Alternativas de gestión para el suministro eléctrico sostenible en Zonas No Interconectadas.

ilustraciones, mapas, diagramas

Autores:
Garcés Arango, Estéfany
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80271
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80271
https://repositorio.unal.edu.co/
Palabra clave:
330 - Economía::333 - Economía de la tierra y de la energía
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
Distribución de energía eléctrica
Sistemas de interconexión eléctrica
Interconnected electric utility systems
Electric power distribution
Acceso a la electricidad
Electrificación fuera de red
Aislamiento geográfico
Suministro eléctrico sostenible
Zonas No Interconectadas
Alternativas de gestión
Colombia
Electricity access
Off-grid electrification
Geographical isolation
Sustainable electricity supply
Non-Interconnected Zones
Management alternatives
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_78d666ccfa637e27ebdd75a6b14466e5
oai_identifier_str oai:repositorio.unal.edu.co:unal/80271
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Alternativas de gestión para el suministro eléctrico sostenible en Zonas No Interconectadas.
dc.title.translated.eng.fl_str_mv Management alternatives for sustainable electricity supply in Non-Interconnected Zones.
title Alternativas de gestión para el suministro eléctrico sostenible en Zonas No Interconectadas.
spellingShingle Alternativas de gestión para el suministro eléctrico sostenible en Zonas No Interconectadas.
330 - Economía::333 - Economía de la tierra y de la energía
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
Distribución de energía eléctrica
Sistemas de interconexión eléctrica
Interconnected electric utility systems
Electric power distribution
Acceso a la electricidad
Electrificación fuera de red
Aislamiento geográfico
Suministro eléctrico sostenible
Zonas No Interconectadas
Alternativas de gestión
Colombia
Electricity access
Off-grid electrification
Geographical isolation
Sustainable electricity supply
Non-Interconnected Zones
Management alternatives
title_short Alternativas de gestión para el suministro eléctrico sostenible en Zonas No Interconectadas.
title_full Alternativas de gestión para el suministro eléctrico sostenible en Zonas No Interconectadas.
title_fullStr Alternativas de gestión para el suministro eléctrico sostenible en Zonas No Interconectadas.
title_full_unstemmed Alternativas de gestión para el suministro eléctrico sostenible en Zonas No Interconectadas.
title_sort Alternativas de gestión para el suministro eléctrico sostenible en Zonas No Interconectadas.
dc.creator.fl_str_mv Garcés Arango, Estéfany
dc.contributor.advisor.none.fl_str_mv Franco Cardona, Carlos Jaime
Dyner Rezonzew, Isaac
Tomei, Julia
dc.contributor.author.none.fl_str_mv Garcés Arango, Estéfany
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Sistemas Energéticos - COL0030139
dc.subject.ddc.spa.fl_str_mv 330 - Economía::333 - Economía de la tierra y de la energía
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
topic 330 - Economía::333 - Economía de la tierra y de la energía
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
Distribución de energía eléctrica
Sistemas de interconexión eléctrica
Interconnected electric utility systems
Electric power distribution
Acceso a la electricidad
Electrificación fuera de red
Aislamiento geográfico
Suministro eléctrico sostenible
Zonas No Interconectadas
Alternativas de gestión
Colombia
Electricity access
Off-grid electrification
Geographical isolation
Sustainable electricity supply
Non-Interconnected Zones
Management alternatives
dc.subject.lemb.spa.fl_str_mv Distribución de energía eléctrica
Sistemas de interconexión eléctrica
dc.subject.lemb.eng.fl_str_mv Interconnected electric utility systems
Electric power distribution
dc.subject.proposal.spa.fl_str_mv Acceso a la electricidad
Electrificación fuera de red
Aislamiento geográfico
Suministro eléctrico sostenible
Zonas No Interconectadas
Alternativas de gestión
Colombia
dc.subject.proposal.eng.fl_str_mv Electricity access
Off-grid electrification
Geographical isolation
Sustainable electricity supply
Non-Interconnected Zones
Management alternatives
description ilustraciones, mapas, diagramas
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-09-23T15:28:13Z
dc.date.available.none.fl_str_mv 2021-09-23T15:28:13Z
dc.date.issued.none.fl_str_mv 2021-09-21
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80271
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80271
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Aabrek, V., Forseth, I., Bueno-Lopez, M., & Molinas, M. (2019). Design and Implementation of a Monitoring System for Decision Support in a Micro-Business Based on Solar Energy Microgrid in Rural Colombia. GHTC 2018 - IEEE Global Humanitarian Technology Conference, Proceedings, October. https://doi.org/10.1109/GHTC.2018.8601571 Aguirre-Mendoza, A. M., Díaz-Mendoza, C., & Pasqualino, J. (2017). Renewable energy potential analysis in non-interconnected islands. Case study: Isla Grande, Corales del Rosario Archipelago, Colombia. Ecological Engineering, December 2016, 0–1. https://doi.org/10.1016/j.ecoleng.2017.08.020 Ahlborg, H., & Sjöstedt, M. (2015). Small-scale hydropower in Africa: Socio-technical designs for renewable energy in Tanzanian villages. Energy Research and Social Science, 5, 20–33. https://doi.org/10.1016/j.erss.2014.12.017 Akikur, R. K., Saidur, R., Ping, H. W., & Ullah, K. R. (2013). Comparative study of stand-alone and hybrid solar energy systems suitable for off-grid rural electrification: A review. Renewable and Sustainable Energy Reviews, 27, 738–752. https://doi.org/10.1016/j.rser.2013.06.043 Akinyele, D. O., & Rayudu, R. K. (2016). Strategy for developing energy systems for remote communities: Insights to best practices and sustainability. Sustainable Energy Technologies and Assessments, 16, 106–127. https://doi.org/10.1016/j.seta.2016.05.001 Alam, M., & Bhattacharyya, S. (2017). Are the off-grid customers ready to pay for electricity from the decentralized renewable hybrid mini-grids? A study of willingness to pay in rural Bangladesh. Energy, 139, 433–446. https://doi.org/10.1016/j.energy.2017.07.125 Alfaro, J. F., Miller, S., Johnson, J. X., & Riolo, R. R. (2017). Improving rural electricity system planning: An agent-based model for stakeholder engagement and decision making. Energy Policy, 101(October), 317–331. https://doi.org/10.1016/j.enpol.2016.10.020 Almeshqab, F., & Ustun, T. S. (2019). Lessons learned from rural electrification initiatives in developing countries: Insights for technical, social, financial and public policy aspects. Renewable and Sustainable Energy Reviews, 102(December 2018), 35–53. https://doi.org/10.1016/j.rser.2018.11.035 Alstone, P., Gershenson, D., & Kammen, D. M. (2015). Decentralized energy systems for clean electricity access. Nature Climate Change, 5(4), 305–314. https://doi.org/10.1038/nclimate2512 ARE. (2011). Hybrid Mini-Grids for Rural Electrification: Lessons Learned. https://collaboration.worldbank.org/docs/DOC-9067 Azimoh, C. L., Klintenberg, P., Mbohwa, C., & Wallin, F. (2017). Replicability and scalability of mini-grid solution to rural electrification programs in sub-Saharan Africa. Renewable Energy, 106, 222–231. https://doi.org/10.1016/j.renene.2017.01.017 Barlas, Y. (1994). Model Validation in System Dynamics. In Proceedings of the 1994 International System Dynamics Conference (pp. 1–10). https://doi.org/10.1002/(SICI)1099-1727(199623)12:3<183::AID-SDR103>3.0.CO;2-4 Baurzhan, S., & Jenkins, G. P. (2016). Off-grid solar PV : Is it an affordable or appropriate solution for rural electrification in Sub-Saharan African countries ? Renewable and Sustainable Energy Reviews, 60, 1405–1418. https://doi.org/10.1016/j.rser.2016.03.016 Bayer, S. (2004). Systems Thinking and Modeling for a Complex World. In Interfaces (Vol. 34, Issue 1). Irwin/McGraw-Hill. https://doi.org/10.1108/13673270210417646 Bhattacharyya, S. (2012a). Energy access programmes and sustainable development: A critical review and analysis. Energy for Sustainable Development, 16(3), 260–271. https://doi.org/10.1016/j.esd.2012.05.002 Bhattacharyya, S. (2012b). Review of alternative methodologies for analysing off-grid electricity supply. Renewable and Sustainable Energy Reviews, 16(1), 677–694. https://doi.org/10.1016/j.rser.2011.08.033 Bhattacharyya, S. (2013). Financing energy access and off-grid electrification: A review of status, options and challenges. Renewable and Sustainable Energy Reviews, 20(2013), 462–472. https://doi.org/10.1016/j.rser.2012.12.008 Bhattacharyya, S., & et.al. (2013). Rural Electrification Through Decentralised Off-grid Systems in Developing Countries (S. Bhattacharyya (ed.)). Springer London. https://doi.org/10.1007/978-1-4471-4673-5 Bhattacharyya, S., & Palit, D. (2016). Mini-grid based off-grid electrification to enhance electricity access in developing countries: What policies may be required? Energy Policy, 94, 166–178. https://doi.org/10.1016/j.enpol.2016.04.010 Boliko, C. M., & Ialnazov, D. S. (2019). An assessment of rural electrification projects in Kenya using a sustainability framework. Energy Policy, 133(June). https://doi.org/10.1016/j.enpol.2019.110928 Byrne, J., Zhou, A., Shen, B., & Hughes, K. (2007). Evaluating the potential of small-scale renewable energy options to meet rural livelihoods needs: A GIS- and lifecycle cost-based assessment of Western China’s options. Energy Policy, 35(8), 4391–4401. https://doi.org/10.1016/j.enpol.2007.02.022 Chaurey, A., & Kandpal, T. C. (2010). A techno-economic comparison of rural electrification based on solar home systems and PV microgrids. Energy Policy, 38(6), 3118–3129. https://doi.org/10.1016/j.enpol.2010.01.052 Chaurey, A., Krithika, P. R., Palit, D., Rakesh, S., & Sovacool, B. K. (2012). New partnerships and business models for facilitating energy access. Energy Policy, 47(SUPPL.1), 48–55. https://doi.org/10.1016/j.enpol.2012.03.031 Chaurey, A., Ranganathan, M., & Mohanty, P. (2004). Electricity access for geographically disadvantaged rural communities-technology and