || Volcanic Soils. , (), 1253–1264. https://doi.org/10.1016/B978-0-12-385938-9.00072-9.Devau, N., Le Cadre, E., Hinsinger, P & Gérard, F. 2010. A mechanistic model for understanding root-induced chemical changes controlling phosphorus availability. Annals of Botanic (Lond), Volume 105: 1183–1197. https://doi.org/10.1093/aob/mcq098.Dodd, I. & Ruiz, J. 2012. Microbial enhancement of crop resource use efficiency. Curr. Opin. Biotechnol. 2012, 23, 236–242. https://doi.org/10.1016/j.copbio.2011.09.005.Ebelhar, S. 2008. Labile pool. In: Chesworth, W. (eds) Encyclopedia of Soil Science. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3995-9_313.Echeverri, J; Restrepo, L y Parra, J. 2010. Evaluación comparativa de los parámetros productivos y agronómicos del pasto kikuyo Pennisetum clandestinum bajo dos metodologías de fertilización. Revista Lasallista de Investigación, vol. 7, núm. 2, julio-diciembre, 2010, pp. 94 - 100. Corporación Universitaria Lasallista Antioquia, Colombia.Elhaissoufi, W., Khourchi, S., Ibnyasser, A., Ghoulam, C., Rchiad, Z., Zeroual, Y., Ehrlich, H., Newman, D., Kappler, A., editors. 2016. Ehrlich´s Geomicrobiology book. 6 th edition. Boca Raton: Taylor & Francis Group; 2016. Geomicrobial Interactions with Phosphorus. ISBN 9780367658724, Published March 30, 2021 by CRC Press 668 Pages. https://books.google.com.co/books?hl=es&lr=&id=0NWYCgAAQBAJ&oi=fnd&pg=PP1&dq=Ehrlich,+H.,+Newman,+D.,+Kappler,+A.,+editors.+2016.+Ehrlich%C2%B4s+Geomicrobiology+&ots=DMXLgS7k0F&sig=lYvdkry3bFC0B850BohT8eTX_TM&redir_esc=y#v=onepage&q&f=false.Escudey, M., Galindo, G., Föster, J., Briceño, M., Diaz, P., Chang, A. 2001. Chemical forms of phosphorus of volcanic ash derived soils in Chile. Commun. Soil Sci. Plant. 32, 601-606. https://doi.org/10.1081/CSS-100103895.Espinoza, J. 2004. Fijación de fósforo en suelos derivados de ceniza volcánica. informaciones agronómicas 55:5-8. 2004. https://www.researchgate.net/publicatión/237118666_FIJACIÓN_DE_FOSFORO_EN_SUELOS_DERIVADOS_DE_CENIZA_VOLCANICA.Espinoza, J y Rubiano, Y. 2015. Procesos específicos de formación en Andisoles, Alfisoles y Ultisoles en Colombia. Revista Escuela de Ingeniería de Antioquia - EIA, ISSN 1794-1237 / Año XII / Volumen 12 / Edición Especial N.2 / junio 2015/ pp. E85-E97. https://revistas.eia.edu.co/index.php/reveia/article/view/709/664.Estrada, G., Baldani, V., De Oliveira, D. et al. 2013. Selection of phosphate-solubilizing diazotrophic Herbaspirillum and Burkholderia strains and their effect on rice crop yield and nutrient uptake. Plant Soil 369, 115–129 (2013). https://doi.org/10.1007/s11104-012-1550-7.Estrada-Bonilla, G., Durrer, A., & Cardoso, E. 2021. Use of compost and phosphate-solubilizing bacteria affect sugarcane mineral nutrition, phosphorus availability, and the soil bacterial community. Applied Soil Ecology, 157, 103760. https://doi.org/10.1016/j.apsoil.2020.103760.Estrada, G., Durrer, A & Cardoso, E. 2021. Use of compost and phosphate-solubilizing bacteria affect sugarcane mineral nutrition, phosphorus availability, and the soil bacterial community. Appl. Soil Ecol. 157, 103760. https://doi.org/10.1016/j.apsoil.2020.103760.Fageria, V. 2001. Nutrient interactions in crop plants, Journal of Plant Nutrition, 24:8, 1269-1290, https://doi.org/10.1081/PLN-100106981.Fassbender, H. 1982. Química de suelos; con énfasis en suelos de América Latina. 1ed. 3 reimpresión. San José de Costa Rica, IICA. 422 p.Fujii, K., Sukartiningsih, Hayakawa, C. et al. 2020. Effects of land use change on turnover and storage of soil organic matter in a tropical forest. Plant Soil 446, 425–439 (2020). https://doi.org/10.1007/s11104-019-04367-5.Fisher, R & Schmincke, H. 1984. Pyroclastic Rocks. Spronger-Verlag, Berlin. https://www.geokniga.org/bookfiles/geokniga-pyroclastic-rocks.pdfFink, J., Inda, A., Tiecher, T & Barrón, V. 2016.Iron oxides and organic matter on soil phosphorus availability Cienc. e Agrotecnologia, 40 (4) (2016), pp. 369-379. https://doi.org/10.1590/1413-70542016404023016.Fonseca, C., Balocchi, O., Keim, J. P., & Rodríguez, C. 2016. Effect of defoliation frequency on yield and nutritional composition of Pennisetum clandestinum Hochst. ex Chiov. Agro Sur, 44(3), 67-76. http://revistas.uach.cl/pdf/agrosur/v44n3/art07.pdf.Frossard, E., Sinaj, S., Bangerter, F & Traore, O. 2002. Forms and exchangeability of inorganic phosphate in composted solid organic waste. Nutr Cycle Agroecosyst 62:103–113.https://www.research- collectión.ethz.ch/bitstream/handle/20.500.11850/422919/1/10705_2004_Article_323297.pdf.Fontes, M., Weed, S & Bowen, L. 1992. Association of Microcrystalline Goethite and Humic Acid in Some Oxisols from Brazil. Soil Science Society of America Journal, 56: 982-990. https://doi.org/10.2136/sssaj1992.03615995005600030050x.Fox, R & Searle, P. 