Control mediante la presión y la temperatura de las propiedades ópticas en cristales fotónicos

Los cristales fotónicos son estructuras dieléctricas los cuales permiten el control de la propagación de la luz. En este trabajo presentamos los resultados teóricos referentes a las estructura de bandas fotónicas en cristales con patrones de periodicidad en una y dos dimensiones. Las propiedades ópt...

Full description

Autores:
Segovia Chaves, Francis Armando
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79389
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79389
https://repositorio.unal.edu.co/
Palabra clave:
530 - Física
Fotónica
Electromagnetismo
Photonic
Electromagnetism
Cristales fotónicos
Presión
Temperatura
Photonic crystal
Pressure
Temperature
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_77ca40f2ddd639608ba121e4adc9f9f1
oai_identifier_str oai:repositorio.unal.edu.co:unal/79389
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Control mediante la presión y la temperatura de las propiedades ópticas en cristales fotónicos
title Control mediante la presión y la temperatura de las propiedades ópticas en cristales fotónicos
spellingShingle Control mediante la presión y la temperatura de las propiedades ópticas en cristales fotónicos
530 - Física
Fotónica
Electromagnetismo
Photonic
Electromagnetism
Cristales fotónicos
Presión
Temperatura
Photonic crystal
Pressure
Temperature
title_short Control mediante la presión y la temperatura de las propiedades ópticas en cristales fotónicos
title_full Control mediante la presión y la temperatura de las propiedades ópticas en cristales fotónicos
title_fullStr Control mediante la presión y la temperatura de las propiedades ópticas en cristales fotónicos
title_full_unstemmed Control mediante la presión y la temperatura de las propiedades ópticas en cristales fotónicos
title_sort Control mediante la presión y la temperatura de las propiedades ópticas en cristales fotónicos
dc.creator.fl_str_mv Segovia Chaves, Francis Armando
dc.contributor.advisor.none.fl_str_mv Vinck Posada, Herbert
dc.contributor.author.none.fl_str_mv Segovia Chaves, Francis Armando
dc.subject.ddc.spa.fl_str_mv 530 - Física
topic 530 - Física
Fotónica
Electromagnetismo
Photonic
Electromagnetism
Cristales fotónicos
Presión
Temperatura
Photonic crystal
Pressure
Temperature
dc.subject.lemb.none.fl_str_mv Fotónica
Electromagnetismo
Photonic
Electromagnetism
dc.subject.proposal.spa.fl_str_mv Cristales fotónicos
Presión
Temperatura
dc.subject.proposal.eng.fl_str_mv Photonic crystal
Pressure
Temperature
description Los cristales fotónicos son estructuras dieléctricas los cuales permiten el control de la propagación de la luz. En este trabajo presentamos los resultados teóricos referentes a las estructura de bandas fotónicas en cristales con patrones de periodicidad en una y dos dimensiones. Las propiedades ópticas de los cristales fotónicos se investigan solucionando las ecuaciones de Maxwell a través de métodos teóricos como matriz de transferencia, expansión en ondas planas y expansión en modos guiados. El mé\-todo de la matriz de transferencia es usado para el cálculo del espectro de transmitancia en cristales fotónicos unidimensionales, mientras que el método de expansión en ondas planas es formulado para el cálculo de la estructura de bandas fotónica en cristales fotónicos unidimensionales y bidimensionales. Al asumir la dependencia con la presión hidrostática y temperatura de la constante dieléctrica del material semiconductor constituyente del cristal; los resultados obtenidos revelan que la sintonización de la estructura de bandas es debido principalmente a la presión hidrostática en lugar de la temperatura. El método de expansión en modos guiados es usado para el cálculo de la estructura de bandas fotónica en un slab fotónico donde el confinamiento de la luz es en las tres direcciones espaciales. En particular, abordamos el problema de la determinación del factor de calidad en slabs fotónicos con cavidades L1 y L3, donde se muestra un decrecimiento del factor de calidad con el incremento en la presión hidrostática. (Texto tomado de la fuente)
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-12
dc.date.accessioned.none.fl_str_mv 2021-04-08T20:56:21Z
dc.date.available.none.fl_str_mv 2021-04-08T20:56:21Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79389
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional UN
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79389
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional UN
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv [1] J. Joannopoulos, S. Johnson, and R. Meade. Photonic crystals: molding the flow of light. Princenton University Press, 2007.
[2] N. Aschcroft, D. Mermin, and D. Wei. Solid state Physics. Revised Edition, Cengage Learning Asia, 2016.
[3] E. Yablanovitch. Photonic crystals: semiconductors of light. Sci. Amer., 285:46–55, 201.
[4] R. H. Lipson and C. Lu. Photonic crystals: a unique partnership between light and matter. Eur. J. Phys., 30:S33, 2009.
[5] E. Yablanovitch. Inhibited spontaneous emission in solid state physics and electronics. Phys. Rev. Lett., 58:2059, 1987.