policy insights. Energy Policy, 32(15), 1693–1705. https://doi.org/10.1016/S0301-4215(03)00160-5 Cherni, J. A., Dyner, I., Henao, F., Jaramillo, P., Smith, R., & Font, R. O. (2007). Energy supply for sustainable rural livelihoods. A multi-criteria decision-support system. Energy Policy, 35(3), 1493–1504. https://doi.org/10.1016/j.enpol.2006.03.026 Chowdhury, S. A., Aziz, S., Groh, S., Kirchhoff, H., & Leal Filho, W. (2015). Off-grid rural area electrification through solar-diesel hybrid minigrids in Bangladesh: Resource-efficient design principles in practice. Journal of Cleaner Production, 95, 194–202. https://doi.org/10.1016/j.jclepro.2015.02.062 Chowdhury, S. A., & Mourshed, M. (2016). Off-grid electrification with solar home systems: An appraisal of the quality of components. Renewable Energy, 97(2016), 585–598. https://doi.org/10.1016/j.renene.2016.06.017 Codensa. (2018). Codensa - Zonas Aisladas de Cundinamarca. Comello, S., & Reichelstein, S. (2019). The emergence of cost effective battery storage. Nature Communications, 10(1), 1–9. https://doi.org/10.1038/s41467-019-09988-z Ley 142 de 1994 - Servicio Públicos Domiciliarios, (1994). Congreso de Colombia. (1994). Ley 143 de Junio 11 de 1994. Diario Oficial, 1994(41434), 347. http://www.upme.gov.co/Normatividad/Upme/Ley_143_1994.pdf Ley 855 de 2003 - Por la cual se definen las Zonas No Interconectadas, Pub. L. No. Diario Oficial, N. 45405. Diciembre 2003 (2003). http://www.suin-juriscol.gov.co/viewDocument.asp?id=1669722 Ley 1753 de 2015 - Plan Nacional de Desarrollo 2014-2018 “Todos por un nuevo país,” (2015). http://www.secretariasenado.gov.co/senado/basedoc/ley_1753_2015.html Cook, P. (2011). Infrastructure, rural electrification and development. Energy for Sustainable Development, 15(3), 304–313. https://doi.org/10.1016/j.esd.2011.07.008 Cosenz, F., & Noto, G. (2018). A dynamic business modelling approach to design and experiment new business venture strategies. Long Range Planning, 51(1), 127–140. https://doi.org/10.1016/j.lrp.2017.07.001 Cosenz, F., Rodrigues, V. P., & Rosati, F. (2020). Dynamic business modeling for sustainability: Exploring a system dynamics perspective to develop sustainable business models. Business Strategy and the Environment, 29(2), 651–664. https://doi.org/10.1002/bse.2395 Resolución CREG 042 de 1999, (1999). http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/8dc091c529e7917e0525785a007a5d23?OpenDocument Resolución CREG 091 de 2007 - Por la cual se establecen las metodologías generales para remunerar las actividades de generación, distribución y comercialización de energía eléctrica, y las fórmulas tarifarias generales para establecer el costo unitario, 38 (2007). CREG. (2019). Misión y Visión | CREG. http://www.creg.gov.co/creg/quienes-somos/mision-y-vision CREG. (2020). Zonas no Interconectadas | CREG. https://www.creg.gov.co/sectores/energia-electrica/zonas-no-interconectadas Dagnachew, A. G., Hof, A. F., Roelfsema, M. R., & van Vuuren, D. P. (2020). Actors and governance in the transition toward universal electricity access in Sub-Saharan Africa. Energy Policy, 143(May). https://doi.org/10.1016/j.enpol.2020.111572 DANE. (2018). Censo nacional de población y vivienda 2018 ¿Cómo vivimos? Departamento Administrativo Nacional de Estadística. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo-nacional-de-poblacion-y-vivenda-2018 DANE. (2020). Estratificación socioeconómica para servicios públicos domiciliarios. https://www.dane.gov.co/index.php/servicios-al-ciudadano/servicios-informacion/estratificacion-socioeconomica#:~:text=La estratificación socioeconómica es una,cobrar contribuciones en esta área. Diaz, P., Peña, R., Muñoz, J., Arias, C. A., & Sandoval, D. (2011). Field analysis of solar PV-based collective systems for rural electrification. Energy, 36(5), 2509–2516. https://doi.org/10.1016/j.energy.2011.01.043 Diouf, B., Pode, R., & Osei, R. (2013). Initiative for 100% rural electrification in developing countries: Case study of Senegal. Energy Policy, 59, 926–930. https://doi.org/10.1016/j.enpol.2013.04.012 Communication Dı́az López, J. R., & et.al. (2000). Two year experience in the operation of the first community photovoltaic system in Cuba. Renewable and Sustainable Energy Reviews, 4(1), 105–110. https://doi.org/10.1016/S1364-0321(99)00006-4 Domenech, B., Ferrer-Martí, L., Lillo, P., Pastor, R., & Chiroque, J. (2014). A community electrification project: Combination of microgrids and household systems fed by wind, PV or micro-hydro energies according to micro-scale resource evaluation and social constraints. Energy for Sustainable Development, 23, 275–285. https://doi.org/10.1016/j.esd.2014.09.007 Dornan, M. (2014). Access to electricity in Small Island Developing States of the Pacific: Issues and challenges. Renewable and Sustainable Energy Reviews, 31, 726–735. https://doi.org/10.1016/j.rser.2013.12.037 Dufo-López, R., Cristóbal-Monreal, I. R., & Yusta, J. M. (2016). Optimisation of PV-wind-diesel-battery stand-alone systems to minimise cost and maximise human development index and job creation. Renewable Energy, 94, 280–293. https://doi.org/10.1016/j.renene.2016.03.065 Dyner, I. (2000). Energy modelling platforms for policy and strategy support. Journal of the Operational Research Society, 51(2), 136–144. https://doi.org/10.1057/palgrave.jors.2600813 Dyner, I., Alvarez, C., & Cherni, J. (2005). Energy contribution to sustainable rural livelihoods in developing countries: A system dynamics approach. The 23rd International Conference of the System Dynamics Society. https://proceedings.systemdynamics.org/2005/proceed/papers/DYNER155.pd Dyner, I., Peña, G. E., & Arango, S. (2008). Modelamiento para la simulacion de sistemas socio-economicos y naturales. Universidad Nacional de Colombia (Medellín). https://books.google.com.co/books/about/Modelamiento_para_la_simulacion_de_siste.html?id=BvaSMwEACAAJ&redir_esc=y El-houari, H., Allouhi, A., Rehman, S., Buker, M. S., Kousksou, T., Jamil, A., & El Amrani, B. (2020). Feasibility evaluation of a hybrid renewable power generation system for sustainable electricity supply in a Moroccan remote site. Journal of Cleaner Production, 277, 123534. https://doi.org/10.1016/j.jclepro.2020.123534 EPM, E. P. de M. (2012). Uso inteligente de la energía eléctrica - Banco de recomendaciones. https://www.epm.com.co/site/Portals/2/documentos/banco_de_recomendaciones_uso_inteligente_energia_electricamarzo_27.pdf ESMAP. (2015). Electricity | Multi Tier Framework. https://mtfenergyaccess.esmap.org/methodology/electricity EU, & MWH. (2016). Sustainable Energy Handbook - Module 6.1: Simplified Financial Models (Issue February). https://europa.eu/capacity4dev/public-energy/documents/sustainable-energy-handbook-module-61-simplified-financial-models Forrester, J. W., & Senge, P. M. (1979). Tests for building confidence in system dynamics models. In TIMS Studies in the Management Sciences (Vol. 14, Issue 1, pp. 209–228). Franco, C., Dyner, I., & Hoyos, S. (2008). Contribución de la energía al desarrollo de comunidades aisladas no interconectadas: un caso de aplicación de la dinámica de sistemas y los medios de vida sostenible en el suroccidente colombiano. Dyna, 75(154), 199–214. http://www.redalyc.org/articulo.oa?id=49615420 Franz, M., Peterschmidt, N., Rohrer, M., & Kondev, B. (2014). Mini-grid Policy Toolkit: Policy and Bussiness Frameworks for Successful Mini-grid Roll-outs. European Union Energy Initiative Partnership Dialogue Facility. http://www.minigridpolicytoolkit.euei-pdf.org/policy-toolkit FS-UNEP. (2015). Renewable Energy in Hybrid Mini-Grids and Isolated Grids: Economic Benefits and Business Cases. Fs_Unep, 88. FTDT. (2016). Colombia: Modelos de negocio para abastecimiento a Zonas No Interconectadas. Gaona, E. E., Trujillo, C. L., & Guacaneme, J. A. (2015). Rural microgrids and its potential application in Colombia. In Renewable and Sustainable Energy Reviews (Vol. 51, pp. 125–137). Elsevier. https://doi.org/10.1016/j.rser.2015.04.176 Gladkykh, G., Spittler, N., Davíðsdóttir, B., & Diemer, A. (2018). Steady state of energy: Feedbacks and leverages for promoting or preventing sustainable energy system development. Energy Policy, 120(December 2017), 121–131. https://doi.org/10.1016/j.enpol.2018.04.070 Gómez-Navarro, T., & Ribó-Pérez, D. (2018). Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia. Renewable and Sustainable Energy Reviews, 90(February), 131–141. https://doi.org/10.1016/j.rser.2018.03.015 González-Eguino, M. (2015). Energy poverty: An overview. Renewable and Sustainable Energy Reviews, 47, 377–385. https://doi.org/10.1016/j.rser.2015.03.013 Gonzalez-Salazar, M. A., Venturini, M., Poganietz, W. R., Finkenrath, M., & Leal, M. R. (2017). Combining an accelerated deployment of bioenergy and land use strategies: Review and insights for a post-conflict scenario in Colombia. Renewable and Sustainable Energy Reviews, 73(October 2015), 159–177. https://doi.org/10.1016/j.rser.2017.01.082 Gurung, A., Ghimeray, A. K., & Hassan, S. H. A. (2012). The prospects of renewable energy technologies for rural electrification: A review from Nepal. Energy Policy, 40(1), 374–380. https://doi.org/10.1016/j.enpol.2011.10.022 Haanyika, C. M. (2006). Rural electrification policy and institutional linkages. Energy Policy, 34(17), 2977–2993. https://doi.org/10.1016/j.enpol.2005.05.008 Haghighat Mamaghani, A., Avella Escandon, S. A., Najafi, B., Shirazi, A., & Rinaldi, F. (2016). Techno-economic feasibility of photovoltaic, wind, diesel and hybrid electrification systems for off-grid rural electrification in Colombia. Renewable Energy, 97, 293–305. https://doi.org/10.1016/j.renene.2016.05.086 Hanna, R., Ghonima, M., Kleissl, J., Tynan, G., & Victor, D. G. (2017). Evaluating business models for microgrids: Interactions of technology and policy. Energy Policy, 103(August 2016), 47–61. https://doi.org/10.1016/j.enpol.2017.01.010 Hartvigsson, E., Stadler, M., & Cardoso, G. (2018). Rural electrification and capacity expansion with an integrated modeling approach. Renewable Energy, 115(2018), 509–520. https://doi.org/10.1016/j.renene.2017.08.049 