1978. Phosphate Adsorption by Soils of the Tropics. In Diversity of Soils in the Tropics (eds J.J. Nicholaides and L.D. Swindale). https://doi.org/10.2134/asaspecpub34.c7.Fu, H., Yang, Y., Zhu, R., Liu, J., Usman, M., Chen, Q., & He, H. 2018. Superior adsorption of phosphate by ferrihydrite-coated and lanthanum-decorated magnetite. Journal of Colloid and Interface Science, 530, 704-713. https://doi.org/10.1016/j.jcis.2018.07.025.Fulkerson, B., Griffiths, N., Sinclair, K., & Beale, P. 2010. Milk production from kikuyu grass-based pastures. Primefacts, 1068(May), 1–13. https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0012/359949/Milk-productión-from-kikuyu-grass-based-pastures.pdf.Fulkerson, W & Donaghy, D. 2001. Plant-soluble carbohydrate reserves and senescence- Key criteria for developing an effective grazing management system or Ryegrass-based pastures: A review. Australian Journal of Experimental Agriculture. 41: 261-275. https://doi.org/10.1071/EA00062.García, S., Islam, M., Clark, E & Martin, P. 2014. Kikuyu based pasture for dairy production: A review. Crop and Pasture Science 65(8). https://doi.org/10.1071/CP13414.Gasparatos, D., Haidouti, C., Haroulis, A & Tsaousidou, P. 2006. Estimation of phosphorus status of soil Fe-enriched concretions with the acid ammonium oxalate method. Communications in Soil Science and Plant Analysis 37:2375-2387. https://doi.org/10.1080/00103620600819891.Gatiboni, L & Condron, L. 2021. A rapid fractionation method for assessing key soil phosphorus parameters in agroecosystems, Geoderma, Volume 385, 2021, 114893, ISSN 0016-7061, https://doi.org/10.1016/j.geoderma.2020.114893.Goldstein, A. 1995. Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria. Biological Agriculture & Horticulture Vol 12:185–193. https://doi.org/10.1080/01448765.1995.9754736.Gyaneshwar, P., Kumar, G., Parekh, L., Poole, P. 2002. Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245: 83-93. https://doi.org/10.1023/A:1020663916259.He, Z., Bian, W & Zhu, J. 2002. Screening and identification of microorganisms capable of utilizing phosphate adsorbed by goethite. Comm. Soil Sci. Plant Anal., 33: 647-663. https://doi.org/:10.1081/CSS-120003057.Gueçaimburu, J., Vázquez, J., Tancredi, F., Reposo, G., Rojo, V., Martínez, M & Introcaso, R. 2019. Evolución del fósforo disponible a distintos niveles de compactación por tráfico agrícola en un argiudol típico. Chilean journal of agricultural & animal sciences, 35(1), 81-89. https://dx.doi.org/10.4067/S0719-38902019005000203.Hedley, M., Steward, J., Chauhuan, B. 1982. Changes in organic and inorganic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci. Soc. Am. J. 46, 970-976. https://doi.org/10.2136/sssaj1982.03615995004600050017x.Hernández, G., Cabrera, G., Izquierdo, I., Socarrás, A., Hernández, L., Sánchez, J. 2018. Indicadores edáficos después de la conversión de un pastizal a sistemas Agroecológicos. Pastos y Forrajes, Vol. 41, No. 1, pp 3-12. enero-marzo, 2018.Herrera, M. 2006. Suelos derivados de cenizas volcánicas en Colombia: Estudio fundamental e implicaciones en ingeniería. Trabajo presentado para obtener el título de Doctor en ingeniería. Universidad de los Andes, Facultad de Ingeniería. https://repositorio.uniandes.edu.co/bitstream/handle/1992/7812/u277084.pdf?sequence=1&isAllowed=y.Hinsinger, P. 2001. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and Soil, 237(2), 173-195. https://doi.org/10.1023/A:1013351617532.Huygens, D., Boeckx, P., Van Cleemput, O., Oyarzún, C., & Godoy, R. 2005. Aggregate and soil organic carbon dynamics in South Chilean Andisols, Biogeosciences, 2, 159–174, https://doi.org/10.5194/bg-2-159-2005.Hutchins, D., Qu, P., Fu, F., Kling, J., Huh, M., Wang, X. 2019. Distinct responses of the nitrogen-fixing marine cyanobacterium Trichodesmium to a thermally-variable environment as a function of phosphorus availability. Front Microbiol 10:1282. https://doi.org/10.3389/fmicb.2019.01282.Ibrahim, M., Anwar-Ul-Hassan, Iqbal, M & Valeem, E. 2008. Response of wheat growth and yield to various levels of compost and organic manure. Pakistan J Bot 40(5):2135–2141.https://www.researchgate.net/publicatión/222101716_Response_of_wheat_growth_and_yield_to_various_levels_of_compost_and_organic_manure.Illmer, P & Schinner, F. 1995. Solubilizatión of inorganic calcium phosphates—solubilizatión mechanisms Soil Biology and Biochemistry. Vol 27, 257–263. https://doi.org/10.1016/0038-0717(94)00190-C.Instituto geográfico Agustín Codazzi (IGAC). 2012. Levantamiento Detallado de Suelos en las Áreas Planas de 14 municipios de la Sabana de Bogotá. Departamento de Cundinamarca. Escala 1:10.000.Insuasti, G., Parra, A. S., & Salazar, J. J. 2014. Producción de materia seca y calidad del pasto Kikuyo Pennisetum clandestinum en diferentes niveles de fertilización nitrogenada y en asocio con aliso Alnus acuminata en el trópico alto colombiano. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/123660/1/p32-41-Doc.-268-Anais.pdf.Janes, V., Blackwell, M., Blair, G., Davies, J., Haygarth, P., Mezeli, M & Stewart, G. 2022. A meta-analysis of phosphatase activity in agricultural settings in response to phosphorus deficiency. Soil Biology and Biochemistry, Volume 165, 2022, 108537, ISSN 0038-0717. https://doi.org/10.1016/j.soilbio.2021.108537.Jahnke, R. 1992. The Phosphorus Cycle. International Geophysics, Volume 50, 1992, Pages 301-315. https://doi.org/10.1016/S0074-6142(08)62697-2.Jiang, X., Peng, C., Fu, D., Chen, Z., Shen, L., Li, Q., Ouyang, T & Wang, Y. 2015. Removal of arsenate by ferrihydrite via surface complexation and surface precipitation. Applied Surface Science 353:1087-1094. https://doi.org/10.1016/j.apsusc.2015.06.190.Jorquera, M., Crowley, D., Marschner, P., Greiner, R., Fernández, M., Romero, D., Menezes-Blackburn, D & De La Luz Mora, M. 2011.Identificatión of β-propeller phytase-encoding genes in culturable Paenibacillus and Bacillus spp. from the rhizosphere of pasture plants on volcanic soils. FEMS Microbiol. Ecol. 2011, 75, 163–172. https://doi.org/10.1111/j.1574-6941.2010.00995.x.Kalayu, G. 2019. Phosphate Solubilizing Microorganisms: Promising Approach as Biofertilizers. Int. J. Agron. Volume 2019 | Article ID 4917256 | https://doi.org/10.1155/2019/4917256.Kavanová, M., Lattanzi, F., Grimoldi, A & Schnyder, H. 2006. Phosphorus deficiency decreases cell division and elongation in grass leaves. Plant Physiol. 2006 Jun;141(2):766-75. https://doi.org/10.1104/pp.106.079699.Kwesi, S. 2020. Processes and Factors Affecting Phosphorus Sorption in Soils. Sorption in 2020s. https://doi.org/10.5772/intechopen.90719.Khan, M., Zaidi, A., Ahemad, M., Oves, M., Wani, P. 2010. Plant growth promotion by phosphate solubilizing fungi—current perspective. Arch Agron Soil Sci 56:73–98.. https://doi.org/10.1080/03650340902806469.Khan, I., Zada, S., Rafiq, M. et al. 2022. Phosphate solubilizing epilithic and endolithic bacteria isolated from clastic sedimentary rocks, Murree lower Himalaya, Pakistan. Arch Microbiol 204, 332 (2022). https://doi.org/10.1007/s00203-022-02946-2.Kishore, N., Pindi, P.K., Ram Reddy, S. 2015. Phosphate-Solubilizing Microorganisms: A Critical Review. In: Bahadur, B., Venkat Rajam, M., Sahijram, L., Krishnamurthy, K. (eds) Plant Biology and Biotechnology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2286-6_12.Konietzny, U & Greiner, R. 2004. Bacterial phytase: potential application, in vivo function and regulation of its synthesis. Brazilian Journal of Microbiology. Vol. 35 p. 11–18. https://doi.org/10.1590/S1517-83822004000100002.Kruse, J., Abraham, M., Amelung, W., Baum, C., Bol, R., Kühn, O., Lewandowski, H., Niederberger, J., Oelmann, Y., Rüger, C., Santner, J., Siebers, M., Siebers, N., Spohn, M., Vestergren, J., Vogts, A & Leinweber, P. 2015. Innovative methods in soil phosphorus research: A review. J. Plant Nutr. Soil Sci., 178 (1) (2015), pp. 43-88. https://doi.org/10.1002/jpln.201400327.Kumar, R., Kumar, R., Mittal, S., Arora, M & Babu, J. 2016. Role of soil physicochemical characteristics on the present state of arsenic and its absorption in alluvial soils of two agri-intensive region of Bathinda, Punjab, India. Journal of Soils and Sediments 16:605-620. https://doi.org/10.1007/s11368-015-1262-8.Kumar, A & Patel, H. 2018. Role of microbes in phosphorus availability and acquisition by plants. International Journal of Current Microbiology and Applied Sciences, vol. 7, no. 5, pp. 1344–1347, 2018. https://doi.org/10.20546/ijcmas.2018.705.161.Lambers, H & Plaxton, W. 2018. P: back to the roots. Annu. Plant Rev. 48,3–22. https://doi.org/10.1146/annurev-arplant-102720.Larsen S. 1967. Soil phosphorus. In Adv Agron, Volume 19: 151–210. https://doi.org/10.1016/S0065-2113(08)60735-X.Leamy, M. 1984. Andisols of the world In: Congreso internacional de suelos volcánicos comunicaciones Universidad de la Laguna Secretariado de Publicaciones serie informes 13 pp 368–387. https://escholarship.org/content/qt0xw6q794/qt0xw6q794_noSplash_9f88f13468576cabd293c6888416e1a3.pdf.Leirós, M., Trasar-Cepeda, C., Seoane, S & Gil-Sotres, F. 1999. Dependence of mineralization of soil organic matter on temperature and moisture, Soil Biology and Biochemistry, Volume 31, Issue 3, Pages 327-335, ISSN 0038-0717, https://doi.org/10.1016/S0038-0717(98)00129-1.Leite, M. 2009. Fungos Filamentosos do Lodo de Esgoto: Impacto na Microbiana Fúngica e Potencial Enzimático. 65 f. Dissertação (Mestrado em Desenvolvimento de Processos Ambientais) — Universidade Católica de Pernambuco, Recife. http://tede2.unicap.br:8080/bitstream/tede/590/1/dissertacao_marcela_leite.pdf.Li, X., Luo, L., Yang, J., Li, B & Yuan, H. 2015. Mechanisms for solubilization of various insoluble phosphates and activation of immobilized phosphates in different soils by an efficient and salinity-tolerant Aspergillus niger strain An2. Appl. Biochem. Biotechnol. 2015, 175, 2755–2768. https://doi.org/10.1007/s12010-014-1465-2.Lindsay, W. 1979. Chemical equilibria in soils. New York: Wiley. http://catalog.hathitrust.org/api/volumes/oclc/4883190.html.Lindsay, W., Vlek, P & Chien, S. 1989. Phosphate minerals. In Minerals in Soil Environment - Dixon JB Weed SB eds, Ed 2. Soil Science Society of America, Madison, WI, pp 1089–1130. https://doi.org/10.2136/sssabookser1.2ed.c22.Luengo, C., Brigante, M., Antelo, J & Avena, M. 2006. Kinetics of phosphate adsorption on goethite: comparing batch adsorption and ATR-IR measurements. J Colloid Interface Sci 300: 511–518. https://doi.org/10.1016/j.jcis.2006.04.015.Mahfud, A., Devnita, M., Anda, M., Goenadi, D & Nugraha, A. 2022. "Characteristics of Andisols Developed from Andesitic and Basaltic Volcanic Ash in Different Agro-Climatic Zones" Soil Systems 6, no. 4: 78. https://doi.org/10.3390/soilsystems6040078.Masuco, M., Miranda, A., Estrada, G., Ferraz, R., Vilela, J., Otto, R., Vitti, G & Nogueira, E. 2021. Improving the fertilizer value of sugarcane wastes through phosphate rock amendment and phosphate-solubilizing bacteria inoculation. Journal of Cleaner Production 298 (2021) 126821. https://doi.org/10.1016/j.jclepro.2021.126821.Mears, P. 1970. Kikuyu (Pennisetum clandestinum) as a pasture grass - a review. Tropical Grasslands 4, 139-152. https://www.doc-developpement-durable.org/file/Culture/Fertilisation-des-Terres-et-des-Sols/eaux-et-sols-salins/plantes-pour-sols-salins/Pennisetum%20clandestinum/Pennisetum%20clandestinum%20as%20a%20pasture%20grass_review.pdf.MADR. 2014. Resultados del primer censo de Unidades Productoras de leche en la Región del Valle de Ubaté y Chiquinquirá. Ministerio de agricultura y desarrollo rural; Unidad de seguimiento de precios de la leche, USP; Corporación Colombia Internacional, CCI.McGill, W & Cole, C. 1981. Comparative aspects of cycling of organic C, N, S and P through soil organic matter, Geoderma, Volume 26, Issue 4, 1981, Pages 267-286, ISSN 0016-7061, https://doi.org/10.1016/0016-7061(81)90024-0.Malagón, D. 2003. Ensayo sobre tipología de suelos colombianos -Énfasis en génesis y aspectos ambientales- Rev. Acad. Colomb. Cienc. 27(104): 319-341. 2003. ISSN 0370-3908. https://www.accefyn.com/revista/Vol_27/104/319-341.pdf.Marais, J. 2001. Factors affecting the nutritive value of kikuyu grass (Cenchrus clandestinus) a review. Tropical Grasslands 35: 65-84. https://www.tropicalgrasslands.info/public/journals/4/Historic/Tropical%20Grasslands%20Journal%20archive/PDFs/Vol_35_2001/Vol_35_02_01_pp65_84.pdf.Mason, J & Zanner, C. 2005. Grassland Soils, Editor(s): Daniel Hillel, Encyclopedia of Soils in the Environment, Elsevier, 2005, Pages 138-145, ISBN 9780123485304, https://doi.org/10.1016/B0-12-348530-4/00028-X.Mejía, A., Ochoa, R., & Medina, M. 2014. Efecto de diferentes dosis de fertilizante compuesto en la calidad del pasto kikuyo (Pennisetum clandestinum Hochst. Ex Chiov.). Obtenido de Grupo de investigación en ciencias agrarias (GRICA), Universidad de Antioquia: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03942014000100004.Miles, N. 1997. Responses of productive and unproductive kikuyu pastures to top ‐ dressed nitrogen and phosphorus fertilizer. African Journal of Range and Forage Science 14: 1–6. https://doi.org/10.1080/10220119.1997.9647911.Mojica, J., Castro, E., León, J., Cárdenas, E., Pabón, M., & Carulla, J. 2009. Efecto de la oferta de pasto kikuyo y ensilaje de avena sobre la producción y calidad composicional de la leche bovina. Ciencia y Tecnología Agropecuaria, 10(1), 81-90.Mokula, R., Krishnaveni, M & Charyulu, P. 2019. Phosphate-Solubilizing Microorganisms and Their Emerging Role in Sustainable Agriculture. Recent Developments in Applied Microbiology and Biochemistry, Pages 223-233. https://doi.org/10.1016/B978-0-12-816328-3.00017-9.Mukhametzyanova, A., Akhmetova, A & Sharipova, M. 2012. Microorganisms as phytase producers. Microbiology 81, 267–275 (2012). https://doi.org/10.1134/S0026261712030095.Nanzyo, M. 2002. Unique Properties of Volcanic Ash Soils. Global Environmental Research, 6, pp. 99-112. https://d1wqtxts1xzle7.cloudfront.net/43820929/06_2-11-with-cover-page-v2.pdf?Expires=1661605700&Signature=YPFozXInu0CNjrSHS-rqYAmBMmICAZfFTUA3kWrAPiwAmtJj6IO8VEPcl13h0bP-YajkLkx7cWIQQXQrCrgZZ2P5pdWhxEzpRrC7ko4xE68k92aEJ~4IdwFzQ6yO3UWpYXp0m3JpnBs~uLtuYYTeD12aC-2i~SDZH6lsmtbcLIIUrtTTAJG5pAubisbIUv4-~DYNwV0dYc9N0CZpjKgZ8Ud7ZIprsnOJMrtbHOi2HCe5rKRYsiviRjaW9YH9kIIY-BDZjfSUITps8QDhpu~~UE~VyLy1sOETQFl3-1RyWvnFjU7M6B6DJXcOZzQcWoSZzz~rioH1PvW6kwkZSfuPNw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA.Nannipieri, P., Giagnoni, L., Landi, L., Renella, G. 2011. Role of Phosphatase Enzymes in Soil. In: Bünemann, E., Oberson, A., Frossard, E. (eds) Phosphorus in Actión. Soil Biology, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15271-9_9.Nesme, T; Metson, G & Bennett, E. 2018. Global P flows through agricultural trade. Glob. Environ. Change 50, 133–141. https://doi.org/10.1016/j.gloenvcha.2018.04.004.Nieuwenhuis, E & Elbersen, G. 1972. Algunas observaciones sobre las cenizas volcánicas en Colombia. Revista Centro Interamericano de Fotointerpretación – CIAF.Ohel, F., Frossard, E., Fliessbach, A., Dubois, D. 2004. Basal organic phosphorus mineralization in soils under different farming systems. Soil Biol. Biochem, 36: 667-675. https://doi.org/10.1016/j.soilbio.2003.12.010.Pardo-Díaz, S., et al. 2021. Endophytic PGPB Improves Plant Growth and Quality, and Modulates the Bacterial Community of an Intercropping System. Front. Sustain. Food Syst. 5:715270. https://doi.org/10.3389/fsufs.2021.715270.Pérez, L., Peyraud, J & Delagarde, R. 2011. Pasture intake, milk production and grazing behavior of dairy cows grazing low-mass pastures at three daily allowances in winter. Livestock Science, 137(1-3), 151–160. https://doi.org/10.1016/j.livsci.2010.10.013.Pierzynski, G., McDowell, R & Sims, T. 2005. Chemistry, cycling, and potential movement of inorganic phosphorus in soils. In: Sims JT, Sharpley AN (eds) Phosphorus: agriculture and the environment. vol phosphorus agric. American Society of Agronomy, pp 53-86. https://doi.org/10.2134/agronmonogr46.c3.Prabhu, N., Borkar, S., & Garg, S. 2019. Phosphate solubilization by microorganisms: overview, mechanisms, applicatións and advances. Advances in biological science research, 161-176. https://doi.org/10.1016/B978-0-12-817497-5.00011-2Get.Pradhan, N & Sukla, L. 2005. Solubilization of inorganic phosphate by fungi isolated from agriculture soil. African Journal of Biotechnology, vol. 5, pp. 850–854, 2005. https://www.ajol.info/index.php/ajb/article/view/42884.Prisca, J., Osumanu, A., Latifah, O & Aainaa, H. 2021. Phosphorus Transformation in Soils Following Co-Application of Charcoal and Wood Ash. Agronomy. 11. 2010. https://doi.org/10.3390/agronomy11102010.Quintero, C. & Boschetti, N. 2003. Manejo del fósforo en pasturas. Disponible on line.Rafi, M. 2019. Recent Developments in Applied Microbiology and Biochemistry || Phosphate-Solubilizing Microorganisms and Their Emerging Role in Sustainable Agriculture. 223–233. https://doi.org/10.1016 /B978-0-12-816328-3.00017-9.Rawat, P., Das, S., Shankhdhar, D & Shankhdhar, S. 2021. Phosphate-Solubilizing Microorganisms: Mechanism and Their Role in Phosphate Solubilization and Uptake. J Soil Sci Plant Nutr 21, 49–68 (2021). https://doi.org/10.1007/s42729-020-00342-7.Raymond, N., Gomez, B., Van der Bom, F., Nybroe, O., Jensen, L.S., Muller-Stover, D., Oberson, A & Richardson, A. 2021.Phosphate-solubilising microorganisms for improved crop productivity: A critical assessment. New Phytol. 2021, 229, 1268–1277. https://doi.org/10.1111/nph.16924.Redel, Y., Rubio, R., Rouanet, J & Borie, F. 2007. Phosphorus bioavailability affected by tillage and crop rotation on a Chilean volcanic derived Ultisol. Geoderma. 139. 388-396. https://doi.org/10.1016/j.geoderma.2007.02.018.Redel, Y., Staunton, S., Durán, P. et al. 2019. Fertilizer P Uptake Determined by Soil P Fractionation and Phosphatase Activity. J Soil Sci Plant Nutr 19, 166–174 (2019). https://doi.org/10.1007/s42729-019-00024-z.Región Andina de Colombia. (20 de octubre de 2014). En Wikipedia. https://commons.wikimedia.org/w/index.php?title=File:Mapa_de_Colombia_(regi%C3%B3n_Andina).svg&oldid=615248045.Rheinheimer, D., Fornari, M., Bastos, M., Fernandes, G., Santanna, M. A., et al. 2019. Phosphorus distribution after three decades of different soil management and cover crops in subtropical region. Soil Tillage Res. 192, 33–41. https://doi.org/10.1016/j.still.2019.04.018.Richardson, A & Simpson, R. 2011. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol. 2011, 156, 989–996. https://doi.org/10.1104/pp.111.175448.Rodrigues, Y., Andreote, F., Miranda, M., Franco, A., Taketani, R & Cotta, S. 2023. Disentangling the role of soil bacterial diversity in phosphorus transformation in the maize rhizosphere. Applied Soil Ecology, Volume 182, 2023, 104739, ISSN 0929-1393, https://doi.org/10.1016/j.apsoil.2022.104739.Rodríguez, H & Fraga, R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotión. Biotechnol Adv. 1999 Oct;17(4-5):319-39. https://doi.org/10.1016/s0734-9750(99)00014-2.Romero-Perdomo, F., Beltrán, I., Mendoza-Labrador, J., Estrada-Bonilla, G., & Bonilla, R. 2021. Phosphorus nutrition and growth of cotton plants inoculated with growth-promoting bacteria under low phosphate availability. Frontiers in Sustainable Food Systems, 4, 618425. https://doi.org/10.3389/fsufs.2020.618425.Rooney, D & Clipson, N. 2009. Phosphate Addition and Plant Species Alters Microbial Community Structure in Acidic Upland Grassland Soil. Microb Ecol 57, 4–13 (2009). https://doi.org/10.1007/s00248-008-9399-2.Rumpel, C., Rodríguez, A., González, J., Arbelo, C., Chabbi, A., Nunan, N., & González-Vila, F. 2012. Contrasting composition of free and mineral-bound organic matter in top-and subsoil horizons of Andosols. Biology and Fertility of Soils, 48, 401-411. https://doi.org/10.1007/s00374-011-0635-4.Sánchez, P. 2010. Tripling crop yields in tropical Africa. Nature Geoscience, 3(5), 299-300. https://doi.org/10.1038/ngeo853.Santos, M. 2020. Mejoramiento de la fertilización fosfatada en la asociación ryegrass y trébol rojo mediante el uso de bacterias solubilizadoras de fosfato. Trabajo de investigación presentada(o) como requisito parcial para optar al título de Magister en Ciencias – Microbiología. Universidad Nacional de Colombia Facultad de Ciencias, Instituto de Biotecnología. Bogotá, Colombia.Santos, M., Romero, F., Mendoza, J., Gutiérrez, A., Vargas, C., Castro, E., Caro, A., Uribe, D & Estrada, G. 2021. Genomic and phenotypic analysis of rock phosphate-solubilizing rhizobacteria, Rhizosphere, Volume 17, 2021, 100290, ISSN 2452-2198, https://doi.org/10.1016/j.rhisph.2020.100290.Satyaprakash,M., Nikitha,T., Reddi, E., Sadhana, B & Vani, S. 2017. A review on phosphorous and phosphate solubilising bacteria and their role in plant nutrition. International Journal of Current Microbiology and Applied Scences, vol. 6, pp. 2133–2144, 2017. https://doi.org/10.20546/ijcmas.2017.604.251.Selvi, K., Paul, J., Vijaya, V & Saraswathi, K. 2017. Phosphate solubilizing bacteria and arbuscular mycorrhizal fungi impacts on inorganic phosphorus fractions and wheat growth. World Applied Sciences Journal, vol. 15, pp. 1310–1318, 2011. https://doi.org/10.21767/2471-8084.100029.Sengul, H., Ozer, A & Gulaboglu, M. 2006. Beneficiation of Mardin Mazıdagu (Turkey) calcareous phosphate rock using dilute acetic acid solutions. Chemical Eng J 122:135–140. journal ISSN : 1385-8947. https://doi.org/10.1016/j.cej.2006.06.005.Schachtman, D., Reid, R & Ayling, S. 1998. Phosphorus uptake by plants: from soil to cell. Plant Physiology, Washington, v. 116, n. 2, p. 447-453, 1998. https://doi.org/10.1104/pp.116.2.447.Schwertmann, U., Kodama, H & Fischer, W. 1986. Mutual interactions between organics iron oxides. In: Huang PM, Schnitzer M, editors. Interactions of Soil Minerals with Natural Organics and Microbes. Soil Science Society of America, Madison, WI. pp. 223-250. https://doi.org/10.2136/sssaspecpub17.c7.Sharma, S., Sayyed, R., Trivedi, M & Gobi, T. 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, vol. 2, p. 587, 2013. https://doi.org/10.1186/2193-1801-2-587.Shrivastava, M., Kale, S & D’Souza, S. 2011. Rock phosphate enriched post-methanation bio-sludge from kitchen waste based biogas plant as P source for mungbean and its effect on rhizosphere phosphatase activity. European J Soil Biol 47:205–212. https://doi.org/10.1016/j.ejsobi.2011.02.002.Shrivastava, M., Srivastava, P & D’Souza, S.F. 2018. Phosphate-Solubilizing Microbes: Diversity and Phosphates Solubilization Mechanism. In: Meena, V. (eds) Role of Rhizospheric Microbes in Soil. Springer, Singapore. https://doi.org/10.1007/978-981-13-0044-8_5.Shoji, S & Takahashi, T. 2002. Environmental and agricultural significance of volcanic ash soils. Global Environmental Research. 6. https://www.researchgate.net/publicatión/228767895_Environmental_and_agricultural_significance_of_volcanic_ash_soils.Singh, H & Reddy, M. 2011. Effect of inoculation with phosphate solubilizing fungus on growth and nutrient uptake of wheat and maize plants fertilized with rock phosphate in alkaline soils. European Journal of Soil Biology, Volume 47, 30–34. https://doi.org/10.1016/j.ejsobi.2010.10.005.Silva, F., Winck, B., Borges, C., Santos, F., Bataiolli, R., Backes, T., ... & Sá, E. 2020. Native rhizobia from southern Brazilian grassland promote the growth of grasses. Rhizosphere, 16, 100240. https://doi.org/10.1016/j.sajb.2019.09.019.Singh, R Singh, P, Singh V & Yadav, R. 2018. Effect of phosphorus and PSB on growth parameters, yield, quality and economics of summer greengram (Vignia radiata L). International Journal of Chemical Studies 2018, 6(4): 2798-2803. https://doi.org/10.13140/RG.2.2.32764.26240.Soil Survey Staff. 1999. Soil Taxonomy, a Basic System of Soil Classification for Making and Interpreting Soil Surveys. Second ed. Soil survey staff. USA, Natural Resources Conservation Service. Agriculture Handbook N. 436, Washington D.C., USA. 868p. https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/class/taxonomy/.Sohm, J., Webb, E. & Capone, D. 2011. Emerging patterns of marine nitrogen fixation. Nat Rev Microbiol 9, Pg. 499–508 (2011). https://doi.org/10.1038/nrmicro2594.Soltangheisi, A., Rodrigues, M., Coelho, M. J. A., Gasperini, A. M., Sartor, L. R., & Pavinato, P. 2018. Changes in soil phosphorus lability promoted by phosphate sources and cover crops. Soil and Tillage Research, 179, 20-28. https://doi.org/10.1016/j.still.2018.01.006.Son, H., Park, G., Cha, M & Heo, M. 2006. Solubilization of insoluble inorganic phosphates by a novel salt- and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresources. Technology. Volume 97, Issue 2, Pages 204-210. https://doi.org/10.1016/j.biortech.2005.02.021.Stevenson, F & Cole, M. 1999. Cycles of soils: carbon, nitrogen, phosphorus, sulfur, micronutrients. John Wiley & Sons. https://books.google.com.co/books?hl=es&lr=&id=KdnWIzM-OHIC&oi=fnd&pg=PR17&dq=Stevenson+%26+Cole,+1999&ots=97tYKtoFvf&sig=siMBw-0Aq9l9IG9trRqDkhfD_D0#v=onepage&q=Stevenson%20%26%20Cole%2C%201999&f=false.Stephano, F & Mng'ong'o, M. 2022. On the tropical soils; The influence of organic matter (OM) on phosphate bioavailability, Saudi Journal of Biological Sciences, Volume 29, Issue 5, 2022, Pages 3635-3641, ISSN 1319-562X, https://doi.org/10.1016/j.sjbs.2022.02.056.Stutter, M., Shand, C., George, T., Blackwell,M., Bol, R., MacKay, R., Richardson, R., Condron, L., Turner, B & Haygarth, P. 2012. Recovering phosphorus from soil: a root solution?. Environ Sci Technol 46:1977–1978. https://doi.org/10.1021/es2044745.Sullivan, D., Bary, A., Thomas, D., Fransen, S & Cogger, C. 2002. Food waste compost effects on fertilizer nitrogen efficiency, available nitrogen, and tall fescue yield. Soil Sci Soci Am J 66:154–161. https://doi.org/10.2136/sssaj2002.1540ª.Tabatabai, M & Bremner, J. 1969. Use of P-nitro phenyl phosphate for assay of phosphatase activity. Soil Biol Biochem. 1969; 1:301–307. https://doi.org/10.1016/0038-0717(69)90012-1.Tabatabai, M. 1994. Soil enzymes. Methods of soil analysis: Part 2 Microbiological and biochemical properties, 5, 775-833. https://doi.org/10.2136/sssabookser5.2.c37.Tahir, M et al. 2018. Combined application of bio-organic phosphate and phosphorus solubilizing bacteria (Bacillus strain MWT 14) improve the performance of bread wheat with low fertilizer input under an arid climate. Brazilian Journal of Microbiology [online]. 2018, v. 49, suppl 1 , pp. 15-24. Available from: <https://doi.org/10.1016/j.bjm.2017.11.005>. ISSN 1678-4405.Tamad, M., Hanudin, E., Widada, J. 2021. The mechanism of phosphate bacteria in increasing the solubility of phosphorus in Indonesian Andisols. Journal of Water and Land Development. No. 49 (IV–VI) p. 188–194. https://doi.org/10.24425/jwld.2021.137111.Takahashi, T., Shoji, S. 2003. Distributión and classificatión of volcani ash soils. Glob. Environ. Res. 6, 83–97. https://www.nasa.gov/centers/johnson/pdf/486016main_Takahashi.pdf.Thomas, L., Hodgson, D., Wentzel, A., Nieselt, K., Ellingsen, T., Moore J, Morrissey, E., Legaie, R., Wohlleben, W., Rodríguez, A., Martín, J., Burroughs, N., Wellington, E & Smith, M. 2012. Metabolic switches and adaptations deduced from the proteomes of Streptomyces coelicolor wild type and phoP mutant grown in batch culture. Mol. Cell. Proteomics. https://doi.org/.1074/mcp.M111.013797.Tiecher, T., Rheinheimer, D., & Calegari, A. 2012a. Soil organic phosphorus forms under different soil management systems and winter crops, in a long term experiment. Soil Till. Res. 124, 57–67. https://doi.org/10.1016/j.still.2012.05.001.Timofeeva, A., Galyamova, M & Sedykh, S. 2022. Prospects for Using Phosphate-Solubilizing Microorganisms as Natural Fertilizers in Agriculture. Plants 2022, 11 (16), 2119. https://doi.org/10.3390/plants11162119.Tsai, C., Chen, Z., Kao, C., Ottner, F., Kao, S & Zehetner, F. 2010. Pedogenic Development of Volcanic Ash Soils Along a Climosequence in Northern Taiwan. Contents Lists Available. Geoderma, 156, pp.48-59. https://doi.org/10.1016/j.geoderma.2010.01.007.Ugolini, F & Dahlgren, R. 2003. Soil Development in Volcanic Ash. Global Environmental Research, Vol 6, N° 2. Association of International Research Initiatives for Environmental Studies (AIRIES), Japan. http://www.airies.or.jp>save>06_2_09.pdf.Valenzuela, I & Visconti, E. 2018. Influence of climate, soil use and soil depth on soil organic carbon content at two Andean altitudinal sites in Norte de Santander, Colombia. Revista Colombiana de Ciencias Hortícolas, 12(1), 233–243. https://doi.org/10.17584/rcch.2018v12i1.7349.Van-Straaten, P. 2002. Rocks for Crops: Agro-Minerals of Sub-Saharan Africa. Nairobi, Kenya: ICRAF, p338. http://apps.worldagroforestry.org/Units/Library/Books/PDFs/11_Rocks_for_crops.pdf.Vargas, J., Sierra, A., Mancipe, E & Avellaneda, Y. 2018. El kikuyo, una gramínea presente en los sistemas de rumiantes en trópico alto colombiano. Rev. CES Med. Zootec. 2018; Vol 13 (2): 137-156. https://doi.org/10.21615/cesmvz.13.2.4.Velasco, A. 2021. Inoculación de compost con microorganismos solubilizadores de fosfato y su efecto sobre la disponibilidad del fósforo. Universidad de Almería, Facultad de Ciencias Experimentales. Trabajo final de grado para optar por el título de Biotecnóloga. http://repositorio.ual.es/bitstream/handle/10835/13510/VELASCO%20SALAS%2C%20ANAHIS%20ISABEL.pdf?sequence=1&isAllowed=y.Velásquez, G., Calabi, M., Poblete, P., Rumpel, C., Demanet, R., Condron, L & Mora, M. 2016. Fertilizer effects on phosphorus fractions and organic matter in Andisols. Journal of soil science and plant nutrition, 16(2), 294-309. Epub 04 de mayo de 2016. https://dx.doi.org/10.4067/S0718-95162016005000024.Vijayakumar, A & Rajasekharan, R. 2016. Distinct Roles of Alpha/Beta Hydrolase Domain Containing Proteins. Biochem. Biochemistry & Molecular Biology Journal ISSN 2471-8084. Vol. 2 No. 3: 18. DOI: 10.21767/2471-8084.100027.Walpola, B & Yoon, M. 2012. Prospectus of phosphate solubilizing microorganisms and phosphorus availability in agricultural soils: a review. African Journal of Microbiology Research, vol. 6, pp. 6600–6605, 2012. https://academicjournals.org/article/article1380799180_Walpola%20and%20Yoon.pdf.Waldrip, H., He, Z., & Erich, M. 2011. Effects of poultry manure amendment on phosphorus uptake by ryegrass, soil phosphorus fractions and phosphatase activity. Biology and Fertility of Soils, 47, 407-418. https://doi.org/10.1007/s00374-011-0546-4.Wang, L & Nancollas, G. 2008. Calcium orthophosphates: crystallization and dissolution. Chem Rev, Volume 108: 4628–4669. https://doi.org/10.1021/cr0782574.Wu, C., Wei, X., Sun, H., Wang, Z. 2005. Phosphate availability alters lateral root anatomy and root architecture of Fraxinus mandshurica Rupr. Seedlings. J Integrative Plant Biol 7:292–301. https://doi.org/10.1111/j.1744-7909.2005.00021.x.Wyngaard, N., Cabrera, M., Jarosch, K., Bunemann, E. 2016. Phosphorus in the coarse soil fraction is related to soil organic phosphorus mineralization measured by isotopic dilution. Soil Biol Biochem 96:107–118. https://pdf.sciencedirectassets.com/271195/1-s2.0-S0038071716X0003X/1-s2.0-S0038071716000377/Nicolas_Wyngaard_Organic_phosphorus_2016.pdfYang, Y., Tilman, D., Furey, G. et al. 2019. Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nat Commun 10, 718 (2019). https://doi.org/10.1038/s41467-019-08636-w.Yang, Z., Zhang, Y., Wang, Y., Zhang, H., Zhu, Q., Yan, B., ... & Luo, G. 2022. Intercropping regulation of soil phosphorus composition and microbially-driven dynamics facilitates maize phosphorus uptake and productivity improvement. Field Crops Research, 287. https://doi.org/10.1016/j.fcr.2022.108666.Yousefi, A., Khavazi, K., Moezi, A., Rejali, F & Nadian, H. 2011. Phosphate solubilizing bacteria and arbuscular mycorrhizal fungi impacts on inorganic phosphorus fractions and wheat growth. World Applied Sciences Journal, vol. 15, pp. 1310–1318, 2011. https://scholar.googleusercontent.com/scholar?q=cache:nzfphxZ-XtYJ:scholar.google.com/&hl=es&as_sdt=0,5.Zeng, Q., Wu, X., Wang, J., Ding, X. 2017. Phosphate solubilization and gene expression of phosphate-solubilizing bacterium Burkholderia multivorans WS-FJ9 under different levels of soluble phosphate. J. Microbiol. Biotechnol. 2017; 27(4): 844-855. Published April 28, 2017 https://doi.org/10.4014/jmb.1611.11057.Zou, X., Binkley, D., & Doxtader, K. G. 1992. A new method for estimating gross phosphorus mineralization and immobilization rates in soils. Plant and Soil, 147, 243-250. https://doi.org/10.1007/BF00029076.Zhu, L., Fu, F., & Tang, B. 2018. Coexistence or aggression? Insight into the influence of phosphate on Cr (VI) adsorption onto aluminum-substituted ferrihydrite. Chemosphere, 212, 408-417. https://doi.org/10.1016/j.chemosphere.2018.08.085.Implementación de estrategias de manejo sostenible de suelos bajo praderas del Trópico Alto Colombiano.Corporación Colombiana de Investigación Agropecuaria - AgrosaviaEstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83861/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL80350691.2023.pdf80350691.2023.pdfTesis de Maestría en Ciencias Agrariasapplication/pdf2203873https://repositorio.unal.edu.co/bitstream/unal/83861/2/80350691.2023.pdf9c7eaa2538e759ba9fa3a5781f00d30aMD52THUMBNAIL80350691.2023.pdf.jpg80350691.2023.pdf.jpgGenerated Thumbnailimage/jpeg5411https://repositorio.unal.edu.co/bitstream/unal/83861/3/80350691.2023.pdf.jpga7aed35b28da9f11810c31b8a4519534MD53unal/83861oai:repositorio.unal.edu.co:unal/838612024-08-07 23:10:32.287Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=