Automatic generation of GIS vector Layers from orthomosaics using deep learning

ilustraciones, diagramas, mapas, tablas

Autores:
Ballesteros Parra, John Robert
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82529
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82529
https://repositorio.unal.edu.co/
Palabra clave:
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Análisis vectorial
Vector analysis
Campos vectoriales
Vector fields
GIS
Vectorization
GAN
Semantic Segmentation
Orthomosaics
Deep Learning
Image Translation
Image Caption
Vectorización
Redes Antagónicas
Segmentación Semántica
Ortomosaicos
Aprendizaje Profundo
Traducción de Imagen
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_783455ea3d739fde51bf10463de525a1
oai_identifier_str oai:repositorio.unal.edu.co:unal/82529
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Automatic generation of GIS vector Layers from orthomosaics using deep learning
dc.title.translated.spa.fl_str_mv Generación automatica de capas vectoriales SIG de ortomosaicos usando aprendizaje profundo
title Automatic generation of GIS vector Layers from orthomosaics using deep learning
spellingShingle Automatic generation of GIS vector Layers from orthomosaics using deep learning
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Análisis vectorial
Vector analysis
Campos vectoriales
Vector fields
GIS
Vectorization
GAN
Semantic Segmentation
Orthomosaics
Deep Learning
Image Translation
Image Caption
Vectorización
Redes Antagónicas
Segmentación Semántica
Ortomosaicos
Aprendizaje Profundo
Traducción de Imagen
title_short Automatic generation of GIS vector Layers from orthomosaics using deep learning
title_full Automatic generation of GIS vector Layers from orthomosaics using deep learning
title_fullStr Automatic generation of GIS vector Layers from orthomosaics using deep learning
title_full_unstemmed Automatic generation of GIS vector Layers from orthomosaics using deep learning
title_sort Automatic generation of GIS vector Layers from orthomosaics using deep learning
dc.creator.fl_str_mv Ballesteros Parra, John Robert
dc.contributor.advisor.none.fl_str_mv Sanchez Torres, German
Branch Bedoya, John Willian
dc.contributor.author.none.fl_str_mv Ballesteros Parra, John Robert
dc.contributor.researchgroup.spa.fl_str_mv Gidia: Grupo de Investigación y Desarrollo en Inteligencia Artificial
dc.subject.ddc.spa.fl_str_mv 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
topic 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Análisis vectorial
Vector analysis
Campos vectoriales
Vector fields
GIS
Vectorization
GAN
Semantic Segmentation
Orthomosaics
Deep Learning
Image Translation
Image Caption
Vectorización
Redes Antagónicas
Segmentación Semántica
Ortomosaicos
Aprendizaje Profundo
Traducción de Imagen
dc.subject.lemb.none.fl_str_mv Análisis vectorial
Vector analysis
Campos vectoriales
Vector fields
dc.subject.proposal.eng.fl_str_mv GIS
Vectorization
GAN
Semantic Segmentation
Orthomosaics
Deep Learning
Image Translation
Image Caption
dc.subject.proposal.spa.fl_str_mv Vectorización
Redes Antagónicas
Segmentación Semántica
Ortomosaicos
Aprendizaje Profundo
Traducción de Imagen
description ilustraciones, diagramas, mapas, tablas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-10-28T15:36:56Z
dc.date.available.none.fl_str_mv 2022-10-28T15:36:56Z
dc.date.issued.none.fl_str_mv 2022-10-12
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82529
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82529
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Abdollahi, A., Pradhan, B., & Alamri, A. (2021). RoadVecNet: A new approach for simultaneous road network segmentation and vectorization from aerial and google earth imagery in a complex urban set-up. GIScience & Remote Sensing, 58(7), 1151–1174. https://doi.org/10.1080/15481603.2021.1972713
Abdollahi, A., Pradhan, B., & Shukla, N. (2019). Extraction of road features from UAV images using a novel level set segmentation approach. International Journal of Urban Sciences. https://doi.org/10.1080/12265934.2019.1596040
Abdollahi, A., Pradhan, B., Shukla, N., Chakraborty, S., & Alamri, A. (2020). Deep Learning Approaches Applied to Remote Sensing Datasets for Road Extraction: A State-Of-The-Art Review. Remote Sensing, 12(9), 1444. https://doi.org/10.3390/rs12091444
Aldana Rodriguez, D., Ávila Granados, D. L., & Villalba-Vidales, J. A. (2021). Use of Unmanned Aircraft Systems for Bridge Inspection: A Review. DYNA, 88(217), 32–41. https://doi.org/10.15446/dyna.v88n217.91879
Al-Najjar, H. A. H., Kalantar, B., Pradhan, B., Saeidi, V., Halin, A. A., Ueda, N., & Mansor, S. (2019). Land Cover Classification from fused DSM and UAV Images Using Convolutional Neural Networks. Remote Sensing, 11(12), 1461. https://doi.org/10.3390/rs11121461
Avola, D., & Pannone, D. (2021). MAGI: Multistream Aerial Segmentation of Ground Images with Small-Scale Drones. Drones, 5(4), 111. https://doi.org/10.3390/drones5040111
Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12), 2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615
Ballesteros, J. R., Sanchez-Torres, G., & Branch, J. W. (2021). Automatic road extraction in small urban areas of developing countries using drone imagery and Image Translation. 2021 2nd Sustainable Cities Latin America Conference (SCLA), 1–6. https://doi.org/10.1109/SCLA53004.2021.9540111
Ballesteros, J. R., Sanchez-Torres, G., & Branch-Bedoya, J. W. (2022). HAGDAVS: Height-Augmented Geo-Located Dataset for Detection and Semantic Segmentation of Vehicles in Drone Aerial Orthomosaics. Data, 7(4), 50. https://doi.org/10.3390/data7040050
Ballesteros, John R., German Sanchez-Torres, and John W. Branch-Bedoya. 2022. "A GIS Pipeline to Produce GeoAI Datasets from Drone Overhead Imagery" ISPRS International Journal of Geo-Information 11, no. 10: 508. https://doi.org/10.3390/ijgi11100508
Batra, A., Singh, S., Pang, G., Basu, S., Jawahar, C. V., & Paluri, M. (2019). Improved Road Connectivity by Joint Learning of Orientation and Segmentation. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 10377–10385. https://doi.org/10.1109/CVPR.2019.01063
Bhatnagar, S., Gill, L., & Ghosh, B. (2020). Drone Image Segmentation Using Machine and Deep Learning for Mapping Raised Bog Vegetation Communities. Remote Sensing, 12(16), 2602. https://doi.org/10.3390/rs12162602
Bisio, I., Haleem, H., Garibotto, C., Lavagetto, F., & Sciarrone, A. (2021). Performance Evaluation and Analysis of Drone-based Vehicle Detection Techniques From Deep Learning Perspective. IEEE Internet of Things Journal, 1–1. https://doi.org/10.1109/JIOT.2021.3128065
Blaga, B.-C.-Z., & Nedevschi, S. (2020). A Critical Evaluation of Aerial Datasets for Semantic Segmentation. 2020 IEEE 16th International Conference on Intelligent Computer Communication and Processing (ICCP), 353–360. https://doi.org/10.1109/ICCP51029.2020.9266169
Bolstad, P. (2016). GIS fundamentals: A first text on geographic information systems : 5th ed. Eider (PressMinnesota). http://repository.ntt.edu.vn/jspui/handle/298300331/2885
Brooks, C. (2017). Drone-Enabled Remote Sensing for Transportation Infrastructure Assessment. INSPIRE-University Transportation Center Webinars. https://scholarsmine.mst.edu/inspire_webinars/2
Bulatov, D., Häufel, G., & Pohl, M. (2016). VECTORIZATION OF ROAD DATA EXTRACTED FROM AERIAL AND UAV IMAGERY. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B3, 567–574. https://doi.org/10.5194/isprsarchives-XLI-B3-567- 2016
Buslaev, A., Iglovikov, V. I., Khvedchenya, E., Parinov, A., Druzhinin, M., & Kalinin, A. A. (2020). Albumentations: Fast and Flexible Image Augmentations. Information, 11(2), 125. https://doi.org/10.3390/info11020125
Cheng, B., Collins, M. D., Zhu, Y., Liu, T., Huang, T. S., Adam, H., & Chen, L.-C. (2020). Panoptic DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up Panoptic Segmentation. 12475–12485. https://openaccess.thecvf.com/content_CVPR_2020/html/Cheng_Panoptic DeepLab_A_Simple_Strong_and_Fast_Baseline_for_Bottom-Up_Panoptic_CVPR_2020_paper.html
ChiangYao-Yi, LeykStefan, & A, K. (2014). A Survey of Digital Map Processing Techniques. ACM Computing Surveys (CSUR). https://doi.org/10.1145/2557423
Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., & Schiele, B. (2016). The Cityscapes Dataset for Semantic Urban Scene Understanding. 3213–3223. https://openaccess.thecvf.com/content_cvpr_2016/html/Cordts_The_Cityscapes_Dataset_CVPR_ 2016_paper.html
Crommelinck, S., Bennett, R., Gerke, M., Koeva, M. N., Yang, M. Y., & Vosselman, G. (2017). SLIC SUPERPIXELS FOR OBJECT DELINEATION FROM UAV DATA. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-2/W3, 9–16. https://doi.org/10.5194/isprs annals-IV-2-W3-9-2017
Crommelinck, S., Bennett, R., Gerke, M., Nex, F., Yang, M. Y., & Vosselman, G. (2016). Review of Automatic Feature Extraction from High-Resolution Optical Sensor Data for UAV-Based Cadastral Mapping. Remote Sensing, 8(8), 689. https://doi.org/10.3390/rs8080689
Deigele, W., Brandmeier, M., & Straub, C. (2020). A Hierarchical Deep-Learning Approach for Rapid Windthrow Detection on PlanetScope and High-Resolution Aerial Image Data. Remote Sensing, 12(13), 2121. https://doi.org/10.3390/rs12132121
Demir, I., Koperski, K., Lindenbaum, D., Pang, G., Huang, J., Basu, S., Hughes, F., Tuia, D., & Raskar, R. (2018). DeepGlobe 2018: A Challenge to Parse the Earth Through Satellite Images. 172–181. https://openaccess.thecvf.com/content_cvpr_2018_workshops/w4/html/Demir_DeepGlobe_201 8_A_CVPR_2018_paper.html
DrivenData. Open Cities AI Challenge: Segmenting Buildings for Disaster Resilience. DrivenData. Retrieved June 22, 2022, from https://www.drivendata.org/competitions/60/building segmentation-disaster-resilience/
Eng, L. S., Ismail, R., Hashim, W., & Baharum, A. (2019). The Use of VARI, GLI, and VIgreen Formulas in Detecting Vegetation In aerial Images. International Journal of Technology, 10(7), 1385. https://doi.org/10.14716/ijtech.v10i7.3275
Fan, Q., Brown, L., & Smith, J. (2016). A closer look at Faster R-CNN for vehicle detection. 2016 IEEE Intelligent Vehicles Symposium (IV), 124–129. https://doi.org/10.1109/IVS.2016.7535375
Filin, O., Zapara, A., & Panchenko, S. (2018). Road Detection with EOSResUNet and Post Vectorizing Algorithm. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 201–2014. https://doi.org/10.1109/CVPRW.2018.00036
Gao, X., Sun, X., Zhang, Y., Yan, M., Xu, G., Sun, H., Jiao, J., & Fu, K. (2018). An End-to-End Neural Network for Road Extraction From Remote Sensing Imagery by Multiple Feature Pyramid Network. IEEE Access, 6, 39401–39414. https://doi.org/10.1109/ACCESS.2018.2856088
Gerke, M., Rottensteiner, F., Wegner, J., & Sohn, G. (2014). ISPRS Semantic Labeling Contest. https://doi.org/10.13140/2.1.3570.9445
Girard, N., & Tarabalka, Y. (2018). End-to-End Learning of Polygons for Remote Sensing Image Classification. IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, 2083–2086. https://doi.org/10.1109/IGARSS.2018.8518116
Gitelson, A. A., Stark, R., Grits, U., Rundquist, D., Kaufman, Y., & Derry, D. (2002). Vegetation and soil lines in visible spectral space: A concept and technique for remote estimation of vegetation fraction. International Journal of Remote Sensing, 23(13), 2537–2562. https://doi.org/10.1080/01431160110107806
Gong, Z., Xu, L., Tian, Z., Bao, J., & Ming, D. (2020). Road network extraction and vectorization of remote sensing images based on deep learning. 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC), 303–307. https://doi.org/10.1109/ITOEC49072.2020.9141903
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative Adversarial Nets. Advances in Neural Information Processing Systems, 27. https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3- Abstract.html
Hartmann, S., Weinmann, M., Wessel, R., & Klein, R. (2017, May 30). StreetGAN: Towards Road Network Synthesis with Generative Adversarial Networks.
sola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A. (2017). Image-to-Image Translation with Conditional Adversarial Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 5967–5976. https://doi.org/10.1109/CVPR.2017.632
Kameyama, S., & Sugiura, K. (2021). Effects of Differences in Structure from Motion Software on Image Processing of Unmanned Aerial Vehicle Photography and Estimation of Crown Area and Tree Height in Forests. Remote Sensing, 13(4), 626. https://doi.org/10.3390/rs13040626
Kearney, S. P., Coops, N. C., Sethi, S., & Stenhouse, G. B. (2020). Maintaining accurate, current, rural road network data: An extraction and updating routine using RapidEye, participatory GIS and deep learning. International Journal of Applied Earth Observation and Geoinformation, 87, 102031. https://doi.org/10.1016/j.jag.2019.102031
Li, Z., Xin, Q., Sun, Y., & Cao, M. (2021). A Deep Learning-Based Framework for Automated Extraction of Building Footprint Polygons from Very High-Resolution Aerial Imagery. Remote Sensing, 13(18), 3630. https://doi.org/10.3390/rs13183630
Long, Y., Xia, G.-S., Li, S., Yang, W., Yang, M. Y., Zhu, X. X., Zhang, L., & Li, D. (2021). On Creating Benchmark Dataset for Aerial Image Interpretation: Reviews, Guidances, and Million-AID. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 4205–4230. https://doi.org/10.1109/JSTARS.2021.3070368
López-Tapia, S., Ruiz, P., Smith, M., Matthews, J., Zercher, B., Sydorenko, L., Varia, N., Jin, Y., Wang, M., Dunn, J. B., & Katsaggelos, A. K. (2021). Machine learning with high-resolution aerial imagery and data fusion to improve and automate the detection of wetlands. International Journal of Applied Earth Observation and Geoinformation, 105, 102581. https://doi.org/10.1016/j.jag.2021.102581
Maggiori, E., Tarabalka, Y., Charpiat, G., & Alliez, P. (2017). Can semantic labeling methods generalize to any city? The inria aerial image labeling benchmark. 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 3226–3229. https://doi.org/10.1109/IGARSS.2017.8127684
Marmanis, D., Wegner, J. D., Galliani, S., Schindler, K., Datcu, M., & Stilla, U. (n.d.). SEMANTIC SEGMENTATION OF AERIAL IMAGES WITH AN ENSEMBLE OF CNNS. 8.
Mnih, V., & Hinton, G. E. (2010). Learning to Detect Roads in High-Resolution Aerial Images. In K. Daniilidis, P. Maragos, & N. Paragios (Eds.), Computer Vision – ECCV 2010 (pp. 210–223). Springer. https://doi.org/10.1007/978-3-642-15567-3_16
Murtiyoso, A., Veriandi, M., Suwardhi, D., Soeksmantono, B., & Harto, A. B. (2020). Automatic Workflow for Roof Extraction and Generation of 3D CityGML Models from Low-Cost UAV Image Derived Point Clouds. ISPRS International Journal of Geo-Information, 9(12), 743. https://doi.org/10.3390/ijgi9120743
Ng, V., & Hofmann, D. (2018). Scalable Feature Extraction with Aerial and Satellite Imagery. 145– 151. https://doi.org/10.25080/Majora-4af1f417-015
Osco, L. P., Marcato Junior, J., Marques Ramos, A. P., de Castro Jorge, L. A., Fatholahi, S. N., de Andrade Silva, J., Matsubara, E. T., Pistori, H., Gonçalves, W. N., & Li, J. (2021). A review on deep learning in UAV remote sensing. International Journal of Applied Earth Observation and Geoinformation, 102, 102456. https://doi.org/10.1016/j.jag.2021.102456
Pan, X., Yang, F., Gao, L., Chen, Z., Zhang, B., Fan, H., & Ren, J. (2019). Building Extraction from High Resolution Aerial Imagery Using a Generative Adversarial Network with Spatial and Channel Attention Mechanisms. Remote Sensing, 11(8), 917. https://doi.org/10.3390/rs11080917
Pashaei, M., Kamangir, H., Starek, M. J., & Tissot, P. (2020). Review and Evaluation of Deep Learning Architectures for Efficient Land Cover Mapping with UAS Hyper-Spatial Imagery: A Case Study Over a Wetland. Remote Sensing, 12(6), 959. https://doi.org/10.3390/rs12060959
Pinto, L., Bianchini, F., Nova, V., & Passoni, D. (2020). LOW-COST UAS PHOTOGRAMMETRY FOR ROAD INFRASTRUCTURES’ INSPECTION. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B2-2020, 1145–1150. https://doi.org/10.5194/isprs archives-XLIII-B2-2020-1145-202
Pote, R. (2021, August). Polygonal delineation of greenhouses using a deep learning strategy [Info:eu-repo/semantics/masterThesis]. University of Twente. http://essay.utwente.nl/89006/
Radford, A., Metz, L., & Chintala, S. (2016). Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks (arXiv:1511.06434). arXiv. https://doi.org/10.48550/arXiv.1511.06434
Ren, J., & Xu, L. (2015). On Vectorization of Deep Convolutional Neural Networks for Vision Tasks. Proceedings of the AAAI Conference on Artificial Intelligence, 29(1), Article 1. https://ojs.aaai.org/index.php/AAAI/article/view/9488
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. In N. Navab, J. Hornegger, W. M. Wells, & A. F. Frangi (Eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 (pp. 234–241). Springer International Publishing. https://doi.org/10.1007/978-3-319-24574-4_28
Saeedimoghaddam, M., & Stepinski, T. F. (2020). Automatic extraction of road intersection points from USGS historical map series using deep convolutional neural networks. International Journal of Geographical Information Science, 34(5), 947–968. https://doi.org/10.1080/13658816.2019.1696968
Sahu, M., & Ohri, A. (2019a). VECTOR MAP GENERATION FROM AERIAL IMAGERY USING DEEP LEARNING. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-2/W5, 157–162. https://doi.org/10.5194/isprs-annals-IV-2-W5-157-2019
Sahu, M., & Ohri, A. (2019b). VECTOR MAP GENERATION FROM AERIAL IMAGERY USING DEEP LEARNING. http://localhost:8080/xmlui/handle/123456789/520
Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X., & Chen, X. (2016). Improved Techniques for Training GANs. Advances in Neural Information Processing Systems, 29. https://proceedings.neurips.cc/paper/2016/hash/8a3363abe792db2d8761d6403605aeb7- Abstract.html
Sester, M., Feng, Y., & Thiemann, F. (2018). Building generalization using deep learning. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-4 (2018), XLII–4, 565–572. https://doi.org/10.15488/5169
Shermeyer, J., & Etten, A. (2019). The Effects of Super-Resolution on Object Detection Performance in Satellite Imagery. 1432–1441. https://doi.org/10.1109/CVPRW.2019.00184
Shermeyer, J., & Van Etten, A. (2019). The Effects of Super-Resolution on Object Detection Performance in Satellite Imagery. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 1432–1441. https://doi.org/10.1109/CVPRW.2019.00184
Song, A., & Kim, Y. (2020). Semantic Segmentation of Remote-Sensing Imagery Using Heterogeneous Big Data: International Society for Photogrammetry and Remote Sensing Potsdam and Cityscape Datasets. ISPRS International Journal of Geo-Information, 9(10), 601. https://doi.org/10.3390/ijgi9100601
Sun, W., & Wang, R. (2018). Fully Convolutional Networks for Semantic Segmentation of Very High Resolution Remotely Sensed Images Combined With DSM. IEEE Geoscience and Remote Sensing Letters, 15(3), 474–478. https://doi.org/10.1109/LGRS.2018.2795531
Touya, G., Zhang, X., & Lokhat, I. (2019). Is deep learning the new agent for map generalization? International Journal of Cartography, 5(2–3), 142–157. https://doi.org/10.1080/23729333.2019.1613071
Van Etten, A. (2019). Satellite Imagery Multiscale Rapid Detection with Windowed Networks. 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), 735–743. https://doi.org/10.1109/WACV.2019.00083
Van Etten, A., Lindenbaum, D., & Bacastow, T. M. (2019). SpaceNet: A Remote Sensing Dataset and Challenge Series (arXiv:1807.01232). arXiv. http://arxiv.org/abs/1807.01232
Vinyals, O., Toshev, A., Bengio, S., & Erhan, D. (2015). Show and Tell: A Neural Image Caption Generator. 3156–3164. https://www.cv foundation.org/openaccess/content_cvpr_2015/html/Vinyals_Show_and_Tell_2015_CVPR_paper. html
Wang, S., Bai, M., Mattyus, G., Chu, H., Luo, W., Yang, B., Liang, J., Cheverie, J., Fidler, S., & Urtasun, R. (2017). TorontoCity: Seeing the World with a Million Eyes. 2017 IEEE International Conference on Computer Vision (ICCV), 3028–3036. https://doi.org/10.1109/ICCV.2017.327
Wang, S., Liu, W., Wu, J., Cao, L., Meng, Q., & Kennedy, P. J. (2016). Training deep neural networks on imbalanced data sets. 2016 International Joint Conference on Neural Networks (IJCNN), 4368– 4374. https://doi.org/10.1109/IJCNN.2016.7727770
Wang, W., Yang, N., Zhang, Y., Wang, F., Cao, T., & Eklund, P. (2016). A review of road extraction from remote sensing images. Journal of Traffic and Transportation Engineering (English Edition), 3(3), 271–282. https://doi.org/10.1016/j.jtte.2016.05.005
Weir, N., Lindenbaum, D., Bastidas, A., Etten, A., Kumar, V., Mcpherson, S., Shermeyer, J., & Tang, H. (2019). SpaceNet MVOI: A Multi-View Overhead Imagery Dataset. 992–1001. https://doi.org/10.1109/ICCV.2019.0010
Wu, H., Xiao, B., Codella, N., Liu, M., Dai, X., Yuan, L., & Zhang, L. (2021). CvT: Introducing Convolutions to Vision Transformers. 22–31. https://openaccess.thecvf.com/content/ICCV2021/html/Wu_CvT_Introducing_Convolutions_to_V ision_Transformers_ICCV_2021_paper.html
Xie, Y., Zhu, J., Cao, Y., Feng, D., Hu, M., Li, W., Zhang, Y., & Fu, L. (2020). Refined Extraction Of Building Outlines From High-Resolution Remote Sensing Imagery Based on a Multifeature Convolutional Neural Network and Morphological Filtering. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 1842–1855. https://doi.org/10.1109/JSTARS.2020.2991391
Xu, Y., Wu, L., Xie, Z., & Chen, Z. (2018). Building Extraction in Very High Resolution Remote Sensing Imagery Using Deep Learning and Guided Filters. Remote Sensing, 10(1), 144. https://doi.org/10.3390/rs10010144
Yan, H. (2019). Description Approaches and Automated Generalization Algorithms for Groups of Map Objects. Springer Singapore. https://doi.org/10.1007/978-981-13-3678-2
Yang, H. L., Yuan, J., Lunga, D., Laverdiere, M., Rose, A., & Bhaduri, B. (2018). Building Extraction at Scale Using Convolutional Neural Network: Mapping of the United States. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. https://doi.org/10.1109/JSTARS.2018.2835377
Yang, W., Gao, X., Zhang, C., Tong, F., Chen, G., & Xiao, Z. (2021). Bridge Extraction Algorithm Based on Deep Learning and High-Resolution Satellite Image. Scientific Programming, 2021, e9961963. https://doi.org/10.1155/2021/9961963
Zhang, Q., Qin, R., Huang, X., Fang, Y., & Liu, L. (2015). Classification of Ultra-High Resolution Orthophotos Combined with DSM Using a Dual Morphological Top Hat Profile. Remote Sensing, 7(12), 16422–16440. https://doi.org/10.3390/rs71215840
Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017). Pyramid Scene Parsing Network. 2881–2890. https://openaccess.thecvf.com/content_cvpr_2017/html/Zhao_Pyramid_Scene_Parsing_CVPR_20 17_paper.html
Zhao, S., Liu, Z., Lin, J., Zhu, J.-Y., & Han, S. (2020). Differentiable Augmentation for Data-Efficient GAN Training. Advances in Neural Information Processing Systems, 33, 7559–7570. https://proceedings.neurips.cc/paper/2020/hash/55479c55ebd1efd3ff125f1337100388- Abstract.html
Zhu, J.-Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired Image-to-Image Translation Using Cycle Consistent Adversarial Networks. 2017 IEEE International Conference on Computer Vision (ICCV), 2242–2251. https://doi.org/10.1109/ICCV.2017.244
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 138 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Doctorado en Ingeniería - Sistemas
dc.publisher.department.spa.fl_str_mv Departamento de la Computación y la Decisión
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82529/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82529/2/98562187.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/82529/3/98562187.2022.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
9eb2c2f602243778e1909bae6075e3b8
fb25a8e34423542d39be64cc59f80c53
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089795868033024
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sanchez Torres, German7fe68c6418b4ba7cb12bdb0c00b9f23aBranch Bedoya, John Willian8373bc4285cc9e2e59e8f540f737e1db600Ballesteros Parra, John Robert8b10cddb5010474c877da0b0b9ef76faGidia: Grupo de Investigación y Desarrollo en Inteligencia Artificial2022-10-28T15:36:56Z2022-10-28T15:36:56Z2022-10-12https://repositorio.unal.edu.co/handle/unal/82529Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, mapas, tablasThis thesis presents a three methods pipeline for extraction of point, line, and polygon vector objects from orthomosaics using a deep generative model as an alternative to the default semantic segmentation approach. The first method consists of two workflows, the vector ground truth is acquired by manual digitalization of certain objects or from Open Street Maps. Raster layers input are spectral and geometrically augmented, both inputs are then tessellated and paired into image-masks that pass through an imbalance checking step. Balanced dataset is then random split into a final dataset. Conditional and unpaired generative models are compared and pix2pix is chosen by its better results on image to mask translation. Results of the chosen model on different datasets and configurations are reported on the mIoU metric. A batch size of 10 and datasets of 1000 image-masks pairs of 512x512 pixels, with overlapping augmentation showed the best quantitative results. Height of objects from the DSM, and VARI index contribute to decrease variance of discriminator and generator losses. Producing synthetic data is the horsepower of generative models, so a double image to mask translation is used to improve resultant masks in terms of continuity and uniform width. Double image to mask translation model is trained with a dataset of equal size masks of 1 meter called primitive masks, that are obtained by a buffer distance parameter. This cleaning procedure showed to improve resultant masks, that are then converted to vector and measured by quantity, length, or area against vector ground truth, using a proposed metric for map creation called “The average geometry similarity (AGS)”.Esta tesis presenta una metodología basada en tres métodos para la extracción de puntos, lineas, y polígonos de objetos vectoriales presentes en ortomosaicos usando un modelo generativo basado en aprendizaje profundo como una alternativa al enfoque de segmentación semántica usado por defecto. El primer método consiste en dos líneas de trabajo, las capas vector de entrenamiento son adquiridas bien sea por digitalización manual de los objetos de interés o directamente desde Open Street Maps (OSM). Las capas raster de entrada son aumentadas spectral y geométricamente, teseladas y emparejadas en pares imagen-mascara que se chequean ante el imbalance. El conjunto de datos balanceado es luego partido al azar para obtener el conjunto final. Los modelos generativos, condicionales y no emparejados son comparados y el mejor es escogido para realizar las traducciones entre imagen y mascara. Los resultados de la comparación y los obtenidos por el mejor modelo sobre diferentes conjuntos de datos, y su configuración son reportados usando la metrica mIoU. Un lote de tamaño diez para un conjunto de 1000 image-mascaras de 512x512 pixeles, con augmentación por solapamiento mostró los mejores resultados cuantitativos. La altura de los objetos obtenida del DSM, y el índice VARI contribuyen a disminuir la varianza del discriminador y del generador. La producción de datos sintéticos es el caballo de batalla de los modelos generativos, así que una doble traducción de imagen a mascara (DCIT) es empleada para mejorar las mascaras resultantes en términos de su continuidad y uniformidad. Un modelo para realizar DCIT es entrenado con un conjunto de datos de igual tamaño de mascara de 1 metro llamado mascaras primitivas, que son obtenidas usando una distancia buffer como parametro. Este procedimiento de limpieza mostró que mejora las mascaras resultantes, que son luego convertidas a vector y medidas en cantidad, distancia, o area vs la realidad vectorial, usando una métrica propuesta para la creación de mapas llamada “Similaridad geomética promedia (AGS)" (Texto tomado de la fuente)DoctoradoDoctor en IngenieríaInteligencia Artificial y MapasÁrea Curricular de Ingeniería de Sistemas e Informática138 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Minas - Doctorado en Ingeniería - SistemasDepartamento de la Computación y la DecisiónFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresAnálisis vectorialVector analysisCampos vectorialesVector fieldsGISVectorizationGANSemantic SegmentationOrthomosaicsDeep LearningImage TranslationImage CaptionVectorizaciónRedes AntagónicasSegmentación SemánticaOrtomosaicosAprendizaje ProfundoTraducción de ImagenAutomatic generation of GIS vector Layers from orthomosaics using deep learningGeneración automatica de capas vectoriales SIG de ortomosaicos usando aprendizaje profundoTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDAbdollahi, A., Pradhan, B., & Alamri, A. (2021). RoadVecNet: A new approach for simultaneous road network segmentation and vectorization from aerial and google earth imagery in a complex urban set-up. GIScience & Remote Sensing, 58(7), 1151–1174. https://doi.org/10.1080/15481603.2021.1972713Abdollahi, A., Pradhan, B., & Shukla, N. (2019). Extraction of road features from UAV images using a novel level set segmentation approach. International Journal of Urban Sciences. https://doi.org/10.1080/12265934.2019.1596040Abdollahi, A., Pradhan, B., Shukla, N., Chakraborty, S., & Alamri, A. (2020). Deep Learning Approaches Applied to Remote Sensing Datasets for Road Extraction: A State-Of-The-Art Review. Remote Sensing, 12(9), 1444. https://doi.org/10.3390/rs12091444Aldana Rodriguez, D., Ávila Granados, D. L., & Villalba-Vidales, J. A. (2021). Use of Unmanned Aircraft Systems for Bridge Inspection: A Review. DYNA, 88(217), 32–41. https://doi.org/10.15446/dyna.v88n217.91879Al-Najjar, H. A. H., Kalantar, B., Pradhan, B., Saeidi, V., Halin, A. A., Ueda, N., & Mansor, S. (2019). Land Cover Classification from fused DSM and UAV Images Using Convolutional Neural Networks. Remote Sensing, 11(12), 1461. https://doi.org/10.3390/rs11121461Avola, D., & Pannone, D. (2021). MAGI: Multistream Aerial Segmentation of Ground Images with Small-Scale Drones. Drones, 5(4), 111. https://doi.org/10.3390/drones5040111Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12), 2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615Ballesteros, J. R., Sanchez-Torres, G., & Branch, J. W. (2021). Automatic road extraction in small urban areas of developing countries using drone imagery and Image Translation. 2021 2nd Sustainable Cities Latin America Conference (SCLA), 1–6. https://doi.org/10.1109/SCLA53004.2021.9540111Ballesteros, J. R., Sanchez-Torres, G., & Branch-Bedoya, J. W. (2022). HAGDAVS: Height-Augmented Geo-Located Dataset for Detection and Semantic Segmentation of Vehicles in Drone Aerial Orthomosaics. Data, 7(4), 50. https://doi.org/10.3390/data7040050Ballesteros, John R., German Sanchez-Torres, and John W. Branch-Bedoya. 2022. "A GIS Pipeline to Produce GeoAI Datasets from Drone Overhead Imagery" ISPRS International Journal of Geo-Information 11, no. 10: 508. https://doi.org/10.3390/ijgi11100508Batra, A., Singh, S., Pang, G., Basu, S., Jawahar, C. V., & Paluri, M. (2019). Improved Road Connectivity by Joint Learning of Orientation and Segmentation. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 10377–10385. https://doi.org/10.1109/CVPR.2019.01063Bhatnagar, S., Gill, L., & Ghosh, B. (2020). Drone Image Segmentation Using Machine and Deep Learning for Mapping Raised Bog Vegetation Communities. Remote Sensing, 12(16), 2602. https://doi.org/10.3390/rs12162602Bisio, I., Haleem, H., Garibotto, C., Lavagetto, F., & Sciarrone, A. (2021). Performance Evaluation and Analysis of Drone-based Vehicle Detection Techniques From Deep Learning Perspective. IEEE Internet of Things Journal, 1–1. https://doi.org/10.1109/JIOT.2021.3128065Blaga, B.-C.-Z., & Nedevschi, S. (2020). A Critical Evaluation of Aerial Datasets for Semantic Segmentation. 2020 IEEE 16th International Conference on Intelligent Computer Communication and Processing (ICCP), 353–360. https://doi.org/10.1109/ICCP51029.2020.9266169Bolstad, P. (2016). GIS fundamentals: A first text on geographic information systems : 5th ed. Eider (PressMinnesota). http://repository.ntt.edu.vn/jspui/handle/298300331/2885Brooks, C. (2017). Drone-Enabled Remote Sensing for Transportation Infrastructure Assessment. INSPIRE-University Transportation Center Webinars. https://scholarsmine.mst.edu/inspire_webinars/2Bulatov, D., Häufel, G., & Pohl, M. (2016). VECTORIZATION OF ROAD DATA EXTRACTED FROM AERIAL AND UAV IMAGERY. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B3, 567–574. https://doi.org/10.5194/isprsarchives-XLI-B3-567- 2016Buslaev, A., Iglovikov, V. I., Khvedchenya, E., Parinov, A., Druzhinin, M., & Kalinin, A. A. (2020). Albumentations: Fast and Flexible Image Augmentations. Information, 11(2), 125. https://doi.org/10.3390/info11020125Cheng, B., Collins, M. D., Zhu, Y., Liu, T., Huang, T. S., Adam, H., & Chen, L.-C. (2020). Panoptic DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up Panoptic Segmentation. 12475–12485. https://openaccess.thecvf.com/content_CVPR_2020/html/Cheng_Panoptic DeepLab_A_Simple_Strong_and_Fast_Baseline_for_Bottom-Up_Panoptic_CVPR_2020_paper.htmlChiangYao-Yi, LeykStefan, & A, K. (2014). A Survey of Digital Map Processing Techniques. ACM Computing Surveys (CSUR). https://doi.org/10.1145/2557423Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., & Schiele, B. (2016). The Cityscapes Dataset for Semantic Urban Scene Understanding. 3213–3223. https://openaccess.thecvf.com/content_cvpr_2016/html/Cordts_The_Cityscapes_Dataset_CVPR_ 2016_paper.htmlCrommelinck, S., Bennett, R., Gerke, M., Koeva, M. N., Yang, M. Y., & Vosselman, G. (2017). SLIC SUPERPIXELS FOR OBJECT DELINEATION FROM UAV DATA. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-2/W3, 9–16. https://doi.org/10.5194/isprs annals-IV-2-W3-9-2017Crommelinck, S., Bennett, R., Gerke, M., Nex, F., Yang, M. Y., & Vosselman, G. (2016). Review of Automatic Feature Extraction from High-Resolution Optical Sensor Data for UAV-Based Cadastral Mapping. Remote Sensing, 8(8), 689. https://doi.org/10.3390/rs8080689Deigele, W., Brandmeier, M., & Straub, C. (2020). A Hierarchical Deep-Learning Approach for Rapid Windthrow Detection on PlanetScope and High-Resolution Aerial Image Data. Remote Sensing, 12(13), 2121. https://doi.org/10.3390/rs12132121Demir, I., Koperski, K., Lindenbaum, D., Pang, G., Huang, J., Basu, S., Hughes, F., Tuia, D., & Raskar, R. (2018). DeepGlobe 2018: A Challenge to Parse the Earth Through Satellite Images. 172–181. https://openaccess.thecvf.com/content_cvpr_2018_workshops/w4/html/Demir_DeepGlobe_201 8_A_CVPR_2018_paper.htmlDrivenData. Open Cities AI Challenge: Segmenting Buildings for Disaster Resilience. DrivenData. Retrieved June 22, 2022, from https://www.drivendata.org/competitions/60/building segmentation-disaster-resilience/Eng, L. S., Ismail, R., Hashim, W., & Baharum, A. (2019). The Use of VARI, GLI, and VIgreen Formulas in Detecting Vegetation In aerial Images. International Journal of Technology, 10(7), 1385. https://doi.org/10.14716/ijtech.v10i7.3275Fan, Q., Brown, L., & Smith, J. (2016). A closer look at Faster R-CNN for vehicle detection. 2016 IEEE Intelligent Vehicles Symposium (IV), 124–129. https://doi.org/10.1109/IVS.2016.7535375Filin, O., Zapara, A., & Panchenko, S. (2018). Road Detection with EOSResUNet and Post Vectorizing Algorithm. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 201–2014. https://doi.org/10.1109/CVPRW.2018.00036Gao, X., Sun, X., Zhang, Y., Yan, M., Xu, G., Sun, H., Jiao, J., & Fu, K. (2018). An End-to-End Neural Network for Road Extraction From Remote Sensing Imagery by Multiple Feature Pyramid Network. IEEE Access, 6, 39401–39414. https://doi.org/10.1109/ACCESS.2018.2856088Gerke, M., Rottensteiner, F., Wegner, J., & Sohn, G. (2014). ISPRS Semantic Labeling Contest. https://doi.org/10.13140/2.1.3570.9445Girard, N., & Tarabalka, Y. (2018). End-to-End Learning of Polygons for Remote Sensing Image Classification. IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, 2083–2086. https://doi.org/10.1109/IGARSS.2018.8518116Gitelson, A. A., Stark, R., Grits, U., Rundquist, D., Kaufman, Y., & Derry, D. (2002). Vegetation and soil lines in visible spectral space: A concept and technique for remote estimation of vegetation fraction. International Journal of Remote Sensing, 23(13), 2537–2562. https://doi.org/10.1080/01431160110107806Gong, Z., Xu, L., Tian, Z., Bao, J., & Ming, D. (2020). Road network extraction and vectorization of remote sensing images based on deep learning. 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC), 303–307. https://doi.org/10.1109/ITOEC49072.2020.9141903Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative Adversarial Nets. Advances in Neural Information Processing Systems, 27. https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3- Abstract.htmlHartmann, S., Weinmann, M., Wessel, R., & Klein, R. (2017, May 30). StreetGAN: Towards Road Network Synthesis with Generative Adversarial Networks.sola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A. (2017). Image-to-Image Translation with Conditional Adversarial Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 5967–5976. https://doi.org/10.1109/CVPR.2017.632Kameyama, S., & Sugiura, K. (2021). Effects of Differences in Structure from Motion Software on Image Processing of Unmanned Aerial Vehicle Photography and Estimation of Crown Area and Tree Height in Forests. Remote Sensing, 13(4), 626. https://doi.org/10.3390/rs13040626Kearney, S. P., Coops, N. C., Sethi, S., & Stenhouse, G. B. (2020). Maintaining accurate, current, rural road network data: An extraction and updating routine using RapidEye, participatory GIS and deep learning. International Journal of Applied Earth Observation and Geoinformation, 87, 102031. https://doi.org/10.1016/j.jag.2019.102031Li, Z., Xin, Q., Sun, Y., & Cao, M. (2021). A Deep Learning-Based Framework for Automated Extraction of Building Footprint Polygons from Very High-Resolution Aerial Imagery. Remote Sensing, 13(18), 3630. https://doi.org/10.3390/rs13183630Long, Y., Xia, G.-S., Li, S., Yang, W., Yang, M. Y., Zhu, X. X., Zhang, L., & Li, D. (2021). On Creating Benchmark Dataset for Aerial Image Interpretation: Reviews, Guidances, and Million-AID. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 4205–4230. https://doi.org/10.1109/JSTARS.2021.3070368López-Tapia, S., Ruiz, P., Smith, M., Matthews, J., Zercher, B., Sydorenko, L., Varia, N., Jin, Y., Wang, M., Dunn, J. B., & Katsaggelos, A. K. (2021). Machine learning with high-resolution aerial imagery and data fusion to improve and automate the detection of wetlands. International Journal of Applied Earth Observation and Geoinformation, 105, 102581. https://doi.org/10.1016/j.jag.2021.102581Maggiori, E., Tarabalka, Y., Charpiat, G., & Alliez, P. (2017). Can semantic labeling methods generalize to any city? The inria aerial image labeling benchmark. 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 3226–3229. https://doi.org/10.1109/IGARSS.2017.8127684Marmanis, D., Wegner, J. D., Galliani, S., Schindler, K., Datcu, M., & Stilla, U. (n.d.). SEMANTIC SEGMENTATION OF AERIAL IMAGES WITH AN ENSEMBLE OF CNNS. 8.Mnih, V., & Hinton, G. E. (2010). Learning to Detect Roads in High-Resolution Aerial Images. In K. Daniilidis, P. Maragos, & N. Paragios (Eds.), Computer Vision – ECCV 2010 (pp. 210–223). Springer. https://doi.org/10.1007/978-3-642-15567-3_16Murtiyoso, A., Veriandi, M., Suwardhi, D., Soeksmantono, B., & Harto, A. B. (2020). Automatic Workflow for Roof Extraction and Generation of 3D CityGML Models from Low-Cost UAV Image Derived Point Clouds. ISPRS International Journal of Geo-Information, 9(12), 743. https://doi.org/10.3390/ijgi9120743Ng, V., & Hofmann, D. (2018). Scalable Feature Extraction with Aerial and Satellite Imagery. 145– 151. https://doi.org/10.25080/Majora-4af1f417-015Osco, L. P., Marcato Junior, J., Marques Ramos, A. P., de Castro Jorge, L. A., Fatholahi, S. N., de Andrade Silva, J., Matsubara, E. T., Pistori, H., Gonçalves, W. N., & Li, J. (2021). A review on deep learning in UAV remote sensing. International Journal of Applied Earth Observation and Geoinformation, 102, 102456. https://doi.org/10.1016/j.jag.2021.102456Pan, X., Yang, F., Gao, L., Chen, Z., Zhang, B., Fan, H., & Ren, J. (2019). Building Extraction from High Resolution Aerial Imagery Using a Generative Adversarial Network with Spatial and Channel Attention Mechanisms. Remote Sensing, 11(8), 917. https://doi.org/10.3390/rs11080917Pashaei, M., Kamangir, H., Starek, M. J., & Tissot, P. (2020). Review and Evaluation of Deep Learning Architectures for Efficient Land Cover Mapping with UAS Hyper-Spatial Imagery: A Case Study Over a Wetland. Remote Sensing, 12(6), 959. https://doi.org/10.3390/rs12060959Pinto, L., Bianchini, F., Nova, V., & Passoni, D. (2020). LOW-COST UAS PHOTOGRAMMETRY FOR ROAD INFRASTRUCTURES’ INSPECTION. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B2-2020, 1145–1150. https://doi.org/10.5194/isprs archives-XLIII-B2-2020-1145-202Pote, R. (2021, August). Polygonal delineation of greenhouses using a deep learning strategy [Info:eu-repo/semantics/masterThesis]. University of Twente. http://essay.utwente.nl/89006/Radford, A., Metz, L., & Chintala, S. (2016). Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks (arXiv:1511.06434). arXiv. https://doi.org/10.48550/arXiv.1511.06434Ren, J., & Xu, L. (2015). On Vectorization of Deep Convolutional Neural Networks for Vision Tasks. Proceedings of the AAAI Conference on Artificial Intelligence, 29(1), Article 1. https://ojs.aaai.org/index.php/AAAI/article/view/9488Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. In N. Navab, J. Hornegger, W. M. Wells, & A. F. Frangi (Eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 (pp. 234–241). Springer International Publishing. https://doi.org/10.1007/978-3-319-24574-4_28Saeedimoghaddam, M., & Stepinski, T. F. (2020). Automatic extraction of road intersection points from USGS historical map series using deep convolutional neural networks. International Journal of Geographical Information Science, 34(5), 947–968. https://doi.org/10.1080/13658816.2019.1696968Sahu, M., & Ohri, A. (2019a). VECTOR MAP GENERATION FROM AERIAL IMAGERY USING DEEP LEARNING. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-2/W5, 157–162. https://doi.org/10.5194/isprs-annals-IV-2-W5-157-2019Sahu, M., & Ohri, A. (2019b). VECTOR MAP GENERATION FROM AERIAL IMAGERY USING DEEP LEARNING. http://localhost:8080/xmlui/handle/123456789/520Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X., & Chen, X. (2016). Improved Techniques for Training GANs. Advances in Neural Information Processing Systems, 29. https://proceedings.neurips.cc/paper/2016/hash/8a3363abe792db2d8761d6403605aeb7- Abstract.htmlSester, M., Feng, Y., & Thiemann, F. (2018). Building generalization using deep learning. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-4 (2018), XLII–4, 565–572. https://doi.org/10.15488/5169Shermeyer, J., & Etten, A. (2019). The Effects of Super-Resolution on Object Detection Performance in Satellite Imagery. 1432–1441. https://doi.org/10.1109/CVPRW.2019.00184Shermeyer, J., & Van Etten, A. (2019). The Effects of Super-Resolution on Object Detection Performance in Satellite Imagery. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 1432–1441. https://doi.org/10.1109/CVPRW.2019.00184Song, A., & Kim, Y. (2020). Semantic Segmentation of Remote-Sensing Imagery Using Heterogeneous Big Data: International Society for Photogrammetry and Remote Sensing Potsdam and Cityscape Datasets. ISPRS International Journal of Geo-Information, 9(10), 601. https://doi.org/10.3390/ijgi9100601Sun, W., & Wang, R. (2018). Fully Convolutional Networks for Semantic Segmentation of Very High Resolution Remotely Sensed Images Combined With DSM. IEEE Geoscience and Remote Sensing Letters, 15(3), 474–478. https://doi.org/10.1109/LGRS.2018.2795531Touya, G., Zhang, X., & Lokhat, I. (2019). Is deep learning the new agent for map generalization? International Journal of Cartography, 5(2–3), 142–157. https://doi.org/10.1080/23729333.2019.1613071Van Etten, A. (2019). Satellite Imagery Multiscale Rapid Detection with Windowed Networks. 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), 735–743. https://doi.org/10.1109/WACV.2019.00083Van Etten, A., Lindenbaum, D., & Bacastow, T. M. (2019). SpaceNet: A Remote Sensing Dataset and Challenge Series (arXiv:1807.01232). arXiv. http://arxiv.org/abs/1807.01232Vinyals, O., Toshev, A., Bengio, S., & Erhan, D. (2015). Show and Tell: A Neural Image Caption Generator. 3156–3164. https://www.cv foundation.org/openaccess/content_cvpr_2015/html/Vinyals_Show_and_Tell_2015_CVPR_paper. htmlWang, S., Bai, M., Mattyus, G., Chu, H., Luo, W., Yang, B., Liang, J., Cheverie, J., Fidler, S., & Urtasun, R. (2017). TorontoCity: Seeing the World with a Million Eyes. 2017 IEEE International Conference on Computer Vision (ICCV), 3028–3036. https://doi.org/10.1109/ICCV.2017.327Wang, S., Liu, W., Wu, J., Cao, L., Meng, Q., & Kennedy, P. J. (2016). Training deep neural networks on imbalanced data sets. 2016 International Joint Conference on Neural Networks (IJCNN), 4368– 4374. https://doi.org/10.1109/IJCNN.2016.7727770Wang, W., Yang, N., Zhang, Y., Wang, F., Cao, T., & Eklund, P. (2016). A review of road extraction from remote sensing images. Journal of Traffic and Transportation Engineering (English Edition), 3(3), 271–282. https://doi.org/10.1016/j.jtte.2016.05.005Weir, N., Lindenbaum, D., Bastidas, A., Etten, A., Kumar, V., Mcpherson, S., Shermeyer, J., & Tang, H. (2019). SpaceNet MVOI: A Multi-View Overhead Imagery Dataset. 992–1001. https://doi.org/10.1109/ICCV.2019.0010Wu, H., Xiao, B., Codella, N., Liu, M., Dai, X., Yuan, L., & Zhang, L. (2021). CvT: Introducing Convolutions to Vision Transformers. 22–31. https://openaccess.thecvf.com/content/ICCV2021/html/Wu_CvT_Introducing_Convolutions_to_V ision_Transformers_ICCV_2021_paper.htmlXie, Y., Zhu, J., Cao, Y., Feng, D., Hu, M., Li, W., Zhang, Y., & Fu, L. (2020). Refined Extraction Of Building Outlines From High-Resolution Remote Sensing Imagery Based on a Multifeature Convolutional Neural Network and Morphological Filtering. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 1842–1855. https://doi.org/10.1109/JSTARS.2020.2991391Xu, Y., Wu, L., Xie, Z., & Chen, Z. (2018). Building Extraction in Very High Resolution Remote Sensing Imagery Using Deep Learning and Guided Filters. Remote Sensing, 10(1), 144. https://doi.org/10.3390/rs10010144Yan, H. (2019). Description Approaches and Automated Generalization Algorithms for Groups of Map Objects. Springer Singapore. https://doi.org/10.1007/978-981-13-3678-2Yang, H. L., Yuan, J., Lunga, D., Laverdiere, M., Rose, A., & Bhaduri, B. (2018). Building Extraction at Scale Using Convolutional Neural Network: Mapping of the United States. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. https://doi.org/10.1109/JSTARS.2018.2835377Yang, W., Gao, X., Zhang, C., Tong, F., Chen, G., & Xiao, Z. (2021). Bridge Extraction Algorithm Based on Deep Learning and High-Resolution Satellite Image. Scientific Programming, 2021, e9961963. https://doi.org/10.1155/2021/9961963Zhang, Q., Qin, R., Huang, X., Fang, Y., & Liu, L. (2015). Classification of Ultra-High Resolution Orthophotos Combined with DSM Using a Dual Morphological Top Hat Profile. Remote Sensing, 7(12), 16422–16440. https://doi.org/10.3390/rs71215840Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017). Pyramid Scene Parsing Network. 2881–2890. https://openaccess.thecvf.com/content_cvpr_2017/html/Zhao_Pyramid_Scene_Parsing_CVPR_20 17_paper.htmlZhao, S., Liu, Z., Lin, J., Zhu, J.-Y., & Han, S. (2020). Differentiable Augmentation for Data-Efficient GAN Training. Advances in Neural Information Processing Systems, 33, 7559–7570. https://proceedings.neurips.cc/paper/2020/hash/55479c55ebd1efd3ff125f1337100388- Abstract.htmlZhu, J.-Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired Image-to-Image Translation Using Cycle Consistent Adversarial Networks. 2017 IEEE International Conference on Computer Vision (ICCV), 2242–2251. https://doi.org/10.1109/ICCV.2017.244EstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/82529/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL98562187.2022.pdf98562187.2022.pdfTesis de Doctorado en Ingeniería - Sistemasapplication/pdf9568350https://repositorio.unal.edu.co/bitstream/unal/82529/2/98562187.2022.pdf9eb2c2f602243778e1909bae6075e3b8MD52THUMBNAIL98562187.2022.pdf.jpg98562187.2022.pdf.jpgGenerated Thumbnailimage/jpeg3974https://repositorio.unal.edu.co/bitstream/unal/82529/3/98562187.2022.pdf.jpgfb25a8e34423542d39be64cc59f80c53MD53unal/82529oai:repositorio.unal.edu.co:unal/825292024-08-12 02:00:20.742Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=