[6] S. John. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett., 58:2486, 1987.
[7] K. Leung and Y. Liu. Photon band structures: The plane-wave method. Phys. Rev. B, 41:10188–10190, 1990.
[8] K. Ho, C. Chan, and C. Soukoulis. Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett., 65:3152–3155, 1990.
[9] P. Vukusic and J. Roy. Photonic structures in biology. Nature, 424:852–855, 2003.
[10] J. Pol Vigneron and J. Roy. Natural layer-by-layer photonic structurein the squamae of hoplia coerulea (coleoptera). Phys. Rev. E, 72:061904, 2005.
[11] J. Pol Vigneron and P. Simonis. Natural photonic crystals. Physica B, 407:4032–4036, 2012.
[12] P. Vukusic. Structural colour: elusive iridescence strategies brought to light. Curr. Biol.,21:R187–R189, 2011.
[13] G. Luna-Acosta, H. Schanze, U. Kuhl, and H. St ockmann. Impurity effects on the band structure of one-dimensional photonic crystals: experiment and theory. New J. Phys.,10:043005, 2008.
[14] H. Sun, V. Mizeikis, Y. Xu, S. Juodkazis, J. Ye, S. Matsuo, and H. Misawa. Microcavities in polymeric photonic crystals. Appl. Phys. Lett., 79:1–3, 2001.
[15] M. Mahmoud, G. Bassoy, A. Taalbi, and Z. Chekroun. Optical channel drop filters based on photonic crystal ring resonators. Opt. Commun., 258:368–372, 2012.
[16] H. Altug, D. Englund, and J. Vuckovic. Ultrafast photonic crystal nanocavity laser. Nat. phys., 2:484–488, 2006.
[17] S. Noda. Photonic crystal lasers-ultimate nanolasers and broad-area coherent lasers. J. Opt. Soc. Am. B, 27:B1–B8, 2010.
[18] E. Miyai, O. Okano, M. Mochizuki, and S. Noda. Analysis of coupling between two-dimensional photonic crystal waveguide and external waveguide. Appl. Phys. Lett., 81:3729–3731, 2002.
[19] S. Johnson, P. Villenueve, S. Fan, and J. Joannopoulos. Linear waveguide in photonic crystal slabs. Phys. Rev. B, 62:8212, 2000.
[20] I. Bayn, B. Meyler, A. Lahav, J. Salzman, and R. Kalish. Processing of photonic crystal nanocavity for quantum information in diamond. Diam. Relat. Mater, 20:937–943, 2011.
[21] D. Angelakis, M. Santos, V. Yannopapas, and A. Ekert. A proposal for the implementation of quantum gates with photonic-crystal waveguide. Phys. Lett. A, 362:377–380, 2007.
[22] J. Lourtoiz, H. Benisty, V. Berger, J. Gerard, D. Maystre, and A. Tchelnokov. Photonic Crystals: Towards Nanoscale Photonic Devices. Springer-Veralag, Berlin, 2005.
[23] R. Meade, A. Devenyi, J. Joannopoulos, O. Alerhand, D. Smith, and K. Kash. Novel applications of photonic ban gap materials: Low-loss bends and high q cavities. J. Appl. Phys., 75:4753, 1994.
[24] P. Villeneuve, S. Fan, S. Johnson, and J. Joannopoulos. Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity. III Proc. Optoelectron., 145:384, 1998.
[25] C. Weisbuch, H. Benisty, S. Olivier, M. Rattier, C. Smith, and T. Krauss. Advances in photonic crystals. Phys. Stat. Sol., 221:93, 2000.
[26] L. Midolo, T. Pregnolato, G. Kirsanske, and S. Stobbe. Soft-mask fabrication of gallium arsenide nanomembranes for integrated quantum photonics. Nanotechnology, 26:484002, 2015.
[27] N. Le Thomas, H. Zhang, J. Jagerska, V. Zabelin, R. Houdre, and A. Talneau I. Sagnes, and. Light transport regimes in slow light photonic crystal waveguide. Phys. Rev. B, 80:125332, 2009.
[28] Z. Diao. Investigation of 2D photonic crystals and their applications on Terahertz quantum cascade lasers, optical trapping and sensing. Ph. D thesis, Ecole Polytechnique Federale de Lausanne, Suisse, 2013.
[29] J. Manzanares-Martinez, F. Ramos-Mendieta, and P. Halevi. Temperature tuning of two-dimensional photonic crystals in the presence of phonons and a plasma of electrons and holes. Phys. Rev. B, 72:035336, 2005.
[30] H. Elsayed, S. El-Naggar, and A. Aly. Thermal properties and two-dimensional photonic band gaps. Journal of Modern Optics, 61:385–389, 2014.
[31] N. Porras-Montenegro and C. Duque. Temperature and hydrostatic pressure effects on the photonic band structure of a 2D honeycomb lattice. Physica E, 42:1865, 2010.
[32] C. Duque and M. Mora-Ramos. The two-dimensional square and triangular photonic lattice under the effects of magnetic field, hydrostatic pressure, and temperature. Opt. Quant. Electron., 44:375–392, 2012.
[33] A. Aly and F. Sayed. THz cutoff frequency and multifunction Ti2 Ba2 Ca2 Cu3 O10 /GaAs photonic bandgap materials. Int. J. Mod. Phys. B, 34:2050091–1, 2020.
[34] J. Hao, L. Ju, W. Du, K. Gu, and H. Yang. Research on transmission characteristics of two-dimensional superconducting photonic crystal in THz-waves. Plasmonics, 15:1083–1089, 2020.
[35] A. Ahmed, M. Shaban, and A. Aly. Electro-optical tenability properties of defective one-dimensional photonic crystal. Optik, 145:121–129, 2017.
[36] A. Aly, H. Elsayed, and S. El-Naggar. Tuning the flow of light in two-dimensional metallic photonic crystals based on Faraday effect. Journal of Modern Optics, 64:74–80, 2017.
[37] M. Tefelska, M. Chychlowski, A. Czapla, and R. Dabrowski et al. Hydrostatic pressure effects in photonic liquid crystal fibers. Proc. SPIE, 7120:712008, 2008.
[38] T. Wolinski, A. Czapla, M. Tefelska, A. Domanski, J. Wojcik, E. Nowinowski-Kruszelnicki, and R. Dabrowski. Photonic liquid crystal fibers for sensing applications. IEEE T. Instrum. Meas., 57:1796–1802, 2008.
[39] Z. Liu, M. Tse, C. Wu, D. Chen, C. Lu, and H. Tam. Intermodal coupling of supermodes in a twin-core photonic crystal fiber and its application as a pressure sensor. Opt. Express, 20:21749–21757, 2012.
[40] C. Wu, H. Fu, K. Qureshi, B. Guan, and H. Tam. High-pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber. Optic. Lett., 36:412–414, 2011.
[41] S. Olyaee and A. Dehghani. High resolution and wide dynamic range pressure sensor based on two-dimensional photonic crystal. Photonic Sens., 2:92–96, 2012.
[42] F. Berghmans, T. Geernaert, and S. Sulejmani. Photonic crystal fiber Bragg grating based sensors—opportunities for applications in healthcare. Proc. of SPIE-OSA-IEEE Asia Communications and Photonics, 8311:831102, 2011.
[43] H. Fu, C. Wu, and M. Tse. High pressure sensor based on photonic crystal fiber for downhole application. App. Optics, 49:2639–2643, 2010.
[44] A. Arsenault, T. Clark, and G. von Freymann. From colour fingerprinting to the control of photoluminescence in elastic photonic crystals. Nat. Mate., 5:179, 2006.
[45] A. Lawson and T. Tang. A diamond bomb for obtaining powder pictures at high pressures. Rev. Sci. Instruments, 21:815, 1950.
[46] M Cardona A. Gono, K. Syassen. Effect of pressure on the refractive index of Ge and GaAs. Phys. Rev. B, 41:10104, 1990.
[47] G. Samara. Temperature and pressure dependences of the dielectric constants of semiconductors. Phys. Rev. B, 27:3494, 1983.
[48] I. Strzalkowski, S. Joshi, and C. Crowell. Dielectric constant and its temperature dependece for GaAs, CdTe, and ZnSe. Appl. Phys. Lett., 28:350, 1976.
[49] W. Bassett, A. Shen, M. Bucknum, and I. Chou. A new diamond anvil cell for hydrothermal studies to 2.5 GPa, and from -190 to 1200 C. Rev. Sci. Instrum., 64:2340, 1993.
[50] C. Duque, N. Porras, Z. Barticevic, M. Pacheco, and L. Oliveira. Effects of applied magnetic fields and hydrostatic pressure on the optical transitions in self-assembled InAs/GaAs quantum dots. J. Phys. Condens. Matter, 18:1877, 2006.
[51] H. Oyoko, C. Duque, and N. Porras. Uniaxial stress dependence of the binding energy of shallow donor impurities in GaAs-(Ga, Al)As quantum dots. J. Appl. Phys., 90:819, 2001.
[52] J. Jackson. Classical Electrodynamics. 3er ed. John Wiley and Sons, New York, 1999.
[53] C. Kittel. Introduction to solid state physics. John Wiley and Sons, New York, 2005.
[54] P. Yeh. Optical Waves in Layered Media. Wiley-Interscience, 2005.
[55] E. Chow, S. Lin, S. Johnson, J. Joannopoulos P. Villenueve, J. Wendt, G. Vawter, W. Zubrzycki, H. Hou, and A. Alleman. Three-dimensional control of light in a two-dimensional photonic crystal slab. Nature, 407:983, 2000.
[56] S. McNab, N. Moll, and Y. Vlasov. Ultra-low photonic integrated circuit with membrane-type photonic crystal waveguide. Opt. Express, 11:2927–2939, 2003.
[57] D. Gerace. Photonic modes and radiation -matter interaction in photonic crystal slabs. Ph. D thesis, University of Pavia, 2005.
[58] A. Yariv and P. Yeh. Photonics: optical electronics in modern communications. Oxford University Press, 2006.
[59] K. Dong, D. Chen, H. You, Y. Wang, Y. Zhang, and X. Wang. Growth and characteristic of SiO2 /Si3 N4 photonic crystal filter with anti-reflection coating. Nanosci. Nanotech.Let., 11:834–838, 2019.
[60] M. Calvo, O. Sobrado, G. Lozano, and H. Miguez. Molding with nanoparticle-based one-dimensional photonic crystals: a route to flexible ant transferable bragg mirrors of high dielectric contrast. J. Mater. Chem., 11:3144–3148, 2009.
[61] Q. Chen and D. Allsopp. One dimensional coupled cavities photonic crystal filters with tapered Bragg mirrors. Opt. Commun., 281:5771–5774, 2008.
[62] A. Zain, N. Johnson, M. Sorel, and M. Richard. Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI). Opt. Express., 16:12084–12089, 2008.
[63] W. Rao, Y. Song, M. Liu, and C. Jin. All-optical switch based on photonic crystal microcavity with multi-resonan modes. Optik, 121:1934–1936, 2010.
[64] L. Wu, F. Zhuang, and S. He. Degenerancy analysis for a supercell of a photonic crystal and its applications to the creation of band gaps. Phys. Rev. E, 67:026612, 2003.
[65] A. Herrera, J. Calero, and N. Porras-Montenegro. Pressure, temperature, and thickness dependence of transmittance in a 1D superconductor-semiconductor photonic crystal. J. Appl. Phys., 123:033101, 2018.
[66] R. Wesche. Physical properties of high-temperature superconductors. Wiley series, 2015.
[67] A. Yamamoto, N. Takeshita, C. Terakura, and Y. Tokura. High pressure effects revisited for the cuprate superconductor family with highest critical temperature. Nat. commun., 6:R2999, 2015.
[68] C. Panagopoulos, J. Cooper, G. Peacock, I. Gameason, P. Edwards, W. Schmid-bauer, and J. Hodby. Anisotropic magnetic penetration depth of grain-aligned HgBa2 Ca2 Cu3 O8+d . Phys. Rev. B, 53:R2999, 1996.
[69] N. Takeshita, A. Yamamoto, A. Iyo, and H. Eisaki. Zero resistivity above 150 K in HgBa2 Ca2 Cu3 O8+δ at high pressure. J. Phys. Soc. Jpn., 82:023711, 2013.
[70] A. Elabsy. Hydrostatic pressure dependence of binding energies for donors in quantum well heterostructures. Phys. Scripta, 48:376, 1993.
[71] J. Winn, R. Meade, and J. Joannopoulos. Two-dimensional photonic band-gap materials. J. Mod. Optics, 41:257–273, 1994.
[72] P. Villenueve and M. Pich ́. Photonic band gaps in two-dimensional square and hexagonal lattices. Phys. Rev. B, 46:4969, 1992.
[73] R. Meade, K. Brommer, A. Rappe, and J. Joannopoulos. Existence of a photonic band gap in two dimensional. Appl. Phys. Lett., 61:495–497, 1992.
[74] R. Padjen, J. Gerard, and J. Marzin. Analysis of the filling pattern dependence of the photonic bandgap for two-dimensional system. J. Mod. Optics, 41:295–310, 1994.
[75] R. Hillebrand and W. Hergert. Band gap studies of triangular 2D photonic crystals with varying pore roundness. Solid State Commun., 115:227–232, 2000.
[76] T. Takizawa, S. Arai, and M. Nakahara. Fabrication of vertical and uniform -size porous InP structure by electrochemical anodization. Jpn. J. Appl. Phys., 33:L643–L645, 1994.
[77] T. Baba and M. Koma. Possibility of InP based 2 d-dimensional photonic crystal: An approach by the anodization method. Jpn. J. Appl. Phys., 34:1405–1408, 1995.
[78] M. Loncar, T. Doll, J. Vuckovic, and A. Scherer. Design and fabrication of silicon photonic crystal optical waveguide. IEEE J. Lightwave Technol., 18:1402, 2000.
[79] T. Baba, T. Iwai A. Motegi, N. Fukaya, Y. Watanabe, and A. Sakai. Light propagation characteristic of straight single-line-defect waveguide in photonic crystals fabricated into a silicon-on-insulator substrate. IEEE J. Quantum Electron., 38:743, 2002.
[80] A. Talneau, L. Gouezigou, and N. Bouadma. Quantitative measurement of low propagation losses at 1.55 μm on planar photonic crystal waveguide. Opt. Lett., 26:1259, 2001.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 1 recurso en línea (77 páginas)
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Doctorado en Ciencias - Física
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79389/1/13071107.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/79389/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79389/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79389/4/13071107.2021.pdf.jpg
bitstream.checksum.fl_str_mv 325f2583ffa7226f9f20dcf0963c7998
cccfe52f796b7c63423298c2d3365fc6
4460e5956bc1d1639be9ae6146a50347
8675644fa8669650a7a1cf6da5b33be6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089457544986624
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Vinck Posada, Herbertcb451c328e333b7d420c1effb3732257600Segovia Chaves, Francis Armandof5f5266378aa9f018ec3a6c2615dd4da2021-04-08T20:56:21Z2021-04-08T20:56:21Z2020-12https://repositorio.unal.edu.co/handle/unal/79389Universidad Nacional de ColombiaRepositorio Institucional UNhttps://repositorio.unal.edu.co/Los cristales fotónicos son estructuras dieléctricas los cuales permiten el control de la propagación de la luz. En este trabajo presentamos los resultados teóricos referentes a las estructura de bandas fotónicas en cristales con patrones de periodicidad en una y dos dimensiones. Las propiedades ópticas de los cristales fotónicos se investigan solucionando las ecuaciones de Maxwell a través de métodos teóricos como matriz de transferencia, expansión en ondas planas y expansión en modos guiados. El mé\-todo de la matriz de transferencia es usado para el cálculo del espectro de transmitancia en cristales fotónicos unidimensionales, mientras que el método de expansión en ondas planas es formulado para el cálculo de la estructura de bandas fotónica en cristales fotónicos unidimensionales y bidimensionales. Al asumir la dependencia con la presión hidrostática y temperatura de la constante dieléctrica del material semiconductor constituyente del cristal; los resultados obtenidos revelan que la sintonización de la estructura de bandas es debido principalmente a la presión hidrostática en lugar de la temperatura. El método de expansión en modos guiados es usado para el cálculo de la estructura de bandas fotónica en un slab fotónico donde el confinamiento de la luz es en las tres direcciones espaciales. En particular, abordamos el problema de la determinación del factor de calidad en slabs fotónicos con cavidades L1 y L3, donde se muestra un decrecimiento del factor de calidad con el incremento en la presión hidrostática. (Texto tomado de la fuente)Photonic crystals are dielectric structures that allow the control of light propagation. We present theoretical results concerning the photonic band structure in crystals with periodicity patterns in one and two dimensions. The optical properties of photonic crystals are investigated by solving Maxwell's equations through theoretical methods such as transfer matrix, plane-wave expansion, and guided-mode expansion. The transfer matrix method is used for the calculation of the transmittance spectrum in one-dimensional photonic crystals. In contrast, the plane-wave expansion method is formulated for the calculation of the photonic band structure in one- and two-dimensional photonic crystals. By assuming the dependence on hydrostatic pressure and temperature of the dielectric constant of the semiconductor material constituent of the crystal, the results obtained reveal that the tuning of the band structure is mainly due to hydrostatic pressure rather than temperature. The guided mode expansion method is used for the calculation of the photonic band structure in a photonic slab where the confinement of light is in all three spatial directions. In particular, we address the problem of determining the quality factor in photonic slabs with L1 and L3 cavities, where a decrease of the quality factor with increasing hydrostatic pressure is shown.DoctoradoCristales fotónicos1 recurso en línea (77 páginas)application/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Doctorado en Ciencias - FísicaFacultad de CienciasBogotáUniversidad Nacional de Colombia - Sede Bogotá530 - FísicaFotónicaElectromagnetismoPhotonicElectromagnetismCristales fotónicosPresiónTemperaturaPhotonic crystalPressureTemperatureControl mediante la presión y la temperatura de las propiedades ópticas en cristales fotónicosTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TD[1] J. Joannopoulos, S. Johnson, and R. Meade. Photonic crystals: molding the flow of light. Princenton University Press, 2007.[2] N. Aschcroft, D. Mermin, and D. Wei. Solid state Physics. Revised Edition, Cengage Learning Asia, 2016.[3] E. Yablanovitch. Photonic crystals: semiconductors of light. Sci. Amer., 285:46–55, 201.[4] R. H. Lipson and C. Lu. Photonic crystals: a unique partnership between light and matter. Eur. J. Phys., 30:S33, 2009.[5] E. Yablanovitch. Inhibited spontaneous emission in solid state physics and electronics. Phys. Rev. Lett., 58:2059, 1987.[6] S. John. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett., 58:2486, 1987.[7] K. Leung and Y. Liu. Photon band structures: The plane-wave method. Phys. Rev. B, 41:10188–10190, 1990.[8] K. Ho, C. Chan, and C. Soukoulis. Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett., 65:3152–3155, 1990.[9] P. Vukusic and J. Roy. Photonic structures in biology. Nature, 424:852–855, 2003.[10] J. Pol Vigneron and J. Roy. Natural layer-by-layer photonic structurein the squamae of hoplia coerulea (coleoptera). Phys. Rev. E, 72:061904, 2005.[11] J. Pol Vigneron and P. Simonis. Natural photonic crystals. Physica B, 407:4032–4036, 2012.[12] P. Vukusic. Structural colour: elusive iridescence strategies brought to light. Curr. Biol.,21:R187–R189, 2011.[13] G. Luna-Acosta, H. Schanze, U. Kuhl, and H. St ockmann. Impurity effects on the band structure of one-dimensional photonic crystals: experiment and theory. New J. Phys.,10:043005, 2008.[14] H. Sun, V. Mizeikis, Y. Xu, S. Juodkazis, J. Ye, S. Matsuo, and H. Misawa. Microcavities in polymeric photonic crystals. Appl. Phys. Lett., 79:1–3, 2001.[15] M. Mahmoud, G. Bassoy, A. Taalbi, and Z. Chekroun. Optical channel drop filters based on photonic crystal ring resonators. Opt. Commun., 258:368–372, 2012.[16] H. Altug, D. Englund, and J. Vuckovic. Ultrafast photonic crystal nanocavity laser. Nat. phys., 2:484–488, 2006.[17] S. Noda. Photonic crystal lasers-ultimate nanolasers and broad-area coherent lasers. J. Opt. Soc. Am. B, 27:B1–B8, 2010.[18] E. Miyai, O. Okano, M. Mochizuki, and S. Noda. Analysis of coupling between two-dimensional photonic crystal waveguide and external waveguide. Appl. Phys. Lett., 81:3729–3731, 2002.[19] S. Johnson, P. Villenueve, S. Fan, and J. Joannopoulos. Linear waveguide in photonic crystal slabs. Phys. Rev. B, 62:8212, 2000.[20] I. Bayn, B. Meyler, A. Lahav, J. Salzman, and R. Kalish. Processing of photonic crystal nanocavity for quantum information in diamond. Diam. Relat. Mater, 20:937–943, 2011.[21] D. Angelakis, M. Santos, V. Yannopapas, and A. Ekert. A proposal for the implementation of quantum gates with photonic-crystal waveguide. Phys. Lett. A, 362:377–380, 2007.[22] J. Lourtoiz, H. Benisty, V. Berger, J. Gerard, D. Maystre, and A. Tchelnokov. Photonic Crystals: Towards Nanoscale Photonic Devices. Springer-Veralag, Berlin, 2005.[23] R. Meade, A. Devenyi, J. Joannopoulos, O. Alerhand, D. Smith, and K. Kash. Novel applications of photonic ban gap materials: Low-loss bends and high q cavities. J. Appl. Phys., 75:4753, 1994.[24] P. Villeneuve, S. Fan, S. Johnson, and J. Joannopoulos. Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity. III Proc. Optoelectron., 145:384, 1998.[25] C. Weisbuch, H. Benisty, S. Olivier, M. Rattier, C. Smith, and T. Krauss. Advances in photonic crystals. Phys. Stat. Sol., 221:93, 2000.[26] L. Midolo, T. Pregnolato, G. Kirsanske, and S. Stobbe. Soft-mask fabrication of gallium arsenide nanomembranes for integrated quantum photonics. Nanotechnology, 26:484002, 2015.[27] N. Le Thomas, H. Zhang, J. Jagerska, V. Zabelin, R. Houdre, and A. Talneau I. Sagnes, and. Light transport regimes in slow light photonic crystal waveguide. Phys. Rev. B, 80:125332, 2009.[28] Z. Diao. Investigation of 2D photonic crystals and their applications on Terahertz quantum cascade lasers, optical trapping and sensing. Ph. D thesis, Ecole Polytechnique Federale de Lausanne, Suisse, 2013.[29] J. Manzanares-Martinez, F. Ramos-Mendieta, and P. Halevi. Temperature tuning of two-dimensional photonic crystals in the presence of phonons and a plasma of electrons and holes. Phys. Rev. B, 72:035336, 2005.[30] H. Elsayed, S. El-Naggar, and A. Aly. Thermal properties and two-dimensional photonic band gaps. Journal of Modern Optics, 61:385–389, 2014.[31] N. Porras-Montenegro and C. Duque. Temperature and hydrostatic pressure effects on the photonic band structure of a 2D honeycomb lattice. Physica E, 42:1865, 2010.[32] C. Duque and M. Mora-Ramos. The two-dimensional square and triangular photonic lattice under the effects of magnetic field, hydrostatic pressure, and temperature. Opt. Quant. Electron., 44:375–392, 2012.[33] A. Aly and F. Sayed. THz cutoff frequency and multifunction Ti2 Ba2 Ca2 Cu3 O10 /GaAs photonic bandgap materials. Int. J. Mod. Phys. B, 34:2050091–1, 2020.[34] J. Hao, L. Ju, W. Du, K. Gu, and H. Yang. Research on transmission characteristics of two-dimensional superconducting photonic crystal in THz-waves. Plasmonics, 15:1083–1089, 2020.[35] A. Ahmed, M. Shaban, and A. Aly. Electro-optical tenability properties of defective one-dimensional photonic crystal. Optik, 145:121–129, 2017.[36] A. Aly, H. Elsayed, and S. El-Naggar. Tuning the flow of light in two-dimensional metallic photonic crystals based on Faraday effect. Journal of Modern Optics, 64:74–80, 2017.[37] M. Tefelska, M. Chychlowski, A. Czapla, and R. Dabrowski et al. Hydrostatic pressure effects in photonic liquid crystal fibers. Proc. SPIE, 7120:712008, 2008.[38] T. Wolinski, A. Czapla, M. Tefelska, A. Domanski, J. Wojcik, E. Nowinowski-Kruszelnicki, and R. Dabrowski. Photonic liquid crystal fibers for sensing applications. IEEE T. Instrum. Meas., 57:1796–1802, 2008.[39] Z. Liu, M. Tse, C. Wu, D. Chen, C. Lu, and H. Tam. Intermodal coupling of supermodes in a twin-core photonic crystal fiber and its application as a pressure sensor. Opt. Express, 20:21749–21757, 2012.[40] C. Wu, H. Fu, K. Qureshi, B. Guan, and H. Tam. High-pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber. Optic. Lett., 36:412–414, 2011.[41] S. Olyaee and A. Dehghani. High resolution and wide dynamic range pressure sensor based on two-dimensional photonic crystal. Photonic Sens., 2:92–96, 2012.[42] F. Berghmans, T. Geernaert, and S. Sulejmani. Photonic crystal fiber Bragg grating based sensors—opportunities for applications in healthcare. Proc. of SPIE-OSA-IEEE Asia Communications and Photonics, 8311:831102, 2011.[43] H. Fu, C. Wu, and M. Tse. High pressure sensor based on photonic crystal fiber for downhole application. App. Optics, 49:2639–2643, 2010.[44] A. Arsenault, T. Clark, and G. von Freymann. From colour fingerprinting to the control of photoluminescence in elastic photonic crystals. Nat. Mate., 5:179, 2006.[45] A. Lawson and T. Tang. A diamond bomb for obtaining powder pictures at high pressures. Rev. Sci. Instruments, 21:815, 1950.[46] M Cardona A. Gono, K. Syassen. Effect of pressure on the refractive index of Ge and GaAs. Phys. Rev. B, 41:10104, 1990.[47] G. Samara. Temperature and pressure dependences of the dielectric constants of semiconductors. Phys. Rev. B, 27:3494, 1983.[48] I. Strzalkowski, S. Joshi, and C. Crowell. Dielectric constant and its temperature dependece for GaAs, CdTe, and ZnSe. Appl. Phys. Lett., 28:350, 1976.[49] W. Bassett, A. Shen, M. Bucknum, and I. Chou. A new diamond anvil cell for hydrothermal studies to 2.5 GPa, and from -190 to 1200 C. Rev. Sci. Instrum., 64:2340, 1993.[50] C. Duque, N. Porras, Z. Barticevic, M. Pacheco, and L. Oliveira. Effects of applied magnetic fields and hydrostatic pressure on the optical transitions in self-assembled InAs/GaAs quantum dots. J. Phys. Condens. Matter, 18:1877, 2006.[51] H. Oyoko, C. Duque, and N. Porras. Uniaxial stress dependence of the binding energy of shallow donor impurities in GaAs-(Ga, Al)As quantum dots. J. Appl. Phys., 90:819, 2001.[52] J. Jackson. Classical Electrodynamics. 3er ed. John Wiley and Sons, New York, 1999.[53] C. Kittel. Introduction to solid state physics. John Wiley and Sons, New York, 2005.[54] P. Yeh. Optical Waves in Layered Media. Wiley-Interscience, 2005.[55] E. Chow, S. Lin, S. Johnson, J. Joannopoulos P. Villenueve, J. Wendt, G. Vawter, W. Zubrzycki, H. Hou, and A. Alleman. Three-dimensional control of light in a two-dimensional photonic crystal slab. Nature, 407:983, 2000.[56] S. McNab, N. Moll, and Y. Vlasov. Ultra-low photonic integrated circuit with membrane-type photonic crystal waveguide. Opt. Express, 11:2927–2939, 2003.[57] D. Gerace. Photonic modes and radiation -matter interaction in photonic crystal slabs. Ph. D thesis, University of Pavia, 2005.[58] A. Yariv and P. Yeh. Photonics: optical electronics in modern communications. Oxford University Press, 2006.[59] K. Dong, D. Chen, H. You, Y. Wang, Y. Zhang, and X. Wang. Growth and characteristic of SiO2 /Si3 N4 photonic crystal filter with anti-reflection coating. Nanosci. Nanotech.Let., 11:834–838, 2019.[60] M. Calvo, O. Sobrado, G. Lozano, and H. Miguez. Molding with nanoparticle-based one-dimensional photonic crystals: a route to flexible ant transferable bragg mirrors of high dielectric contrast. J. Mater. Chem., 11:3144–3148, 2009.[61] Q. Chen and D. Allsopp. One dimensional coupled cavities photonic crystal filters with tapered Bragg mirrors. Opt. Commun., 281:5771–5774, 2008.[62] A. Zain, N. Johnson, M. Sorel, and M. Richard. Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI). Opt. Express., 16:12084–12089, 2008.[63] W. Rao, Y. Song, M. Liu, and C. Jin. All-optical switch based on photonic crystal microcavity with multi-resonan modes. Optik, 121:1934–1936, 2010.[64] L. Wu, F. Zhuang, and S. He. Degenerancy analysis for a supercell of a photonic crystal and its applications to the creation of band gaps. Phys. Rev. E, 67:026612, 2003.[65] A. Herrera, J. Calero, and N. Porras-Montenegro. Pressure, temperature, and thickness dependence of transmittance in a 1D superconductor-semiconductor photonic crystal. J. Appl. Phys., 123:033101, 2018.[66] R. Wesche. Physical properties of high-temperature superconductors. Wiley series, 2015.[67] A. Yamamoto, N. Takeshita, C. Terakura, and Y. Tokura. High pressure effects revisited for the cuprate superconductor family with highest critical temperature. Nat. commun., 6:R2999, 2015.[68] C. Panagopoulos, J. Cooper, G. Peacock, I. Gameason, P. Edwards, W. Schmid-bauer, and J. Hodby. Anisotropic magnetic penetration depth of grain-aligned HgBa2 Ca2 Cu3 O8+d . Phys. Rev. B, 53:R2999, 1996.[69] N. Takeshita, A. Yamamoto, A. Iyo, and H. Eisaki. Zero resistivity above 150 K in HgBa2 Ca2 Cu3 O8+δ at high pressure. J. Phys. Soc. Jpn., 82:023711, 2013.[70] A. Elabsy. Hydrostatic pressure dependence of binding energies for donors in quantum well heterostructures. Phys. Scripta, 48:376, 1993.[71] J. Winn, R. Meade, and J. Joannopoulos. Two-dimensional photonic band-gap materials. J. Mod. Optics, 41:257–273, 1994.[72] P. Villenueve and M. Pich ́. Photonic band gaps in two-dimensional square and hexagonal lattices. Phys. Rev. B, 46:4969, 1992.[73] R. Meade, K. Brommer, A. Rappe, and J. Joannopoulos. Existence of a photonic band gap in two dimensional. Appl. Phys. Lett., 61:495–497, 1992.[74] R. Padjen, J. Gerard, and J. Marzin. Analysis of the filling pattern dependence of the photonic bandgap for two-dimensional system. J. Mod. Optics, 41:295–310, 1994.[75] R. Hillebrand and W. Hergert. Band gap studies of triangular 2D photonic crystals with varying pore roundness. Solid State Commun., 115:227–232, 2000.[76] T. Takizawa, S. Arai, and M. Nakahara. Fabrication of vertical and uniform -size porous InP structure by electrochemical anodization. Jpn. J. Appl. Phys., 33:L643–L645, 1994.[77] T. Baba and M. Koma. Possibility of InP based 2 d-dimensional photonic crystal: An approach by the anodization method. Jpn. J. Appl. Phys., 34:1405–1408, 1995.[78] M. Loncar, T. Doll, J. Vuckovic, and A. Scherer. Design and fabrication of silicon photonic crystal optical waveguide. IEEE J. Lightwave Technol., 18:1402, 2000.[79] T. Baba, T. Iwai A. Motegi, N. Fukaya, Y. Watanabe, and A. Sakai. Light propagation characteristic of straight single-line-defect waveguide in photonic crystals fabricated into a silicon-on-insulator substrate. IEEE J. Quantum Electron., 38:743, 2002.[80] A. Talneau, L. Gouezigou, and N. Bouadma. Quantitative measurement of low propagation losses at 1.55 μm on planar photonic crystal waveguide. Opt. Lett., 26:1259, 2001.ORIGINAL13071107.2021.pdf13071107.2021.pdfTesis de Doctorado en Ciencias - Físicaapplication/pdf5980996https://repositorio.unal.edu.co/bitstream/unal/79389/1/13071107.2021.pdf325f2583ffa7226f9f20dcf0963c7998MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79389/2/license.txtcccfe52f796b7c63423298c2d3365fc6MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/79389/3/license_rdf4460e5956bc1d1639be9ae6146a50347MD53THUMBNAIL13071107.2021.pdf.jpg13071107.2021.pdf.jpgGenerated Thumbnailimage/jpeg4604https://repositorio.unal.edu.co/bitstream/unal/79389/4/13071107.2021.pdf.jpg8675644fa8669650a7a1cf6da5b33be6MD54unal/79389oai:repositorio.unal.edu.co:unal/793892024-07-09 23:20:17.532Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==