Henao, F., Cherni, J. A., Jaramillo, P., & Dyner, I. (2012). A multicriteria approach to sustainable energy supply for the rural poor. European Journal of Operational Research, 218(3), 801–809. https://doi.org/10.1016/j.ejor.2011.11.033 Hong, G. W., & Abe, N. (2012). Sustainability assessment of renewable energy projects for off-grid rural electrification: The Pangan-an Island case in the Philippines. Renewable and Sustainable Energy Reviews, 16(1), 54–64. https://doi.org/10.1016/j.rser.2011.07.136 Huneke, F., Henkel, J., Benavides González, J. A., & Erdmann, G. (2012). Optimisation of hybrid off-grid energy systems by linear programming. Energy, Sustainability and Society, 2(1), 7. https://doi.org/10.1186/2192-0567-2-7 IAEA, United Nations, IEA, Eurostat, & Agency, E. E. (2005). Energy indicators for sustainable development (pp. 875–882). https://doi.org/10.1016/j.energy.2006.08.006 Iddrisu, I., & Bhattacharyya, S. (2015). Sustainable Energy Development Index: A multi-dimensional indicator for measuring sustainable energy development. Renewable and Sustainable Energy Reviews, 50, 513–530. https://doi.org/10.1016/j.rser.2015.05.032 IDEAM. (2020). Atlas de Radiación Solar, Ultravioleta y Ozono de Colombia. http://atlas.ideam.gov.co/visorAtlasRadiacion.html IEA. (2017). Energy Access Outlook 2017: From poverty to prosperity (Vol. 94, Issue March). https://doi.org/10.1787/9789264285569-en IEA. (2018). Electricity Access Database - WEO2018. https://www.iea.org/sdg/electricity/ IEA. (2020). Electricity Access Database - WEO2020. https://www.iea.org/reports/sdg7-data-and-projections/access-to-electricity Ilskog, E. (2008). Indicators for assessment of rural electrification-An approach for the comparison of apples and pears. Energy Policy, 36(7), 2665–2673. https://doi.org/10.1016/j.enpol.2008.03.023 IPSE. (2014). Soluciones de energia eléctrica para ZNI. Energía Social Para La Prosperidad, 57. IPSE. (2018). Contexto ZNI. http://190.216.196.84/cnm/imag.php?v1=1.png IPSE. (2019a). Informe de gestión IPSE 2018. http://www.ipse.gov.co/transparencia-y-acceso-a-informacion-publica/informacion-de-interes2/noticias/551-informe-de-gestion-2018 IPSE. (2019b). IPSE - Quiénes Somos. http://www.ipse.gov.co/ipse/quienes-somos IPSE. (2020a). Informe de Gestión IPSE 2019. 1–92. http://www.ipse.gov.co/ipse/informes-de-gestion/category/359-informe-de-gestion-2019# IPSE. (2020b). Informe telemetría mensual de marzo. http://190.216.196.84/cnm/info_mes.php IPSE, & CNM. (2013). Informes Mensuales de Operación ZNI - Informes de Telemetría. http://190.216.196.84/cnm/info_mes.php IPSE, & CNM. (2019). Informe mensual de la prestación de servicio de energía eléctrica en las localidades sin sistemas de telemetría de las Zonas No Interconectadas - ZNI.Septiembre de 2019. 79. IRENA. (2015). Off-Grid Renewable Energy Systems: Status and Methodological Issues. http://www.irena.org/DocumentDownloads/Publications/IRENA_Off-grid_Renewable_Systems_WP_2015.pdf IRENA. (2017a). Accelerating Off-grid Renewable Energy: Key Findings and Recommendations from IOREC 2016. Iorec,2016, 1–24. https://doi.org/978-92-95111-07-3 IRENA. (2017b). Electricity storage and renewables: Costs and markets to 2030. https://www.irena.org/costs/Electricity-Storage IRENA. (2019a). Off-grid renewable energy solutions to expand electricity access: An opportunity not to be missed. https://www.irena.org/publications/2019/Jan/Off-grid-renewable-energy-solutions-to-expand-electricity-to-access-An-opportunity-not-to-be-missed IRENA. (2019b). Renewable Power Generation Costs in 2018. IRENA. (2020). Renewable Power Generation Costs in 2019 (International Renewable Energy Agency (ed.)). https://www.irena.org/publications/2020/Jun/Renewable-Power-Costs-in-2019 Jana, C. (2016). Sustainable domestic lighting options for poor people-an empirical study. Environment, Development and Sustainability, 18(6), 1559–1573. https://doi.org/10.1007/s10668-015-9702-6 Javadi, F. S., Rismanchi, B., Sarraf, M., Afshar, O., Saidur, R., Ping, H. W., & Rahim, N. A. (2013). Global policy of rural electrification. Renewable and Sustainable Energy Reviews, 19, 402–416. https://doi.org/10.1016/j.rser.2012.11.053 Jimenez, M., Cadavid, L., & Franco, C. J. (2014). Scenarios of photovoltaic grid parity in Colombia. Dyna, 81(188), 237–245. https://doi.org/10.15446/dyna.v81n188.42165 Jimenez, R. (2017). Barriers to electrification in Latin America: Income, location, and economic development. Energy Strategy Reviews, 15, 9–18. https://doi.org/10.1016/j.esr.2016.11.001 Kanagawa, M., & Nakata, T. (2008). Assessment of access to electricity and the socio-economic impacts in rural areas of developing countries. Energy Policy, 36(6), 2016–2029. https://doi.org/10.1016/j.enpol.2008.01.041 Knuckles, J. (2016). Business models for mini-grid electricity in base of the pyramid markets. Energy for Sustainable Development, 31, 67–82. https://doi.org/10.1016/j.esd.2015.12.002 Kolhe, M. L., Ranaweera, K. M. I. U., & Gunawardana, A. G. B. S. (2015). Techno-economic sizing of off-grid hybrid renewable energy system for rural electrification in Sri Lanka. Sustainable Energy Technologies and Assessments, 11(2015), 53–64. https://doi.org/10.1016/j.seta.2015.03.008 Krithika, P. R., & Palit, D. (2013). Participatory Business Models for Off-Grid Electrification. In S. Bhattacharyya (Ed.), Rural Electrification Through Decentralised Off-grid Systems in Developing Countries (pp. 187–225). Springer. Lemaire, X. (2009). Fee-for-service companies for rural electrification with photovoltaic systems: The case of Zambia. Energy for Sustainable Development, 13(1), 18–23. https://doi.org/10.1016/j.esd.2009.01.001 Lemaire, X. (2011). Off-grid electrification with solar home systems: The experience of a fee-for-service concession in South Africa. Energy for Sustainable Development, 15(3), 277–283. https://doi.org/10.1016/j.esd.2011.07.005 López-González, A., Domenech, B., & Ferrer-Martí, L. (2018). Sustainability and design assessment of rural hybrid microgrids in Venezuela. Energy, 159, 229–242. https://doi.org/10.1016/j.energy.2018.06.165 López-González, A., Ferrer-Martí, L., & Domenech, B. (2019). Long-term sustainability assessment of micro-hydro projects: Case studies from Venezuela. Energy Policy, 131(April), 120–130. https://doi.org/10.1016/j.enpol.2019.04.030 Louie, H. (2018). Off-Grid Electrical Systems in Developing Countries. In Off-Grid Electrical Systems in Developing Countries. Springer International Publishing. https://doi.org/10.1007/978-3-319-91890-7 Mainali, B., Pachauri, S., Rao, N. D., & Silveira, S. (2014). Assessing rural energy sustainability in developing countries. Energy for Sustainable Development, 19(1), 15–28. https://doi.org/10.1016/j.esd.2014.01.008 Mainali, B., & Silveira, S. (2011). Financing off-grid rural electrification: Country case Nepal. Energy, 36(4), 2194–2201. https://doi.org/10.1016/j.energy.2010.07.004 Mainali, B., & Silveira, S. (2012). Renewable energy markets in rural electrification: Country case Nepal. Energy for Sustainable Development, 16(2), 168–178. https://doi.org/10.1016/j.esd.2012.03.001 Mainali, B., & Silveira, S. (2015). Using a sustainability index to assess energy technologies for rural electrification. Renewable and Sustainable Energy Reviews, 41, 1351–1365. https://doi.org/10.1016/j.rser.2014.09.018 Mandelli, S., Barbieri, J., Mereu, R., & Colombo, E. (2016a). Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review. Renewable and Sustainable Energy Reviews, 58, 1621–1646. https://doi.org/10.1016/j.rser.2015.12.338 Mandelli, S., Barbieri, J., Mereu, R., & Colombo, E. (2016b). Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review. Renewable and Sustainable Energy Reviews, 58, 1621–1646. https://doi.org/10.1016/j.rser.2015.12.338 Mandelli, S., Brivio, C., Colombo, E., & Merlo, M. (2016). Effect of load profile uncertainty on the optimum sizing of off-grid PV systems for rural electrification. Sustainable Energy Technologies and Assessments, 18, 34–47. https://doi.org/10.1016/j.seta.2016.09.010 Martinot, E. (2001). Renewable energy investment by the World Bank. Energy Policy, 29(November 2000), 689–699. https://doi.org/http://dx.doi.org/10.1016/S0301-4215(00)00151-8 Martinot, E., Cabraal, A., & Mathur, S. (2001). World Bank/GEF solar home system projects: Experiences and lessons learned 1993-2000. Renewable & Sustainable Energy Reviews, 5(1), 39–57. https://doi.org/10.1016/S1364-0321(00)00007-1 MME. (2007). Resolución 182138 de 2007 - Por la cual se expide el procedimiento para otorgar subsidios del sector eléctrico en las Zonas No Interconectadas (pp. 1–4). Ministerio de Minas y Energía. http://energuaviare.com/sites/default/files/RESOLUCION_MME_182138_2007.pdf Decreto 1122 de 2008 - Por el cual se reglamenta el Fondo de Apoyo Financiero para la Energización de las Zonas Rurales Interconectadas, FAER, (2008). https://www.minenergia.gov.co/normatividad?idNorma=22157 MME. (2011). Resolución 181272 de 2011 - Por la cual se ajusta el procedimiento para otorgar subsidios del sector eléctrico en las áreas de servicio exclusivo de las zonas no interconectadas continentales y se deroga la Resolución 180195 de 2011. http://legal.legis.com.co/document/Index?obra=legcol&document=legcol_aa41c3358d910134e0430a0101510134 MME. (2013). Estadísticas FSSRI 2002 - 2012. https://www.minenergia.gov.co/estadisticas2 MME. (2019). Misión y Visión - Ministerio de Minas y Energía. https://www.minenergia.gov.co/mision-y-vision;jsessionid=Vpd6c0QkxtyGb9KeomSg2NDh.portal2 Resolucion MME 412113 de 2019, (2019). https://www.minenergia.gov.co/documents/10180//23517//48258-Resolucion+412113+18-10-2019.pdf MME. (2020). Fondos Especiales - Energía Eléctrica - Ministerio de Minas y Energía. https://www.minenergia.gov.co/fondos-especiales2 MME, & UPME. (2015). Guía para elaboración de un plan de energización rural sostenible: “La energía como un medio para el desarrollo productivo rural” (pp. 1–38). Ministerio de Minas y Energía. http://www.siel.gov.co/portals/0/fondos/Guia_de_un_PERS.pdf MME, UPME, & IPSE. (2018). Plan Nacional de Electrificación Rural PNER 2018-2031 (pp. 1–96). https://www.minenergia.gov.co/minminas-theme/planclimatico/files/19_UPME_120718_PNER_Jullio260718_publicacion.pdf Mohammed, Y. S., Mustafa, M. W., & Bashir, N. (2014). Hybrid renewable energy systems for off-grid electric power: Review of substantial issues. Renewable and Sustainable Energy Reviews, 35, 527–539. https://doi.org/10.1016/j.rser.2014.04.022 Moner-Girona, M. (2009). A new tailored scheme for the support of renewable energies in developing countries. Energy Policy, 37(5), 2037–2041. https://doi.org/10.1016/j.enpol.2008.11.024 Morales, S., Álvarez, C., Acevedo, C., Diaz, C., Rodriguez, M., & Pacheco, L. (2015). An overview of small hydropower plants in Colombia: Status, potential, barriers and perspectives. Renewable and Sustainable Energy Reviews, 50, 1650–1657. https://doi.org/10.1016/j.rser.2015.06.026 Nabavi, E., Daniell, K. A., & Najafi, H. (2017). Boundary matters: the potential of system dynamics to support sustainability? Journal of Cleaner Production, 140, 312–323. https://doi.org/10.1016/j.jclepro.2016.03.032 Nguyen, K. Q. (2007). Alternatives to grid extension for rural electrification: Decentralized renewable energy technologies in Vietnam. Energy Policy, 35(4), 2579–2589. https://doi.org/10.1016/j.enpol.2006.10.004 NREL. (2020). Electricity Annual Technology Baseline (ATB). https://atb.nrel.gov/electricity/2020/data.php Odum, H. T. (2007). Environment, Power, and Society for the Twenty-First Century: The Hierarchy of Energy. Columbia University Press. https://www.jstor.org/stable/10.7312/odum12886 OLADE, ECLAC, & GTZ. (2000). Energy and Sustainable Development in Latin America and the Caribbean : Guide for energy policymaking. May. ONU. (2015). 17 Objetivos para el Desarrollo Sostenible. http://www.un.org/sustainabledevelopment/es/ ONU. (2020). Energía – Desarrollo Sostenible. Objetivos de Desarrollo Sostenible. https://www.un.org/sustainabledevelopment/es/energy/ Ortiz-Jara, R. P., Pérez-Arriaga, J. I., Dueñas, P., González, A., Eslava Mejia, M., & Juan Revolo, M. (2020). Misión de Transformación Energética y Modernización de la Industria Eléctrica: Hoja de Ruta para la Energía del Futuro - Foco No. 4. Cierre de brechas, mejora de la calidad y diseño y formulación eficiente de subsidios. https://www.minenergia.gov.co/documents/10192/24166201/Foco+No.+4.+Cierre+de+brechas%2C mejora+de+la+calidad+y+diseño+y+formulacion+eficiente+de+subsidios.pdf Palit, D. (2013). Solar energy programs for rural electrification: Experiences and lessons from South Asia. Energy for Sustainable Development, 17(3), 270–279. https://doi.org/10.1016/j.esd.2013.01.002 Palit, D., & Chaurey, A. (2011). Off-grid rural electrification experiences from South Asia : Status and best practices. Energy for Sustainable Development, 15(3), 266–276. https://doi.org/10.1016/j.esd.2011.07.004 Pater, L. R., & Cristea, S. L. (2016). Systemic Definitions of Sustainability, Durability and Longevity. Procedia - Social and Behavioral Sciences, 221, 362–371. https://doi.org/10.1016/j.sbspro.2016.05.126 Pérez-Arbeláez, J., & Acosta, C. E. (1986). Modelos de Demanda Residencial e Industrial de Electricidad para Colombia y Estimaciones de Elasticidades Precio. Revista Desarrollo y Sociedad, 19, 69–93. https://doi.org/10.13043/dys.19.2 PNUD. (2015). Objetivos de Desarrollo Sostenible | PNUD. Programa de Las Naciones Unidas Para El Desarrollo. https://www.undp.org/content/undp/es/home/sustainable-development-goals.html Qudrat-Ullah, H., & Seong, B. S. (2010). How to do structural validity of a system dynamics type simulation model: The case of an energy policy model. Energy Policy, 38(5), 2216–2224. https://doi.org/10.1016/j.enpol.2009.12.009 RAE. (2021). gestionar | Definición | Diccionario de la lengua española | RAE - ASALE. https://dle.rae.es/gestionar Rahman, M. M., Paatero, J. V., & Lahdelma, R. (2013).
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvii, 220 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.country.none.fl_str_mv Colombia
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Doctorado en Ingeniería - Sistemas
dc.publisher.department.spa.fl_str_mv Departamento de la Computación y la Decisión
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80271/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80271/2/1037589263.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/80271/3/1037589263.2021.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
d0efa54c84b6eea9ebc35750f2bc0ae7
71f1d07d4520265ed6a60c00f29ba6b3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089242132873216
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Franco Cardona, Carlos Jaimee77c35ea37c7b92041b06767ea4b4d60600Dyner Rezonzew, Isaac37f351f07076cf2cc2dd5012ad2d6626600Tomei, Juliae07840c379c5be774ceb05f08519f160600Garcés Arango, Estéfanyeb77f9e731524387b9541ba7d407040a600Grupo de Sistemas Energéticos - COL00301392021-09-23T15:28:13Z2021-09-23T15:28:13Z2021-09-21https://repositorio.unal.edu.co/handle/unal/80271Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, mapas, diagramasEn Colombia alrededor 2 millones de personas aún viven sin electricidad, estás están ubicadas en lugares geográficamente aislados donde la interconexión a la red eléctrica nacional se hace inviable – conocidas como Zonas No Interconectadas (ZNI); lo cual es un reto para el país en cuanto alcanzar la universalización de la electricidad. Por otro lado, las comunidades ZNI con acceso al servicio eléctrico evidencian otros retos, ya que el suministro suele limitarse a menos de seis horas diarias, generadas usualmente a partir de plantas diésel, lo que plantea interrogantes sobre la idoneidad del suministro. En este sentido la presente investigación se desarrolla con el objetivo de “proponer un esquema para la gestión y sostenibilidad de la electrificación de comunidades fuera de red en Colombia” -comunidades ZNI. Para ello se hace un análisis cualitativo – enfocado en la comprensión de la problemática, caracterización de las condiciones actuales de prestación del servicio y el desarrollo de hipótesis. Asimismo, se hace un análisis cualitativo a través de un modelo de simulación que permite evaluar el desempeño de diferentes estrategias de gestión y así identificar cuales apalancan la sostenibilidad y perdurabilidad del suministro eléctrico en las ZNI, encontrado que para proporcionar un suministro eléctrico sostenible y perdurable se requiere una visión de largo plazo, donde el suministro eléctrico no se limite a proyectos de 20 años. No basta con los planes del gobierno de instalar sistemas autónomos solares o microrredes híbridas en las comunidades que aún no cuentan con este servicio, estas soluciones se deben gestionar de tal manera que permitan la expansión paulatina de las mismas a medida que va creciendo la demanda eléctrica de la comunidad. (Texto tomado de la fuente)In Colombia around 2 million people still live without electricity, located in geographically isolated places where interconnection to the national electricity grid is unfeasible - known as Non-Interconnected Zones (ZNI); this is a challenge for the country in terms of achieving universal electricity. On the other hand, the ZNI communities with access to electricity service show other challenges, as supply is often limited to less than six hours per day, usually generated from diesel plants, which raises questions about the adequacy of supply. In this sense, the present research is developed with the objective of "proposing a scheme for the management and sustainability of the electrification of off-grid communities in Colombia" - ZNI communities. For this purpose, a qualitative analysis is carried out - focusing on the understanding of the problem, characterisation of the current conditions of service provision and the development of hypotheses. Likewise, a qualitative analysis is made through a simulation model that allows to evaluate the performance of different management strategies and thus identify which ones leverage the sustainability and durability of the electricity supply in the ZNI, finding that to provide a sustainable and lasting electricity supply requires a long-term management, where the electricity supply is not limited to a 20-year project. Government plans to install solar stand-alone systems or hybrid microgrids in underserved communities are not enough; these solutions must be managed in a way that allows for gradual expansion as community electricity demand grows.Colciencias - Doctorados Nacionales - Convocatoria 727 de 2015 - Contrato FP44842-130-2017DoctoradoDoctor en IngenieríaInvestigación de Operaciones - Sistemas Energéticosxvii, 220 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Doctorado en Ingeniería - SistemasDepartamento de la Computación y la DecisiónFacultad de MinasMedellínUniversidad Nacional de Colombia - Sede Medellín330 - Economía::333 - Economía de la tierra y de la energía000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computaciónDistribución de energía eléctricaSistemas de interconexión eléctricaInterconnected electric utility systemsElectric power distributionAcceso a la electricidadElectrificación fuera de redAislamiento geográficoSuministro eléctrico sostenibleZonas No InterconectadasAlternativas de gestiónColombiaElectricity accessOff-grid electrificationGeographical isolationSustainable electricity supplyNon-Interconnected ZonesManagement alternativesAlternativas de gestión para el suministro eléctrico sostenible en Zonas No Interconectadas.Management alternatives for sustainable electricity supply in Non-Interconnected Zones.Trabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDColombiaAabrek, V., Forseth, I., Bueno-Lopez, M., & Molinas, M. (2019). Design and Implementation of a Monitoring System for Decision Support in a Micro-Business Based on Solar Energy Microgrid in Rural Colombia. GHTC 2018 - IEEE Global Humanitarian Technology Conference, Proceedings, October. https://doi.org/10.1109/GHTC.2018.8601571 Aguirre-Mendoza, A. M., Díaz-Mendoza, C., & Pasqualino, J. (2017). Renewable energy potential analysis in non-interconnected islands. Case study: Isla Grande, Corales del Rosario Archipelago, Colombia. Ecological Engineering, December 2016, 0–1. https://doi.org/10.1016/j.ecoleng.2017.08.020 Ahlborg, H., & Sjöstedt, M. (2015). Small-scale hydropower in Africa: Socio-technical designs for renewable energy in Tanzanian villages. Energy Research and Social Science, 5, 20–33. https://doi.org/10.1016/j.erss.2014.12.017 Akikur, R. K., Saidur, R., Ping, H. W., & Ullah, K. R. (2013). Comparative study of stand-alone and hybrid solar energy systems suitable for off-grid rural electrification: A review. Renewable and Sustainable Energy Reviews, 27, 738–752. https://doi.org/10.1016/j.rser.2013.06.043 Akinyele, D. O., & Rayudu, R. K. (2016). Strategy for developing energy systems for remote communities: Insights to best practices and sustainability. Sustainable Energy Technologies and Assessments, 16, 106–127. https://doi.org/10.1016/j.seta.2016.05.001 Alam, M., & Bhattacharyya, S. (2017). Are the off-grid customers ready to pay for electricity from the decentralized renewable hybrid mini-grids? A study of willingness to pay in rural Bangladesh. Energy, 139, 433–446. https://doi.org/10.1016/j.energy.2017.07.125 Alfaro, J. F., Miller, S., Johnson, J. X., & Riolo, R. R. (2017). Improving rural electricity system planning: An agent-based model for stakeholder engagement and decision making. Energy Policy, 101(October), 317–331. https://doi.org/10.1016/j.enpol.2016.10.020 Almeshqab, F., & Ustun, T. S. (2019). Lessons learned from rural electrification initiatives in developing countries: Insights for technical, social, financial and public policy aspects. Renewable and Sustainable Energy Reviews, 102(December 2018), 35–53. https://doi.org/10.1016/j.rser.2018.11.035 Alstone, P., Gershenson, D., & Kammen, D. M. (2015). Decentralized energy systems for clean electricity access. Nature Climate Change, 5(4), 305–314. https://doi.org/10.1038/nclimate2512 ARE. (2011). Hybrid Mini-Grids for Rural Electrification: Lessons Learned. https://collaboration.worldbank.org/docs/DOC-9067 Azimoh, C. L., Klintenberg, P., Mbohwa, C., & Wallin, F. (2017). Replicability and scalability of mini-grid solution to rural electrification programs in sub-Saharan Africa. Renewable Energy, 106, 222–231. https://doi.org/10.1016/j.renene.2017.01.017 Barlas, Y. (1994). Model Validation in System Dynamics. In Proceedings of the 1994 International System Dynamics Conference (pp. 1–10). https://doi.org/10.1002/(SICI)1099-1727(199623)12:3<183::AID-SDR103>3.0.CO;2-4 Baurzhan, S., & Jenkins, G. P. (2016). Off-grid solar PV : Is it an affordable or appropriate solution for rural electrification in Sub-Saharan African countries ? Renewable and Sustainable Energy Reviews, 60, 1405–1418. https://doi.org/10.1016/j.rser.2016.03.016 Bayer, S. (2004). Systems Thinking and Modeling for a Complex World. In Interfaces (Vol. 34, Issue 1). Irwin/McGraw-Hill. https://doi.org/10.1108/13673270210417646 Bhattacharyya, S. (2012a). Energy access programmes and sustainable development: A critical review and analysis. Energy for Sustainable Development, 16(3), 260–271. https://doi.org/10.1016/j.esd.2012.05.002 Bhattacharyya, S. (2012b). Review of alternative methodologies for analysing off-grid electricity supply. Renewable and Sustainable Energy Reviews, 16(1), 677–694. https://doi.org/10.1016/j.rser.2011.08.033 Bhattacharyya, S. (2013). Financing energy access and off-grid electrification: A review of status, options and challenges. Renewable and Sustainable Energy Reviews, 20(2013), 462–472. https://doi.org/10.1016/j.rser.2012.12.008 Bhattacharyya, S., & et.al. (2013). Rural Electrification Through Decentralised Off-grid Systems in Developing Countries (S. Bhattacharyya (ed.)). Springer London. https://doi.org/10.1007/978-1-4471-4673-5 Bhattacharyya, S., & Palit, D. (2016). Mini-grid based off-grid electrification to enhance electricity access in developing countries: What policies may be required? Energy Policy, 94, 166–178. https://doi.org/10.1016/j.enpol.2016.04.010 Boliko, C. M., & Ialnazov, D. S. (2019). An assessment of rural electrification projects in Kenya using a sustainability framework. Energy Policy, 133(June). https://doi.org/10.1016/j.enpol.2019.110928 Byrne, J., Zhou, A., Shen, B., & Hughes, K. (2007). Evaluating the potential of small-scale renewable energy options to meet rural livelihoods needs: A GIS- and lifecycle cost-based assessment of Western China’s options. Energy Policy, 35(8), 4391–4401. https://doi.org/10.1016/j.enpol.2007.02.022 Chaurey, A., & Kandpal, T. C. (2010). A techno-economic comparison of rural electrification based on solar home systems and PV microgrids. Energy Policy, 38(6), 3118–3129. https://doi.org/10.1016/j.enpol.2010.01.052 Chaurey, A., Krithika, P. R., Palit, D., Rakesh, S., & Sovacool, B. K. (2012). New partnerships and business models for facilitating energy access. Energy Policy, 47(SUPPL.1), 48–55. https://doi.org/10.1016/j.enpol.2012.03.031 Chaurey, A., Ranganathan, M., & Mohanty, P. (2004). Electricity access for geographically disadvantaged rural communities-technology and policy insights. Energy Policy, 32(15), 1693–1705. https://doi.org/10.1016/S0301-4215(03)00160-5 Cherni, J. A., Dyner, I., Henao, F., Jaramillo, P., Smith, R., & Font, R. O. (2007). Energy supply for sustainable rural livelihoods. A multi-criteria decision-support system. Energy Policy, 35(3), 1493–1504. https://doi.org/10.1016/j.enpol.2006.03.026 Chowdhury, S. A., Aziz, S., Groh, S., Kirchhoff, H., & Leal Filho, W. (2015). Off-grid rural area electrification through solar-diesel hybrid minigrids in Bangladesh: Resource-efficient design principles in practice. Journal of Cleaner Production, 95, 194–202. https://doi.org/10.1016/j.jclepro.2015.02.062 Chowdhury, S. A., & Mourshed, M. (2016). Off-grid electrification with solar home systems: An appraisal of the quality of components. Renewable Energy, 97(2016), 585–598. https://doi.org/10.1016/j.renene.2016.06.017 Codensa. (2018). Codensa - Zonas Aisladas de Cundinamarca. Comello, S., & Reichelstein, S. (2019). The emergence of cost effective battery storage. Nature Communications, 10(1), 1–9. https://doi.org/10.1038/s41467-019-09988-z Ley 142 de 1994 - Servicio Públicos Domiciliarios, (1994). Congreso de Colombia. (1994). Ley 143 de Junio 11 de 1994. Diario Oficial, 1994(41434), 347. http://www.upme.gov.co/Normatividad/Upme/Ley_143_1994.pdf Ley 855 de 2003 - Por la cual se definen las Zonas No Interconectadas, Pub. L. No. Diario Oficial, N. 45405. Diciembre 2003 (2003). http://www.suin-juriscol.gov.co/viewDocument.asp?id=1669722 Ley 1753 de 2015 - Plan Nacional de Desarrollo 2014-2018 “Todos por un nuevo país,” (2015). http://www.secretariasenado.gov.co/senado/basedoc/ley_1753_2015.html Cook, P. (2011). Infrastructure, rural electrification and development. Energy for Sustainable Development, 15(3), 304–313. https://doi.org/10.1016/j.esd.2011.07.008 Cosenz, F., & Noto, G. (2018). A dynamic business modelling approach to design and experiment new business venture strategies. Long Range Planning, 51(1), 127–140. https://doi.org/10.1016/j.lrp.2017.07.001 Cosenz, F., Rodrigues, V. P., & Rosati, F. (2020). Dynamic business modeling for sustainability: Exploring a system dynamics perspective to develop sustainable business models. Business Strategy and the Environment, 29(2), 651–664. https://doi.org/10.1002/bse.2395 Resolución CREG 042 de 1999, (1999). http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/8dc091c529e7917e0525785a007a5d23?OpenDocument Resolución CREG 091 de 2007 - Por la cual se establecen las metodologías generales para remunerar las actividades de generación, distribución y comercialización de energía eléctrica, y las fórmulas tarifarias generales para establecer el costo unitario, 38 (2007). CREG. (2019). Misión y Visión | CREG. http://www.creg.gov.co/creg/quienes-somos/mision-y-vision CREG. (2020). Zonas no Interconectadas | CREG. https://www.creg.gov.co/sectores/energia-electrica/zonas-no-interconectadas Dagnachew, A. G., Hof, A. F., Roelfsema, M. R., & van Vuuren, D. P. (2020). Actors and governance in the transition toward universal electricity access in Sub-Saharan Africa. Energy Policy, 143(May). https://doi.org/10.1016/j.enpol.2020.111572 DANE. (2018). Censo nacional de población y vivienda 2018 ¿Cómo vivimos? Departamento Administrativo Nacional de Estadística. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo-nacional-de-poblacion-y-vivenda-2018 DANE. (2020). Estratificación socioeconómica para servicios públicos domiciliarios. https://www.dane.gov.co/index.php/servicios-al-ciudadano/servicios-informacion/estratificacion-socioeconomica#:~:text=La estratificación socioeconómica es una,cobrar contribuciones en esta área. Diaz, P., Peña, R., Muñoz, J., Arias, C. A., & Sandoval, D. (2011). Field analysis of solar PV-based collective systems for rural electrification. Energy, 36(5), 2509–2516. https://doi.org/10.1016/j.energy.2011.01.043 Diouf, B., Pode, R., & Osei, R. (2013). Initiative for 100% rural electrification in developing countries: Case study of Senegal. Energy Policy, 59, 926–930. https://doi.org/10.1016/j.enpol.2013.04.012 Communication Dı́az López, J. R., & et.al. (2000). Two year experience in the operation of the first community photovoltaic system in Cuba. Renewable and Sustainable Energy Reviews, 4(1), 105–110. https://doi.org/10.1016/S1364-0321(99)00006-4 Domenech, B., Ferrer-Martí, L., Lillo, P., Pastor, R., & Chiroque, J. (2014). A community electrification project: Combination of microgrids and household systems fed by wind, PV or micro-hydro energies according to micro-scale resource evaluation and social constraints. Energy for Sustainable Development, 23, 275–285. https://doi.org/10.1016/j.esd.2014.09.007 Dornan, M. (2014). Access to electricity in Small Island Developing States of the Pacific: Issues and challenges. Renewable and Sustainable Energy Reviews, 31, 726–735. https://doi.org/10.1016/j.rser.2013.12.037 Dufo-López, R., Cristóbal-Monreal, I. R., & Yusta, J. M. (2016). Optimisation of PV-wind-diesel-battery stand-alone systems to minimise cost and maximise human development index and job creation. Renewable Energy, 94, 280–293. https://doi.org/10.1016/j.renene.2016.03.065 Dyner, I. (2000). Energy modelling platforms for policy and strategy support. Journal of the Operational Research Society, 51(2), 136–144. https://doi.org/10.1057/palgrave.jors.2600813 Dyner, I., Alvarez, C., & Cherni, J. (2005). Energy contribution to sustainable rural livelihoods in developing countries: A system dynamics approach. The 23rd International Conference of the System Dynamics Society. https://proceedings.systemdynamics.org/2005/proceed/papers/DYNER155.pd Dyner, I., Peña, G. E., & Arango, S. (2008). Modelamiento para la simulacion de sistemas socio-economicos y naturales. Universidad Nacional de Colombia (Medellín). https://books.google.com.co/books/about/Modelamiento_para_la_simulacion_de_siste.html?id=BvaSMwEACAAJ&redir_esc=y El-houari, H., Allouhi, A., Rehman, S., Buker, M. S., Kousksou, T., Jamil, A., & El Amrani, B. (2020). Feasibility evaluation of a hybrid renewable power generation system for sustainable electricity supply in a Moroccan remote site. Journal of Cleaner Production, 277, 123534. https://doi.org/10.1016/j.jclepro.2020.123534 EPM, E. P. de M. (2012). Uso inteligente de la energía eléctrica - Banco de recomendaciones. https://www.epm.com.co/site/Portals/2/documentos/banco_de_recomendaciones_uso_inteligente_energia_electricamarzo_27.pdf ESMAP. (2015). Electricity | Multi Tier Framework. https://mtfenergyaccess.esmap.org/methodology/electricity EU, & MWH. (2016). Sustainable Energy Handbook - Module 6.1: Simplified Financial Models (Issue February). https://europa.eu/capacity4dev/public-energy/documents/sustainable-energy-handbook-module-61-simplified-financial-models Forrester, J. W., & Senge, P. M. (1979). Tests for building confidence in system dynamics models. In TIMS Studies in the Management Sciences (Vol. 14, Issue 1, pp. 209–228). Franco, C., Dyner, I., & Hoyos, S. (2008). Contribución de la energía al desarrollo de comunidades aisladas no interconectadas: un caso de aplicación de la dinámica de sistemas y los medios de vida sostenible en el suroccidente colombiano. Dyna, 75(154), 199–214. http://www.redalyc.org/articulo.oa?id=49615420 Franz, M., Peterschmidt, N., Rohrer, M., & Kondev, B. (2014). Mini-grid Policy Toolkit: Policy and Bussiness Frameworks for Successful Mini-grid Roll-outs. European Union Energy Initiative Partnership Dialogue Facility. http://www.minigridpolicytoolkit.euei-pdf.org/policy-toolkit FS-UNEP. (2015). Renewable Energy in Hybrid Mini-Grids and Isolated Grids: Economic Benefits and Business Cases. Fs_Unep, 88. FTDT. (2016). Colombia: Modelos de negocio para abastecimiento a Zonas No Interconectadas. Gaona, E. E., Trujillo, C. L., & Guacaneme, J. A. (2015). Rural microgrids and its potential application in Colombia. In Renewable and Sustainable Energy Reviews (Vol. 51, pp. 125–137). Elsevier. https://doi.org/10.1016/j.rser.2015.04.176 Gladkykh, G., Spittler, N., Davíðsdóttir, B., & Diemer, A. (2018). Steady state of energy: Feedbacks and leverages for promoting or preventing sustainable energy system development. Energy Policy, 120(December 2017), 121–131. https://doi.org/10.1016/j.enpol.2018.04.070 Gómez-Navarro, T., & Ribó-Pérez, D. (2018). Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia. Renewable and Sustainable Energy Reviews, 90(February), 131–141. https://doi.org/10.1016/j.rser.2018.03.015 González-Eguino, M. (2015). Energy poverty: An overview. Renewable and Sustainable Energy Reviews, 47, 377–385. https://doi.org/10.1016/j.rser.2015.03.013 Gonzalez-Salazar, M. A., Venturini, M., Poganietz, W. R., Finkenrath, M., & Leal, M. R. (2017). Combining an accelerated deployment of bioenergy and land use strategies: Review and insights for a post-conflict scenario in Colombia. Renewable and Sustainable Energy Reviews, 73(October 2015), 159–177. https://doi.org/10.1016/j.rser.2017.01.082 Gurung, A., Ghimeray, A. K., & Hassan, S. H. A. (2012). The prospects of renewable energy technologies for rural electrification: A review from Nepal. Energy Policy, 40(1), 374–380. https://doi.org/10.1016/j.enpol.2011.10.022 Haanyika, C. M. (2006). Rural electrification policy and institutional linkages. Energy Policy, 34(17), 2977–2993. https://doi.org/10.1016/j.enpol.2005.05.008 Haghighat Mamaghani, A., Avella Escandon, S. A., Najafi, B., Shirazi, A., & Rinaldi, F. (2016). Techno-economic feasibility of photovoltaic, wind, diesel and hybrid electrification systems for off-grid rural electrification in Colombia. Renewable Energy, 97, 293–305. https://doi.org/10.1016/j.renene.2016.05.086 Hanna, R., Ghonima, M., Kleissl, J., Tynan, G., & Victor, D. G. (2017). Evaluating business models for microgrids: Interactions of technology and policy. Energy Policy, 103(August 2016), 47–61. https://doi.org/10.1016/j.enpol.2017.01.010 Hartvigsson, E., Stadler, M., & Cardoso, G. (2018). Rural electrification and capacity expansion with an integrated modeling approach. Renewable Energy, 115(2018), 509–520. https://doi.org/10.1016/j.renene.2017.08.049 Henao, F., Cherni, J. A., Jaramillo, P., & Dyner, I. (2012). A multicriteria approach to sustainable energy supply for the rural poor. European Journal of Operational Research, 218(3), 801–809. https://doi.org/10.1016/j.ejor.2011.11.033 Hong, G. W., & Abe, N. (2012). Sustainability assessment of renewable energy projects for off-grid rural electrification: The Pangan-an Island case in the Philippines. Renewable and Sustainable Energy Reviews, 16(1), 54–64. https://doi.org/10.1016/j.rser.2011.07.136 Huneke, F., Henkel, J., Benavides González, J. A., & Erdmann, G. (2012). Optimisation of hybrid off-grid energy systems by linear programming. Energy, Sustainability and Society, 2(1), 7. https://doi.org/10.1186/2192-0567-2-7 IAEA, United Nations, IEA, Eurostat, & Agency, E. E. (2005). Energy indicators for sustainable development (pp. 875–882). https://doi.org/10.1016/j.energy.2006.08.006 Iddrisu, I., & Bhattacharyya, S. (2015). Sustainable Energy Development Index: A multi-dimensional indicator for measuring sustainable energy development. Renewable and Sustainable Energy Reviews, 50, 513–530. https://doi.org/10.1016/j.rser.2015.05.032 IDEAM. (2020). Atlas de Radiación Solar, Ultravioleta y Ozono de Colombia. http://atlas.ideam.gov.co/visorAtlasRadiacion.html IEA. (2017). Energy Access Outlook 2017: From poverty to prosperity (Vol. 94, Issue March). https://doi.org/10.1787/9789264285569-en IEA. (2018). Electricity Access Database - WEO2018. https://www.iea.org/sdg/electricity/ IEA. (2020). Electricity Access Database - WEO2020. https://www.iea.org/reports/sdg7-data-and-projections/access-to-electricity Ilskog, E. (2008). Indicators for assessment of rural electrification-An approach for the comparison of apples and pears. Energy Policy, 36(7), 2665–2673. https://doi.org/10.1016/j.enpol.2008.03.023 IPSE. (2014). Soluciones de energia eléctrica para ZNI. Energía Social Para La Prosperidad, 57. IPSE. (2018). Contexto ZNI. http://190.216.196.84/cnm/imag.php?v1=1.png IPSE. (2019a). Informe de gestión IPSE 2018. http://www.ipse.gov.co/transparencia-y-acceso-a-informacion-publica/informacion-de-interes2/noticias/551-informe-de-gestion-2018 IPSE. (2019b). IPSE - Quiénes Somos. http://www.ipse.gov.co/ipse/quienes-somos IPSE. (2020a). Informe de Gestión IPSE 2019. 1–92. http://www.ipse.gov.co/ipse/informes-de-gestion/category/359-informe-de-gestion-2019# IPSE. (2020b). Informe telemetría mensual de marzo. http://190.216.196.84/cnm/info_mes.php IPSE, & CNM. (2013). Informes Mensuales de Operación ZNI - Informes de Telemetría. http://190.216.196.84/cnm/info_mes.php IPSE, & CNM. (2019). Informe mensual de la prestación de servicio de energía eléctrica en las localidades sin sistemas de telemetría de las Zonas No Interconectadas - ZNI.Septiembre de 2019. 79. IRENA. (2015). Off-Grid Renewable Energy Systems: Status and Methodological Issues. http://www.irena.org/DocumentDownloads/Publications/IRENA_Off-grid_Renewable_Systems_WP_2015.pdf IRENA. (2017a). Accelerating Off-grid Renewable Energy: Key Findings and Recommendations from IOREC 2016. Iorec,2016, 1–24. https://doi.org/978-92-95111-07-3 IRENA. (2017b). Electricity storage and renewables: Costs and markets to 2030. https://www.irena.org/costs/Electricity-Storage IRENA. (2019a). Off-grid renewable energy solutions to expand electricity access: An opportunity not to be missed. https://www.irena.org/publications/2019/Jan/Off-grid-renewable-energy-solutions-to-expand-electricity-to-access-An-opportunity-not-to-be-missed IRENA. (2019b). Renewable Power Generation Costs in 2018. IRENA. (2020). Renewable Power Generation Costs in 2019 (International Renewable Energy Agency (ed.)). https://www.irena.org/publications/2020/Jun/Renewable-Power-Costs-in-2019 Jana, C. (2016). Sustainable domestic lighting options for poor people-an empirical study. Environment, Development and Sustainability, 18(6), 1559–1573. https://doi.org/10.1007/s10668-015-9702-6 Javadi, F. S., Rismanchi, B., Sarraf, M., Afshar, O., Saidur, R., Ping, H. W., & Rahim, N. A. (2013). Global policy of rural electrification. Renewable and Sustainable Energy Reviews, 19, 402–416. https://doi.org/10.1016/j.rser.2012.11.053 Jimenez, M., Cadavid, L., & Franco, C. J. (2014). Scenarios of photovoltaic grid parity in Colombia. Dyna, 81(188), 237–245. https://doi.org/10.15446/dyna.v81n188.42165 Jimenez, R. (2017). Barriers to electrification in Latin America: Income, location, and economic development. Energy Strategy Reviews, 15, 9–18. https://doi.org/10.1016/j.esr.2016.11.001 Kanagawa, M., & Nakata, T. (2008). Assessment of access to electricity and the socio-economic impacts in rural areas of developing countries. Energy Policy, 36(6), 2016–2029. https://doi.org/10.1016/j.enpol.2008.01.041 Knuckles, J. (2016). Business models for mini-grid electricity in base of the pyramid markets. Energy for Sustainable Development, 31, 67–82. https://doi.org/10.1016/j.esd.2015.12.002 Kolhe, M. L., Ranaweera, K. M. I. U., & Gunawardana, A. G. B. S. (2015). Techno-economic sizing of off-grid hybrid renewable energy system for rural electrification in Sri Lanka. Sustainable Energy Technologies and Assessments, 11(2015), 53–64. https://doi.org/10.1016/j.seta.2015.03.008 Krithika, P. R., & Palit, D. (2013). Participatory Business Models for Off-Grid Electrification. In S. Bhattacharyya (Ed.), Rural Electrification Through Decentralised Off-grid Systems in Developing Countries (pp. 187–225). Springer. Lemaire, X. (2009). Fee-for-service companies for rural electrification with photovoltaic systems: The case of Zambia. Energy for Sustainable Development, 13(1), 18–23. https://doi.org/10.1016/j.esd.2009.01.001 Lemaire, X. (2011). Off-grid electrification with solar home systems: The experience of a fee-for-service concession in South Africa. Energy for Sustainable Development, 15(3), 277–283. https://doi.org/10.1016/j.esd.2011.07.005 López-González, A., Domenech, B., & Ferrer-Martí, L. (2018). Sustainability and design assessment of rural hybrid microgrids in Venezuela. Energy, 159, 229–242. https://doi.org/10.1016/j.energy.2018.06.165 López-González, A., Ferrer-Martí, L., & Domenech, B. (2019). Long-term sustainability assessment of micro-hydro projects: Case studies from Venezuela. Energy Policy, 131(April), 120–130. https://doi.org/10.1016/j.enpol.2019.04.030 Louie, H. (2018). Off-Grid Electrical Systems in Developing Countries. In Off-Grid Electrical Systems in Developing Countries. Springer International Publishing. https://doi.org/10.1007/978-3-319-91890-7 Mainali, B., Pachauri, S., Rao, N. D., & Silveira, S. (2014). Assessing rural energy sustainability in developing countries. Energy for Sustainable Development, 19(1), 15–28. https://doi.org/10.1016/j.esd.2014.01.008 Mainali, B., & Silveira, S. (2011). Financing off-grid rural electrification: Country case Nepal. Energy, 36(4), 2194–2201. https://doi.org/10.1016/j.energy.2010.07.004 Mainali, B., & Silveira, S. (2012). Renewable energy markets in rural electrification: Country case Nepal. Energy for Sustainable Development, 16(2), 168–178. https://doi.org/10.1016/j.esd.2012.03.001 Mainali, B., & Silveira, S. (2015). Using a sustainability index to assess energy technologies for rural electrification. Renewable and Sustainable Energy Reviews, 41, 1351–1365. https://doi.org/10.1016/j.rser.2014.09.018 Mandelli, S., Barbieri, J., Mereu, R., & Colombo, E. (2016a). Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review. Renewable and Sustainable Energy Reviews, 58, 1621–1646. https://doi.org/10.1016/j.rser.2015.12.338 Mandelli, S., Barbieri, J., Mereu, R., & Colombo, E. (2016b). Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review. Renewable and Sustainable Energy Reviews, 58, 1621–1646. https://doi.org/10.1016/j.rser.2015.12.338 Mandelli, S., Brivio, C., Colombo, E., & Merlo, M. (2016). Effect of load profile uncertainty on the optimum sizing of off-grid PV systems for rural electrification. Sustainable Energy Technologies and Assessments, 18, 34–47. https://doi.org/10.1016/j.seta.2016.09.010 Martinot, E. (2001). Renewable energy investment by the World Bank. Energy Policy, 29(November 2000), 689–699. https://doi.org/http://dx.doi.org/10.1016/S0301-4215(00)00151-8 Martinot, E., Cabraal, A., & Mathur, S. (2001). World Bank/GEF solar home system projects: Experiences and lessons learned 1993-2000. Renewable & Sustainable Energy Reviews, 5(1), 39–57. https://doi.org/10.1016/S1364-0321(00)00007-1 MME. (2007). Resolución 182138 de 2007 - Por la cual se expide el procedimiento para otorgar subsidios del sector eléctrico en las Zonas No Interconectadas (pp. 1–4). Ministerio de Minas y Energía. http://energuaviare.com/sites/default/files/RESOLUCION_MME_182138_2007.pdf Decreto 1122 de 2008 - Por el cual se reglamenta el Fondo de Apoyo Financiero para la Energización de las Zonas Rurales Interconectadas, FAER, (2008). https://www.minenergia.gov.co/normatividad?idNorma=22157 MME. (2011). Resolución 181272 de 2011 - Por la cual se ajusta el procedimiento para otorgar subsidios del sector eléctrico en las áreas de servicio exclusivo de las zonas no interconectadas continentales y se deroga la Resolución 180195 de 2011. http://legal.legis.com.co/document/Index?obra=legcol&document=legcol_aa41c3358d910134e0430a0101510134 MME. (2013). Estadísticas FSSRI 2002 - 2012. https://www.minenergia.gov.co/estadisticas2 MME. (2019). Misión y Visión - Ministerio de Minas y Energía. https://www.minenergia.gov.co/mision-y-vision;jsessionid=Vpd6c0QkxtyGb9KeomSg2NDh.portal2 Resolucion MME 412113 de 2019, (2019). https://www.minenergia.gov.co/documents/10180//23517//48258-Resolucion+412113+18-10-2019.pdf MME. (2020). Fondos Especiales - Energía Eléctrica - Ministerio de Minas y Energía. https://www.minenergia.gov.co/fondos-especiales2 MME, & UPME. (2015). Guía para elaboración de un plan de energización rural sostenible: “La energía como un medio para el desarrollo productivo rural” (pp. 1–38). Ministerio de Minas y Energía. http://www.siel.gov.co/portals/0/fondos/Guia_de_un_PERS.pdf MME, UPME, & IPSE. (2018). Plan Nacional de Electrificación Rural PNER 2018-2031 (pp. 1–96). https://www.minenergia.gov.co/minminas-theme/planclimatico/files/19_UPME_120718_PNER_Jullio260718_publicacion.pdf Mohammed, Y. S., Mustafa, M. W., & Bashir, N. (2014). Hybrid renewable energy systems for off-grid electric power: Review of substantial issues. Renewable and Sustainable Energy Reviews, 35, 527–539. https://doi.org/10.1016/j.rser.2014.04.022 Moner-Girona, M. (2009). A new tailored scheme for the support of renewable energies in developing countries. Energy Policy, 37(5), 2037–2041. https://doi.org/10.1016/j.enpol.2008.11.024 Morales, S., Álvarez, C., Acevedo, C., Diaz, C., Rodriguez, M., & Pacheco, L. (2015). An overview of small hydropower plants in Colombia: Status, potential, barriers and perspectives. Renewable and Sustainable Energy Reviews, 50, 1650–1657. https://doi.org/10.1016/j.rser.2015.06.026 Nabavi, E., Daniell, K. A., & Najafi, H. (2017). Boundary matters: the potential of system dynamics to support sustainability? Journal of Cleaner Production, 140, 312–323. https://doi.org/10.1016/j.jclepro.2016.03.032 Nguyen, K. Q. (2007). Alternatives to grid extension for rural electrification: Decentralized renewable energy technologies in Vietnam. Energy Policy, 35(4), 2579–2589. https://doi.org/10.1016/j.enpol.2006.10.004 NREL. (2020). Electricity Annual Technology Baseline (ATB). https://atb.nrel.gov/electricity/2020/data.php Odum, H. T. (2007). Environment, Power, and Society for the Twenty-First Century: The Hierarchy of Energy. Columbia University Press. https://www.jstor.org/stable/10.7312/odum12886 OLADE, ECLAC, & GTZ. (2000). Energy and Sustainable Development in Latin America and the Caribbean : Guide for energy policymaking. May. ONU. (2015). 17 Objetivos para el Desarrollo Sostenible. http://www.un.org/sustainabledevelopment/es/ ONU. (2020). Energía – Desarrollo Sostenible. Objetivos de Desarrollo Sostenible. https://www.un.org/sustainabledevelopment/es/energy/ Ortiz-Jara, R. P., Pérez-Arriaga, J. I., Dueñas, P., González, A., Eslava Mejia, M., & Juan Revolo, M. (2020). Misión de Transformación Energética y Modernización de la Industria Eléctrica: Hoja de Ruta para la Energía del Futuro - Foco No. 4. Cierre de brechas, mejora de la calidad y diseño y formulación eficiente de subsidios. https://www.minenergia.gov.co/documents/10192/24166201/Foco+No.+4.+Cierre+de+brechas%2C mejora+de+la+calidad+y+diseño+y+formulacion+eficiente+de+subsidios.pdf Palit, D. (2013). Solar energy programs for rural electrification: Experiences and lessons from South Asia. Energy for Sustainable Development, 17(3), 270–279. https://doi.org/10.1016/j.esd.2013.01.002 Palit, D., & Chaurey, A. (2011). Off-grid rural electrification experiences from South Asia : Status and best practices. Energy for Sustainable Development, 15(3), 266–276. https://doi.org/10.1016/j.esd.2011.07.004 Pater, L. R., & Cristea, S. L. (2016). Systemic Definitions of Sustainability, Durability and Longevity. Procedia - Social and Behavioral Sciences, 221, 362–371. https://doi.org/10.1016/j.sbspro.2016.05.126 Pérez-Arbeláez, J., & Acosta, C. E. (1986). Modelos de Demanda Residencial e Industrial de Electricidad para Colombia y Estimaciones de Elasticidades Precio. Revista Desarrollo y Sociedad, 19, 69–93. https://doi.org/10.13043/dys.19.2 PNUD. (2015). Objetivos de Desarrollo Sostenible | PNUD. Programa de Las Naciones Unidas Para El Desarrollo. https://www.undp.org/content/undp/es/home/sustainable-development-goals.html Qudrat-Ullah, H., & Seong, B. S. (2010). How to do structural validity of a system dynamics type simulation model: The case of an energy policy model. Energy Policy, 38(5), 2216–2224. https://doi.org/10.1016/j.enpol.2009.12.009 RAE. (2021). gestionar | Definición | Diccionario de la lengua española | RAE - ASALE. https://dle.rae.es/gestionar Rahman, M. M., Paatero, J. V., & Lahdelma, R. (2013). Evaluation of choices for sustainable rural electrification in developing countries: A multicriteria approach. Energy Policy, 59, 589–599. https://doi.org/10.1016/j.enpol.2013.04.017 Ranaboldo, M., Domenech, B., Reyes, G. A., Ferrer-Martí, L., Pastor Moreno, R., & García-Villoria, A. (2015). Off-grid community electrification projects based on wind and solar energies: A case study in Nicaragua. Solar Energy, 117(2015), 268–281. https://doi.org/10.1016/j.solener.2015.05.005 Ranaboldo, M., García-Villoria, A., Ferrer-Martí, L., & Pastor Moreno, R. (2014). A heuristic method to design autonomous village electrification projects with renewable energies. Energy, 73, 96–109. https://doi.org/10.1016/j.energy.2014.05.099 Ranaboldo, M., Lega, B. D., Ferrenbach, D. V., Ferrer-Martí, L., Moreno, R. P., & García-Villoria, A. (2014). Renewable energy projects to electrify rural communities in Cape Verde. Applied Energy, 118, 280–291. https://doi.org/10.1016/j.apenergy.2013.12.043 Riva, F., Ahlborg, H., Hartvigsson, E., Pachauri, S., & Colombo, E. (2018). Electricity access and rural development: Review of complex socio-economic dynamics and causal diagrams for more appropriate energy modelling. Energy for Sustainable Development, 43, 203–223. https://doi.org/10.1016/j.esd.2018.02.003 Riva, F., & Colombo, E. (2020). System-dynamics modelling of the electricity-development nexus in rural electrification based on a Tanzanian case study. Energy for Sustainable Development, 56, 128–143. https://doi.org/10.1016/j.esd.2020.04.001 Riva, F., Colombo, E., & Piccardi, C. (2019). Towards modelling diffusion mechanisms for sustainable off-grid electricity planning. Energy for Sustainable Development, 52, 11–25. https://doi.org/10.1016/j.esd.2019.06.005 Rodríguez-Urrego, D., & Rodríguez-Urrego, L. (2018). Photovoltaic energy in Colombia: Current status, inventory, policies and future prospects. Renewable and Sustainable Energy Reviews, 92(April), 160–170. https://doi.org/10.1016/j.rser.2018.04.065 Rodríguez Monroy, C., & San Segundo Hernández, A. (2005). Developing sustainable electricity supplies in rural areas of developing countries. Electricity Journal, 18(5), 68–73. https://doi.org/10.1016/j.tej.2005.04.011 Salamanca-Avila, S. (2017). Propuesta de diseño de un sistema de energía solar fotovoltaica. Caso de aplicación en la ciudad de Bogotá. Revista Científica, 3(30), 263. https://doi.org/10.14483/23448350.12213 Schillebeeckx, S. J. D., Parikh, P., Bansal, R., & George, G. (2012). An integrated framework for rural electrification: Adopting a user-centric approach to business model development. Energy Policy, 48, 687–697. https://doi.org/10.1016/j.enpol.2012.05.078 Sen, R., & Bhattacharyya, S. (2014). Off-grid electricity generation with renewable energy technologies in India: An application of HOMER. Renewable Energy, 62, 388–398. https://doi.org/10.1016/j.renene.2013.07.028 Shaahid, S. M., & Elhadidy, M. A. (2005). Optimal sizing of battery storage for stand-alone hybrid (photo-voltaic + diesel) power systems. International Journal of Sustainable Energy, 24(3), 155–166. https://doi.org/10.1080/14786450500292188 Shahzad, M. K., Zahid, A., ur Rashid, T., Rehan, M. A., Ali, M., & Ahmad, M. (2017). Techno-economic feasibility analysis of a solar-biomass off grid system for the electrification of remote rural areas in Pakistan using HOMER software. Renewable Energy, 106(2017), 264–273. https://doi.org/10.1016/j.renene.2017.01.033 Shakya, B., Bruce, A., & MacGill, I. (2019). Survey based characterisation of energy services for improved design and operation of standalone microgrids. Renewable and Sustainable Energy Reviews, 101(June 2018), 493–503. https://doi.org/10.1016/j.rser.2018.11.016 Shyu, C. W. (2012). Rural electrification program with renewable energy sources: An analysis of China’s Township Electrification Program. Energy Policy, 51, 842–853. https://doi.org/10.1016/j.enpol.2012.09.036 Silva, D., & Nakata, T. (2009). Multi-objective assessment of rural electrification in remote areas with poverty considerations. Energy Policy, 37(8), 3096–3108. https://doi.org/10.1016/j.enpol.2009.03.060 Sovacool, B. K., D’Agostino, A. L., & Bambawale, M. J. (2011). Gers gone wired: Lessons from the Renewable Energy and Rural Electricity Access Project (REAP) in Mongolia. Energy for Sustainable Development, 15(1), 32–40. https://doi.org/10.1016/j.esd.2010.10.004 Sovacool, B. K., & Drupady, I. M. (2012). Energy access, poverty, and development: the governance of small-scale renewable energy in developing Asia. SSPD. (2017). Zonas No Interconectadas - ZNI: Diagnóstico de la Prestación del Servicio de Energía Eléctrica 2017. https://www.superservicios.gov.co/sites/default/archivos/Publicaciones/Publicaciones/2018/Dic/diag_zni_2018_7122018.pdf SSPD. (2018). Zonas No Interconectadas - ZNI: Diagnóstico de la Prestación del Servicio de Energía Eléctrica 2018. https://www.superservicios.gov.co/sites/default/archivos/Publicaciones/Publicaciones/2018/Dic/diag_zni_2018_7122018.pdf SSPD. (2019a). Quiénes somos | Superservicios - Superintendencia de Servicios Públicos Domiciliarios. https://www.superservicios.gov.co/nuestra-entidad/quienes-somos SSPD. (2019b). Zonas No Interconectadas - ZNI: Diagnóstico de la Prestación del Servicio de Energía Eléctrica 2019. In Superintendencia de Servicios Públicos Domiciliarios - SSPD. https://www.superservicios.gov.co/sites/default/archivos/Publicaciones/Publicaciones/2019/Nov/diagnostico_de_la_prestacion_del_servicio_zni_-_07-11-2019-lo_1.pdf Sterman, J. (2000). Business dynamics: systems thinking and modeling for a complex world. In Irwin/McGraw-Hill (Irwin/McGr, Vol. 34, Issue 1). Jeffrey J. Shelsfud. https://doi.org/10.1108/13673270210417646 SUI. (2019a). Compra de combustible y aspectos de generación. http://www.sui.gov.co/web/energia/reportes/tecnico-operativo/compra-de-combustible-y-aspectos-de-generacion SUI. (2019b). Formato ZNI C1 - Información Comercial para el Sector Residencial. http://www.sui.gov.co/web/datos-abiertos/energia/energia-formato-zni-c1-informacion-comercial-para-el-sector-residencial Surendra, K. C., Khanal, S. K., Shrestha, P., & Lamsal, B. (2011). Current status of renewable energy in Nepal: Opportunities and challenges. Renewable and Sustainable Energy Reviews, 15(8), 4107–4117. https://doi.org/10.1016/j.rser.2011.07.022 Terrado, E., Cabraal, A., & Mukherjee, I. (2008). Designing Sustainable Off-Grid Rural Electrification Projects: Principles and Practices. https://doi.org/10.1596/1813-9450-5193 Tomei, J., Cronin, J., Arias, H. D. A., Machado, S. C., Palacios, M. F. M., Ortiz, Y. M. T., Cuesta, Y. E. B., Lemus, R. P., López, W. M., & Anandarajah, G. (2020). Forgotten spaces: How reliability, affordability and engagement shape the outcomes of last-mile electrification in Chocó, Colombia. Energy Research and Social Science, 59(March 2019). https://doi.org/10.1016/j.erss.2019.101302 Tully, S. (2006). The Human Right to Access Electricity. Electricity Journal, 19(3), 30–39. https://doi.org/10.1016/j.tej.2006.02.003 Ulsrud, K., Rohracher, H., Winther, T., Muchunku, C., & Palit, D. (2018). Pathways to electricity for all: What makes village-scale solar power successful? Energy Research and Social Science, 44(April), 32–40. https://doi.org/10.1016/j.erss.2018.04.027 UPME. (2013). Plan indicativo de expansión de cobertura de energía eléctrica 2013-2017. http://www.siel.gov.co/Siel/Portals/0/Piec/Libro_PIEC.pdf UPME. (2015). Plan Energético Nacional Colombia: Ideario Energético 2050. In Unidad de Planeación Minero Energética (p. 184). http://www.upme.gov.co/Docs/PEN/PEN_IdearioEnergetico2050.pdf UPME. (2016). Plan indicativo de expansión de cobertura de energía eléctrica PIEC 2016-2020. http://www.upme.gov.co/Siel/Siel/Portals/0/Piec/PIEC_2016-2020_PublicarDic202016.pdf UPME. (2017). SISTEMA DE TRANSMISIÓN NACIONAL ACTUAL 2016. Unidad de Planeación Minero Energética. http://sig.simec.gov.co/GeoPortal/images/pdf/UPME_EN_TRANSMISION_PLAN_2016_ACTUAL.pdf UPME. (2019a). Metodología y resultados de la estimación del Índice de Cobertura de Energía Eléctrica ICEE - 2018. http://www.siel.gov.co/siel/portals/0/Piec/Metodologia_ICEE_2018_correccionDic30.pdf UPME. (2019b). Plan Indicativo de Expansión de Cobertura de Energía Eléctrica PIEC 2019-2023. In UPME (Issue 69). http://www.upme.gov.co/Siel/Siel/Portals/0/Piec/Informacion_Base_PIEC_Dic302019.pdf UPME. (2019c). UPME - Quiénes Somos. http://www1.upme.gov.co/Entornoinstitucional/NuestraEntidad/Paginas/Quienes-Somos.aspx UPME. (2019d). Plan Indicativo de Expansión de Cobertura - PIEC. 4to Encuentro ZNI Colombia - Fortaleciendo La Prestación Del Servicio de Energía Eléctrica En Las Zonas No Interconectadas, 1–33. https://www.energycolombia.org/eventos/ Vides-Prado, A., Camargo, E. O., Vides-Prado, C., Orozco, I. H., Chenlo, F., Candelo, J. E., & Sarmiento, A. B. (2018). Techno-economic feasibility analysis of photovoltaic systems in remote areas for indigenous communities in the Colombian Guajira. Renewable and Sustainable Energy Reviews, 82(September 2015), 4245–4255. https://doi.org/10.1016/j.rser.2017.05.101 Viteri, J. P., Henao, F., Cherni, J., & Dyner, I. (2019). Optimizing the insertion of renewable energy in the off-grid regions of Colombia. Journal of Cleaner Production, 235, 535–548. https://doi.org/10.1016/j.jclepro.2019.06.327 Williams, N. J., Jaramillo, P., & Taneja, J. (2018). An investment risk assessment of microgrid utilities for rural electrification using the stochastic techno-economic microgrid model: A case study in Rwanda. Energy for Sustainable Development, 42, 87–96. https://doi.org/10.1016/j.esd.2017.09.012 XM SA ESP. (2020a). FAER, FAZNI y PRONE. http://portalbissrs.xm.com.co/trpr/Paginas/Impuestos/faefazpro.aspx XM SA ESP. (2020b). Informe Anual - Variables del mercado. https://informeanual.xm.com.co/demo_3/pages/xm/14-variables-del-mercado.html Yadoo, A., & Cruickshank, H. (2010). The value of cooperatives in rural electrification. Energy Policy, 38(6), 2941–2947. https://doi.org/10.1016/j.enpol.2010.01.031 Yadoo, A., Gormally, A., & Cruickshank, H. (2011). Low-carbon off-grid electrification for rural areas in the United Kingdom: Lessons from the developing world. Energy Policy, 39(10), 6400–6407. https://doi.org/10.1016/j.enpol.2011.07.040 Yang, Z., Xie, L., & Zhang, C. (2013). Off-Grid Direction of Arrival Estimation Using Sparse Bayesian Inference. IEEE Transactions on Signal Processing, 61(1), 38–43. https://doi.org/10.1109/TSP.2012.2222378 Zhang, T., Shi, X., Zhang, D., & Xiao, J. (2019). Socio-economic development and electricity access in developing economies: A long-run model averaging approach. Energy Policy, 132(May), 223–231. https://doi.org/10.1016/j.enpol.2019.05.031ColcienciasInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80271/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1037589263.2021.pdf1037589263.2021.pdfTesis de Doctorado en Ingeniería - Sistemasapplication/pdf4151993https://repositorio.unal.edu.co/bitstream/unal/80271/2/1037589263.2021.pdfd0efa54c84b6eea9ebc35750f2bc0ae7MD52THUMBNAIL1037589263.2021.pdf.jpg1037589263.2021.pdf.jpgGenerated Thumbnailimage/jpeg4975https://repositorio.unal.edu.co/bitstream/unal/80271/3/1037589263.2021.pdf.jpg71f1d07d4520265ed6a60c00f29ba6b3MD53unal/80271oai:repositorio.unal.edu.co:unal/802712023-10-25 08:52:43.739Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==