Método para la predicción temporal de avenidas torrenciales a partir de datos abiertos usando aprendizaje de máquinas
ilustraciones, diagramas, mapas, tablas
- Autores:
-
Palacio Jiménez, David
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/81507
- Palabra clave:
- 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
Aguas lluvias
Rain-water (Water supply)
Desastres
Disasters
Inundaciones
Floods
Avenidas torrenciales
Gestión del riesgo
Aprendizaje de máquinas
Datos abiertos
Variables hidrometeorológicas
Desbalanceo de clases
Machine learning
Debris flow
Risk management
Open data
Hydrometeorological variables
Imbalanced classes
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_77ce8c0fbf51bbe16953febb4da0569a |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/81507 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Método para la predicción temporal de avenidas torrenciales a partir de datos abiertos usando aprendizaje de máquinas |
dc.title.translated.eng.fl_str_mv |
Method for the temporal prediction of debris flows from open data using machine learning |
title |
Método para la predicción temporal de avenidas torrenciales a partir de datos abiertos usando aprendizaje de máquinas |
spellingShingle |
Método para la predicción temporal de avenidas torrenciales a partir de datos abiertos usando aprendizaje de máquinas 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología Aguas lluvias Rain-water (Water supply) Desastres Disasters Inundaciones Floods Avenidas torrenciales Gestión del riesgo Aprendizaje de máquinas Datos abiertos Variables hidrometeorológicas Desbalanceo de clases Machine learning Debris flow Risk management Open data Hydrometeorological variables Imbalanced classes |
title_short |
Método para la predicción temporal de avenidas torrenciales a partir de datos abiertos usando aprendizaje de máquinas |
title_full |
Método para la predicción temporal de avenidas torrenciales a partir de datos abiertos usando aprendizaje de máquinas |
title_fullStr |
Método para la predicción temporal de avenidas torrenciales a partir de datos abiertos usando aprendizaje de máquinas |
title_full_unstemmed |
Método para la predicción temporal de avenidas torrenciales a partir de datos abiertos usando aprendizaje de máquinas |
title_sort |
Método para la predicción temporal de avenidas torrenciales a partir de datos abiertos usando aprendizaje de máquinas |
dc.creator.fl_str_mv |
Palacio Jiménez, David |
dc.contributor.advisor.none.fl_str_mv |
Martínez Carvajal, Hernán Eduardo ARISTIZABAL GIRALDO, EDIER VICENTE Branch Bedoya, John Willian |
dc.contributor.author.none.fl_str_mv |
Palacio Jiménez, David |
dc.contributor.researchgroup.spa.fl_str_mv |
Investigación en Geología Ambiental Gea Gidia: Grupo de Investigación Y Desarrollo en Inteligencia Artificial |
dc.subject.ddc.spa.fl_str_mv |
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología |
topic |
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología Aguas lluvias Rain-water (Water supply) Desastres Disasters Inundaciones Floods Avenidas torrenciales Gestión del riesgo Aprendizaje de máquinas Datos abiertos Variables hidrometeorológicas Desbalanceo de clases Machine learning Debris flow Risk management Open data Hydrometeorological variables Imbalanced classes |
dc.subject.lemb.none.fl_str_mv |
Aguas lluvias Rain-water (Water supply) Desastres Disasters Inundaciones Floods |
dc.subject.proposal.spa.fl_str_mv |
Avenidas torrenciales Gestión del riesgo Aprendizaje de máquinas Datos abiertos Variables hidrometeorológicas Desbalanceo de clases Machine learning |
dc.subject.proposal.eng.fl_str_mv |
Debris flow Risk management Open data Hydrometeorological variables Imbalanced classes |
description |
ilustraciones, diagramas, mapas, tablas |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-06-06T15:48:29Z |
dc.date.available.none.fl_str_mv |
2022-06-06T15:48:29Z |
dc.date.issued.none.fl_str_mv |
2022 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/81507 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/81507 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Achour, Y., Gar¸cia, S., y Cavaleiro, V. (2018). GIS-based spatial prediction of debris flows using logistic regression and frequency ratio models for Zˆezere River basin and its surrounding area, Northwest Covilh˜a, Portugal. Arabian Journal of Geosciences, 11 (18), 1–17. Descarga do de https://link-springer-com.ezproxy.unal.edu.co/article/10.1007/s12517-018-3920-9 doi: 0.1007/S12517-018-3920-9/FIGURES/6 Al Majzoub, H., Elgedawy, I., Akaydın, O¨ ., y K¨ose Uluk¨ok, M. (2020). HCAB-SMOTE: A Hybrid Clustered Affinitive Borderline SMOTE Approach for Imbalanced Data Binary Classification. Arabian Journal for Science and Engineering, 45 (4), 3205–3222. Descargado de https:// link-springer-com.ezproxy.unal.edu.co/article/10.1007/s13369-019-04336-1 doi: 10.1007/S13369-019-04336-1/FIGURES/19 Alexandropoulos, S. A. N., Kotsiantis, S. B., y Vrahatis, M. N. (2019). Data preprocessing in pre- dictive data mining. The Knowledge Engineering Review , 34 . Descargado de https://www .cambridge.org/core/journals/knowledge-engineering-review/article/abs/data -preprocessing-in-predictive-data-mining/F7F2D7AC540D2815C613BA6575359AAA doi: 10.1017/S026988891800036X Alipour, A., Ahmadalipour, A., Abbaszadeh, P., y Moradkhani, H. (2020). Leveraging machine learning for predicting flash flood damage in the southeast US. Environmental Research Letters, 15 (2), 024011. Descargado de https://doi.org/10.1088/1748-9326/ab6edd doi: 10.1088/1748-9326/ab6edd Arango, M. I., Aristiz´abal, E., y G´omez, F. (2020). Morphometrical analysis of torrential flows-prone catchments in tropical and mountainous terrain of the Colombian Andes by machine learning techniques. Natural Hazards, 105 (1), 983–1012. Descargado de https://link.springer .com/article/10.1007/s11069-020-04346-5 doi: 10.1007/S11069-020-04346-5 Aristiz´abal, E. (2013). SHIA Landslide: Developing a physically based model to predict shallow landslides triggered by rainfall in tropical environments (Tesis Doctoral, Universidad Nacional de Colombia). Descargado de https://repositorio.unal.edu.co/handle/unal/20811 Aristiz´abal, E., Arango, M. I., y Garcia, I. K. (2020). Definici´on y clasificaci´on de las avenidas torrenciales y su impacto en los andes colombianos. Revista Colombiana de Geograf´ıa, 29 , 242-258. doi: 10.15446/rcdg.v29n1.72612 Baez-Villanueva, O. M., Zambrano-Bigiarini, M., Ribbe, L., Nauditt, A., Giraldo-Osorio, J. D., y Thinh, N. X. (2018). Temporal and spatial evaluation of satellite rainfall estimates over different regions in Latin-America. Atmospheric Research, 213 , 34–50. Descarga- do de https://www.sciencedirect.com/science/article/pii/S0169809517313029 doi: https://doi.org/10.1016/j.atmosres.2018.05.011 Bai, T., Jiang, Z., y Tahmasebi, P. (2021). Debris flow prediction with machine learning: smart management of urban systems and infrastructures. Neural Computing and Applications, 33 (22), 15769–15779. Descargado de https://doi.org/10.1007/s00521-021-06197-y doi: 10.1007/s00521-021-06197-y Bao, Y., Chen, J., Sun, X., Han, X., Li, Y., Zhang, Y., . . . Wang, J. (2019). Debris flow prediction and prevention in reservoir area based on finite volume type shallow-water model: a case study of pumped-storage hydroelectric power station site in Yi County, Hebei, China. Environmental Earth Sciences, 78 (19). doi: 10.1007/S12665-019-8586-4 Benhar, H., Idri, A., y Fern´andez-Alem´an, J. L. (2019). A Systematic Mapping Study of Data Preparation in Heart Disease Knowledge Discovery. Journal of Medical Systems, 43 (1), 1–17. Descargado de https://link.springer.com/article/10.1007/s10916-018-1134-z doi: 10.1007/S10916-018-1134-Z/TABLES/6 Breiman, L. (2001, oct). Random Forests. Machine Learning 2001 45:1 , 45 (1), 5–32. Descarga- do de https://link.springer.com/article/10.1023/A:1010933404324 doi: 10.1023/A: 1010933404324 Brownlee, J. (2020). How to Choose a Feature Selection Method For Machine Learning. Descarga- do 2022-05-08, de https://machinelearningmastery.com/feature-selection-with-real -and-categorical-data/ Bui, D. T., Ngo, P.-T. T., Pham, T. D., Jaafari, A., Minh, N. Q., Hoa, P. V., y Samui, P. (2019). A novel hybrid approach based on a swarm intelligence optimized extreme learning machine for flash flood susceptibility mapping. CATENA, 179 , 184-196. doi: https://doi.org/10.1016/ j.catena.2019.04.009 Caballero, H. (2011). Las avenidas torrenciales una amenaza potencial en el valle de Aburr´a. Gesti´on y Ambiente, 14 (3), 45–50. Franklin, J. (2005). The elements of statistical learning: data mining, inference and prediction. The Mathematical Intelligencer , 27 (2), 83–85. doi: 10.1007/BF02985802 Gelcer, E., Fraisse, C., Dzotsi, K., Hu, Z., Mendes, R., y Zotarelli, L. (2013). Ef- fects of El Nin˜o Southern Oscillation on the space-time variability of Agricultu- ral Reference Index for Drought in midlatitudes. Agricultural and Forest Me- teorology , 174-175 , 110–128. Descargado de https://www.researchgate.net/ publication/248702784 Effects of El Nino Southern Oscillation on the space -time variability of Agricultural Reference Index for Drought in midlatitudes doi: 10.1016/J.AGRFORMET.2013.02.006 George, D., y Iverson, R. (2014). A depth-averaged debris-flow model that includes the effects of evolving dilatancy. ii. numerical predictions and experimental tests. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470 (2170). Descar- gado de https://www.scopus.com/inward/record.uri?eid=2-s2.0-84907221089&doi=10 .1098%2frspa.2013.0820&partnerID=40&md5=5362643cdd5862ce8b74d635ade1329b doi: 10.1098/rspa.2013.0820 Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., y Chang, K.-T. (2012). Landslide inventory maps: New tools for an old problem. Earth-Science Reviews, 112 (1), 42–66. Descargado de https://www.sciencedirect.com/science/article/pii/ S0012825212000128 doi: https://doi.org/10.1016/j.earscirev.2012.02.001 Han, H., Wang, W. Y., y Mao, B. H. (2005). Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning. Lecture Notes in Computer Science, 3644 LNCS , 878–887. Descargado de https://link-springer-com.ezproxy.unal.edu.co/chapter/ 10.1007/11538059 91 doi: 10.1007/11538059 91 Heckerman, D. (1986). Probabilistic Interpretations for Mycin’s Certainty Factors. Machine Intelli- gence and Pattern Recognition, 4 (C), 167–196. Descargado de https://www.sciencedirect .com/science/article/abs/pii/B9780444700582500176?via%3Dihub doi: 10.1016/B978 -0-444-70058-2.50017-6 Hosseini, F. S., Choubin, B., Mosavi, A., Nabipour, N., Shamshirband, S., Darabi, H., y Haghighi, A. T. (2020). Flash-flood hazard assessment using ensembles and bayesian-based machine learning models: Application of the simulated annealing feature selection method. Science of The Total Environment , 711 , 135161. Descargado de https://www.sciencedirect.com/ science/article/pii/S0048969719351538 doi: https://doi.org/10.1016/j.scitotenv.2019 .135161 Hou, J., Dou, M., Zhang, Y., Wang, J., y Li, G. (2021). An evaluation model for landslide and debris flow prediction using multiple hydrometeorological variables. Environmental Earth Sciences, 80 (515), 1–18. Descargado de https://link.springer.com/article/10.1007/ s12665-021-09840-y doi: 10.1007/S12665-021-09840-Y Hoyos, C. D., Ceballos, L. I., P´erez-Carrasquilla, J. S., Sepulveda, J., L´opez-Zapata, S. M., Zuluaga, M. D., . . . Zapata, M. (2019). Meteorological conditions leading to the 2015 Salgar flash flood: Lessons for vulnerable regions in tropical complex terrain. Natural Hazards and Earth System Sciences, 19 (11), 2635–2665. doi: 10.5194/NHESS-19-2635-2019 Imaizumi, F., Masui, T., Yokota, Y., Tsunetaka, H., Hayakawa, Y. S., y Hotta, N. (2019). Initiation and runout characteristics of debris flow surges in Ohya landslide scar, Japan. Geomorpho- logy , 339 , 58–69. Descargado de http://www.sciencedirect.com/science/article/pii/ S0169555X19301825http://files/173/S0169555X19301825.html doi: 10.1016/j.geomorph .2019.04.026 Janizadeh, S., Avand, M., Jaafari, A., Phong, T. V., Bayat, M., Ahmadisharaf, E., . . . Lee, S. (2019). Prediction success of machine learning methods for flash flood susceptibility mapping in the tafresh watershed, iran. Sustainability, 11 (19). Descargado de https://www.mdpi.com/ 2071-1050/11/19/5426 doi: 10.3390/su11195426 Kern, A., Addison, P., Oommen, T., Salazar, S., y Coffman, R. (2017). Machine learning based predictive modeling of debris flow probability following wildfire in the intermountain western united states. Mathematical geosciences, 49 , 717–735. doi: 10.1007/s11004-017-9681-2 Kruskal, W. H., y Wallis, . W. A. (1952). Use of Ranks in One-Criterion Variance Analysis. Journal of the American Statistical Association, 47 (260), 583–621. Descargado de https:// people.ucalgary.ca/$\sim$jefox/KruskalandWallis1952.pdf Liang, Z., Wang, C. M., Zhang, Z. M., y Khan, K. U. J. (2020). A comparison of statistical and machine learning methods for debris flow susceptibility mapping. Stochastic Environmental Research and Risk Assessment , 34 (11), 1887–1907. Descargado de https://link.springer .com/article/10.1007/s00477-020-01851-8 doi: 10.1007/S00477-020-01851-8 Liu, J., Gao, Y., y Hu, F. (2021). A fast network intrusion detection system using adaptive synthetic oversampling and LightGBM. Computers and Security, 106 , 102289. doi: 10.1016/ J.COSE.2021.102289 Martinez-Plumed, F., Contreras-Ochando, L., Ferri, C., Hernandez-Orallo, J., Kull, M., Lachiche, N., . . . Flach, P. (2021). CRISP-DM Twenty Years Later: From Data Mining Processes to Data Science Trajectories. IEEE Transactions on Knowledge and Data Engineering, 33 (8), 3048–3061. doi: 10.1109/TKDE.2019.2962680 Naranjo, K., Aristiz´abal, E. V., y Morales, J. A. (2019). Influencia del ENSO en la va- riabilidad espacial y temporal de la ocurrencia de movimientos en masa desencadena- dos por lluvias en la regi´on Andina colombiana. Ingenier´ıa y Ciencia, 15 , 11 - 42. Descargado de http://www.scielo.org.co/scielo.php?script=sci arttext&pid=S1794 -91652019000100011&nrm=iso Nguyen, V. N., Yariyan, P., Amiri, M., Tran, A. D., Pham, T. D., Do, M. P., . . . Bui, D. T. (2020). A New Modeling Approach for Spatial Prediction of Flash Flood with Biogeo- graphy Optimized CHAID Tree Ensemble and Remote Sensing Data. Remote Sensing, 12 (9), 1373. Descargado de https://www.mdpi.com/2072-4292/12/9/1373/htmhttps:// www.mdpi.com/2072-4292/12/9/1373 doi: 10.3390/RS12091373 Paw-luszek, K., Marczak, S., Borkowski, A., y Tarolli, P. (2019). Multi-Aspect Analysis of Object- Oriented Landslide Detection Based on an Extended Set of LiDAR-Derived Terrain Features. ISPRS International Journal of Geo-Information, 8 (8). Descargado de https://www.mdpi .com/2220-9964/8/8/321 doi: 10.3390/ijgi8080321 Qing, F., Zhao, Y., Meng, X., Su, X., Qi, T., y Yue, D. (2020). Application of machine learning to debris flow susceptibility mapping along the China-Pakistan Karakoram Highway. Remote Sensing, 12 (18). doi: 10.3390/RS12182933 Rivera, J. A., y Penalba, O. C. (2015). El Nin˜o/La Nin˜a events as a tool for regional drought monitoring in Southern South America. Drought: Re- search and Science-Policy Interfacing - Proceedings of the International Conferen- ce on Drought: Research and Science-Policy Interfacing, 293–300. Descargado de https://www.researchgate.net/publication/274195085 El NinoLa Nina events as a tool for regional drought monitoring in Southern South America doi: 10.1201/ B18077-50 S´aez, J. A., Luengo, J., Stefanowski, J., y Herrera, F. (2014). Managing Borderline and Noisy Examples in Imbalanced Classification by Combining SMOTE with Ensemble Fil- tering. Lecture Notes in Computer Science, 8669 LNCS , 61–68. Descargado de https:// link-springer-com.ezproxy.unal.edu.co/chapter/10.1007/978-3-319-10840-7 8 doi: 10.1007/978-3-319-10840-7 8 Shirzadi, A., Asadi, S., Shahabi, H., Ronoud, S., Clague, J. J., Khosravi, K., . . . Bui, D. T. (2020). A novel ensemble learning based on Bayesian Belief Network coupled with an extreme lear- ning machine for flash flood susceptibility mapping. Engineering Applications of Artificial Intelligence, 96 , 103971. doi: 10.1016/J.ENGAPPAI.2020.103971 Tang, W., tao Ding, H., sheng Chen, N., Ma, S. C., hong Liu, L., lin Wu, K., y feng Tian, S. (2021). Artificial Neural Network-based prediction of glacial debris flows in the ParlungZangbo Basin, southeastern Tibetan Plateau, China. Journal of Mountain Science, 18 (1), 51–67. doi: 10.1007/S11629-020-6414-7 Terti, G., Ruin, I., Gourley, J. J., Kirstetter, P., Flamig, Z., Blanchet, J., . . . Anquetin, S. (2019). Toward Probabilistic Prediction of Flash Flood Human Impacts. Risk analysis : an official publication of the Society for Risk Analysis, 39 (1), 140–161. doi: 10.1111/risa.12921 Toyos, G., Gunasekera, R., Zanchetta, G., Sulpizio, R., Favalli, M., y Pareschi, M. T. (2008). GIS- assisted modelling for debris flow hazard assessment based on the events of May 1998 in the area of Sarno, Southern Italy: II. Velocity and dynamic pressure. Earth Surface Processes and Landforms, 33 . Descargado de https://onlinelibrary.wiley.com/doi/abs/10.1002/esp .1640http://files/161/esp.html doi: 10.1002/esp.1640 Vargas-Cuervo, G., Rotigliano, E., y Conoscenti, C. (2019). Prediction of debris-avalanches and -flows triggered by a tropical storm by using a stochastic approach: An application to the events occurred in Mocoa (Colombia) on 1 April 2017. Geomorphology , 339 , 31–43. doi: 10.1016/J.GEOMORPH.2019.04.023 Von Ru¨tte, J., y Or, D. (2015). Linking rainfall-induced landslides with predictions of debris flow runout distances. Landslides, 13 , 1097-1107. doi: 10.1007/s10346-015-0621-2 Yan, Y., Zhuang, Q., Zan, C., Ren, J., Yang, L., Wen, Y., . . . Kong, L. (2021). Using the Google Earth Engine to rapidly monitor impacts of geohazards on ecological quality in highly susceptible areas. Ecological Indicators, 132 , 108258. Descargado de https:// www.sciencedirect.com/science/article/pii/S1470160X21009237 doi: https://doi.org/ 10.1016/j.ecolind.2021.108258 Yong, Y. (2008). Characteristics and mechanism of landslides in loess during freezing and thawing periods in seasonally frozen ground regions. Journal of Disaster Prevention and Mitigation Engineering Zapata, D. (2021). M´etodo para la detecci´on de estudiantes en riesgo de desercio´n, basado en un disen˜o de m´etricas y una t´ecnica de miner´ıa de datos (Tesis Doctoral, Universidad Nacional de Colombia, Medell´ın). Descargado de https://repositorio.unal.edu.co/handle/unal/ 80615 Zhang, S., Yang, H., Wei, F., Jiang, Y., y Liu, D. (2014). A model of debris flow forecast based on the water-soil coupling mechanism. Journal of Earth Science, 25 (4), 757–763. Descargado de https://link.springer.com/article/10.1007/s12583-014-0463-1 doi: 10.1007/S12583 -014-0463-1 Zhang, Y., Ge, T., Tian, W., y Liou, Y.-A. (2019). Debris Flow Susceptibility Mapping Using Machine-Learning Techniques in Shigatse Area, China. Remote Sensing, 11 (23), 2801. Descargado de https://www.mdpi.com/2072-4292/11/23/2801http://files/ 70/Zhangetal.-2019-DebrisFlowSusceptibilityMappingUsingMachine-L.pdfhttp:// files/71/2801.html doi: 10.3390/rs11232801 Zhao, Y., Meng, X., Qi, T., Li, Y., Chen, G., Yue, D., y Qing, F. (2021). AI-based rainfall prediction model for debris flows. Engineering Geology . doi: 10.1016/J.ENGGEO.2021.106456 Zhao, Z., Anand, R., y Wang, M. (2019). Maximum relevance and minimum redundancy feature selection methods for a marketing machine learning platform. Proceedings - 2019 IEEE International Conference on Data Science and Advanced Analytics, DSAA, 442–452. doi: 10.1109/DSAA.2019.00059 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xiii, 88 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Maestría en Ingeniería - Analítica |
dc.publisher.department.spa.fl_str_mv |
Departamento de la Computación y la Decisión |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/81507/3/1039463302.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/81507/2/license.txt https://repositorio.unal.edu.co/bitstream/unal/81507/4/1039463302.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
d6719d6330f20251513b926c8f5334a0 8153f7789df02f0a4c9e079953658ab2 a8fc18a60d969ac508cf7fd1cde5417a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089981809917952 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Martínez Carvajal, Hernán Eduardo9f4948ce22565e3d5276eaa769f0112e600ARISTIZABAL GIRALDO, EDIER VICENTE90428ddc90f91c351dec58ca14b30d89600Branch Bedoya, John Willian112eaa0bbeeaeb0d3d14dfe15d672a15600Palacio Jiménez, Davidb8ad861d934f27a4a58328836b3f8365Investigación en Geología Ambiental GeaGidia: Grupo de Investigación Y Desarrollo en Inteligencia Artificial2022-06-06T15:48:29Z2022-06-06T15:48:29Z2022https://repositorio.unal.edu.co/handle/unal/81507Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, mapas, tablasLas avenidas torrenciales son fenómenos destructivos característicos de regiones montañosas. En el departamento de Antioquia (Colombia), estos eventos ocurren con frecuencia y las pérdidas en términos económicos y de vidas humanas reflejan la importancia de predecirlos. Las condiciones climáticas extremas, la expansión urbana y el crecimiento poblacional tienden a incrementar el riesgo en aquellas zonas donde ya se han presentado eventos en el pasado. Actualmente, se carece de una base de datos que recopile el detalle de las avenidas torrenciales que han ocurrido en Antioquia con sus respectivas variables hidrometeorológicas, además, la mayoría de las investigaciones están orientadas a identificar la susceptibilidad espacial de estos fenómenos. Con el auge de las técnicas de aprendizaje de máquinas, se propone un método de clasificación binaria para la predicción temporal de avenidas torrenciales a partir de datos abiertos. De esta manera, se identifican las múltiples fuentes de información para construir un inventario de eventos con sus respectivas variables hidrometeorológicas. Luego se realiza el preprocesamiento y entendimiento profundo de los datos, de manera que se seleccionan las variables que más influencia tienen en la ocurrencia de las avenidas torrenciales mediante métodos de envoltura y de filtrado. Seguidamente, se aborda el problema del desbalanceo entre las clases, usando diferentes proporciones de los datos y generando datos sintéticos para evaluar el desempeño del clasificador propuesto. Por último, se obtiene que el algoritmo de bosques aleatorios con el conjunto de datos balanceado y desbalanceado en una proporción de 1:99 entre las clases de ocurrencia y no ocurrencia de avenida torrencial fue el que mejor desempeño obtuvo, logrando un F1-score y sensibilidad del 85% para el conjunto balanceado, mientras que el conjunto de datos desbalanceado obtuvo 66% y 55% respectivamente. Además, se determina que las variables que mayor influencia tienen en el modelo de clasificación corresponden a la lluvia antecedente de 1 día, la escorrentía, la evapotranspiración potencial y el índice de vegetación baja. (Texto tomado de la fuente)Debris flows are destructive phenomena characteristic of mountainous regions. In the Department of Antioquia (Colombia), these events occur frequently and the losses in economic terms and in human lives reflect the importance of predicting them. Extreme weather conditions, urbanization, and population growth tend to increase the risk in those areas where events have already occurred in the past. Currently, there is a lack of a database that compiles the details of the debris flows that have occurred in Antioquia with their respective hydrometeorological variables, in addition, most of the investigations are aimed at identifying the spatial susceptibility of these phenomena. With the rise of machine learning techniques, a binary classification method is proposed for the temporal prediction of debris flows from open data. In this way, multiple sources of information are identified to build an inventory of events with their respective hydrometeorological variables. Then, the preprocessing and deep understanding of the data is carried out, so that the variables that have the most influence on the occurrence of debris flows are selected through wrapping and filtering methods. Next, the problem of imbalance between classes is addressed, using different proportions of the data and generating synthetic data to evaluate the performance of the proposed classifier. Finally, it is obtained that the random forest algorithm with the balanced and unbalanced data set in a ratio of 1:99 between the classes of occurrence and non-occurrence of debris flows was the one that obtained the best performance, achieving an F1-score and sensitivity of 85% for the balanced set, while the unbalanced data set obtained 66% and 55% respectively. In addition, it is determined that the variables that have the greatest influence on the classification model correspond to the antecedent rainfall of 1 day, runoff, potential evapotranspiration, and the low vegetation index.MaestríaMagíster en Ingeniería - AnalíticaÁrea Curricular de Ingeniería de Sistemas e Informáticaxiii, 88 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - AnalíticaDepartamento de la Computación y la DecisiónFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaAguas lluviasRain-water (Water supply)DesastresDisastersInundacionesFloodsAvenidas torrencialesGestión del riesgoAprendizaje de máquinasDatos abiertosVariables hidrometeorológicasDesbalanceo de clasesMachine learningDebris flowRisk managementOpen dataHydrometeorological variablesImbalanced classesMétodo para la predicción temporal de avenidas torrenciales a partir de datos abiertos usando aprendizaje de máquinasMethod for the temporal prediction of debris flows from open data using machine learningTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAchour, Y., Gar¸cia, S., y Cavaleiro, V. (2018). GIS-based spatial prediction of debris flows using logistic regression and frequency ratio models for Zˆezere River basin and its surrounding area, Northwest Covilh˜a, Portugal. Arabian Journal of Geosciences, 11 (18), 1–17. Descarga do de https://link-springer-com.ezproxy.unal.edu.co/article/10.1007/s12517-018-3920-9 doi: 0.1007/S12517-018-3920-9/FIGURES/6Al Majzoub, H., Elgedawy, I., Akaydın, O¨ ., y K¨ose Uluk¨ok, M. (2020). HCAB-SMOTE: A Hybrid Clustered Affinitive Borderline SMOTE Approach for Imbalanced Data Binary Classification. Arabian Journal for Science and Engineering, 45 (4), 3205–3222. Descargado de https:// link-springer-com.ezproxy.unal.edu.co/article/10.1007/s13369-019-04336-1 doi: 10.1007/S13369-019-04336-1/FIGURES/19Alexandropoulos, S. A. N., Kotsiantis, S. B., y Vrahatis, M. N. (2019). Data preprocessing in pre- dictive data mining. The Knowledge Engineering Review , 34 . Descargado de https://www .cambridge.org/core/journals/knowledge-engineering-review/article/abs/data -preprocessing-in-predictive-data-mining/F7F2D7AC540D2815C613BA6575359AAA doi: 10.1017/S026988891800036XAlipour, A., Ahmadalipour, A., Abbaszadeh, P., y Moradkhani, H. (2020). Leveraging machine learning for predicting flash flood damage in the southeast US. Environmental Research Letters, 15 (2), 024011. Descargado de https://doi.org/10.1088/1748-9326/ab6edd doi: 10.1088/1748-9326/ab6eddArango, M. I., Aristiz´abal, E., y G´omez, F. (2020). Morphometrical analysis of torrential flows-prone catchments in tropical and mountainous terrain of the Colombian Andes by machine learning techniques. Natural Hazards, 105 (1), 983–1012. Descargado de https://link.springer .com/article/10.1007/s11069-020-04346-5 doi: 10.1007/S11069-020-04346-5Aristiz´abal, E. (2013). SHIA Landslide: Developing a physically based model to predict shallow landslides triggered by rainfall in tropical environments (Tesis Doctoral, Universidad Nacional de Colombia). Descargado de https://repositorio.unal.edu.co/handle/unal/20811Aristiz´abal, E., Arango, M. I., y Garcia, I. K. (2020). Definici´on y clasificaci´on de las avenidas torrenciales y su impacto en los andes colombianos. Revista Colombiana de Geograf´ıa, 29 , 242-258. doi: 10.15446/rcdg.v29n1.72612Baez-Villanueva, O. M., Zambrano-Bigiarini, M., Ribbe, L., Nauditt, A., Giraldo-Osorio, J. D., y Thinh, N. X. (2018). Temporal and spatial evaluation of satellite rainfall estimates over different regions in Latin-America. Atmospheric Research, 213 , 34–50. Descarga- do de https://www.sciencedirect.com/science/article/pii/S0169809517313029 doi: https://doi.org/10.1016/j.atmosres.2018.05.011Bai, T., Jiang, Z., y Tahmasebi, P. (2021). Debris flow prediction with machine learning: smart management of urban systems and infrastructures. Neural Computing and Applications, 33 (22), 15769–15779. Descargado de https://doi.org/10.1007/s00521-021-06197-y doi: 10.1007/s00521-021-06197-yBao, Y., Chen, J., Sun, X., Han, X., Li, Y., Zhang, Y., . . . Wang, J. (2019). Debris flow prediction and prevention in reservoir area based on finite volume type shallow-water model: a case study of pumped-storage hydroelectric power station site in Yi County, Hebei, China. Environmental Earth Sciences, 78 (19). doi: 10.1007/S12665-019-8586-4Benhar, H., Idri, A., y Fern´andez-Alem´an, J. L. (2019). A Systematic Mapping Study of Data Preparation in Heart Disease Knowledge Discovery. Journal of Medical Systems, 43 (1), 1–17. Descargado de https://link.springer.com/article/10.1007/s10916-018-1134-z doi: 10.1007/S10916-018-1134-Z/TABLES/6Breiman, L. (2001, oct). Random Forests. Machine Learning 2001 45:1 , 45 (1), 5–32. Descarga- do de https://link.springer.com/article/10.1023/A:1010933404324 doi: 10.1023/A: 1010933404324Brownlee, J. (2020). How to Choose a Feature Selection Method For Machine Learning. Descarga- do 2022-05-08, de https://machinelearningmastery.com/feature-selection-with-real -and-categorical-data/Bui, D. T., Ngo, P.-T. T., Pham, T. D., Jaafari, A., Minh, N. Q., Hoa, P. V., y Samui, P. (2019). A novel hybrid approach based on a swarm intelligence optimized extreme learning machine for flash flood susceptibility mapping. CATENA, 179 , 184-196. doi: https://doi.org/10.1016/ j.catena.2019.04.009Caballero, H. (2011). Las avenidas torrenciales una amenaza potencial en el valle de Aburr´a. Gesti´on y Ambiente, 14 (3), 45–50.Franklin, J. (2005). The elements of statistical learning: data mining, inference and prediction. The Mathematical Intelligencer , 27 (2), 83–85. doi: 10.1007/BF02985802Gelcer, E., Fraisse, C., Dzotsi, K., Hu, Z., Mendes, R., y Zotarelli, L. (2013). Ef- fects of El Nin˜o Southern Oscillation on the space-time variability of Agricultu- ral Reference Index for Drought in midlatitudes. Agricultural and Forest Me- teorology , 174-175 , 110–128. Descargado de https://www.researchgate.net/ publication/248702784 Effects of El Nino Southern Oscillation on the space -time variability of Agricultural Reference Index for Drought in midlatitudes doi: 10.1016/J.AGRFORMET.2013.02.006George, D., y Iverson, R. (2014). A depth-averaged debris-flow model that includes the effects of evolving dilatancy. ii. numerical predictions and experimental tests. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470 (2170). Descar- gado de https://www.scopus.com/inward/record.uri?eid=2-s2.0-84907221089&doi=10 .1098%2frspa.2013.0820&partnerID=40&md5=5362643cdd5862ce8b74d635ade1329b doi: 10.1098/rspa.2013.0820Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., y Chang, K.-T. (2012). Landslide inventory maps: New tools for an old problem. Earth-Science Reviews, 112 (1), 42–66. Descargado de https://www.sciencedirect.com/science/article/pii/ S0012825212000128 doi: https://doi.org/10.1016/j.earscirev.2012.02.001Han, H., Wang, W. Y., y Mao, B. H. (2005). Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning. Lecture Notes in Computer Science, 3644 LNCS , 878–887. Descargado de https://link-springer-com.ezproxy.unal.edu.co/chapter/ 10.1007/11538059 91 doi: 10.1007/11538059 91Heckerman, D. (1986). Probabilistic Interpretations for Mycin’s Certainty Factors. Machine Intelli- gence and Pattern Recognition, 4 (C), 167–196. Descargado de https://www.sciencedirect .com/science/article/abs/pii/B9780444700582500176?via%3Dihub doi: 10.1016/B978 -0-444-70058-2.50017-6Hosseini, F. S., Choubin, B., Mosavi, A., Nabipour, N., Shamshirband, S., Darabi, H., y Haghighi, A. T. (2020). Flash-flood hazard assessment using ensembles and bayesian-based machine learning models: Application of the simulated annealing feature selection method. Science of The Total Environment , 711 , 135161. Descargado de https://www.sciencedirect.com/ science/article/pii/S0048969719351538 doi: https://doi.org/10.1016/j.scitotenv.2019 .135161Hou, J., Dou, M., Zhang, Y., Wang, J., y Li, G. (2021). An evaluation model for landslide and debris flow prediction using multiple hydrometeorological variables. Environmental Earth Sciences, 80 (515), 1–18. Descargado de https://link.springer.com/article/10.1007/ s12665-021-09840-y doi: 10.1007/S12665-021-09840-YHoyos, C. D., Ceballos, L. I., P´erez-Carrasquilla, J. S., Sepulveda, J., L´opez-Zapata, S. M., Zuluaga, M. D., . . . Zapata, M. (2019). Meteorological conditions leading to the 2015 Salgar flash flood: Lessons for vulnerable regions in tropical complex terrain. Natural Hazards and Earth System Sciences, 19 (11), 2635–2665. doi: 10.5194/NHESS-19-2635-2019Imaizumi, F., Masui, T., Yokota, Y., Tsunetaka, H., Hayakawa, Y. S., y Hotta, N. (2019). Initiation and runout characteristics of debris flow surges in Ohya landslide scar, Japan. Geomorpho- logy , 339 , 58–69. Descargado de http://www.sciencedirect.com/science/article/pii/ S0169555X19301825http://files/173/S0169555X19301825.html doi: 10.1016/j.geomorph .2019.04.026Janizadeh, S., Avand, M., Jaafari, A., Phong, T. V., Bayat, M., Ahmadisharaf, E., . . . Lee, S. (2019). Prediction success of machine learning methods for flash flood susceptibility mapping in the tafresh watershed, iran. Sustainability, 11 (19). Descargado de https://www.mdpi.com/ 2071-1050/11/19/5426 doi: 10.3390/su11195426Kern, A., Addison, P., Oommen, T., Salazar, S., y Coffman, R. (2017). Machine learning based predictive modeling of debris flow probability following wildfire in the intermountain western united states. Mathematical geosciences, 49 , 717–735. doi: 10.1007/s11004-017-9681-2Kruskal, W. H., y Wallis, . W. A. (1952). Use of Ranks in One-Criterion Variance Analysis. Journal of the American Statistical Association, 47 (260), 583–621. Descargado de https:// people.ucalgary.ca/$\sim$jefox/KruskalandWallis1952.pdfLiang, Z., Wang, C. M., Zhang, Z. M., y Khan, K. U. J. (2020). A comparison of statistical and machine learning methods for debris flow susceptibility mapping. Stochastic Environmental Research and Risk Assessment , 34 (11), 1887–1907. Descargado de https://link.springer .com/article/10.1007/s00477-020-01851-8 doi: 10.1007/S00477-020-01851-8Liu, J., Gao, Y., y Hu, F. (2021). A fast network intrusion detection system using adaptive synthetic oversampling and LightGBM. Computers and Security, 106 , 102289. doi: 10.1016/ J.COSE.2021.102289Martinez-Plumed, F., Contreras-Ochando, L., Ferri, C., Hernandez-Orallo, J., Kull, M., Lachiche, N., . . . Flach, P. (2021). CRISP-DM Twenty Years Later: From Data Mining Processes to Data Science Trajectories. IEEE Transactions on Knowledge and Data Engineering, 33 (8), 3048–3061. doi: 10.1109/TKDE.2019.2962680Naranjo, K., Aristiz´abal, E. V., y Morales, J. A. (2019). Influencia del ENSO en la va- riabilidad espacial y temporal de la ocurrencia de movimientos en masa desencadena- dos por lluvias en la regi´on Andina colombiana. Ingenier´ıa y Ciencia, 15 , 11 - 42. Descargado de http://www.scielo.org.co/scielo.php?script=sci arttext&pid=S1794 -91652019000100011&nrm=isoNguyen, V. N., Yariyan, P., Amiri, M., Tran, A. D., Pham, T. D., Do, M. P., . . . Bui, D. T. (2020). A New Modeling Approach for Spatial Prediction of Flash Flood with Biogeo- graphy Optimized CHAID Tree Ensemble and Remote Sensing Data. Remote Sensing, 12 (9), 1373. Descargado de https://www.mdpi.com/2072-4292/12/9/1373/htmhttps:// www.mdpi.com/2072-4292/12/9/1373 doi: 10.3390/RS12091373Paw-luszek, K., Marczak, S., Borkowski, A., y Tarolli, P. (2019). Multi-Aspect Analysis of Object- Oriented Landslide Detection Based on an Extended Set of LiDAR-Derived Terrain Features. ISPRS International Journal of Geo-Information, 8 (8). Descargado de https://www.mdpi .com/2220-9964/8/8/321 doi: 10.3390/ijgi8080321Qing, F., Zhao, Y., Meng, X., Su, X., Qi, T., y Yue, D. (2020). Application of machine learning to debris flow susceptibility mapping along the China-Pakistan Karakoram Highway. Remote Sensing, 12 (18). doi: 10.3390/RS12182933Rivera, J. A., y Penalba, O. C. (2015). El Nin˜o/La Nin˜a events as a tool for regional drought monitoring in Southern South America. Drought: Re- search and Science-Policy Interfacing - Proceedings of the International Conferen- ce on Drought: Research and Science-Policy Interfacing, 293–300. Descargado de https://www.researchgate.net/publication/274195085 El NinoLa Nina events as a tool for regional drought monitoring in Southern South America doi: 10.1201/ B18077-50S´aez, J. A., Luengo, J., Stefanowski, J., y Herrera, F. (2014). Managing Borderline and Noisy Examples in Imbalanced Classification by Combining SMOTE with Ensemble Fil- tering. Lecture Notes in Computer Science, 8669 LNCS , 61–68. Descargado de https:// link-springer-com.ezproxy.unal.edu.co/chapter/10.1007/978-3-319-10840-7 8 doi: 10.1007/978-3-319-10840-7 8Shirzadi, A., Asadi, S., Shahabi, H., Ronoud, S., Clague, J. J., Khosravi, K., . . . Bui, D. T. (2020). A novel ensemble learning based on Bayesian Belief Network coupled with an extreme lear- ning machine for flash flood susceptibility mapping. Engineering Applications of Artificial Intelligence, 96 , 103971. doi: 10.1016/J.ENGAPPAI.2020.103971Tang, W., tao Ding, H., sheng Chen, N., Ma, S. C., hong Liu, L., lin Wu, K., y feng Tian, S. (2021). Artificial Neural Network-based prediction of glacial debris flows in the ParlungZangbo Basin, southeastern Tibetan Plateau, China. Journal of Mountain Science, 18 (1), 51–67. doi: 10.1007/S11629-020-6414-7Terti, G., Ruin, I., Gourley, J. J., Kirstetter, P., Flamig, Z., Blanchet, J., . . . Anquetin, S. (2019). Toward Probabilistic Prediction of Flash Flood Human Impacts. Risk analysis : an official publication of the Society for Risk Analysis, 39 (1), 140–161. doi: 10.1111/risa.12921Toyos, G., Gunasekera, R., Zanchetta, G., Sulpizio, R., Favalli, M., y Pareschi, M. T. (2008). GIS- assisted modelling for debris flow hazard assessment based on the events of May 1998 in the area of Sarno, Southern Italy: II. Velocity and dynamic pressure. Earth Surface Processes and Landforms, 33 . Descargado de https://onlinelibrary.wiley.com/doi/abs/10.1002/esp .1640http://files/161/esp.html doi: 10.1002/esp.1640Vargas-Cuervo, G., Rotigliano, E., y Conoscenti, C. (2019). Prediction of debris-avalanches and -flows triggered by a tropical storm by using a stochastic approach: An application to the events occurred in Mocoa (Colombia) on 1 April 2017. Geomorphology , 339 , 31–43. doi: 10.1016/J.GEOMORPH.2019.04.023Von Ru¨tte, J., y Or, D. (2015). Linking rainfall-induced landslides with predictions of debris flow runout distances. Landslides, 13 , 1097-1107. doi: 10.1007/s10346-015-0621-2Yan, Y., Zhuang, Q., Zan, C., Ren, J., Yang, L., Wen, Y., . . . Kong, L. (2021). Using the Google Earth Engine to rapidly monitor impacts of geohazards on ecological quality in highly susceptible areas. Ecological Indicators, 132 , 108258. Descargado de https:// www.sciencedirect.com/science/article/pii/S1470160X21009237 doi: https://doi.org/ 10.1016/j.ecolind.2021.108258Yong, Y. (2008). Characteristics and mechanism of landslides in loess during freezing and thawing periods in seasonally frozen ground regions. Journal of Disaster Prevention and Mitigation EngineeringZapata, D. (2021). M´etodo para la detecci´on de estudiantes en riesgo de desercio´n, basado en un disen˜o de m´etricas y una t´ecnica de miner´ıa de datos (Tesis Doctoral, Universidad Nacional de Colombia, Medell´ın). Descargado de https://repositorio.unal.edu.co/handle/unal/ 80615Zhang, S., Yang, H., Wei, F., Jiang, Y., y Liu, D. (2014). A model of debris flow forecast based on the water-soil coupling mechanism. Journal of Earth Science, 25 (4), 757–763. Descargado de https://link.springer.com/article/10.1007/s12583-014-0463-1 doi: 10.1007/S12583 -014-0463-1Zhang, Y., Ge, T., Tian, W., y Liou, Y.-A. (2019). Debris Flow Susceptibility Mapping Using Machine-Learning Techniques in Shigatse Area, China. Remote Sensing, 11 (23), 2801. Descargado de https://www.mdpi.com/2072-4292/11/23/2801http://files/ 70/Zhangetal.-2019-DebrisFlowSusceptibilityMappingUsingMachine-L.pdfhttp:// files/71/2801.html doi: 10.3390/rs11232801Zhao, Y., Meng, X., Qi, T., Li, Y., Chen, G., Yue, D., y Qing, F. (2021). AI-based rainfall prediction model for debris flows. Engineering Geology . doi: 10.1016/J.ENGGEO.2021.106456Zhao, Z., Anand, R., y Wang, M. (2019). Maximum relevance and minimum redundancy feature selection methods for a marketing machine learning platform. Proceedings - 2019 IEEE International Conference on Data Science and Advanced Analytics, DSAA, 442–452. doi: 10.1109/DSAA.2019.00059Universidad Nacional de ColombiaEstudiantesInvestigadoresMaestrosORIGINAL1039463302.2022.pdf1039463302.2022.pdfTesis de Maestría en Ingeniería - Analíticaapplication/pdf15456574https://repositorio.unal.edu.co/bitstream/unal/81507/3/1039463302.2022.pdfd6719d6330f20251513b926c8f5334a0MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81507/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAIL1039463302.2022.pdf.jpg1039463302.2022.pdf.jpgGenerated Thumbnailimage/jpeg4109https://repositorio.unal.edu.co/bitstream/unal/81507/4/1039463302.2022.pdf.jpga8fc18a60d969ac508cf7fd1cde5417aMD54unal/81507oai:repositorio.unal.edu.co:unal/815072023-10-06 16:34:23.705Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |