Durability performance assessment of fly ash concrete using fine recycled aggregates

ilustraciones, fotografías, gráficas, tablas

Autores:
Barragán Ramos, Andrés Felipe
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80944
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80944
https://repositorio.unal.edu.co/
Palabra clave:
690 - Construcción de edificios::691 - Materiales de construcción
Hormigón
Agregados (Materiales de Construcción)
Construcciones de hormigón
Concrete
Aggregates (building materials)
Concrete construction
Durabilidad del concreto
Corrosión en concreto
Agregados reciclados
Concreto reciclado
Recycled concrete
Concrete’s durability
Steel rebar corrosion
Recycled aggregates
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_78cb6c79582709747d47c8f75b6537ed
oai_identifier_str oai:repositorio.unal.edu.co:unal/80944
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Durability performance assessment of fly ash concrete using fine recycled aggregates
dc.title.translated.spa.fl_str_mv Evaluación de la durabilidad de concreto con ceniza volante incorporando agregados finos reciclados
title Durability performance assessment of fly ash concrete using fine recycled aggregates
spellingShingle Durability performance assessment of fly ash concrete using fine recycled aggregates
690 - Construcción de edificios::691 - Materiales de construcción
Hormigón
Agregados (Materiales de Construcción)
Construcciones de hormigón
Concrete
Aggregates (building materials)
Concrete construction
Durabilidad del concreto
Corrosión en concreto
Agregados reciclados
Concreto reciclado
Recycled concrete
Concrete’s durability
Steel rebar corrosion
Recycled aggregates
title_short Durability performance assessment of fly ash concrete using fine recycled aggregates
title_full Durability performance assessment of fly ash concrete using fine recycled aggregates
title_fullStr Durability performance assessment of fly ash concrete using fine recycled aggregates
title_full_unstemmed Durability performance assessment of fly ash concrete using fine recycled aggregates
title_sort Durability performance assessment of fly ash concrete using fine recycled aggregates
dc.creator.fl_str_mv Barragán Ramos, Andrés Felipe
dc.contributor.advisor.spa.fl_str_mv Ríos Fresneda, Camilo
Lizarazo Marriaga, Juan Manuel
dc.contributor.author.spa.fl_str_mv Barragán Ramos, Andrés Felipe
dc.contributor.researchgroup.spa.fl_str_mv Análisis, Diseño y Materiales Gies
dc.subject.ddc.spa.fl_str_mv 690 - Construcción de edificios::691 - Materiales de construcción
topic 690 - Construcción de edificios::691 - Materiales de construcción
Hormigón
Agregados (Materiales de Construcción)
Construcciones de hormigón
Concrete
Aggregates (building materials)
Concrete construction
Durabilidad del concreto
Corrosión en concreto
Agregados reciclados
Concreto reciclado
Recycled concrete
Concrete’s durability
Steel rebar corrosion
Recycled aggregates
dc.subject.lemb.spa.fl_str_mv Hormigón
Agregados (Materiales de Construcción)
Construcciones de hormigón
dc.subject.lemb.eng.fl_str_mv Concrete
Aggregates (building materials)
Concrete construction
dc.subject.proposal.spa.fl_str_mv Durabilidad del concreto
Corrosión en concreto
Agregados reciclados
Concreto reciclado
dc.subject.proposal.eng.fl_str_mv Recycled concrete
Concrete’s durability
Steel rebar corrosion
Recycled aggregates
description ilustraciones, fotografías, gráficas, tablas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-09-24
dc.date.accessioned.none.fl_str_mv 2022-02-11T14:11:37Z
dc.date.available.none.fl_str_mv 2022-02-11T14:11:37Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80944
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80944
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv B. Estanqueiro, J. Dinis Silvestre, J. de Brito, and M. Duarte Pinheiro, “Environmental life cycle assessment of coarse natural and recycled aggregates for concrete,” Eur. J. Environ. Civ. Eng., vol. 22, no. 4, pp. 429–449, 2018.
C. M. Grădinaru, “The Environmental Impact of Concrete Production and the Necessity of its Greening,” Resilient Soc. Multidiscip. Contrib. from Econ. Law, Policy, Eng. Agric. Life Sci. Fields, no. June, 2017.
A. Melo, A. Gonçalves, and I. Martins, “Construction and demolition waste generation and management in Lisbon (Portugal),” Resour. Conserv. Recycl. - RESOUR Conserv Recycl, vol. 55, pp. 1252–1264, 2011.
J. Xiao, Recycled Aggregate Concrete Structures. 2018.
J. De Brito, F. Agrela, and R. V. Silva, Construction and Demolition Waste. Elsevier Ltd, 2019.
L. W. Zhang, A. O. Sojobi, V. K. R. Kodur, and K. M. Liew, “Effective utilization and recycling of mixed recycled aggregates for a greener environment,” J. Clean. Prod., vol. 236, p. 117600, 2019.
B. B. Mukharjee and S. V. Barai, “Mechanical and microstructural characterization of recycled aggregate concrete containing silica nanoparticles,” J. Sustain. Cem. Mater., vol. 6, no. 1, pp. 37–53, 2017.
K. P. Verian, W. Ashraf, and Y. Cao, “Properties of recycled concrete aggregate and their influence in new concrete production,” Resour. Conserv. Recycl., vol. 133, no. October 2017, pp. 30–49, 2018.
H. Guo et al., “Durability of recycled aggregate concrete – A review,” Cem. Concr. Compos., vol. 89, pp. 251–259, 2018.
W. H. Kwan, M. Ramli, K. J. Kam, and M. Z. Sulieman, “Influence of the amount of recycled coarse aggregate in concrete design and durability properties,” Constr. Build. Mater., vol. 26, no. 1, pp. 565–573, 2012.
D. Matias, J. De Brito, A. Rosa, and D. Pedro, “Mechanical properties of concrete produced with recycled coarse aggregates - Influence of the use of superplasticizers,” Constr. Build. Mater., vol. 44, pp. 101–109, 2013.
J. Xiao, W. Li, Y. Fan, and X. Huang, “An overview of study on recycled aggregate concrete in China (1996-2011),” Constr. Build. Mater., vol. 31, pp. 364–383, 2012.
J. Pacheco, J. de Brito, C. Chastre, and L. Evangelista, “Experimental investigation on the variability of the main mechanical properties of concrete produced with coarse recycled concrete aggregates,” Constr. Build. Mater., vol. 201, pp. 110–120, 2019.
R. Kurda, J. De Brito, and J. D. Silvestre, “Indirect evaluation of the compressive strength of recycled aggregate concrete with high fly ash ratios,” Mag. Concr. Res., vol. 70, no. 4, pp. 204–216, 2018.
F. Rodrigues, M. T. Carvalho, L. Evangelista, and J. De Brito, “Physical-chemical and mineralogical characterization of fine aggregates from construction and demolition waste recycling plants,” J. Clean. Prod., vol. 52, pp. 438–445, 2013.
S. Lotfi, M. Eggimann, E. Wagner, R. Mróz, and J. Deja, “Performance of recycled aggregate concrete based on a new concrete recycling technology,” Constr. Build. Mater., vol. 95, pp. 243–256, 2015.
D. Pedro, J. de Brito, and L. Evangelista, “Evaluation of high-performance concrete with recycled aggregates: Use of densified silica fume as cement replacement,” Constr. Build. Mater., vol. 147, pp. 803–814, 2017.
R. V. V Silva, J. De Brito, R. K. K. Dhir, J. de Brito, and R. K. K. Dhir, “Use of recycled aggregates arising from construction and demolition waste in new construction applications,” J. Clean. Prod., vol. 236, p. 117629, 2019.
P. Marco, A conceptual model to design recycled aggregate concrete for structural applications. 2014.
V. S. Babu, A. K. Mullick, K. K. Jain, and P. K. Singh, “Strength and durability characteristics of high-strength concrete with recycled aggregate-influence of processing,” J. Sustain. Cem. Mater., vol. 4, no. 1, pp. 54–71, 2014.
C. Shi, Y. Li, J. Zhang, W. Li, L. Chong, and Z. Xie, “Performance enhancement of recycled concrete aggregate - A review,” J. Clean. Prod., vol. 112, pp. 466–472, 2016.
B. J. Zhan, D. X. Xuan, W. Zeng, and C. S. Poon, “Carbonation treatment of recycled concrete aggregate: Effect on transport properties and steel corrosion of recycled aggregate concrete,” Cem. Concr. Compos., vol. 104, no. July, p. 103360, 2019.
C. M. Nwakaire, S. P. Yap, C. C. Onn, C. W. Yuen, and H. A. Ibrahim, “Utilisation of recycled concrete aggregates for sustainable highway pavement applications ; a review,” Constr. Build. Mater., vol. 235, p. 117444, 2020.
R. Wang, N. Yu, and Y. Li, “Methods for improving the microstructure of recycled concrete aggregate : A review,” Constr. Build. Mater., vol. 242, p. 118164, 2020.
K. Mcneil and T. H. Kang, “Recycled Concrete Aggregates : A Review,” vol. 7, no. 1, pp. 61–69, 2013.
L. Evangelista and J. De Brito, “Concrete with fine recycled aggregates: A review,” Eur. J. Environ. Civ. Eng., vol. 18, no. 2, pp. 129–172, 2014.
M. Pepe, R. D. Toledo Filho, E. A. B. Koenders, and E. Martinelli, “Alternative processing procedures for recycled aggregates in structural concrete,” Constr. Build. Mater., vol. 69, pp. 124–132, 2014.
G. Dimitriou, P. Savva, and M. F. Petrou, “Enhancing mechanical and durability properties of recycled aggregate concrete.” 2017.
S. M. S. Kazmi, M. J. Munir, Y.-F. Wu, I. Patnaikuni, Y. Zhou, and F. Xing, “Influence of different treatment methods on the mechanical behavior of recycled aggregate concrete: A comparative study,” Cem. Concr. Compos., vol. 104, no. July, p. 103398, 2019.
Y. Kim, A. Hanif, S. M. S. Kazmi, M. J. Munir, and C. Park, “Properties enhancement of recycled aggregate concrete through pretreatment of coarse aggregates - Comparative assesssment of assorted techniques.” 2018.
S. Ismail and M. Ramli, “Engineering properties of treated recycled concrete aggregate (RCA) for structural applications,” Constr. Build. Mater., vol. 44, pp. 464–476, 2013.
A. Akbarnezhad, K. C. G. Ong, M. H. Zhang, C. T. Tam, and T. W. J. Foo, “Microwave-assisted beneficiation of recycled concrete aggregates,” Constr. Build. Mater., vol. 25, no. 8, pp. 3469–3479, 2011.
H. Choi, M. Lim, H. Choi, R. Kitagaki, and T. Noguchi, “Using Microwave Heating to Completely Recycle Concrete,” J. Environ. Prot. (Irvine,. Calif)., vol. 05, no. 07, pp. 583–596, 2014.
K. Bru, S. Touzé, F. Bourgeois, N. Lippiatt, and Y. Ménard, “Assessment of a microwave-assisted recycling process for the recovery of high-quality aggregates from concrete waste,” Int. J. Miner. Process., vol. 126, no. January 2014, pp. 90–98, 2014.
M. S. de Juan and P. A. Gutiérrez, “Study on the influence of attached mortar content on the properties of recycled concrete aggregate,” Constr. Build. Mater., vol. 23, no. 2, pp. 872–877, 2009.
F. S. Khalid, N. B. Azmi, K. A. S. M. Sumandi, and P. N. Mazenan, “Mechanical properties of concrete containing recycled concrete aggregate (RCA) and ceramic waste as coarse aggregate replacement,” AIP Conf. Proc., vol. 1891, no. 2017, 2017.
S. Kabir, A. Al-Shayeb, and I. M. Khan, “Recycled Construction Debris as Concrete Aggregate for Sustainable Construction Materials,” Procedia Eng., vol. 145, pp. 1518–1525, 2016.
K. Kim, M. Shin, and S. Cha, “Combined effects of recycled aggregate and fly ash towards concrete sustainability,” Constr. Build. Mater., vol. 48, pp. 499–507, 2013.
Y. Wang, P. Hughes, H. Niu, and Y. Fan, “A new method to improve the propierties of recycled aggregate concrete: Composite addition of basalt fiber and nano-silica.” 2019.
A. Abd Elhakam, A. E. Mohamed, and E. Awad, “Influence of self-healing, mixing method and adding silica fume on mechanical properties of recycled aggregates concrete,” Constr. Build. Mater., vol. 35, pp. 421–427, 2012.
B. A. Tayeh, D. M. Al, and R. Alyousef, “The utilization of recycled aggregate in high performance concrete : a review,” Integr. Med. Res., vol. 9, no. 4, pp. 8469–8481, 2020.
M. Gomes and J. De Brito, “Structural concrete with incorporation of coarse recycled concrete and ceramic aggregates: Durability performance,” Mater. Struct. Constr., vol. 42, no. 5, pp. 663–675, 2009.
V. W. Y. Tam, D. Kotrayothar, and J. Xiao, “Long-term deformation behaviour of recycled aggregate concrete,” Constr. Build. Mater., vol. 100, pp. 262–272, 2015.
S. Seara-paz, B. González-fonteboa, F. Martínez-abella, and I. González-taboada, “Time-dependent behaviour of structural concrete made with recycled coarse aggregates . Creep and shrinkage,” Constr. Build. Mater., vol. 122, pp. 95–109, 2016.
D. Pedro, J. de Brito, and L. Evangelista, “Structural concrete with simultaneous incorporation of fine and coarse recycled concrete aggregates: Mechanical, durability and long-term properties,” Constr. Build. Mater., vol. 154, pp. 294–309, 2017.
R. V. Silva, J. De Brito, and R. K. Dhir, “Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production,” Constr. Build. Mater., vol. 65, pp. 201–217, 2014.
L. Evangelista and J. De Brito, “Durability of crushed fine recycled aggregate concrete assessed by permeability-related properties,” Mag. Concr. Res., vol. 71, no. 21, pp. 1142–1150, 2019.
J. J. de Oliveira Andrade, E. Possan, J. Z. Squiavon, and T. L. P. Ortolan, “Evaluation of mechanical properties and carbonation of mortars produced with construction and demolition waste,” Constr. Build. Mater., vol. 161, pp. 70–83, 2018.
L. Evangelista, M. Guedes, J. De Brito, A. C. Ferro, and M. F. Pereira, “Physical, chemical and mineralogical properties of fine recycled aggregates made from concrete waste,” Constr. Build. Mater., vol. 86, pp. 178–188, 2015.
S. Ghorbani, S. Sharifi, S. Ghorbani, V. W. Tam, J. de Brito, and R. Kurda, “Effect of crushed concrete waste’s maximum size as partial replacement of natural coarse aggregate on the mechanical and durability properties of concrete,” Resour. Conserv. Recycl., vol. 149, no. November 2018, pp. 664–673, 2019.
M. Bravo et al., “Durability performance of concrete with recycled aggregates from construction and demolition waste plants,” Constr. Build. Mater., vol. 77, pp. 357–369, 2015.
F. Cartuxo, J. De Brito, L. Evangelista, J. R. Jiménez, and E. F. Ledesma, “Increased durability of concrete made with fine recycled concrete aggregates using superplasticizers,” Materials (Basel)., vol. 9, no. 2, 2016.
C. J. Zega and Á. A. Di Maio, “Use of recycled fine aggregate in concretes with durable requirements,” Waste Manag., vol. 31, no. 11, pp. 2336–2340, 2011.
L. Evangelista and J. de Brito, “Mechanical behaviour of concrete made with fine recycled concrete aggregates,” Cem. Concr. Compos., vol. 29, no. 5, pp. 397–401, 2007.
Z. Guo, C. Chen, D. E. Lehman, W. Xiao, S. Zheng, and B. Fan, “Mechanical and durability behaviours of concrete made with recycled coarse and fine aggregates,” Eur. J. Environ. Civ. Eng., vol. 8189, pp. 1–19, 2017.
L. Evangelista and J. de Brito, “Durability performance of concrete made with fine recycled concrete aggregates,” Cem. Concr. Compos., vol. 32, no. 1, pp. 9–14, 2010.
S. Sadati and K. H. Khayat, “Field performance of concrete pavement incorporating recycled concrete aggregate,” Constr. Build. Mater., vol. 126, pp. 691–700, 2016.
C. Thomas, J. Setién, J. A. Polanco, P. Alaejos, and M. Sánchez De Juan, “Durability of recycled aggregate concrete,” Constr. Build. Mater., vol. 40, pp. 1054–1065, 2013.
S. Omary, E. Ghorbel, and G. Wardeh, “Relationships between recycled concrete aggregates characteristics and recycled aggregates concretes properties,” Constr. Build. Mater., vol. 108, pp. 163–174, 2016.
Y. A. Fawzy, “Impact of recycled gravel obtained from low or medium concrete grade on concrete properties,” HBRC J., vol. 14, no. 1, pp. 1–8, 2018.
L. Ferreira, J. De Brito, and M. Barra, “Influence of the pre-saturation of recycled coarse concrete aggregates on concrete properties,” Mag. Concr. Res., vol. 63, no. 8, pp. 617–627, 2011.
A. Barbudo, J. De Brito, L. Evangelista, M. Bravo, and F. Agrela, “Influence of water-reducing admixtures on the mechanical performance of recycled concrete,” J. Clean. Prod., vol. 59, pp. 93–98, 2013.
L. Ferreira, J. de Brito, and M. Barra, “Influence of the pre-saturation of recycled coarse concrete aggregates on concrete properties,” Mag. Concr. Res., vol. 63, no. 8, pp. 617–627, 2011.
C. Ulsen, H. Kahn, G. Hawlitschek, E. A. Masini, S. C. Angulo, and V. M. John, “Production of recycled sand from construction and demolition waste,” Constr. Build. Mater., vol. 40, pp. 1168–1173, 2013.
R. V. Silva, J. De Brito, and N. Saikia, “Influence of curing conditions on the durability-related performance of concrete made with selected plastic waste aggregates,” Cem. Concr. Compos., vol. 35, no. 1, pp. 23–31, 2013.
C. Alexandridou, G. N. Angelopoulos, and F. A. Coutelieris, “Mehcanical and durability performance of concrete produced with recycled aggregates from Greek construction and demolition waste plants.” 2017.
J. Xiao, D. Lu, and J. Ying, “Durability of recycled aggregate concrete: An overview,” J. Adv. Concr. Technol., vol. 11, no. 12, pp. 347–359, 2013.
R. Kurda, J. de Brito, and J. D. Silvestre, “Combined influence of recycled concrete aggregates and high contents of fly ash on concrete properties,” Constr. Build. Mater., vol. 157, pp. 554–572, 2017.
M. J. McGinnis, M. Davis, A. de la Rosa, B. D. Weldon, and Y. C. Kurama, “Strength and stiffness of concrete with recycled concrete aggregates,” Constr. Build. Mater., vol. 154, pp. 258–269, 2017.
D. Pedro, J. De Brito, and L. Evangelista, “Influence of the use of recycled concrete aggregates from different sources on structural concrete,” Constr. Build. Mater., vol. 71, no. 2014, pp. 141–151, 2014.
C. C. Fan, R. Huang, H. Hwang, and S. J. Chao, “The effects of different fine recycled concrete aggregates on the properties of Mortar,” Materials (Basel)., vol. 8, no. 5, pp. 2658–2672, 2015.
Z. Li, Advanced Concrete Technology. Wiley, 2011.
A. André, J. De Brito, A. Rosa, and D. Pedro, “Durability performance of concrete incorporating coarse aggregates from marble industry waste,” J. Clean. Prod., vol. 65, pp. 389–396, 2014.
R. V. Silva, R. Neves, J. De Brito, and R. K. Dhir, “Carbonation behaviour of recycled aggregate concrete,” Cem. Concr. Compos., vol. 62, pp. 22–32, 2015.
S. Macdonald, Concrete: Building Pathology. Wiley, 2008.
A. M. Neville and J. J. Brooks, Concrete Technology. Prentice Hall, 2010.
S.-C. Kou and C.-S. Poon, “Long-term mechanical and durability properties of recycled aggregate concrete prepared with the incorporation of fly ash,” Cem. Concr. Compos., vol. 37, pp. 12–19, 2013.
R. Kurda, J. De Brito, and J. D. Silvestre, “Carbonation of concrete made with high amount of fly ash and recycled concrete aggregates for utilization of CO2,” J. CO2 Util., vol. 29, no. November 2018, pp. 12–19, 2019.
M. C. Limbachiya, T. Leelawat, and R. K. Dhir, “RCA CONCRETE: A STUDY OF PROPERTIES IN THE FRESH STATE, STRENGTH DEVELOPMENT AND DURABILITY,” in Sustainable Construction: Use of Recycled Concrete Aggregate, pp. 227–237.
S. C. Kou, “Influence of Fly Ash as Cement Replacement on the Properties of Recycled Aggregate Concrete,” ASCE Libr., 2007.
S. C. Kou, C. S. Poon, and H. W. Wan, “Properties of concrete prepared with low-grade recycled aggregates,” Constr. Build. Mater., vol. 36, pp. 881–889, 2012.
R. Kurda, J. de Brito, and J. D. Silvestre, “Water absorption and electrical resistivity of concrete with recycled concrete aggregates and fly ash,” Cem. Concr. Compos., vol. 95, no. October 2018, pp. 169–182, 2019.
J. Sim and C. Park, “Compressive strength and resistance to chloride ion penetration and carbonation of recycled aggregate concrete with varying amount of fly ash and fine recycled aggregate,” Waste Manag., vol. 31, no. 11, pp. 2352–2360, 2011.
R. V. Silva, J. De Brito, R. Neves, and R. Dhir, “Prediction of chloride ion penetration of recycled aggregate concrete,” Mater. Res., vol. 18, no. 2, pp. 427–440, 2015.
S. Taner, C. Meyer, and S. Herfellner, “Effects of internal curing on the strength , drying shrinkage and freeze – thaw resistance of concrete containing recycled concrete aggregates,” Constr. Build. Mater., vol. 91, pp. 288–296, 2015.
Y. Cheng, X. Shang, and Y. Zhang, “Experimental research on durability of recycled aggregate concrete under freeze- thaw cycles,” 2017.
S. Lotfi, J. Deja, P. Rem, R. Mróz, E. Van Roekel, and H. Van Der Stelt, “Mechanical recycling of EOL concrete into high-grade aggregates,” "Resources, Conserv. Recycl., vol. 87, pp. 117–125, 2014.
J. Wu, X. Jing, and Z. Wang, “Uni-axial compressive stress-strain relation of recycled coarse aggregate concrete after freezing and thawing cycles,” Constr. Build. Mater., vol. 134, pp. 210–219, 2017.
Z. Li, Z. Deng, H. Yang, and H. Wang, “Bond behavior between recycled aggregate concrete and deformed rebar after Freeze-thaw damage,” Constr. Build. Mater., vol. 250, p. 118805, 2020.
A. Richardson, K. Coventry, and J. Bacon, “Freeze / thaw durability of concrete with recycled demolition aggregate compared to virgin aggregate concrete,” J. Clean. Prod., vol. 19, no. 2–3, pp. 272–277, 2011.
J. A. Bogas, J. De Brito, and D. Ramos, “Freeze e thaw resistance of concrete produced with fi ne recycled concrete aggregates,” J. Clean. Prod., vol. 115, pp. 294–306, 2016.
R. Zaharieva, “Frost resistance of recycled aggregate concrete,” vol. 34, pp. 1927–1932, 2004.
K. Liu, J. Yan, Q. Hu, Y. Sun, and C. Zou, “Effects of parent concrete and mixing method on the resistance to freezing and thawing of air-entrained recycled aggregate concrete,” Constr. Build. Mater., vol. 106, pp. 264–273, 2016.
A. Gokce, S. Nagataki, T. Saeki, and M. Hisada, “Freezing and thawing resistance of air-entrained concrete incorporating recycled coarse aggregate: The role of air content in demolished concrete,” Cem. Concr. Res., vol. 34, no. 5, pp. 799–806, 2004.
M. Bravo, J. De Brito, J. Pontes, and L. Evangelista, “Shrinkage and creep performance of concrete with recycled aggregates from CDW plants,” Mag. Concr. Res., vol. 69, no. 19, pp. 974–995, 2017.
R. V. Silva, J. De Brito, and R. K. Dhir, “Prediction of the shrinkage behavior of recycled aggregate concrete: A review,” Constr. Build. Mater., vol. 77, pp. 327–339, 2015.
Y. Geng, Y. Wang, and J. Chen, “Creep behaviour of concrete using recycled coarse aggregates obtained from source concrete with different strengths,” Constr. Build. Mater., vol. 128, pp. 199–213, 2016.
Y. Geng, M. Zhao, H. Yang, and Y. Wang, “Creep model of concrete with recycled coarse and fine aggregates that accounts for creep development trend difference between recycled and natural aggregate concrete,” Cem. Concr. Compos., vol. 103, no. October 2018, pp. 303–317, 2019.
F. Cartuxo, J. De Brito, L. Evangelista, J. R. Jiménez, and E. F. Ledesma, “Rheological behaviour of concrete made with fine recycled concrete aggregates - Influence of the superplasticizer,” Constr. Build. Mater., vol. 89, pp. 36–47, 2015.
S. Manzi, C. Mazzotti, and M. C. Bignozzi, “Short and long-term behavior of structural concrete with recycled concrete aggregate,” Cem. Concr. Compos., vol. 37, no. 1, pp. 312–318, 2013.
C. Thomas, J. De Brito, A. Cimentada, and J. A. Sainz-aja, “Macro- and micro- properties of multi-recycled aggregate concrete,” J. Clean. Prod., vol. 245, p. 118843, 2020.
P. Zhu, Y. Hao, H. Liu, D. Wei, L. Shaofeng, and L. Gu, “Durability evaluation of three generations of 100% repeatedly recycled coarse aggregate concrete.” 2019.
V. Abreu, L. Evangelista, and J. de Brito, “The effect of multi-recycling on the mechanical performance of coarse recycled aggregates concrete.” 2018.
A. Poursaee, Corrosion of Steel in Concrete Structures, 1st ed. Elsevier, 2016.
S. F. U. Ahmed, “Properties of Concrete Containing Recycled Fine Aggregate and Fly Ash,” J. Solid Waste Technol. Manag., vol. 40, no. 1, pp. 70–78, 2014.
Q. Ren, Y. Wu, X. Zhang, and Y. Wang, “Effects of fly ash on the mechanical and impact properties of recycled aggregate concrete after exposure to high temperature,” Eur. J. Environ. Civ. Eng., vol. 0, no. 0, pp. 1–17, 2019.
R. V. Silva, J. de Brito, and R. K. Dhir, “Comparative analysis of existing prediction models on the creep behaviour of recycled aggregate concrete,” Eng. Struct., vol. 100, pp. 31–42, 2015.
M. Limbachiya, M. S. Meddah, and Y. Ouchagour, “Use of recycled concrete aggregate in fly-ash concrete,” Constr. Build. Mater., vol. 27, no. 1, pp. 439–449, 2012.
K. P. Verian, “Using recycled concrete as coarse aggregate in pavement concrete,” no. April 2012, p. 192, 2012.
B. Fonteboa and F. Abella, “Concretes with aggregates from demolition waste and silica fume. Materials and mechanical properties,” Build. Environ., vol. 43, pp. 429–437, 2008.
M. Gesoglu, E. Güneyisi, H. Ö. Öz, I. Taha, and M. T. Yasemin, “Failure characteristics of self-compacting concretes made with recycled aggregates,” Constr. Build. Mater., vol. 98, pp. 334–344, 2015.
Y. Wang, P. Hughes, H. Niu, and Y. Fan, “A new method to improve the properties of recycled aggregate concrete: Composite addition of basalt fiber and nano-silica,” J. Clean. Prod., vol. 236, p. 117602, 2019.
M. Stefanidou and I. Papayianni, “Influence of nano-SiO2 on the Portland cement pastes,” Compos. Part B Eng., vol. 43, pp. 2706–2710, 2012.
Z. Luo, W. Li, V. W. Y. Tam, J. Xiao, and S. P. Shah, “Current progress on nanotechnology application in recycled aggregate concrete,” J. Sustain. Cem. Mater., vol. 8, no. 2, pp. 79–96, 2019.
J. Ying, B. Zhou, and J. Xiao, “Pore structure and chloride diffusivity of recycled aggregate concrete with nano-SiO2 and nano-TiO2,” Constr. Build. Mater., vol. 150, pp. 49–55, 2017.
P. Hosseini, A. Booshehrian, and A. Madari, “Developing Concrete Recycling Strategies by Utilization of Nano-SiO2 Particles,” Waste and Biomass Valorization, vol. 2, no. 3, pp. 347–355, 2011.
M. A. Chandak and P. Y. Pawade, “Influence of Metakaolin in Concrete Mixture : A Review,” no. May, pp. 37–41, 2018.
P. min Zhan et al., “Utilization of nano-metakaolin in concrete: A review,” J. Build. Eng., vol. 30, no. January, p. 101259, 2020.
R. Muduli and B. B. Mukharjee, “Performance assessment of concrete incorporating recycled coarse aggregates and metakaolin: A systematic approach,” Constr. Build. Mater., vol. 233, p. 117223, 2020.
J. Xie et al., “Effect of nano metakaolin on compressive strength of recycled concrete,” Constr. Build. Mater., vol. 256, 2020.
A. Sadeghi-Nik, J. Berenjian, S. Alimohammadi, O. Lotfi-Omran, A. Sadeghi-Nik, and M. Karimaei, “The Effect of Recycled Concrete Aggregates and Metakaolin on the Mechanical Properties of Self-Compacting Concrete Containing Nanoparticles,” Iran. J. Sci. Technol. - Trans. Civ. Eng., vol. 43, no. s1, pp. 503–515, 2019.
R. Muduli and B. B. Mukharjee, “Effect of incorporation of metakaolin and recycled coarse aggregate on properties of concrete,” J. Clean. Prod., vol. 209, pp. 398–414, 2019.
V. N. Patel, C. D. Modhera, M. M. Chavda, and M. M. Panseriya, “Effect of metakaolin on mechanical properties of different grades concretes inclusion of recycled aggregates from C & D waste and ceramic waste,” Int. J. Eng. Technol., vol. 7, no. 3, pp. 138–142, 2018.
N. K. Bui, T. Satomi, and H. Takahashi, “Effect of mineral admixtures on properties of recycled aggregate concrete at high temperature,” Constr. Build. Mater., vol. 184, pp. 361–373, 2018.
K. Kapoor, S. P. Singh, and B. Singh, “Permeability of self-compacting concrete made with recycled concrete aggregates and metakaolin,” J. Sustain. Cem. Mater., vol. 6, no. 5, pp. 293–313, 2017.
N. Singh and S. P. Singh, “Carbonation and electrical resistance of self compacting concrete made with recycled concrete aggregates and metakaolin,” Constr. Build. Mater., vol. 121, pp. 400–409, 2016.
N. Singh and S. P. Singh, “Carbonation resistance and microstructural analysis of Low and High Volume Fly Ash Self Compacting Concrete containing Recycled Concrete Aggregates,” Constr. Build. Mater., vol. 127, pp. 828–842, 2016.
A. Mardani-Aghabaglou, C. Yüksel, A. Beglarigale, and K. Ramyar, “Improving the mechanical and durability performance of recycled concrete aggregate-bearing mortar mixtures by using binary and ternary cementitious systems,” Constr. Build. Mater., vol. 196, pp. 295–306, 2019.
V. S. Babu, A. K. Mullick, K. K. Jain, and P. K. Singh, “Strength and durability characteristics of high-strength concrete with recycled aggregate-influence of processing,” J. Sustain. Cem. Mater., vol. 4, no. 1, pp. 54–71, 2014.
S.-C. Kou, B. Zhan, and C.-S. Poon, “Use of a CO2 curing step to improve the properties of concrete prepared with recycled aggregates,” Cem. Concr. Compos., vol. 45, pp. 22–28, 2014.
B. Zhan, C. S. Poon, Q. Liu, S. Kou, and C. Shi, “Experimental study on CO2 curing for enhancement of recycled aggregate properties,” Constr. Build. Mater., vol. 67, pp. 3–7, 2014.
B. Lu, C. Shi, Z. Cao, M. Guo, and J. Zheng, “Effect of carbonated coarse recycled concrete aggregate on the properties and microstructure of recycled concrete,” J. Clean. Prod., vol. 233, pp. 421–428, 2019.
Z. Zhao, S. Wang, L. Lu, and C. Gong, “Evaluation of pre-coated recycled aggregate for concrete and mortar,” Constr. Build. Mater., vol. 43, pp. 191–196, 2013.
F. Martirena, T. Castaño, A. Alujas, R. Orozco-Morales, L. Martinez, and S. Linsel, “Improving quality of coarse recycled aggregates through cement coating,” J. Sustain. Cem. Mater., vol. 6, no. 1, pp. 69–84, 2017.
Y. C. Liang, Z. M. Ye, F. Vernerey, and Y. Xi, “Development of processing methods to improve strength of concrete with 100% recycled coarse aggregate,” J. Mater. Civ. Eng., vol. 27, no. 5, pp. 1–9, 2015.
J. Qiu, D. Q. S. Tng, and E.-H. Yang, “Surface treatment of recycled concrete aggregates through microbial carbonate precipitation,” Constr. Build. Mater., vol. 57, pp. 144–150, 2014.
A. M. Grabiec, J. Klama, D. Zawal, and D. Krupa, “Modification of recycled concrete aggregate by calcium carbonate biodeposition,” Constr. Build. Mater., vol. 34, pp. 145–150, 2012.
Z. Feng, Y. Zhao, W. Zeng, Z. Lu, and S. P. Shah, “Using microbial carbonate precipitation to improve the properties of recycled fine aggregate and mortar,” Constr. Build. Mater., vol. 230, p. 116949, 2020.
K. K. Sahoo, M. Arakha, P. Sarkar, D. P. Robin, and S. Jha, “Enhancement of properties of recycled coarse aggregate concrete using bacteria,” Int. J. Smart Nano Mater., vol. 7, no. 1, pp. 22–38, 2016.
J. Wang, B. Vandevyvere, S. Vanhessche, J. Schoon, N. Boon, and N. De Belie, “Microbial carbonate precipitation for the improvement of quality of recycled aggregates,” J. Clean. Prod., vol. 156, pp. 355–366, 2017.
V. W. Y. Tam, X. F. Gao, and C. M. Tam, “Microstructural analysis of recycled aggregate concrete produced from two-stage mixing approach,” Cem. Concr. Res., vol. 35, no. 6, pp. 1195–1203, 2005.
V. W. Y. Tam and C. M. Tam, “Assessment of durability of recycled aggregate concrete produced by two-stage mixing approach,” J. Mater. Sci., vol. 42, no. 10, pp. 3592–3602, May 2007.
J. P. Barreto Delgado and D. A. Cufiño Melo, “Influencia del porcentaje de agregado reciclado en la penetrabilidad al ión cloruro y en la permeabilidad al agua para concretos reciclados,” Univ. La Gran Colomb., no. c, 2014.
A. Laverde and N. Torres Castellanos, “Propiedades mecáncias, eléctricas y de durabilidad de concretos con agregados reciclados,” p. 87, 2017.
S. A. Gil, J. J. M. Barrero, and C. D. T. Bello, “Evaluación de la resistencia a la compresión y flexión de concretos de 28 MPA con RA y Ceniza Volante,” Univ. La Gran Colomb., vol. 53, no. 9, pp. 1689–1699, 2017.
N. R. Bojacá Castañeda, “Propiedades Mecánicas Y De Durabilidad De Concretos Con Agregado Reciclado,” ECI, p. 119, 2013.
A. F. de J. Muñoz Cuellar, “Carbonatación acelerada de agregados finos reciclados y su influencia en mezclas de mortero,” Tesis Maest. Esc. Colomb. Ing. Julio Garavito Colomb. Bogotá, p. 296, 2017.
ICONTEC - Instituto Colombiano de Normas Técnicas, “NTC 6421 - Agregados gruesos reciclados para uso en el concreto hidráulico.” ICONTEC - Instituto Colombiano de Normas Técnicas, 2021.
ICONTEC - Instituto Colombiano de Normas Técnicas, “NTC 6422 - Ensayo de clasificación de los componentes de los agregados gruesos reciclados,” 2021.
A. Poursaee, “Corrosion of steel bars in saturated Ca(OH)2 and concrete pore solution,” Chall. J. Concr. Res. Lett., vol. 1, no. 3, 2010.
A. Poursaee and C. M. Hansson, “Reinforcing steel passivation in mortar and pore solution,” Cem. Concr. Res., vol. 37, no. 7, pp. 1127–1133, 2007.
O. M. Jensen, P. F. Hansen, A. M. Coats, and F. P. Glasser, “Chloride ingress in cement paste and mortar,” Cem. Concr. Res., vol. 29, no. 9, pp. 1497–1504, 1999.
P. Ghods, O. B. Isgor, G. McRae, and T. Miller, “The effect of concrete pore solution composition on the quality of passive oxide films on black steel reinforcement,” Cem. Concr. Compos., vol. 31, no. 1, pp. 2–11, 2009.
A. J. Bard and M. V Mirkin, Scanning electrochemical microscopy. CRC Press, 2001.
B. Martín-Pérez, H. Zibara, R. D. Hooton, and M. D. A. Thomas, “Study of the effect of chloride binding on service life predictions,” Cem. Concr. Res., vol. 30, no. 8, pp. 1215–1223, 2000.
S. Ahmad, “Reinforcement corrosion in concrete structures, its monitoring and service life prediction––a review,” Cem. Concr. Compos., vol. 25, no. 4, pp. 459–471, 2003.
K. Tuutti, “Corrosion of Steel in Concrete,” Swedish Cem. Concr. Res. Inst., 1982.
D. A. Jones, Principles and Prevention of Corrosion. Prentice Hall, 1996.
J. L. Marriaga and P. Claisse, “The influence of the blast furnace slag replacement on chloride penetration in concrete,” Ing. e Investig., vol. 31, no. 2, pp. 38–47, 2011.
NT Build 492, “Concrete, mortar and cement-based repair materials: Chloride migration coefficient from non-steady-state migration experiments,” Measurement, pp. 1–8, 1999.
R. J. Torrent, “A two-chamber vacuum cell for measuring the coefficient of permeability to air of the concrete cover on site,” Mater. Struct., vol. 25, no. 6, pp. 358–365, 1992.
T. Vieira, A. Alves, J. de Brito, J. R. Correia, and R. V. Silva, “Durability-related performance of concrete containing fine recycled aggregates from crushed bricks and sanitary ware,” Mater. Des., vol. 90, pp. 767–776, 2016.
ASTM International, “ASTM C1157 / C1157M-20a, Standard Performance Specification for Hydraulic Cement,” 2020.
ICONTEC - Instituto Colombiano de Normas Técnicas, “NTC 121 - Especificación de desempeño para cemento hidráulico,” 2021.
ICONTEC - Instituto Colombiano de Normas Técnicas, “NTC 220 - Cementos. Determinación de la resistencia de morteros de cemento hidráulico a la compresión, usando cubos de 50 mm o 2 pulgadas de lado,” 2021.
ASTM International, “ASTM C109 / C109M-21, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens),” 2021.
ICONTEC - Instituto Colombiano de Normas Técnicas, “NTC 111 - Cementos. Especificaciones para la mesa de flujo usada en ensayos de cemento hidráulico,” 2021.
ICONTEC - Instituto Colombiano de Normas Técnicas, “NTC 3937 - CEMENTOS. ARENA NORMALIZADA PARA ENSAYOS DE CEMENTO HIDRÁULICO,” 2019.
ASTM International, “ASTM C778-17, Standard Specification for Standard Sand,” 2017.
ICONTEC - Instituto Colombiano de Normas Técnicas, “NTC 1776 - MÉTODO DE ENSAYO PARA DETERMINAR EL CONTENIDO TOTAL DE HUMEDAD EVAPORABLE POR SECADO DE LOS AGREGADOS,” 2019.
ICONTEC - Instituto Colombiano de Normas Técnicas, “NTC 176 - Método de ensayo para determinar la densidad relativa (gravedad específica) y la absorción del agregado grueso,” 2019.
ICONTEC - Instituto Colombiano de Normas Técnicas, “NTC 92 - MÉTODO DE ENSAYO PARA LA DETERMINACIÓN DE LA DENSIDAD VOLUMÉTRICA (MASA UNITARIA) Y VACÍOS EN AGREGADOS,” 2019.
ASTM International, “ASTM C566-19, Standard Test Method for Total Evaporable Moisture Content of Aggregate by Drying,” 2019.
ASTM International, “ASTM C127- Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate,” Annu. B. ASTM Stand., pp. 1–5, 2004.
ASTM International, “ASTM C29, Standard Test Method for Bulk Density (‘ Unit Weight ’) and Voids in Aggregate,” ASTM Int., vol. i, no. c, pp. 1–5, 2009.
ICONTEC - Instituto Colombiano de Normas Técnicas, “NTC 78 - MÉTODO DE ENSAYO PARA DETERMINAR POR LAVADO EL MATERIAL QUE PASA EL TAMIZ 75 µm (No. 200) EN AGREGADOS MINERALES,” 2019.
ICONTEC - Instituto Colombiano de Normas Técnicas, “NTC 237 - Método de ensayo para determinar la densidad relativa (gravedad especifica) y la absorción del agregado fino,” 2020.
ASTM International, “ASTM C117-17, Standard Test Method for Materials Finer than 75-μm (No. 200) Sieve in Mineral Aggregates by Washing,” 2017.
ASTM International, “ASTM C128-15, Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate,” 2015.
ASTM International, “ASTM C87 / C87M-17, Standard Test Method for Effect of Organic Impurities in Fine Aggregate on Strength of Mortar,” 2017.
ASTM International, “ASTM C136 / C136M-19, Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates,” vol. i, no. 200, pp. 1–5, 2019.
ASTM International, “ASTM C33 / C33M-18, Standard Specification for Concrete Aggregates,” 2018.
ASTM International, “ASTM C295 / C295M-19, Standard Guide for Petrographic Examination of Aggregates for Concrete,” 2019.
ICONTEC - Instituto Colombiano de Normas Técnicas, “NTC 3773 - Guía para la inspección petrográfica de agregados para concreto,” 1995.
B. Fournier and M.-A. Bérubé, “Alkali-aggregate reaction in concrete: a review of basic concepts and engineering implications,” Can. J. Civ. Eng., vol. 27, no. 2, pp. 167–191, 2011.
M. B. Santos, J. De Brito, and A. S. Silva, “A review on alkali-silica reaction evolution in recycled aggregate concrete,” Materials (Basel)., vol. 13, no. 11, 2020.
ASTM International, “ASTM C1260-14 Standard Test Method for Potential Alkali Reactivity of Aggregates ( Mortar-Bar Method),” Annu. B. ASTM Stand. Vol. 04.02, pp. 1–5, 2014.
ASTM International, “ASTM C1567-21, Standard Test Method for Determining the Potential Alkali-Silica Reactivity of Combinations of Cementitious Materials and Aggregate (Accelerated Mortar-Bar Method),” Annu. B. ASTM Stand., vol. 04.02, pp. 774–778, 2021.
Y. Zhu, A. Zahedi, L. F. M. Sanchez, B. Fournier, and S. Beauchemin, “Overall assessment of alkali-silica reaction affected recycled concrete aggregate mixtures derived from construction and demolition waste,” Cem. Concr. Res., vol. 142, no. November 2020, p. 106350, 2021.
C. Trottier, R. Ziapour, A. Zahedi, L. Sanchez, and F. Locati, “Microscopic characterization of alkali-silica reaction (ASR) affected recycled concrete mixtures induced by reactive coarse and fine aggregates,” Cem. Concr. Res., vol. 144, no. March, p. 106426, 2021.
ASTM International, “ASTM D7348-13, Standard Test Methods for Loss on Ignition (LOI) of Solid Combustion Residues,” 2013.
ASTM International, “ASTM C618-19, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete,” 2019.
ASTM International, “ASTM C494 / C494M-19, Standard Specification for Chemical Admixtures for Concrete,” 2019.
ACI - American Concrete Institute, “ACI PRC-211.1-91: Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete,” 2002.
ASTM International, “ASTM C192 / C192M-19, Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory,” pp. 1–8, 2007.
ASTM International, “ASTM C143 / C143M-20, Standard Test Method for Slump of Hydraulic-Cement Concrete,” 2020.
ASTM International, “ASTM C511-19, Standard Specification for Mixing Rooms, Moist Cabinets, Moist Rooms, and Water Storage Tanks Used in the Testing of Hydraulic Cements and Concretes,” 2019.
ASTM International, “ASTM C39 / C39M-21, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens,” 2021.
ASTM International, “ASTM C469 / C469M-14e1, Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression,” 2014.
ASTM International, “ASTM C1202-19, Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration,” 2019.
ASTM International, “ASTM C642-13, Standard Test Method for Density, Absorption, and Voids in Hardened Concrete,” 2013.
Swiss Society of Engineers and Architects, “SIA 262/1 - Construction en béton - Spécifications complémentaires,” 2013.
ASTM International, “ASTM G59-97(2020), Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements,” 2020.
R. López et al., “Durabilidad De La Infraestructura De Concreto Reforzado Expuesta a Diferentes Ambientes Urbanos De México,” vol. 292, no. July 2017, p. 149, 2006.
G. H. N. Suarez, “Propiedades mecánicas y de durabilidad del concreto elaborado con agregados finos reciclados sometidos a carbonatación acelerada,” ECI, vol. 4, pp. 9–15, 2017.
D. M. Rosero Alvarez, “Propuesta de guía de uso de los agregados reciclados en colombia provenientes de rcd, basado en normativa internacional y en el desarrollo de investigaciones de universidades colombianas,” Univ. Nac. Colomb., 2019.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 296 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Estructuras
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Civil y Agrícola
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80944/3/1026296186.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/80944/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80944/5/1026296186.2021.pdf.jpg
bitstream.checksum.fl_str_mv c240b3f7fc2440059452407f4c37f599
8153f7789df02f0a4c9e079953658ab2
b24a0ff0dec9b9c477cbaae85c109252
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090001048141824
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ríos Fresneda, Camilob425c3f92d193c984fe60e377457b9f5600Lizarazo Marriaga, Juan Manuel848bf0fb0ca1a5b59e5247b2bcf522d3600Barragán Ramos, Andrés Felipe01fe1813a3438636be82231505e8bfb7Análisis, Diseño y Materiales Gies2022-02-11T14:11:37Z2022-02-11T14:11:37Z2021-09-24https://repositorio.unal.edu.co/handle/unal/80944Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, gráficas, tablasIn Colombia and internationally, the use of the fine fraction of recycled concrete aggregates (RCA) is a highly restrictive practice due to the negative effect of its use in the mechanical and durability-related properties of new concrete. International research has concluded that a satisfactory compressive strength can be achieved using these aggregates, however, the durability effects related to steel bar corrosion by chlorides have not been extensively assessed. In this research, concrete mixes were produced with an RCA replacement of 0%, 20%, 60% and 100%, using fly ash as a supplementary cementing material to evaluate the physical properties, mechanical performance, chloride permeability and steel rebar corrosion using electrochemical techniques at different specimen ages. Results indicate that while some properties are negatively affected by the inclusion of fine RCA; using fly ash is a highly effective mitigation technique to reduce long-term chloride penetration. It was also concluded that the use of recycled aggregates does not increase reinforcement steel’s corrosion risk. Based on these results, an assessment of different international building codes was performed in order to suggest basic requirements for using recycled aggregates for structural concrete production.En Colombia y el mundo, el uso de la fracción fina de los agregados reciclados derivados del concreto (RCA) es una práctica altamente restringida debido al efecto negativo que tienen los mismos en las propiedades mecánicas y de durabilidad. A pesar de que internacionalmente se ha concluido que pueden obtenerse resistencias satisfactorias usando estos agregados, no se ha estudiado extensamente el efecto que tienen los mismos en las propiedades de durabilidad, específicamente aquellas relacionadas a la corrosión debido a cloruros. En esta investigación, fueron realizadas mezclas de concreto con 0%, 20%, 60% y 100% de sustitución de agregados RCA y ceniza volante como cementante adicional con el fin de evaluar las propiedades físicas, desempeño mecánico, permeabilidad a cloruros y corrosión del acero de refuerzo con técnicas electroquímicas a distintas edades. Los resultados indican que a pesar de que algunas propiedades se ven afectadas negativamente por la inclusión de finos reciclados, la ceniza volante es un mitigador altamente efectivo ante la penetración de cloruros a largo plazo y el uso de agregados reciclados no incrementa significativamente el riesgo de corrosión del acero de refuerzo a pesar de su alta alcalinidad. Basado en estos resultados, fue realizado un análisis de códigos de construcción internacionales con el fin de proponer lineamientos básicos que permitan usar estos agregados para la producción de concreto con fines estructurales. (Texto tomado de la fuente).MaestríaMagíster en Ingeniería - EstructurasMateriales para construcción296 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - EstructurasDepartamento de Ingeniería Civil y AgrícolaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá690 - Construcción de edificios::691 - Materiales de construcciónHormigónAgregados (Materiales de Construcción)Construcciones de hormigónConcreteAggregates (building materials)Concrete constructionDurabilidad del concretoCorrosión en concretoAgregados recicladosConcreto recicladoRecycled concreteConcrete’s durabilitySteel rebar corrosionRecycled aggregatesDurability performance assessment of fly ash concrete using fine recycled aggregatesEvaluación de la durabilidad de concreto con ceniza volante incorporando agregados finos recicladosTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMB. Estanqueiro, J. Dinis Silvestre, J. de Brito, and M. Duarte Pinheiro, “Environmental life cycle assessment of coarse natural and recycled aggregates for concrete,” Eur. J. Environ. Civ. Eng., vol. 22, no. 4, pp. 429–449, 2018.C. M. Grădinaru, “The Environmental Impact of Concrete Production and the Necessity of its Greening,” Resilient Soc. Multidiscip. Contrib. from Econ. Law, Policy, Eng. Agric. Life Sci. Fields, no. June, 2017.A. Melo, A. Gonçalves, and I. Martins, “Construction and demolition waste generation and management in Lisbon (Portugal),” Resour. Conserv. Recycl. - RESOUR Conserv Recycl, vol. 55, pp. 1252–1264, 2011.J. Xiao, Recycled Aggregate Concrete Structures. 2018.J. De Brito, F. Agrela, and R. V. Silva, Construction and Demolition Waste. Elsevier Ltd, 2019.L. W. Zhang, A. O. Sojobi, V. K. R. Kodur, and K. M. Liew, “Effective utilization and recycling of mixed recycled aggregates for a greener environment,” J. Clean. Prod., vol. 236, p. 117600, 2019.B. B. Mukharjee and S. V. Barai, “Mechanical and microstructural characterization of recycled aggregate concrete containing silica nanoparticles,” J. Sustain. Cem. Mater., vol. 6, no. 1, pp. 37–53, 2017.K. P. Verian, W. Ashraf, and Y. Cao, “Properties of recycled concrete aggregate and their influence in new concrete production,” Resour. Conserv. Recycl., vol. 133, no. October 2017, pp. 30–49, 2018.H. Guo et al., “Durability of recycled aggregate concrete – A review,” Cem. Concr. Compos., vol. 89, pp. 251–259, 2018.W. H. Kwan, M. Ramli, K. J. Kam, and M. Z. Sulieman, “Influence of the amount of recycled coarse aggregate in concrete design and durability properties,” Constr. Build. Mater., vol. 26, no. 1, pp. 565–573, 2012.D. Matias, J. De Brito, A. Rosa, and D. Pedro, “Mechanical properties of concrete produced with recycled coarse aggregates - Influence of the use of superplasticizers,” Constr. Build. Mater., vol. 44, pp. 101–109, 2013.J. Xiao, W. Li, Y. Fan, and X. Huang, “An overview of study on recycled aggregate concrete in China (1996-2011),” Constr. Build. Mater., vol. 31, pp. 364–383, 2012.J. Pacheco, J. de Brito, C. Chastre, and L. Evangelista, “Experimental investigation on the variability of the main mechanical properties of concrete produced with coarse recycled concrete aggregates,” Constr. Build. Mater., vol. 201, pp. 110–120, 2019.R. Kurda, J. De Brito, and J. D. Silvestre, “Indirect evaluation of the compressive strength of recycled aggregate concrete with high fly ash ratios,” Mag. Concr. Res., vol. 70, no. 4, pp. 204–216, 2018.F. Rodrigues, M. T. Carvalho, L. Evangelista, and J. De Brito, “Physical-chemical and mineralogical characterization of fine aggregates from construction and demolition waste recycling plants,” J. Clean. Prod., vol. 52, pp. 438–445, 2013.S. Lotfi, M. Eggimann, E. Wagner, R. Mróz, and J. Deja, “Performance of recycled aggregate concrete based on a new concrete recycling technology,” Constr. Build. Mater., vol. 95, pp. 243–256, 2015.D. Pedro, J. de Brito, and L. Evangelista, “Evaluation of high-performance concrete with recycled aggregates: Use of densified silica fume as cement replacement,” Constr. Build. Mater., vol. 147, pp. 803–814, 2017.R. V. V Silva, J. De Brito, R. K. K. Dhir, J. de Brito, and R. K. K. Dhir, “Use of recycled aggregates arising from construction and demolition waste in new construction applications,” J. Clean. Prod., vol. 236, p. 117629, 2019.P. Marco, A conceptual model to design recycled aggregate concrete for structural applications. 2014.V. S. Babu, A. K. Mullick, K. K. Jain, and P. K. Singh, “Strength and durability characteristics of high-strength concrete with recycled aggregate-influence of processing,” J. Sustain. Cem. Mater., vol. 4, no. 1, pp. 54–71, 2014.C. Shi, Y. Li, J. Zhang, W. Li, L. Chong, and Z. Xie, “Performance enhancement of recycled concrete aggregate - A review,” J. Clean. Prod., vol. 112, pp. 466–472, 2016.B. J. Zhan, D. X. Xuan, W. Zeng, and C. S. Poon, “Carbonation treatment of recycled concrete aggregate: Effect on transport properties and steel corrosion of recycled aggregate concrete,” Cem. Concr. Compos., vol. 104, no. July, p. 103360, 2019.C. M. Nwakaire, S. P. Yap, C. C. Onn, C. W. Yuen, and H. A. Ibrahim, “Utilisation of recycled concrete aggregates for sustainable highway pavement applications ; a review,” Constr. Build. Mater., vol. 235, p. 117444, 2020.R. Wang, N. Yu, and Y. Li, “Methods for improving the microstructure of recycled concrete aggregate : A review,” Constr. Build. Mater., vol. 242, p. 118164, 2020.K. Mcneil and T. H. Kang, “Recycled Concrete Aggregates : A Review,” vol. 7, no. 1, pp. 61–69, 2013.L. Evangelista and J. De Brito, “Concrete with fine recycled aggregates: A review,” Eur. J. Environ. Civ. Eng., vol. 18, no. 2, pp. 129–172, 2014.M. Pepe, R. D. Toledo Filho, E. A. B. Koenders, and E. Martinelli, “Alternative processing procedures for recycled aggregates in structural concrete,” Constr. Build. Mater., vol. 69, pp. 124–132, 2014.G. Dimitriou, P. Savva, and M. F. Petrou, “Enhancing mechanical and durability properties of recycled aggregate concrete.” 2017.S. M. S. Kazmi, M. J. Munir, Y.-F. Wu, I. Patnaikuni, Y. Zhou, and F. Xing, “Influence of different treatment methods on the mechanical behavior of recycled aggregate concrete: A comparative study,” Cem. Concr. Compos., vol. 104, no. July, p. 103398, 2019.Y. Kim, A. Hanif, S. M. S. Kazmi, M. J. Munir, and C. Park, “Properties enhancement of recycled aggregate concrete through pretreatment of coarse aggregates - Comparative assesssment of assorted techniques.” 2018.S. Ismail and M. Ramli, “Engineering properties of treated recycled concrete aggregate (RCA) for structural applications,” Constr. Build. Mater., vol. 44, pp. 464–476, 2013.A. Akbarnezhad, K. C. G. Ong, M. H. Zhang, C. T. Tam, and T. W. J. Foo, “Microwave-assisted beneficiation of recycled concrete aggregates,” Constr. Build. Mater., vol. 25, no. 8, pp. 3469–3479, 2011.H. Choi, M. Lim, H. Choi, R. Kitagaki, and T. Noguchi, “Using Microwave Heating to Completely Recycle Concrete,” J. Environ. Prot. (Irvine,. Calif)., vol. 05, no. 07, pp. 583–596, 2014.K. Bru, S. Touzé, F. Bourgeois, N. Lippiatt, and Y. Ménard, “Assessment of a microwave-assisted recycling process for the recovery of high-quality aggregates from concrete waste,” Int. J. Miner. Process., vol. 126, no. January 2014, pp. 90–98, 2014.M. S. de Juan and P. A. Gutiérrez, “Study on the influence of attached mortar content on the properties of recycled concrete aggregate,” Constr. Build. Mater., vol. 23, no. 2, pp. 872–877, 2009.F. S. Khalid, N. B. Azmi, K. A. S. M. Sumandi, and P. N. Mazenan, “Mechanical properties of concrete containing recycled concrete aggregate (RCA) and ceramic waste as coarse aggregate replacement,” AIP Conf. Proc., vol. 1891, no. 2017, 2017.S. Kabir, A. Al-Shayeb, and I. M. Khan, “Recycled Construction Debris as Concrete Aggregate for Sustainable Construction Materials,” Procedia Eng., vol. 145, pp. 1518–1525, 2016.K. Kim, M. Shin, and S. Cha, “Combined effects of recycled aggregate and fly ash towards concrete sustainability,” Constr. Build. Mater., vol. 48, pp. 499–507, 2013.Y. Wang, P. Hughes, H. Niu, and Y. Fan, “A new method to improve the propierties of recycled aggregate concrete: Composite addition of basalt fiber and nano-silica.” 2019.A. Abd Elhakam, A. E. Mohamed, and E. Awad, “Influence of self-healing, mixing method and adding silica fume on mechanical properties of recycled aggregates concrete,” Constr. Build. Mater., vol. 35, pp. 421–427, 2012.B. A. Tayeh, D. M. Al, and R. Alyousef, “The utilization of recycled aggregate in high performance concrete : a review,” Integr. Med. Res., vol. 9, no. 4, pp. 8469–8481, 2020.M. Gomes and J. De Brito, “Structural concrete with incorporation of coarse recycled concrete and ceramic aggregates: Durability performance,” Mater. Struct. Constr., vol. 42, no. 5, pp. 663–675, 2009.V. W. Y. Tam, D. Kotrayothar, and J. Xiao, “Long-term deformation behaviour of recycled aggregate concrete,” Constr. Build. Mater., vol. 100, pp. 262–272, 2015.S. Seara-paz, B. González-fonteboa, F. Martínez-abella, and I. González-taboada, “Time-dependent behaviour of structural concrete made with recycled coarse aggregates . Creep and shrinkage,” Constr. Build. Mater., vol. 122, pp. 95–109, 2016.D. Pedro, J. de Brito, and L. Evangelista, “Structural concrete with simultaneous incorporation of fine and coarse recycled concrete aggregates: Mechanical, durability and long-term properties,” Constr. Build. Mater., vol. 154, pp. 294–309, 2017.R. V. Silva, J. De Brito, and R. K. Dhir, “Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production,” Constr. Build. Mater., vol. 65, pp. 201–217, 2014.L. Evangelista and J. De Brito, “Durability of crushed fine recycled aggregate concrete assessed by permeability-related properties,” Mag. Concr. Res., vol. 71, no. 21, pp. 1142–1150, 2019.J. J. de Oliveira Andrade, E. Possan, J. Z. Squiavon, and T. L. P. Ortolan, “Evaluation of mechanical properties and carbonation of mortars produced with construction and demolition waste,” Constr. Build. Mater., vol. 161, pp. 70–83, 2018.L. Evangelista, M. Guedes, J. De Brito, A. C. Ferro, and M. F. Pereira, “Physical, chemical and mineralogical properties of fine recycled aggregates made from concrete waste,” Constr. Build. Mater., vol. 86, pp. 178–188, 2015.S. Ghorbani, S. Sharifi, S. Ghorbani, V. W. Tam, J. de Brito, and R. Kurda, “Effect of crushed concrete waste’s maximum size as partial replacement of natural coarse aggregate on the mechanical and durability properties of concrete,” Resour. Conserv. Recycl., vol. 149, no. November 2018, pp. 664–673, 2019.M. Bravo et al., “Durability performance of concrete with recycled aggregates from construction and demolition waste plants,” Constr. Build. Mater., vol. 77, pp. 357–369, 2015.F. Cartuxo, J. De Brito, L. Evangelista, J. R. Jiménez, and E. F. Ledesma, “Increased durability of concrete made with fine recycled concrete aggregates using superplasticizers,” Materials (Basel)., vol. 9, no. 2, 2016.C. J. Zega and Á. A. Di Maio, “Use of recycled fine aggregate in concretes with durable requirements,” Waste Manag., vol. 31, no. 11, pp. 2336–2340, 2011.L. Evangelista and J. de Brito, “Mechanical behaviour of concrete made with fine recycled concrete aggregates,” Cem. Concr. Compos., vol. 29, no. 5, pp. 397–401, 2007.Z. Guo, C. Chen, D. E. Lehman, W. Xiao, S. Zheng, and B. Fan, “Mechanical and durability behaviours of concrete made with recycled coarse and fine aggregates,” Eur. J. Environ. Civ. Eng., vol. 8189, pp. 1–19, 2017.L. Evangelista and J. de Brito, “Durability performance of concrete made with fine recycled concrete aggregates,” Cem. Concr. Compos., vol. 32, no. 1, pp. 9–14, 2010.S. Sadati and K. H. Khayat, “Field performance of concrete pavement incorporating recycled concrete aggregate,” Constr. Build. Mater., vol. 126, pp. 691–700, 2016.C. Thomas, J. Setién, J. A. Polanco, P. Alaejos, and M. Sánchez De Juan, “Durability of recycled aggregate concrete,” Constr. Build. Mater., vol. 40, pp. 1054–1065, 2013.S. Omary, E. Ghorbel, and G. Wardeh, “Relationships between recycled concrete aggregates characteristics and recycled aggregates concretes properties,” Constr. Build. Mater., vol. 108, pp. 163–174, 2016.Y. A. Fawzy, “Impact of recycled gravel obtained from low or medium concrete grade on concrete properties,” HBRC J., vol. 14, no. 1, pp. 1–8, 2018.L. Ferreira, J. De Brito, and M. Barra, “Influence of the pre-saturation of recycled coarse concrete aggregates on concrete properties,” Mag. Concr. Res., vol. 63, no. 8, pp. 617–627, 2011.A. Barbudo, J. De Brito, L. Evangelista, M. Bravo, and F. Agrela, “Influence of water-reducing admixtures on the mechanical performance of recycled concrete,” J. Clean. Prod., vol. 59, pp. 93–98, 2013.L. Ferreira, J. de Brito, and M. Barra, “Influence of the pre-saturation of recycled coarse concrete aggregates on concrete properties,” Mag. Concr. Res., vol. 63, no. 8, pp. 617–627, 2011.C. Ulsen, H. Kahn, G. Hawlitschek, E. A. Masini, S. C. Angulo, and V. M. John, “Production of recycled sand from construction and demolition waste,” Constr. Build. Mater., vol. 40, pp. 1168–1173, 2013.R. V. Silva, J. De Brito, and N. Saikia, “Influence of curing conditions on the durability-related performance of concrete made with selected plastic waste aggregates,” Cem. Concr. Compos., vol. 35, no. 1, pp. 23–31, 2013.C. Alexandridou, G. N. Angelopoulos, and F. A. Coutelieris, “Mehcanical and durability performance of concrete produced with recycled aggregates from Greek construction and demolition waste plants.” 2017.J. Xiao, D. Lu, and J. Ying, “Durability of recycled aggregate concrete: An overview,” J. Adv. Concr. Technol., vol. 11, no. 12, pp. 347–359, 2013.R. Kurda, J. de Brito, and J. D. Silvestre, “Combined influence of recycled concrete aggregates and high contents of fly ash on concrete properties,” Constr. Build. Mater., vol. 157, pp. 554–572, 2017.M. J. McGinnis, M. Davis, A. de la Rosa, B. D. Weldon, and Y. C. Kurama, “Strength and stiffness of concrete with recycled concrete aggregates,” Constr. Build. Mater., vol. 154, pp. 258–269, 2017.D. Pedro, J. De Brito, and L. Evangelista, “Influence of the use of recycled concrete aggregates from different sources on structural concrete,” Constr. Build. Mater., vol. 71, no. 2014, pp. 141–151, 2014.C. C. Fan, R. Huang, H. Hwang, and S. J. Chao, “The effects of different fine recycled concrete aggregates on the properties of Mortar,” Materials (Basel)., vol. 8, no. 5, pp. 2658–2672, 2015.Z. Li, Advanced Concrete Technology. Wiley, 2011.A. André, J. De Brito, A. Rosa, and D. Pedro, “Durability performance of concrete incorporating coarse aggregates from marble industry waste,” J. Clean. Prod., vol. 65, pp. 389–396, 2014.R. V. Silva, R. Neves, J. De Brito, and R. K. Dhir, “Carbonation behaviour of recycled aggregate concrete,” Cem. Concr. Compos., vol. 62, pp. 22–32, 2015.S. Macdonald, Concrete: Building Pathology. Wiley, 2008.A. M. Neville and J. J. Brooks, Concrete Technology. Prentice Hall, 2010.S.-C. Kou and C.-S. Poon, “Long-term mechanical and durability properties of recycled aggregate concrete prepared with the incorporation of fly ash,” Cem. Concr. Compos., vol. 37, pp. 12–19, 2013.R. Kurda, J. De Brito, and J. D. Silvestre, “Carbonation of concrete made with high amount of fly ash and recycled concrete aggregates for utilization of CO2,” J. CO2 Util., vol. 29, no. November 2018, pp. 12–19, 2019.M. C. Limbachiya, T. Leelawat, and R. K. Dhir, “RCA CONCRETE: A STUDY OF PROPERTIES IN THE FRESH STATE, STRENGTH DEVELOPMENT AND DURABILITY,” in Sustainable Construction: Use of Recycled Concrete Aggregate, pp. 227–237.S. C. Kou, “Influence of Fly Ash as Cement Replacement on the Properties of Recycled Aggregate Concrete,” ASCE Libr., 2007.S. C. Kou, C. S. Poon, and H. W. Wan, “Properties of concrete prepared with low-grade recycled aggregates,” Constr. Build. Mater., vol. 36, pp. 881–889, 2012.R. Kurda, J. de Brito, and J. D. Silvestre, “Water absorption and electrical resistivity of concrete with recycled concrete aggregates and fly ash,” Cem. Concr. Compos., vol. 95, no. October 2018, pp. 169–182, 2019.J. Sim and C. Park, “Compressive strength and resistance to chloride ion penetration and carbonation of recycled aggregate concrete with varying amount of fly ash and fine recycled aggregate,” Waste Manag., vol. 31, no. 11, pp. 2352–2360, 2011.R. V. Silva, J. De Brito, R. Neves, and R. Dhir, “Prediction of chloride ion penetration of recycled aggregate concrete,” Mater. Res., vol. 18, no. 2, pp. 427–440, 2015.S. Taner, C. Meyer, and S. Herfellner, “Effects of internal curing on the strength , drying shrinkage and freeze – thaw resistance of concrete containing recycled concrete aggregates,” Constr. Build. Mater., vol. 91, pp. 288–296, 2015.Y. Cheng, X. Shang, and Y. Zhang, “Experimental research on durability of recycled aggregate concrete under freeze- thaw cycles,” 2017.S. Lotfi, J. Deja, P. Rem, R. Mróz, E. Van Roekel, and H. Van Der Stelt, “Mechanical recycling of EOL concrete into high-grade aggregates,” "Resources, Conserv. Recycl., vol. 87, pp. 117–125, 2014.J. Wu, X. Jing, and Z. Wang, “Uni-axial compressive stress-strain relation of recycled coarse aggregate concrete after freezing and thawing cycles,” Constr. Build. Mater., vol. 134, pp. 210–219, 2017.Z. Li, Z. Deng, H. Yang, and H. Wang, “Bond behavior between recycled aggregate concrete and deformed rebar after Freeze-thaw damage,” Constr. Build. Mater., vol. 250, p. 118805, 2020.A. Richardson, K. Coventry, and J. Bacon, “Freeze / thaw durability of concrete with recycled demolition aggregate compared to virgin aggregate concrete,” J. Clean. Prod., vol. 19, no. 2–3, pp. 272–277, 2011.J. A. Bogas, J. De Brito, and D. Ramos, “Freeze e thaw resistance of concrete produced with fi ne recycled concrete aggregates,” J. Clean. Prod., vol. 115, pp. 294–306, 2016.R. Zaharieva, “Frost resistance of recycled aggregate concrete,” vol. 34, pp. 1927–1932, 2004.K. Liu, J. Yan, Q. Hu, Y. Sun, and C. Zou, “Effects of parent concrete and mixing method on the resistance to freezing and thawing of air-entrained recycled aggregate concrete,” Constr. Build. Mater., vol. 106, pp. 264–273, 2016.A. Gokce, S. Nagataki, T. Saeki, and M. Hisada, “Freezing and thawing resistance of air-entrained concrete incorporating recycled coarse aggregate: The role of air content in demolished concrete,” Cem. Concr. Res., vol. 34, no. 5, pp. 799–806, 2004.M. Bravo, J. De Brito, J. Pontes, and L. Evangelista, “Shrinkage and creep performance of concrete with recycled aggregates from CDW plants,” Mag. Concr. Res., vol. 69, no. 19, pp. 974–995, 2017.R. V. Silva, J. De Brito, and R. K. Dhir, “Prediction of the shrinkage behavior of recycled aggregate concrete: A review,” Constr. Build. Mater., vol. 77, pp. 327–339, 2015.Y. Geng, Y. Wang, and J. Chen, “Creep behaviour of concrete using recycled coarse aggregates obtained from source concrete with different strengths,” Constr. Build. Mater., vol. 128, pp. 199–213, 2016.Y. Geng, M. Zhao, H. Yang, and Y. Wang, “Creep model of concrete with recycled coarse and fine aggregates that accounts for creep development trend difference between recycled and natural aggregate concrete,” Cem. Concr. Compos., vol. 103, no. October 2018, pp. 303–317, 2019.F. Cartuxo, J. De Brito, L. Evangelista, J. R. Jiménez, and E. F. Ledesma, “Rheological behaviour of concrete made with fine recycled concrete aggregates - Influence of the superplasticizer,” Constr. Build. Mater., vol. 89, pp. 36–47, 2015.S. Manzi, C. Mazzotti, and M. C. Bignozzi, “Short and long-term behavior of structural concrete with recycled concrete aggregate,” Cem. Concr. Compos., vol. 37, no. 1, pp. 312–318, 2013.C. Thomas, J. De Brito, A. Cimentada, and J. A. Sainz-aja, “Macro- and micro- properties of multi-recycled aggregate concrete,” J. Clean. Prod., vol. 245, p. 118843, 2020.P. Zhu, Y. Hao, H. Liu, D. Wei, L. Shaofeng, and L. Gu, “Durability evaluation of three generations of 100% repeatedly recycled coarse aggregate concrete.” 2019.V. Abreu, L. Evangelista, and J. de Brito, “The effect of multi-recycling on the mechanical performance of coarse recycled aggregates concrete.” 2018.A. Poursaee, Corrosion of Steel in Concrete Structures, 1st ed. Elsevier, 2016.S. F. U. Ahmed, “Properties of Concrete Containing Recycled Fine Aggregate and Fly Ash,” J. Solid Waste Technol. Manag., vol. 40, no. 1, pp. 70–78, 2014.Q. Ren, Y. Wu, X. Zhang, and Y. Wang, “Effects of fly ash on the mechanical and impact properties of recycled aggregate concrete after exposure to high temperature,” Eur. J. Environ. Civ. Eng., vol. 0, no. 0, pp. 1–17, 2019.R. V. Silva, J. de Brito, and R. K. Dhir, “Comparative analysis of existing prediction models on the creep behaviour of recycled aggregate concrete,” Eng. Struct., vol. 100, pp. 31–42, 2015.M. Limbachiya, M. S. Meddah, and Y. Ouchagour, “Use of recycled concrete aggregate in fly-ash concrete,” Constr. Build. Mater., vol. 27, no. 1, pp. 439–449, 2012.K. P. Verian, “Using recycled concrete as coarse aggregate in pavement concrete,” no. April 2012, p. 192, 2012.B. Fonteboa and F. Abella, “Concretes with aggregates from demolition waste and silica fume. Materials and mechanical properties,” Build. Environ., vol. 43, pp. 429–437, 2008.M. Gesoglu, E. Güneyisi, H. Ö. Öz, I. Taha, and M. T. Yasemin, “Failure characteristics of self-compacting concretes made with recycled aggregates,” Constr. Build. Mater., vol. 98, pp. 334–344, 2015.Y. Wang, P. Hughes, H. Niu, and Y. Fan, “A new method to improve the properties of recycled aggregate concrete: Composite addition of basalt fiber and nano-silica,” J. Clean. Prod., vol. 236, p. 117602, 2019.M. Stefanidou and I. Papayianni, “Influence of nano-SiO2 on the Portland cement pastes,” Compos. Part B Eng., vol. 43, pp. 2706–2710, 2012.Z. Luo, W. Li, V. W. Y. Tam, J. Xiao, and S. P. Shah, “Current progress on nanotechnology application in recycled aggregate concrete,” J. Sustain. Cem. Mater., vol. 8, no. 2, pp. 79–96, 2019.J. Ying, B. Zhou, and J. Xiao, “Pore structure and chloride diffusivity of recycled aggregate concrete with nano-SiO2 and nano-TiO2,” Constr. Build. Mater., vol. 150, pp. 49–55, 2017.P. Hosseini, A. Booshehrian, and A. Madari, “Developing Concrete Recycling Strategies by Utilization of Nano-SiO2 Particles,” Waste and Biomass Valorization, vol. 2, no. 3, pp. 347–355, 2011.M. A. Chandak and P. Y. Pawade, “Influence of Metakaolin in Concrete Mixture : A Review,” no. May, pp. 37–41, 2018.P. min Zhan et al., “Utilization of nano-metakaolin in concrete: A review,” J. Build. Eng., vol. 30, no. January, p. 101259, 2020.R. Muduli and B. B. Mukharjee, “Performance assessment of concrete incorporating recycled coarse aggregates and metakaolin: A systematic approach,” Constr. Build. Mater., vol. 233, p. 117223, 2020.J. Xie et al., “Effect of nano metakaolin on compressive strength of recycled concrete,” Constr. Build. Mater., vol. 256, 2020.A. Sadeghi-Nik, J. Berenjian, S. Alimohammadi, O. Lotfi-Omran, A. Sadeghi-Nik, and M. Karimaei, “The Effect of Recycled Concrete Aggregates and Metakaolin on the Mechanical Properties of Self-Compacting Concrete Containing Nanoparticles,” Iran. J. Sci. Technol. - Trans. Civ. Eng., vol. 43, no. s1, pp. 503–515, 2019.R. Muduli and B. B. Mukharjee, “Effect of incorporation of metakaolin and recycled coarse aggregate on properties of concrete,” J. Clean. Prod., vol. 209, pp. 398–414, 2019.V. N. Patel, C. D. Modhera, M. M. Chavda, and M. M. Panseriya, “Effect of metakaolin on mechanical properties of different grades concretes inclusion of recycled aggregates from C & D waste and ceramic waste,” Int. J. Eng. Technol., vol. 7, no. 3, pp. 138–142, 2018.N. K. Bui, T. Satomi, and H. Takahashi, “Effect of mineral admixtures on properties of recycled aggregate concrete at high temperature,” Constr. Build. Mater., vol. 184, pp. 361–373, 2018.K. Kapoor, S. P. Singh, and B. Singh, “Permeability of self-compacting concrete made with recycled concrete aggregates and metakaolin,” J. Sustain. Cem. Mater., vol. 6, no. 5, pp. 293–313, 2017.N. Singh and S. P. Singh, “Carbonation and electrical resistance of self compacting concrete made with recycled concrete aggregates and metakaolin,” Constr. Build. Mater., vol. 121, pp. 400–409, 2016.N. Singh and S. P. Singh, “Carbonation resistance and microstructural analysis of Low and High Volume Fly Ash Self Compacting Concrete containing Recycled Concrete Aggregates,” Constr. Build. Mater., vol. 127, pp. 828–842, 2016.A. Mardani-Aghabaglou, C. Yüksel, A. Beglarigale, and K. Ramyar, “Improving the mechanical and durability performance of recycled concrete aggregate-bearing mortar mixtures by using binary and ternary cementitious systems,” Constr. Build. Mater., vol. 196, pp. 295–306, 2019.V. S. Babu, A. K. Mullick, K. K. Jain, and P. K. Singh, “Strength and durability characteristics of high-strength concrete with recycled aggregate-influence of processing,” J. Sustain. Cem. Mater., vol. 4, no. 1, pp. 54–71, 2014.S.-C. Kou, B. Zhan, and C.-S. Poon, “Use of a CO2 curing step to improve the properties of concrete prepared with recycled aggregates,” Cem. Concr. Compos., vol. 45, pp. 22–28, 2014.B. Zhan, C. S. Poon, Q. Liu, S. Kou, and C. Shi, “Experimental study on CO2 curing for enhancement of recycled aggregate properties,” Constr. Build. Mater., vol. 67, pp. 3–7, 2014.B. Lu, C. Shi, Z. Cao, M. Guo, and J. Zheng, “Effect of carbonated coarse recycled concrete aggregate on the properties and microstructure of recycled concrete,” J. Clean. Prod., vol. 233, pp. 421–428, 2019.Z. Zhao, S. Wang, L. Lu, and C. Gong, “Evaluation of pre-coated recycled aggregate for concrete and mortar,” Constr. Build. Mater., vol. 43, pp. 191–196, 2013.F. Martirena, T. Castaño, A. Alujas, R. Orozco-Morales, L. Martinez, and S. Linsel, “Improving quality of coarse recycled aggregates through cement coating,” J. Sustain. Cem. Mater., vol. 6, no. 1, pp. 69–84, 2017.Y. C. Liang, Z. M. Ye, F. Vernerey, and Y. Xi, “Development of processing methods to improve strength of concrete with 100% recycled coarse aggregate,” J. Mater. Civ. Eng., vol. 27, no. 5, pp. 1–9, 2015.J. Qiu, D. Q. S. Tng, and E.