Método para la predicción temporal de avenidas torrenciales a partir de datos abiertos usando aprendizaje de máquinas

ilustraciones, diagramas, mapas, tablas

Autores:
Palacio Jiménez, David
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81507
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81507
https://repositorio.unal.edu.co/
Palabra clave:
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
Aguas lluvias
Rain-water (Water supply)
Desastres
Disasters
Inundaciones
Floods
Avenidas torrenciales
Gestión del riesgo
Aprendizaje de máquinas
Datos abiertos
Variables hidrometeorológicas
Desbalanceo de clases
Machine learning
Debris flow
Risk management
Open data
Hydrometeorological variables
Imbalanced classes
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_77ce8c0fbf51bbe16953febb4da0569a
oai_identifier_str oai:repositorio.unal.edu.co:unal/81507
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Método para la predicción temporal de avenidas torrenciales a partir de datos abiertos usando aprendizaje de máquinas
dc.title.translated.eng.fl_str_mv Method for the temporal prediction of debris flows from open data using machine learning
title Método para la predicción temporal de avenidas torrenciales a partir de datos abiertos usando aprendizaje de máquinas
spellingShingle Método para la predicción temporal de avenidas torrenciales a partir de datos abiertos usando aprendizaje de máquinas
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
Aguas lluvias
Rain-water (Water supply)
Desastres
Disasters
Inundaciones
Floods
Avenidas torrenciales
Gestión del riesgo
Aprendizaje de máquinas
Datos abiertos
Variables hidrometeorológicas
Desbalanceo de clases
Machine learning
Debris flow
Risk management
Open data
Hydrometeorological variables
Imbalanced classes
title_short Método para la predicción temporal de avenidas torrenciales a partir de datos abiertos usando aprendizaje de máquinas
title_full Método para la predicción temporal de avenidas torrenciales a partir de datos abiertos usando aprendizaje de máquinas
title_fullStr Método para la predicción temporal de avenidas torrenciales a partir de datos abiertos usando aprendizaje de máquinas
title_full_unstemmed Método para la predicción temporal de avenidas torrenciales a partir de datos abiertos usando aprendizaje de máquinas
title_sort Método para la predicción temporal de avenidas torrenciales a partir de datos abiertos usando aprendizaje de máquinas
dc.creator.fl_str_mv Palacio Jiménez, David
dc.contributor.advisor.none.fl_str_mv Martínez Carvajal, Hernán Eduardo
ARISTIZABAL GIRALDO, EDIER VICENTE
Branch Bedoya, John Willian
dc.contributor.author.none.fl_str_mv Palacio Jiménez, David
dc.contributor.researchgroup.spa.fl_str_mv Investigación en Geología Ambiental Gea
Gidia: Grupo de Investigación Y Desarrollo en Inteligencia Artificial
dc.subject.ddc.spa.fl_str_mv 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
topic 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
Aguas lluvias
Rain-water (Water supply)
Desastres
Disasters
Inundaciones
Floods
Avenidas torrenciales
Gestión del riesgo
Aprendizaje de máquinas
Datos abiertos
Variables hidrometeorológicas
Desbalanceo de clases
Machine learning
Debris flow
Risk management
Open data
Hydrometeorological variables
Imbalanced classes
dc.subject.lemb.none.fl_str_mv Aguas lluvias
Rain-water (Water supply)
Desastres
Disasters
Inundaciones
Floods
dc.subject.proposal.spa.fl_str_mv Avenidas torrenciales
Gestión del riesgo
Aprendizaje de máquinas
Datos abiertos
Variables hidrometeorológicas
Desbalanceo de clases
Machine learning
dc.subject.proposal.eng.fl_str_mv Debris flow
Risk management
Open data
Hydrometeorological variables
Imbalanced classes
description ilustraciones, diagramas, mapas, tablas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-06-06T15:48:29Z
dc.date.available.none.fl_str_mv 2022-06-06T15:48:29Z
dc.date.issued.none.fl_str_mv 2022
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81507
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81507
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Achour, Y., Gar¸cia, S., y Cavaleiro, V. (2018). GIS-based spatial prediction of debris flows using logistic regression and frequency ratio models for Zˆezere River basin and its surrounding area, Northwest Covilh˜a, Portugal. Arabian Journal of Geosciences, 11 (18), 1–17. Descarga do de https://link-springer-com.ezproxy.unal.edu.co/article/10.1007/s12517-018-3920-9 doi: 0.1007/S12517-018-3920-9/FIGURES/6
Al Majzoub, H., Elgedawy, I., Akaydın, O¨ ., y K¨ose Uluk¨ok, M. (2020). HCAB-SMOTE: A Hybrid Clustered Affinitive Borderline SMOTE Approach for Imbalanced Data Binary Classification. Arabian Journal for Science and Engineering, 45 (4), 3205–3222. Descargado de https:// link-springer-com.ezproxy.unal.edu.co/article/10.1007/s13369-019-04336-1 doi: 10.1007/S13369-019-04336-1/FIGURES/19
Alexandropoulos, S. A. N., Kotsiantis, S. B., y Vrahatis, M. N. (2019). Data preprocessing in pre- dictive data mining. The Knowledge Engineering Review , 34 . Descargado de https://www .cambridge.org/core/journals/knowledge-engineering-review/article/abs/data -preprocessing-in-predictive-data-mining/F7F2D7AC540D2815C613BA6575359AAA doi: 10.1017/S026988891800036X
Alipour, A., Ahmadalipour, A., Abbaszadeh, P., y Moradkhani, H. (2020). Leveraging machine learning for predicting flash flood damage in the southeast US. Environmental Research Letters, 15 (2), 024011. Descargado de https://doi.org/10.1088/1748-9326/ab6edd doi: 10.1088/1748-9326/ab6edd
Arango, M. I., Aristiz´abal, E., y G´omez, F. (2020). Morphometrical analysis of torrential flows-prone catchments in tropical and mountainous terrain of the Colombian Andes by machine learning techniques. Natural Hazards, 105 (1), 983–1012. Descargado de https://link.springer .com/article/10.1007/s11069-020-04346-5 doi: 10.1007/S11069-020-04346-5
Aristiz´abal, E. (2013). SHIA Landslide: Developing a physically based model to predict shallow landslides triggered by rainfall in tropical environments (Tesis Doctoral, Universidad Nacional de Colombia). Descargado de https://repositorio.unal.edu.co/handle/unal/20811
Aristiz´abal, E., Arango, M. I., y Garcia, I. K. (2020). Definici´on y clasificaci´on de las avenidas torrenciales y su impacto en los andes colombianos. Revista Colombiana de Geograf´ıa, 29 , 242-258. doi: 10.15446/rcdg.v29n1.72612
Baez-Villanueva, O. M., Zambrano-Bigiarini, M., Ribbe, L., Nauditt, A., Giraldo-Osorio, J. D., y Thinh, N. X. (2018). Temporal and spatial evaluation of satellite rainfall estimates over different regions in Latin-America. Atmospheric Research, 213 , 34–50. Descarga- do de https://www.sciencedirect.com/science/article/pii/S0169809517313029 doi: https://doi.org/10.1016/j.atmosres.2018.05.011
Bai, T., Jiang, Z., y Tahmasebi, P. (2021). Debris flow prediction with machine learning: smart management of urban systems and infrastructures. Neural Computing and Applications, 33 (22), 15769–15779. Descargado de https://doi.org/10.1007/s00521-021-06197-y doi: 10.1007/s00521-021-06197-y
Bao, Y., Chen, J., Sun, X., Han, X., Li, Y., Zhang, Y., . . . Wang, J. (2019). Debris flow prediction and prevention in reservoir area based on finite volume type shallow-water model: a case study of pumped-storage hydroelectric power station site in Yi County, Hebei, China. Environmental Earth Sciences, 78 (19). doi: 10.1007/S12665-019-8586-4
Benhar, H., Idri, A., y Fern´andez-Alem´an, J. L. (2019). A Systematic Mapping Study of Data Preparation in Heart Disease Knowledge Discovery. Journal of Medical Systems, 43 (1), 1–17. Descargado de https://link.springer.com/article/10.1007/s10916-018-1134-z doi: 10.1007/S10916-018-1134-Z/TABLES/6
Breiman, L. (2001, oct). Random Forests. Machine Learning 2001 45:1 , 45 (1), 5–32. Descarga- do de https://link.springer.com/article/10.1023/A:1010933404324 doi: 10.1023/A: 1010933404324
Brownlee, J. (2020). How to Choose a Feature Selection Method For Machine Learning. Descarga- do 2022-05-08, de https://machinelearningmastery.com/feature-selection-with-real -and-categorical-data/
Bui, D. T., Ngo, P.-T. T., Pham, T. D., Jaafari, A., Minh, N. Q., Hoa, P. V., y Samui, P. (2019). A novel hybrid approach based on a swarm intelligence optimized extreme learning machine for flash flood susceptibility mapping. CATENA, 179 , 184-196. doi: https://doi.org/10.1016/ j.catena.2019.04.009
Caballero, H. (2011). Las avenidas torrenciales una amenaza potencial en el valle de Aburr´a. Gesti´on y Ambiente, 14 (3), 45–50.
Franklin, J. (2005). The elements of statistical learning: data mining, inference and prediction. The Mathematical Intelligencer , 27 (2), 83–85. doi: 10.1007/BF02985802
Gelcer, E., Fraisse, C., Dzotsi, K., Hu, Z., Mendes, R., y Zotarelli, L. (2013). Ef- fects of El Nin˜o Southern Oscillation on the space-time variability of Agricultu- ral Reference Index for Drought in midlatitudes. Agricultural and Forest Me- teorology , 174-175 , 110–128. Descargado de https://www.researchgate.net/ publication/248702784 Effects of El Nino Southern Oscillation on the space -time variability of Agricultural Reference Index for Drought in midlatitudes doi: 10.1016/J.AGRFORMET.2013.02.006
George, D., y Iverson, R. (2014). A depth-averaged debris-flow model that includes the effects of evolving dilatancy. ii. numerical predictions and experimental tests. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470 (2170). Descar- gado de https://www.scopus.com/inward/record.uri?eid=2-s2.0-84907221089&doi=10 .1098%2frspa.2013.0820&partnerID=40&md5=5362643cdd5862ce8b74d635ade1329b doi: 10.1098/rspa.2013.0820
Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., y Chang, K.-T. (2012). Landslide inventory maps: New tools for an old problem. Earth-Science Reviews, 112 (1), 42–66. Descargado de https://www.sciencedirect.com/science/article/pii/ S0012825212000128 doi: https://doi.org/10.1016/j.earscirev.2012.02.001
Han, H., Wang, W. Y., y Mao, B. H. (2005). Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning. Lecture Notes in Computer Science, 3644 LNCS , 878–887. Descargado de https://link-springer-com.ezproxy.unal.edu.co/chapter/ 10.1007/11538059 91 doi: 10.1007/11538059 91
Heckerman, D. (1986). Probabilistic Interpretations for Mycin’s Certainty Factors. Machine Intelli- gence and Pattern Recognition, 4 (C), 167–196. Descargado de https://www.sciencedirect .com/science/article/abs/pii/B9780444700582500176?via%3Dihub doi: 10.1016/B978 -0-444-70058-2.50017-6
Hosseini, F. S., Choubin, B., Mosavi, A., Nabipour, N., Shamshirband, S., Darabi, H., y Haghighi, A. T. (2020). Flash-flood hazard assessment using ensembles and bayesian-based machine learning models: Application of the simulated annealing feature selection method. Science of The Total Environment , 711 , 135161. Descargado de https://www.sciencedirect.com/ science/article/pii/S0048969719351538 doi: https://doi.org/10.1016/j.scitotenv.2019 .135161
Hou, J., Dou, M., Zhang, Y., Wang, J., y Li, G. (2021). An evaluation model for landslide and debris flow prediction using multiple hydrometeorological variables. Environmental Earth Sciences, 80 (515), 1–18. Descargado de https://link.springer.com/article/10.1007/ s12665-021-09840-y doi: 10.1007/S12665-021-09840-Y
Hoyos, C. D., Ceballos, L. I., P´erez-Carrasquilla, J. S., Sepulveda, J., L´opez-Zapata, S. M., Zuluaga, M. D., . . . Zapata, M. (2019). Meteorological conditions leading to the 2015 Salgar flash flood: Lessons for vulnerable regions in tropical complex terrain. Natural Hazards and Earth System Sciences, 19 (11), 2635–2665. doi: 10.5194/NHESS-19-2635-2019
Imaizumi, F., Masui, T., Yokota, Y., Tsunetaka, H., Hayakawa, Y. S., y Hotta, N. (2019). Initiation and runout characteristics of debris flow surges in Ohya landslide scar, Japan. Geomorpho- logy , 339 , 58–69. Descargado de http://www.sciencedirect.com/science/article/pii/ S0169555X19301825http://files/173/S0169555X19301825.html doi: 10.1016/j.geomorph .2019.04.026
Janizadeh, S., Avand, M., Jaafari, A., Phong, T. V., Bayat, M., Ahmadisharaf, E., . . . Lee, S. (2019). Prediction success of machine learning methods for flash flood susceptibility mapping in the tafresh watershed, iran. Sustainability, 11 (19). Descargado de https://www.mdpi.com/ 2071-1050/11/19/5426 doi: 10.3390/su11195426
Kern, A., Addison, P., Oommen, T., Salazar, S., y Coffman, R. (2017). Machine learning based predictive modeling of debris flow probability following wildfire in the intermountain western united states. Mathematical geosciences, 49 , 717–735. doi: 10.1007/s11004-017-9681-2
Kruskal, W. H., y Wallis, . W. A. (1952). Use of Ranks in One-Criterion Variance Analysis. Journal of the American Statistical Association, 47 (260), 583–621. Descargado de https:// people.ucalgary.ca/$\sim$jefox/KruskalandWallis1952.pdf
Liang, Z., Wang, C. M., Zhang, Z. M., y Khan, K. U. J. (2020). A comparison of statistical and machine learning methods for debris flow susceptibility mapping. Stochastic Environmental Research and Risk Assessment , 34 (11), 1887–1907. Descargado de https://link.springer .com/article/10.1007/s00477-020-01851-8 doi: 10.1007/S00477-020-01851-8
Liu, J., Gao, Y., y Hu, F. (2021). A fast network intrusion detection system using adaptive synthetic oversampling and LightGBM. Computers and Security, 106 , 102289. doi: 10.1016/ J.COSE.2021.102289
Martinez-Plumed, F., Contreras-Ochando, L., Ferri, C., Hernandez-Orallo, J., Kull, M., Lachiche, N., . . . Flach, P. (2021). CRISP-DM Twenty Years Later: From Data Mining Processes to Data Science Trajectories. IEEE Transactions on Knowledge and Data Engineering, 33 (8), 3048–3061. doi: 10.1109/TKDE.2019.2962680
Naranjo, K., Aristiz´abal, E. V., y Morales, J. A. (2019). Influencia del ENSO en la va- riabilidad espacial y temporal de la ocurrencia de movimientos en masa desencadena- dos por lluvias en la regi´on Andina colombiana. Ingenier´ıa y Ciencia, 15 , 11 - 42. Descargado de http://www.scielo.org.co/scielo.php?script=sci arttext&pid=S1794 -91652019000100011&nrm=iso
Nguyen, V. N., Yariyan, P., Amiri, M., Tran, A. D., Pham, T. D., Do, M. P., . . . Bui, D. T. (2020). A New Modeling Approach for Spatial Prediction of Flash Flood with Biogeo- graphy Optimized CHAID Tree Ensemble and Remote Sensing Data. Remote Sensing, 12 (9), 1373. Descargado de https://www.mdpi.com/2072-4292/12/9/1373/htmhttps:// www.mdpi.com/2072-4292/12/9/1373 doi: 10.3390/RS12091373
Paw-luszek, K., Marczak, S., Borkowski, A., y Tarolli, P. (2019). Multi-Aspect Analysis of Object- Oriented Landslide Detection Based on an Extended Set of LiDAR-Derived Terrain Features. ISPRS International Journal of Geo-Information, 8 (8). Descargado de https://www.mdpi .com/2220-9964/8/8/321 doi: 10.3390/ijgi8080321
Qing, F., Zhao, Y., Meng, X., Su, X., Qi, T., y Yue, D. (2020). Application of machine learning to debris flow susceptibility mapping along the China-Pakistan Karakoram Highway. Remote Sensing, 12 (18). doi: 10.3390/RS12182933
Rivera, J. A., y Penalba, O. C. (2015). El Nin˜o/La Nin˜a events as a tool for regional drought monitoring in Southern South America. Drought: Re- search and Science-Policy Interfacing - Proceedings of the International Conferen- ce on Drought: Research and Science-Policy Interfacing, 293–300. Descargado de https://www.researchgate.net/publication/274195085 El NinoLa Nina events as a tool for regional drought monitoring in Southern South America doi: 10.1201/ B18077-50
S´aez, J. A., Luengo, J., Stefanowski, J., y Herrera, F. (2014). Managing Borderline and Noisy Examples in Imbalanced Classification by Combining SMOTE with Ensemble Fil- tering. Lecture Notes in Computer Science, 8669 LNCS , 61–68. Descargado de https:// link-springer-com.ezproxy.unal.edu.co/chapter/10.1007/978-3-319-10840-7 8 doi: 10.1007/978-3-319-10840-7 8
Shirzadi, A., Asadi, S., Shahabi, H., Ronoud, S., Clague, J. J., Khosravi, K., . . . Bui, D. T. (2020). A novel ensemble learning based on Bayesian Belief Network coupled with an extreme lear- ning machine for flash flood susceptibility mapping. Engineering Applications of Artificial Intelligence, 96 , 103971. doi: 10.1016/J.ENGAPPAI.2020.103971
Tang, W., tao Ding, H., sheng Chen, N., Ma, S. C., hong Liu, L., lin Wu, K., y feng Tian, S. (2021). Artificial Neural Network-based prediction of glacial debris flows in the ParlungZangbo Basin, southeastern Tibetan Plateau, China. Journal of Mountain Science, 18 (1), 51–67. doi: 10.1007/S11629-020-6414-7
Terti, G., Ruin, I., Gourley, J. J., Kirstetter, P., Flamig, Z., Blanchet, J., . . . Anquetin, S. (2019). Toward Probabilistic Prediction of Flash Flood Human Impacts. Risk analysis : an official publication of the Society for Risk Analysis, 39 (1), 140–161. doi: 10.1111/risa.12921
Toyos, G., Gunasekera, R., Zanchetta, G., Sulpizio, R., Favalli, M., y Pareschi, M. T. (2008). GIS- assisted modelling for debris flow hazard assessment based on the events of May 1998 in the area of Sarno, Southern Italy: II. Velocity and dynamic pressure. Earth Surface Processes and Landforms, 33 . Descargado de https://onlinelibrary.wiley.com/doi/abs/10.1002/esp .1640http://files/161/esp.html doi: 10.1002/esp.1640
Vargas-Cuervo, G., Rotigliano, E., y Conoscenti, C. (2019). Prediction of debris-avalanches and -flows triggered by a tropical storm by using a stochastic approach: An application to the events occurred in Mocoa (Colombia) on 1 April 2017. Geomorphology , 339 , 31–43. doi: 10.1016/J.GEOMORPH.2019.04.023
Von Ru¨tte, J., y Or, D. (2015). Linking rainfall-induced landslides with predictions of debris flow runout distances. Landslides, 13 , 1097-1107. doi: 10.1007/s10346-015-0621-2
Yan, Y., Zhuang, Q., Zan, C., Ren, J., Yang, L., Wen, Y., . . . Kong, L. (2021). Using the Google Earth Engine to rapidly monitor impacts of geohazards on ecological quality in highly susceptible areas. Ecological Indicators, 132 , 108258. Descargado de https:// www.sciencedirect.com/science/article/pii/S1470160X21009237 doi: https://doi.org/ 10.1016/j.ecolind.2021.108258
Yong, Y. (2008). Characteristics and mechanism of landslides in loess during freezing and thawing periods in seasonally frozen ground regions. Journal of Disaster Prevention and Mitigation Engineering
Zapata, D. (2021). M´etodo para la detecci´on de estudiantes en riesgo de desercio´n, basado en un disen˜o de m´etricas y una t´ecnica de miner´ıa de datos (Tesis Doctoral, Universidad Nacional de Colombia, Medell´ın). Descargado de https://repositorio.unal.edu.co/handle/unal/ 80615
Zhang, S., Yang, H., Wei, F., Jiang, Y., y Liu, D. (2014). A model of debris flow forecast based on the water-soil coupling mechanism. Journal of Earth Science, 25 (4), 757–763. Descargado de https://link.springer.com/article/10.1007/s12583-014-0463-1 doi: 10.1007/S12583 -014-0463-1
Zhang, Y., Ge, T., Tian, W., y Liou, Y.-A. (2019). Debris Flow Susceptibility Mapping Using Machine-Learning Techniques in Shigatse Area, China. Remote Sensing, 11 (23), 2801. Descargado de https://www.mdpi.com/2072-4292/11/23/2801http://files/ 70/Zhangetal.-2019-DebrisFlowSusceptibilityMappingUsingMachine-L.pdfhttp:// files/71/2801.html doi: 10.3390/rs11232801
Zhao, Y., Meng, X., Qi, T., Li, Y., Chen, G., Yue, D., y Qing, F. (2021). AI-based rainfall prediction model for debris flows. Engineering Geology . doi: 10.1016/J.ENGGEO.2021.106456
Zhao, Z., Anand, R., y Wang, M. (2019). Maximum relevance and minimum redundancy feature selection methods for a marketing machine learning platform. Proceedings - 2019 IEEE International Conference on Data Science and Advanced Analytics, DSAA, 442–452. doi: 10.1109/DSAA.2019.00059
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xiii, 88 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Analítica
dc.publisher.department.spa.fl_str_mv Departamento de la Computación y la Decisión
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81507/3/1039463302.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/81507/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81507/4/1039463302.2022.pdf.jpg
bitstream.checksum.fl_str_mv d6719d6330f20251513b926c8f5334a0
8153f7789df02f0a4c9e079953658ab2
a8fc18a60d969ac508cf7fd1cde5417a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089981809917952
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Martínez Carvajal, Hernán Eduardo9f4948ce22565e3d5276eaa769f0112e600ARISTIZABAL GIRALDO, EDIER VICENTE90428ddc90f91c351dec58ca14b30d89600Branch Bedoya, John Willian112eaa0bbeeaeb0d3d14dfe15d672a15600Palacio Jiménez, Davidb8ad861d934f27a4a58328836b3f8365Investigación en Geología Ambiental GeaGidia: Grupo de Investigación Y Desarrollo en Inteligencia Artificial2022-06-06T15:48:29Z2022-06-06T15:48:29Z2022https://repositorio.unal.edu.co/handle/unal/81507Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, mapas, tablasLas avenidas torrenciales son fenómenos destructivos característicos de regiones montañosas. En el departamento de Antioquia (Colombia), estos eventos ocurren con frecuencia y las pérdidas en términos económicos y de vidas humanas reflejan la importancia de predecirlos. Las condiciones climáticas extremas, la expansión urbana y el crecimiento poblacional tienden a incrementar el riesgo en aquellas zonas donde ya se han presentado eventos en el pasado. Actualmente, se carece de una base de datos que recopile el detalle de las avenidas torrenciales que han ocurrido en Antioquia con sus respectivas variables hidrometeorológicas, además, la mayoría de las investigaciones están orientadas a identificar la susceptibilidad espacial de estos fenómenos. Con el auge de las técnicas de aprendizaje de máquinas, se propone un método de clasificación binaria para la predicción temporal de avenidas torrenciales a partir de datos abiertos. De esta manera, se identifican las múltiples fuentes de información para construir un inventario de eventos con sus respectivas variables hidrometeorológicas. Luego se realiza el preprocesamiento y entendimiento profundo de los datos, de manera que se seleccionan las variables que más influencia tienen en la ocurrencia de las avenidas torrenciales mediante métodos de envoltura y de filtrado. Seguidamente, se aborda el problema del desbalanceo entre las clases, usando diferentes proporciones de los datos y generando datos sintéticos para evaluar el desempeño del clasificador propuesto. Por último, se obtiene que el algoritmo de bosques aleatorios con el conjunto de datos balanceado y desbalanceado en una proporción de 1:99 entre las clases de ocurrencia y no ocurrencia de avenida torrencial fue el que mejor desempeño obtuvo, logrando un F1-score y sensibilidad del 85% para el conjunto balanceado, mientras que el conjunto de datos desbalanceado obtuvo 66% y 55% respectivamente. Además, se determina que las variables que mayor influencia tienen en el modelo de clasificación corresponden a la lluvia antecedente de 1 día, la escorrentía, la evapotranspiración potencial y el índice de vegetación baja. (Texto tomado de la fuente)Debris flows are destructive phenomena characteristic of mountainous regions. In the Department of Antioquia (Colombia), these events occur frequently and the losses in economic terms and in human lives reflect the importance of predicting them. Extreme weather conditions, urbanization, and population growth tend to increase the risk in those areas where events have already occurred in the past. Currently, there is a lack of a database that compiles the details of the debris flows that have occurred in Antioquia with their respective hydrometeorological variables, in addition, most of the investigations are aimed at identifying the spatial susceptibility of these phenomena. With the rise of machine learning techniques, a binary classification method is proposed for the temporal prediction of debris flows from open data. In this way, multiple sources of information are identified to build an inventory of events with their respective hydrometeorological variables. Then, the preprocessing and deep understanding of the data is carried out, so that the variables that have the most influence on the occurrence of debris flows are selected through wrapping and filtering methods. Next, the problem of imbalance between classes is addressed, using different proportions of the data and generating synthetic data to evaluate the performance of the proposed classifier. Finally, it is obtained that the random forest algorithm with the balanced and unbalanced data set in a ratio of 1:99 between the classes of occurrence and non-occurrence of debris flows was the one that obtained the best performance, achieving an F1-score and sensitivity of 85% for the balanced set, while the unbalanced data set obtained 66% and 55% respectively. In addition, it is determined that the variables that have the greatest influence on the classification model correspond to the antecedent rainfall of 1 day, runoff, potential evapotranspiration, and the low vegetation index.MaestríaMagíster en Ingeniería - AnalíticaÁrea Curricular de Ingeniería de Sistemas e Informáticaxiii, 88 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - AnalíticaDepartamento de la Computación y la DecisiónFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaAguas lluviasRain-water (Water supply)DesastresDisastersInundacionesFloodsAvenidas torrencialesGestión del riesgoAprendizaje de máquinasDatos abiertosVariables hidrometeorológicasDesbalanceo de clasesMachine learningDebris flowRisk managementOpen dataHydrometeorological variablesImbalanced classesMétodo para la predicción temporal de avenidas torrenciales a partir de datos abiertos usando aprendizaje de máquinasMethod for the temporal prediction of debris flows from open data using machine learningTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAchour, Y., Gar¸cia, S., y Cavaleiro, V. (2018). GIS-based spatial prediction of debris flows using logistic regression and frequency ratio models for Zˆezere River basin and its surrounding area, Northwest Covilh˜a, Portugal. Arabian Journal of Geosciences, 11 (18), 1–17. Descarga do de https://link-springer-com.ezproxy.unal.edu.co/article/10.1007/s12517-018-3920-9 doi: 0.1007/S12517-018-3920-9/FIGURES/6Al Majzoub, H., Elgedawy, I., Akaydın, O¨ ., y K¨ose Uluk¨ok, M. (2020). HCAB-SMOTE: A Hybrid Clustered Affinitive Borderline SMOTE Approach for Imbalanced Data Binary Classification. Arabian Journal for Science and Engineering, 45 (4), 3205–3222. Descargado de https:// link-springer-com.ezproxy.unal.edu.co/article/10.1007/s13369-019-04336-1 doi: 10.1007/S13369-019-04336-1/FIGURES/19Alexandropoulos, S. A. N., Kotsiantis, S. B., y Vrahatis, M. N. (2019). Data preprocessing in pre- dictive data mining. The Knowledge Engineering Review , 34 . Descargado de https://www .cambridge.org/core/journals/knowledge-engineering-review/article/abs/data -preprocessing-in-predictive-data-mining/F7F2D7AC540D2815C613BA6575359AAA doi: 10.1017/S026988891800036XAlipour, A., Ahmadalipour, A., Abbaszadeh, P., y Moradkhani, H. (2020). Leveraging machine learning for predicting flash flood damage in the southeast US. Environmental Research Letters, 15 (2), 024011. Descargado de https://doi.org/10.1088/1748-9326/ab6edd doi: 10.1088/1748-9326/ab6eddArango, M. I., Aristiz´abal, E., y G´omez, F. (2020). Morphometrical analysis of torrential flows-prone catchments in tropical and mountainous terrain of the Colombian Andes by machine learning techniques. Natural Hazards, 105 (1), 983–1012. Descargado de https://link.springer .com/article/10.1007/s11069-020-04346-5 doi: 10.1007/S11069-020-04346-5Aristiz´abal, E. (2013). SHIA Landslide: Developing a physically based model to predict shallow landslides triggered by rainfall in tropical environments (Tesis Doctoral, Universidad Nacional de Colombia). Descargado de https://repositorio.unal.edu.co/handle/unal/20811Aristiz´abal, E., Arango, M. I., y Garcia, I. K. (2020). Definici´on y clasificaci´on de las avenidas torrenciales y su impacto en los andes colombianos. Revista Colombiana de Geograf´ıa, 29 , 242-258. doi: 10.15446/rcdg.v29n1.72612Baez-Villanueva, O. M., Zambrano-Bigiarini, M., Ribbe, L., Nauditt, A., Giraldo-Osorio, J. D., y Thinh, N. X. (2018). Temporal and spatial evaluation of satellite rainfall estimates over different regions in Latin-America. Atmospheric Research, 213 , 34–50. Descarga- do de https://www.sciencedirect.com/science/article/pii/S0169809517313029 doi: https://doi.org/10.1016/j.atmosres.2018.05.011Bai, T., Jiang, Z., y Tahmasebi, P. (2021). Debris flow prediction with machine learning: smart management of urban systems and infrastructures. Neural Computing and Applications, 33 (22), 15769–15779. Descargado de https://doi.org/10.1007/s00521-021-06197-y doi: 10.1007/s00521-021-06197-yBao, Y., Chen, J., Sun, X., Han, X., Li, Y., Zhang, Y., . . . Wang, J. (2019). Debris flow prediction and prevention in reservoir area based on finite volume type shallow-water model: a case study of pumped-storage hydroelectric power station site in Yi County, Hebei, China. Environmental Earth Sciences, 78 (19). doi: 10.1007/S12665-019-8586-4Benhar, H., Idri, A., y Fern´andez-Alem´an, J. L. (2019). A Systematic Mapping Study of Data Preparation in Heart Disease Knowledge Discovery. Journal of Medical Systems, 43 (1), 1–17. Descargado de https://link.springer.com/article/10.1007/s10916-018-1134-z doi: 10.1007/S10916-018-1134-Z/TABLES/6Breiman, L. (2001, oct). Random Forests. Machine Learning 2001 45:1 , 45 (1), 5–32. Descarga- do de https://link.springer.com/article/10.1023/A:1010933404324 doi: 10.1023/A: 1010933404324Brownlee, J. (2020). How to Choose a Feature Selection Method For Machine Learning. Descarga- do 2022-05-08, de https://machinelearningmastery.com/feature-selection-with-real -and-categorical-data/Bui, D. T., Ngo, P.-T. T., Pham, T. D., Jaafari, A., Minh, N. Q., Hoa, P. V., y Samui, P. (2019). A novel hybrid approach based on a swarm intelligence optimized extreme learning machine for flash flood susceptibility mapping. CATENA, 179 , 184-196. doi: https://doi.org/10.1016/ j.catena.2019.04.009Caballero, H. (2011). Las avenidas torrenciales una amenaza potencial en el valle de Aburr´a. Gesti´on y Ambiente, 14 (3), 45–50.Franklin, J. (2005). The elements of statistical learning: data mining, inference and prediction. The Mathematical Intelligencer , 27 (2), 83–85. doi: 10.1007/BF02985802Gelcer, E., Fraisse, C., Dzotsi, K., Hu, Z., Mendes, R., y Zotarelli, L. (2013). Ef- fects of El Nin˜o Southern Oscillation on the space-time variability of Agricultu- ral Reference Index for Drought in midlatitudes. Agricultural and Forest Me- teorology , 174-175 , 110–128. Descargado de https://www.researchgate.net/ publication/248702784 Effects of El Nino Southern Oscillation on the space -time variability of Agricultural Reference Index for Drought in midlatitudes doi: 10.1016/J.AGRFORMET.2013.02.006George, D., y Iverson, R. (2014). A depth-averaged debris-flow model that includes the effects of evolving dilatancy. ii. numerical predictions and experimental tests. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470 (2170). Descar- gado de https://www.scopus.com/inward/record.uri?eid=2-s2.0-84907221089&doi=10 .1098%2frspa.2013.0820&partnerID=40&md5=5362643cdd5862ce8b74d635ade1329b doi: 10.1098/rspa.2013.0820Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., y Chang, K.-T. (2012). Landslide inventory maps: New tools for an old problem. Earth-Science Reviews, 112 (1), 42–66. Descargado de https://www.sciencedirect.com/science/article/pii/ S0012825212000128 doi: https://doi.org/10.1016/j.earscirev.2012.02.001Han, H., Wang, W. Y., y Mao, B. H. (2005). Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning. Lecture Notes in Computer Science, 3644 LNCS , 878–887. Descargado de https://link-springer-com.ezproxy.unal.edu.co/chapter/ 10.1007/11538059 91 doi: 10.1007/11538059 91Heckerman, D. (1986). Probabilistic Interpretations for Mycin’s Certainty Factors. Machine Intelli- gence and Pattern Recognition, 4 (C), 167–196. Descargado de https://www.sciencedirect .com/science/article/abs/pii/B9780444700582500176?via%3Dihub doi: 10.1016/B978 -0-444-70058-2.50017-6Hosseini, F. S., Choubin, B., Mosavi, A., Nabipour, N., Shamshirband, S., Darabi, H., y Haghighi, A. T. (2020). Flash-flood hazard assessment using ensembles and bayesian-based machine learning models: Application of the simulated annealing feature selection method. Science of The Total Environment , 711 , 135161. Descargado de https://www.sciencedirect.com/ science/article/pii/S0048969719351538 doi: https://doi.org/10.1016/j.scitotenv.2019 .135161Hou, J., Dou, M., Zhang, Y., Wang, J., y Li, G. (2021). An evaluation model for landslide and debris flow prediction using multiple hydrometeorological variables. Environmental Earth Sciences, 80 (515), 1–18. Descargado de https://link.springer.com/article/10.1007/ s12665-021-09840-y doi: 10.1007/S12665-021-09840-YHoyos, C. D., Ceballos, L. I., P´erez-Carrasquilla, J. S., Sepulveda, J., L´opez-Zapata, S. M., Zuluaga, M. D., . . . Zapata, M. (2019). Meteorological conditions leading to the 2015 Salgar flash flood: Lessons for vulnerable regions in tropical complex terrain. Natural Hazards and Earth System Sciences, 19 (11), 2635–2665. doi: 10.5194/NHESS-19-2635-2019Imaizumi, F., Masui, T., Yokota, Y., Tsunetaka, H., Hayakawa, Y. S., y Hotta, N. (2019). Initiation and runout characteristics of debris flow surges in Ohya landslide scar, Japan. Geomorpho- logy , 339 , 58–69. Descargado de http://www.sciencedirect.com/science/article/pii/ S0169555X19301825http://files/173/S0169555X19301825.html doi: 10.1016/j.geomorph .2019.04.026Janizadeh, S., Avand, M., Jaafari, A., Phong, T. V., Bayat, M., Ahmadisharaf, E., . . . Lee, S. (2019). Prediction success of machine learning methods for flash flood susceptibility mapping in the tafresh watershed, iran. Sustainability, 11 (19). Descargado de https://www.mdpi.com/ 2071-1050/11/19/5426 doi: 10.3390/su11195426Kern, A., Addison, P., Oommen, T., Salazar, S., y Coffman, R. (2017). Machine learning based predictive modeling of debris flow probability following wildfire in the intermountain western united states. Mathematical geosciences, 49 , 717–735. doi: 10.1007/s11004-017-9681-2Kruskal, W. H., y Wallis, . W. A. (1952). Use of Ranks in One-Criterion Variance Analysis. Journal of the American Statistical Association, 47 (260), 583–621. Descargado de https:// people.ucalgary.ca/$\sim$jefox/KruskalandWallis1952.pdfLiang, Z., Wang, C. M., Zhang, Z. M., y Khan, K. U. J. (2020). A comparison of statistical and machine learning methods for debris flow susceptibility mapping. Stochastic Environmental Research and Risk Assessment , 34 (11), 1887–1907. Descargado de https://link.springer .com/article/10.1007/s00477-020-01851-8 doi: 10.1007/S00477-020-01851-8Liu, J., Gao, Y., y Hu, F. (2021). A fast network intrusion detection system using adaptive synthetic oversampling and LightGBM. Computers and Security, 106 , 102289. doi: 10.1016/ J.COSE.2021.102289Martinez-Plumed, F., Contreras-Ochando, L., Ferri, C., Hernandez-Orallo, J., Kull, M., Lachiche, N., . . . Flach, P. (2021). CRISP-DM Twenty Years Later: From Data Mining Processes to Data Science Trajectories. IEEE Transactions on Knowledge and Data Engineering, 33 (8), 3048–3061. doi: 10.1109/TKDE.2019.2962680Naranjo, K., Aristiz´abal, E. V., y Morales, J. A. (2019). Influencia del ENSO en la va- riabilidad espacial y temporal de la ocurrencia de movimientos en masa desencadena- dos por lluvias en la regi´on Andina colombiana. Ingenier´ıa y Ciencia, 15 , 11 - 42. Descargado de http://www.scielo.org.co/scielo.php?script=sci arttext&pid=S1794 -91652019000100011&nrm=isoNguyen, V. N., Yariyan, P., Amiri, M., Tran, A. D., Pham, T. D., Do, M. P., . . . Bui, D. T. (2020). A New Modeling Approach for Spatial Prediction of Flash Flood with Biogeo- graphy Optimized CHAID Tree Ensemble and Remote Sensing Data. Remote Sensing, 12 (9), 1373. Descargado de https://www.mdpi.com/2072-4292/12/9/1373/htmhttps:// www.mdpi.com/2072-4292/12/9/1373 doi: 10.3390/RS12091373Paw-luszek, K., Marczak, S., Borkowski, A., y Tarolli, P. (2019). Multi-Aspect Analysis of Object- Oriented Landslide Detection Based on an Extended Set of LiDAR-Derived Terrain Features. ISPRS International Journal of Geo-Information, 8 (8). Descargado de https://www.mdpi .com/2220-9964/8/8/321 doi: 10.3390/ijgi8080321Qing, F., Zhao, Y., Meng, X., Su, X., Qi, T., y Yue, D. (2020). Application of machine learning to debris flow susceptibility mapping along the China-Pakistan Karakoram Highway. Remote Sensing, 12 (18). doi: 10.3390/RS12182933Rivera, J. A., y Penalba, O. C. (2015). El Nin˜o/La Nin˜a events as a tool for regional drought monitoring in Southern South America. Drought: Re- search and Science-Policy Interfacing - Proceedings of the International Conferen- ce on Drought: Research and Science-Policy Interfacing, 293–300. Descargado de https://www.researchgate.net/publication/274195085 El NinoLa Nina events as a tool for regional drought monitoring in Southern South America doi: 10.1201/ B18077-50S´aez, J. A., Luengo, J., Stefanowski, J., y Herrera, F. (2014). Managing Borderline and Noisy Examples in Imbalanced Classification by Combining SMOTE with Ensemble Fil- tering. Lecture Notes in Computer Science, 8669 LNCS , 61–68. Descargado de https:// link-springer-com.ezproxy.unal.edu.co/chapter/10.1007/978-3-319-10840-7 8 doi: 10.1007/978-3-319-10840-7 8Shirzadi, A., Asadi, S., Shahabi, H., Ronoud, S., Clague, J. J., Khosravi, K., . . . Bui, D. T. (2020). A novel ensemble learning based on Bayesian Belief Network coupled with an extreme lear- ning machine for flash flood susceptibility mapping. Engineering Applications of Artificial Intelligence, 96 , 103971. doi: 10.1016/J.ENGAPPAI.2020.103971Tang, W., tao Ding, H., sheng Chen, N., Ma, S. C., hong Liu, L., lin Wu, K., y feng Tian, S. (2021). Artificial Neural Network-based prediction of glacial debris flows in the ParlungZangbo Basin, southeastern Tibetan Plateau, China. Journal of Mountain Science, 18 (1), 51–67. doi: 10.1007/S11629-020-6414-7Terti, G., Ruin, I., Gourley, J. J., Kirstetter, P., Flamig, Z., Blanchet, J., . . . Anquetin, S. (2019). Toward Probabilistic Prediction of Flash Flood Human Impacts. Risk analysis : an official publication of the Society for Risk Analysis, 39 (1), 140–161. doi: 10.1111/risa.12921Toyos, G., Gunasekera, R., Zanchetta, G., Sulpizio, R., Favalli, M., y Pareschi, M. T. (2008). GIS- assisted modelling for debris flow hazard assessment based on the events of May 1998 in the area of Sarno, Southern Italy: II. Velocity and dynamic pressure. Earth Surface Processes and Landforms, 33 . Descargado de https://onlinelibrary.wiley.com/doi/abs/10.1002/esp .1640http://files/161/esp.html doi: 10.1002/esp.1640Vargas-Cuervo, G., Rotigliano, E., y Conoscenti, C. (2019). Prediction of debris-avalanches and -flows triggered by a tropical storm by using a stochastic approach: An application to the events occurred in Mocoa (Colombia) on 1 April 2017. Geomorphology , 339 , 31–43. doi: 10.1016/J.GEOMORPH.2019.04.023Von Ru¨tte, J., y Or, D. (2015). Linking rainfall-induced landslides with predictions of debris flow runout distances. Landslides, 13 , 1097-1107. doi: 10.1007/s10346-015-0621-2Yan, Y., Zhuang, Q., Zan, C., Ren, J., Yang, L., Wen, Y., . . . Kong, L. (2021). Using the Google Earth Engine to rapidly monitor impacts of geohazards on ecological quality in highly susceptible areas. Ecological Indicators, 132 , 108258. Descargado de https:// www.sciencedirect.com/science/article/pii/S1470160X21009237 doi: https://doi.org/ 10.1016/j.ecolind.2021.108258Yong, Y. (2008). Characteristics and mechanism of landslides in loess during freezing and thawing periods in seasonally frozen ground regions. Journal of Disaster Prevention and Mitigation EngineeringZapata, D. (2021). M´etodo para la detecci´on de estudiantes en riesgo de desercio´n, basado en un disen˜o de m´etricas y una t´ecnica de miner´ıa de datos (Tesis Doctoral, Universidad Nacional de Colombia, Medell´ın). Descargado de https://repositorio.unal.edu.co/handle/unal/ 80615Zhang, S., Yang, H., Wei, F., Jiang, Y., y Liu, D. (2014). A model of debris flow forecast based on the water-soil coupling mechanism. Journal of Earth Science, 25 (4), 757–763. Descargado de https://link.springer.com/article/10.1007/s12583-014-0463-1 doi: 10.1007/S12583 -014-0463-1Zhang, Y., Ge, T., Tian, W., y Liou, Y.-A. (2019). Debris Flow Susceptibility Mapping Using Machine-Learning Techniques in Shigatse Area, China. Remote Sensing, 11 (23), 2801. Descargado de https://www.mdpi.com/2072-4292/11/23/2801http://files/ 70/Zhangetal.-2019-DebrisFlowSusceptibilityMappingUsingMachine-L.pdfhttp:// files/71/2801.html doi: 10.3390/rs11232801Zhao, Y., Meng, X., Qi, T., Li, Y., Chen, G., Yue, D., y Qing, F. (2021). AI-based rainfall prediction model for debris flows. Engineering Geology . doi: 10.1016/J.ENGGEO.2021.106456Zhao, Z., Anand, R., y Wang, M. (2019). Maximum relevance and minimum redundancy feature selection methods for a marketing machine learning platform. Proceedings - 2019 IEEE International Conference on Data Science and Advanced Analytics, DSAA, 442–452. doi: 10.1109/DSAA.2019.00059Universidad Nacional de ColombiaEstudiantesInvestigadoresMaestrosORIGINAL1039463302.2022.pdf1039463302.2022.pdfTesis de Maestría en Ingeniería - Analíticaapplication/pdf15456574https://repositorio.unal.edu.co/bitstream/unal/81507/3/1039463302.2022.pdfd6719d6330f20251513b926c8f5334a0MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81507/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAIL1039463302.2022.pdf.jpg1039463302.2022.pdf.jpgGenerated Thumbnailimage/jpeg4109https://repositorio.unal.edu.co/bitstream/unal/81507/4/1039463302.2022.pdf.jpga8fc18a60d969ac508cf7fd1cde5417aMD54unal/81507oai:repositorio.unal.edu.co:unal/815072023-10-06 16:34:23.705Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK