Conversion of 3d seismic attributes to reservoir hydraulic flow units using a neural network approach: an example from the kangan and dalan carbonate reservoirs, the world's largest non-associated gas reservoirs, near the persian gulf

This study presents an intelligent model based on probabilistic neural networks (PNN) to produce a quantitative formulation between seismic attributes and hydraulic flow units (HFUs). Neural networks have been used for the last several years to estimate reservoir properties. However, their applicati...

Full description

Autores:
Dezfoolian, Mohammad Amin
Riahi, Mohammad Ali
Kadkhodaie-Ilkhchi, Ali
Tipo de recurso:
Article of journal
Fecha de publicación:
2013
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/43915
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/43915
http://bdigital.unal.edu.co/34013/
http://bdigital.unal.edu.co/34013/2/
Palabra clave:
seismic attributes
seismic inversion
flow zone indicator
reservoir quality index
hydraulic flow unit
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_77e41ad6170983fbb700f92538ac1410
oai_identifier_str oai:repositorio.unal.edu.co:unal/43915
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Conversion of 3d seismic attributes to reservoir hydraulic flow units using a neural network approach: an example from the kangan and dalan carbonate reservoirs, the world's largest non-associated gas reservoirs, near the persian gulf
title Conversion of 3d seismic attributes to reservoir hydraulic flow units using a neural network approach: an example from the kangan and dalan carbonate reservoirs, the world's largest non-associated gas reservoirs, near the persian gulf
spellingShingle Conversion of 3d seismic attributes to reservoir hydraulic flow units using a neural network approach: an example from the kangan and dalan carbonate reservoirs, the world's largest non-associated gas reservoirs, near the persian gulf
seismic attributes
seismic inversion
flow zone indicator
reservoir quality index
hydraulic flow unit
title_short Conversion of 3d seismic attributes to reservoir hydraulic flow units using a neural network approach: an example from the kangan and dalan carbonate reservoirs, the world's largest non-associated gas reservoirs, near the persian gulf
title_full Conversion of 3d seismic attributes to reservoir hydraulic flow units using a neural network approach: an example from the kangan and dalan carbonate reservoirs, the world's largest non-associated gas reservoirs, near the persian gulf
title_fullStr Conversion of 3d seismic attributes to reservoir hydraulic flow units using a neural network approach: an example from the kangan and dalan carbonate reservoirs, the world's largest non-associated gas reservoirs, near the persian gulf
title_full_unstemmed Conversion of 3d seismic attributes to reservoir hydraulic flow units using a neural network approach: an example from the kangan and dalan carbonate reservoirs, the world's largest non-associated gas reservoirs, near the persian gulf
title_sort Conversion of 3d seismic attributes to reservoir hydraulic flow units using a neural network approach: an example from the kangan and dalan carbonate reservoirs, the world's largest non-associated gas reservoirs, near the persian gulf
dc.creator.fl_str_mv Dezfoolian, Mohammad Amin
Riahi, Mohammad Ali
Kadkhodaie-Ilkhchi, Ali
dc.contributor.author.spa.fl_str_mv Dezfoolian, Mohammad Amin
Riahi, Mohammad Ali
Kadkhodaie-Ilkhchi, Ali
dc.subject.proposal.spa.fl_str_mv seismic attributes
seismic inversion
flow zone indicator
reservoir quality index
hydraulic flow unit
topic seismic attributes
seismic inversion
flow zone indicator
reservoir quality index
hydraulic flow unit
description This study presents an intelligent model based on probabilistic neural networks (PNN) to produce a quantitative formulation between seismic attributes and hydraulic flow units (HFUs). Neural networks have been used for the last several years to estimate reservoir properties. However, their application for hydraulic flow unit estimation on a cube of seismic data is an interesting topic for research. The methodology for this application is illustrated using 3D seismic attributes and petrophysical and core data from 6 wells from the Kangan and Dalan gas reservoirs in the Persian Gulf basin. The methodology introduced in this study estimates HFUs from a large volume of 3D seismic data. This may increase exploration success rates and reduce costs through the application of more reliable output results in hydrocarbon exploration programs. 4 seismic attributes, including acoustic impedance, dominant fre- quency, amplitude weighted phase and instantaneous phase, are considered as the optimal inputs for pre- dicting HFUs from seismic data. The proposed technique is successfully tested in a carbonate sequence of Permian-Triassic rocks from the studied area. The results of this study demonstrate that there is a good agreement between the core and PNN-derived flow units. The PNN used in this study is successful in modeling flow units from 3D seismic data for which no core data or well log data are available. ResumenEste estudio presenta un modelo inteligente basado en redes neuronales probabilísticas (PNN) para pro- ducir una formulación cuantitativa entre atributos sísmicos y unidades de flujo hidráulico (HFU). Las redes neuronales han sido utilizadas durante los últimos años para estimar las propiedades de reserva. Sin embargo, su aplicación para estimación de unidades de flujo hidráulico en un cubo de datos sísmicos es un tema importante de investigación. La metodología para esta aplicación está ilustrada a partir de datos tridimensionales y datos petrofísicos y de núcleo tomados en 6 pozos de las reservas de Kangan y Dalan, de la cuenca del Golfo Pérsico. La metodología introducida en este estudio estima las HFU de un gran volúmen de datos sísmicos tridimensionales. Esto podría incrementar los índices positivos de explora- ción y reducir los costos a través de una aplicación más confiable en resultados de producción para los programas de exploración en hidrocarbonos. Cuatro atributos sísmicos, obstrucción acústica, frecuencia dominante, fase de amplitud media y fase instantánea, son considerados en este trabajo como aportes claves para predecir los datos sísmicos de las HFU. La técnica propuesta ha sido evaluada exitosamente en una secuencia carbonada de rocas del Pérmicotriásico tomadas del área de estudio. Los resultados de este trabajo demuestran que hay concordancia entre la base de las PNN y las unidades derivadas de flujo. Las PNN utilizadas en este estudio son capaces de modelar unidades de flujo de datos sísmicos tridimen- sionales para los cuales no hay un centro de datos o una secuencia de datos disponible.
publishDate 2013
dc.date.issued.spa.fl_str_mv 2013
dc.date.accessioned.spa.fl_str_mv 2019-06-28T12:39:10Z
dc.date.available.spa.fl_str_mv 2019-06-28T12:39:10Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/43915
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/34013/
http://bdigital.unal.edu.co/34013/2/
url https://repositorio.unal.edu.co/handle/unal/43915
http://bdigital.unal.edu.co/34013/
http://bdigital.unal.edu.co/34013/2/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv http://revistas.unal.edu.co/index.php/esrj/article/view/34000
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Earth Sciences Research Journal
Earth Sciences Research Journal
dc.relation.ispartofseries.none.fl_str_mv Earth Sciences Research Journal; Vol. 17, núm. 2 (2013) Earth Sciences Research Journal; Vol. 17, núm. 2 (2013) 2339-3459 1794-6190
dc.relation.references.spa.fl_str_mv Dezfoolian, Mohammad Amin and Riahi, Mohammad Ali and Kadkhodaie-Ilkhchi, Ali (2013) Conversion of 3d seismic attributes to reservoir hydraulic flow units using a neural network approach: an example from the kangan and dalan carbonate reservoirs, the world's largest non-associated gas reservoirs, near the persian gulf. Earth Sciences Research Journal; Vol. 17, núm. 2 (2013) Earth Sciences Research Journal; Vol. 17, núm. 2 (2013) 2339-3459 1794-6190 .
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv UNIVERSIDAD NACIONAL DE COLOMBIA
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/43915/1/34000-129550-1-SP.doc
https://repositorio.unal.edu.co/bitstream/unal/43915/2/34000-129551-1-SP.doc
https://repositorio.unal.edu.co/bitstream/unal/43915/3/34000-200270-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/43915/4/34000-200270-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv 90bde727b8eec0b02aaf098186c022ae
956645a4ef3642042c43c2b4ac36ade5
30469673a0c19922e840e481d81dd908
f0d26dc35cf28d7c989149b05e281950
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090196100055040
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Dezfoolian, Mohammad Amin807b3c94-31ed-4abe-bf52-5cb5408c7c58300Riahi, Mohammad Alif99b6a26-d8b7-4e4f-b02d-3cfa85d8c946300Kadkhodaie-Ilkhchi, Ali8c60b8bc-3fa4-4419-90b1-ba83c30af69f3002019-06-28T12:39:10Z2019-06-28T12:39:10Z2013https://repositorio.unal.edu.co/handle/unal/43915http://bdigital.unal.edu.co/34013/http://bdigital.unal.edu.co/34013/2/This study presents an intelligent model based on probabilistic neural networks (PNN) to produce a quantitative formulation between seismic attributes and hydraulic flow units (HFUs). Neural networks have been used for the last several years to estimate reservoir properties. However, their application for hydraulic flow unit estimation on a cube of seismic data is an interesting topic for research. The methodology for this application is illustrated using 3D seismic attributes and petrophysical and core data from 6 wells from the Kangan and Dalan gas reservoirs in the Persian Gulf basin. The methodology introduced in this study estimates HFUs from a large volume of 3D seismic data. This may increase exploration success rates and reduce costs through the application of more reliable output results in hydrocarbon exploration programs. 4 seismic attributes, including acoustic impedance, dominant fre- quency, amplitude weighted phase and instantaneous phase, are considered as the optimal inputs for pre- dicting HFUs from seismic data. The proposed technique is successfully tested in a carbonate sequence of Permian-Triassic rocks from the studied area. The results of this study demonstrate that there is a good agreement between the core and PNN-derived flow units. The PNN used in this study is successful in modeling flow units from 3D seismic data for which no core data or well log data are available. ResumenEste estudio presenta un modelo inteligente basado en redes neuronales probabilísticas (PNN) para pro- ducir una formulación cuantitativa entre atributos sísmicos y unidades de flujo hidráulico (HFU). Las redes neuronales han sido utilizadas durante los últimos años para estimar las propiedades de reserva. Sin embargo, su aplicación para estimación de unidades de flujo hidráulico en un cubo de datos sísmicos es un tema importante de investigación. La metodología para esta aplicación está ilustrada a partir de datos tridimensionales y datos petrofísicos y de núcleo tomados en 6 pozos de las reservas de Kangan y Dalan, de la cuenca del Golfo Pérsico. La metodología introducida en este estudio estima las HFU de un gran volúmen de datos sísmicos tridimensionales. Esto podría incrementar los índices positivos de explora- ción y reducir los costos a través de una aplicación más confiable en resultados de producción para los programas de exploración en hidrocarbonos. Cuatro atributos sísmicos, obstrucción acústica, frecuencia dominante, fase de amplitud media y fase instantánea, son considerados en este trabajo como aportes claves para predecir los datos sísmicos de las HFU. La técnica propuesta ha sido evaluada exitosamente en una secuencia carbonada de rocas del Pérmicotriásico tomadas del área de estudio. Los resultados de este trabajo demuestran que hay concordancia entre la base de las PNN y las unidades derivadas de flujo. Las PNN utilizadas en este estudio son capaces de modelar unidades de flujo de datos sísmicos tridimen- sionales para los cuales no hay un centro de datos o una secuencia de datos disponible.application/pdfspaUNIVERSIDAD NACIONAL DE COLOMBIAhttp://revistas.unal.edu.co/index.php/esrj/article/view/34000Universidad Nacional de Colombia Revistas electrónicas UN Earth Sciences Research JournalEarth Sciences Research JournalEarth Sciences Research Journal; Vol. 17, núm. 2 (2013) Earth Sciences Research Journal; Vol. 17, núm. 2 (2013) 2339-3459 1794-6190Dezfoolian, Mohammad Amin and Riahi, Mohammad Ali and Kadkhodaie-Ilkhchi, Ali (2013) Conversion of 3d seismic attributes to reservoir hydraulic flow units using a neural network approach: an example from the kangan and dalan carbonate reservoirs, the world's largest non-associated gas reservoirs, near the persian gulf. Earth Sciences Research Journal; Vol. 17, núm. 2 (2013) Earth Sciences Research Journal; Vol. 17, núm. 2 (2013) 2339-3459 1794-6190 .Conversion of 3d seismic attributes to reservoir hydraulic flow units using a neural network approach: an example from the kangan and dalan carbonate reservoirs, the world's largest non-associated gas reservoirs, near the persian gulfArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTseismic attributesseismic inversionflow zone indicatorreservoir quality indexhydraulic flow unitORIGINAL34000-129550-1-SP.docapplication/msword1890304https://repositorio.unal.edu.co/bitstream/unal/43915/1/34000-129550-1-SP.doc90bde727b8eec0b02aaf098186c022aeMD5134000-129551-1-SP.docapplication/msword38400https://repositorio.unal.edu.co/bitstream/unal/43915/2/34000-129551-1-SP.doc956645a4ef3642042c43c2b4ac36ade5MD5234000-200270-1-PB.pdfapplication/pdf3356070https://repositorio.unal.edu.co/bitstream/unal/43915/3/34000-200270-1-PB.pdf30469673a0c19922e840e481d81dd908MD53THUMBNAIL34000-200270-1-PB.pdf.jpg34000-200270-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg7305https://repositorio.unal.edu.co/bitstream/unal/43915/4/34000-200270-1-PB.pdf.jpgf0d26dc35cf28d7c989149b05e281950MD54unal/43915oai:repositorio.unal.edu.co:unal/439152023-02-15 23:07:00.966Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co