-H. Yang, “Surface treatment of recycled concrete aggregates through microbial carbonate precipitation,” Constr. Build. Mater., vol. 57, pp. 144–150, 2014.A. M. Grabiec, J. Klama, D. Zawal, and D. Krupa, “Modification of recycled concrete aggregate by calcium carbonate biodeposition,” Constr. Build. Mater., vol. 34, pp. 145–150, 2012.Z. Feng, Y. Zhao, W. Zeng, Z. Lu, and S. P. Shah, “Using microbial carbonate precipitation to improve the properties of recycled fine aggregate and mortar,” Constr. Build. Mater., vol. 230, p. 116949, 2020.K. K. Sahoo, M. Arakha, P. Sarkar, D. P. Robin, and S. Jha, “Enhancement of properties of recycled coarse aggregate concrete using bacteria,” Int. J. Smart Nano Mater., vol. 7, no. 1, pp. 22–38, 2016.J. Wang, B. Vandevyvere, S. Vanhessche, J. Schoon, N. Boon, and N. De Belie, “Microbial carbonate precipitation for the improvement of quality of recycled aggregates,” J. Clean. Prod., vol. 156, pp. 355–366, 2017.V. W. Y. Tam, X. F. Gao, and C. M. Tam, “Microstructural analysis of recycled aggregate concrete produced from two-stage mixing approach,” Cem. Concr. Res., vol. 35, no. 6, pp. 1195–1203, 2005.V. W. Y. Tam and C. M. Tam, “Assessment of durability of recycled aggregate concrete produced by two-stage mixing approach,” J. Mater. Sci., vol. 42, no. 10, pp. 3592–3602, May 2007.J. P. Barreto Delgado and D. A. Cufiño Melo, “Influencia del porcentaje de agregado reciclado en la penetrabilidad al ión cloruro y en la permeabilidad al agua para concretos reciclados,” Univ. La Gran Colomb., no. c, 2014.A. Laverde and N. Torres Castellanos, “Propiedades mecáncias, eléctricas y de durabilidad de concretos con agregados reciclados,” p. 87, 2017.S. A. Gil, J. J. M. Barrero, and C. D. T. Bello, “Evaluación de la resistencia a la compresión y flexión de concretos de 28 MPA con RA y Ceniza Volante,” Univ. La Gran Colomb., vol. 53, no. 9, pp. 1689–1699, 2017.N. R. Bojacá Castañeda, “Propiedades Mecánicas Y De Durabilidad De Concretos Con Agregado Reciclado,” ECI, p. 119, 2013.A. F. de J. Muñoz Cuellar, “Carbonatación acelerada de agregados finos reciclados y su influencia en mezclas de mortero,” Tesis Maest. Esc. Colomb. Ing. Julio Garavito Colomb. Bogotá, p. 296, 2017.ICONTEC - Instituto Colombiano de Normas Técnicas, “NTC 6421 - Agregados gruesos reciclados para uso en el concreto hidráulico.” ICONTEC - Instituto Colombiano de Normas Técnicas, 2021.ICONTEC - Instituto Colombiano de Normas Técnicas, “NTC 6422 - Ensayo de clasificación de los componentes de los agregados gruesos reciclados,” 2021.A. Poursaee, “Corrosion of steel bars in saturated Ca(OH)2 and concrete pore solution,” Chall. J. Concr. Res. Lett., vol. 1, no. 3, 2010.A. Poursaee and C. M. Hansson, “Reinforcing steel passivation in mortar and pore solution,” Cem. Concr. Res., vol. 37, no. 7, pp. 1127–1133, 2007.O. M. Jensen, P. F. Hansen, A. M. Coats, and F. P. Glasser, “Chloride ingress in cement paste and mortar,” Cem. Concr. Res., vol. 29, no. 9, pp. 1497–1504, 1999.P. Ghods, O. B. Isgor, G. McRae, and T. Miller, “The effect of concrete pore solution composition on the quality of passive oxide films on black steel reinforcement,” Cem. Concr. Compos., vol. 31, no. 1, pp. 2–11, 2009.A. J. Bard and M. V Mirkin, Scanning electrochemical microscopy. CRC Press, 2001.B. Martín-Pérez, H. Zibara, R. D. Hooton, and M. D. A. Thomas, “Study of the effect of chloride binding on service life predictions,” Cem. Concr. Res., vol. 30, no. 8, pp. 1215–1223, 2000.S. Ahmad, “Reinforcement corrosion in concrete structures, its monitoring and service life prediction––a review,” Cem. Concr. Compos., vol. 25, no. 4, pp. 459–471, 2003.K. Tuutti, “Corrosion of Steel in Concrete,” Swedish Cem. Concr. Res. Inst., 1982.D. A. Jones, Principles and Prevention of Corrosion. Prentice Hall, 1996.J. L. Marriaga and P. Claisse, “The influence of the blast furnace slag replacement on chloride penetration in concrete,” Ing. e Investig., vol. 31, no. 2, pp. 38–47, 2011.NT Build 492, “Concrete, mortar and cement-based repair materials: Chloride migration coefficient from non-steady-state migration experiments,” Measurement, pp. 1–8, 1999.R. J. Torrent, “A two-chamber vacuum cell for measuring the coefficient of permeability to air of the concrete cover on site,” Mater. Struct., vol. 25, no. 6, pp. 358–365, 1992.T. Vieira, A. Alves, J. de Brito, J. R. Correia, and R. V. Silva, “Durability-related performance of concrete containing fine recycled aggregates from crushed bricks and sanitary ware,” Mater. Des., vol. 90, pp. 767–776, 2016.ASTM International, “ASTM C1157 / C1157M-20a, Standard Performance Specification for Hydraulic Cement,” 2020.ICONTEC - Instituto Colombiano de Normas Técnicas, “NTC 121 - Especificación de desempeño para cemento hidráulico,” 2021.ICONTEC - Instituto Colombiano de Normas Técnicas, “NTC 220 - Cementos. Determinación de la resistencia de morteros de cemento hidráulico a la compresión, usando cubos de 50 mm o 2 pulgadas de lado,” 2021.ASTM International, “ASTM C109 / C109M-21, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens),” 2021.ICONTEC - Instituto Colombiano de Normas Técnicas, “NTC 111 - Cementos. Especificaciones para la mesa de flujo usada en ensayos de cemento hidráulico,” 2021.ICONTEC - Instituto Colombiano de Normas Técnicas, “NTC 3937 - CEMENTOS. ARENA NORMALIZADA PARA ENSAYOS DE CEMENTO HIDRÁULICO,” 2019.ASTM International, “ASTM C778-17, Standard Specification for Standard Sand,” 2017.ICONTEC - Instituto Colombiano de Normas Técnicas, “NTC 1776 - MÉTODO DE ENSAYO PARA DETERMINAR EL CONTENIDO TOTAL DE HUMEDAD EVAPORABLE POR SECADO DE LOS AGREGADOS,” 2019.ICONTEC - Instituto Colombiano de Normas Técnicas, “NTC 176 - Método de ensayo para determinar la densidad relativa (gravedad específica) y la absorción del agregado grueso,” 2019.ICONTEC - Instituto Colombiano de Normas Técnicas, “NTC 92 - MÉTODO DE ENSAYO PARA LA DETERMINACIÓN DE LA DENSIDAD VOLUMÉTRICA (MASA UNITARIA) Y VACÍOS EN AGREGADOS,” 2019.ASTM International, “ASTM C566-19, Standard Test Method for Total Evaporable Moisture Content of Aggregate by Drying,” 2019.ASTM International, “ASTM C127- Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate,” Annu. B. ASTM Stand., pp. 1–5, 2004.ASTM International, “ASTM C29, Standard Test Method for Bulk Density (‘ Unit Weight ’) and Voids in Aggregate,” ASTM Int., vol. i, no. c, pp. 1–5, 2009.ICONTEC - Instituto Colombiano de Normas Técnicas, “NTC 78 - MÉTODO DE ENSAYO PARA DETERMINAR POR LAVADO EL MATERIAL QUE PASA EL TAMIZ 75 µm (No. 200) EN AGREGADOS MINERALES,” 2019.ICONTEC - Instituto Colombiano de Normas Técnicas, “NTC 237 - Método de ensayo para determinar la densidad relativa (gravedad especifica) y la absorción del agregado fino,” 2020.ASTM International, “ASTM C117-17, Standard Test Method for Materials Finer than 75-μm (No. 200) Sieve in Mineral Aggregates by Washing,” 2017.ASTM International, “ASTM C128-15, Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate,” 2015.ASTM International, “ASTM C87 / C87M-17, Standard Test Method for Effect of Organic Impurities in Fine Aggregate on Strength of Mortar,” 2017.ASTM International, “ASTM C136 / C136M-19, Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates,” vol. i, no. 200, pp. 1–5, 2019.ASTM International, “ASTM C33 / C33M-18, Standard Specification for Concrete Aggregates,” 2018.ASTM International, “ASTM C295 / C295M-19, Standard Guide for Petrographic Examination of Aggregates for Concrete,” 2019.ICONTEC - Instituto Colombiano de Normas Técnicas, “NTC 3773 - Guía para la inspección petrográfica de agregados para concreto,” 1995.B. Fournier and M.-A. Bérubé, “Alkali-aggregate reaction in concrete: a review of basic concepts and engineering implications,” Can. J. Civ. Eng., vol. 27, no. 2, pp. 167–191, 2011.M. B. Santos, J. De Brito, and A. S. Silva, “A review on alkali-silica reaction evolution in recycled aggregate concrete,” Materials (Basel)., vol. 13, no. 11, 2020.ASTM International, “ASTM C1260-14 Standard Test Method for Potential Alkali Reactivity of Aggregates ( Mortar-Bar Method),” Annu. B. ASTM Stand. Vol. 04.02, pp. 1–5, 2014.ASTM International, “ASTM C1567-21, Standard Test Method for Determining the Potential Alkali-Silica Reactivity of Combinations of Cementitious Materials and Aggregate (Accelerated Mortar-Bar Method),” Annu. B. ASTM Stand., vol. 04.02, pp. 774–778, 2021.Y. Zhu, A. Zahedi, L. F. M. Sanchez, B. Fournier, and S. Beauchemin, “Overall assessment of alkali-silica reaction affected recycled concrete aggregate mixtures derived from construction and demolition waste,” Cem. Concr. Res., vol. 142, no. November 2020, p. 106350, 2021.C. Trottier, R. Ziapour, A. Zahedi, L. Sanchez, and F. Locati, “Microscopic characterization of alkali-silica reaction (ASR) affected recycled concrete mixtures induced by reactive coarse and fine aggregates,” Cem. Concr. Res., vol. 144, no. March, p. 106426, 2021.ASTM International, “ASTM D7348-13, Standard Test Methods for Loss on Ignition (LOI) of Solid Combustion Residues,” 2013.ASTM International, “ASTM C618-19, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete,” 2019.ASTM International, “ASTM C494 / C494M-19, Standard Specification for Chemical Admixtures for Concrete,” 2019.ACI - American Concrete Institute, “ACI PRC-211.1-91: Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete,” 2002.ASTM International, “ASTM C192 / C192M-19, Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory,” pp. 1–8, 2007.ASTM International, “ASTM C143 / C143M-20, Standard Test Method for Slump of Hydraulic-Cement Concrete,” 2020.ASTM International, “ASTM C511-19, Standard Specification for Mixing Rooms, Moist Cabinets, Moist Rooms, and Water Storage Tanks Used in the Testing of Hydraulic Cements and Concretes,” 2019.ASTM International, “ASTM C39 / C39M-21, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens,” 2021.ASTM International, “ASTM C469 / C469M-14e1, Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression,” 2014.ASTM International, “ASTM C1202-19, Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration,” 2019.ASTM International, “ASTM C642-13, Standard Test Method for Density, Absorption, and Voids in Hardened Concrete,” 2013.Swiss Society of Engineers and Architects, “SIA 262/1 - Construction en béton - Spécifications complémentaires,” 2013.ASTM International, “ASTM G59-97(2020), Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements,” 2020.R. López et al., “Durabilidad De La Infraestructura De Concreto Reforzado Expuesta a Diferentes Ambientes Urbanos De México,” vol. 292, no. July 2017, p. 149, 2006.G. H. N. Suarez, “Propiedades mecánicas y de durabilidad del concreto elaborado con agregados finos reciclados sometidos a carbonatación acelerada,” ECI, vol. 4, pp. 9–15, 2017.D. M. Rosero Alvarez, “Propuesta de guía de uso de los agregados reciclados en colombia provenientes de rcd, basado en normativa internacional y en el desarrollo de investigaciones de universidades colombianas,” Univ. Nac. Colomb., 2019.EstudiantesInvestigadoresMaestrosPúblico generalORIGINAL1026296186.2021.pdf1026296186.2021.pdfTesis de Maestría en Ingeniería - Estructurasapplication/pdf9756033https://repositorio.unal.edu.co/bitstream/unal/80944/3/1026296186.2021.pdfc240b3f7fc2440059452407f4c37f599MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/80944/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1026296186.2021.pdf.jpg1026296186.2021.pdf.jpgGenerated Thumbnailimage/jpeg4828https://repositorio.unal.edu.co/bitstream/unal/80944/5/1026296186.2021.pdf.jpgb24a0ff0dec9b9c477cbaae85c109252MD55unal/80944oai:repositorio.unal.edu.co:unal/809442024-08-02 23:11:16.945Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK