Parametric time-frequency analysis for discrimination of non-stationary signals

Abstract: In this master�s thesis discrimination of non-stationary signals using time varying parametric modeling and time frequency analysis is explored. This work consists of two parts, the first, to obtain a representation for non-stationary signals by parametric modeling and parametric time-fr...

Full description

Autores:
Avendaño Valencia, Luis David
Tipo de recurso:
Fecha de publicación:
2009
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/69959
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/69959
http://bdigital.unal.edu.co/2087/
Palabra clave:
62 Ingeniería y operaciones afines / Engineering
Procesamiento de señales
Electrónica médica
Señales fonocardiográficas
Detección de epilepsia
Signal processing
Electronics in medicine
Phonocardiographic signals
Detection of epilepsy
electroencephalografic signals
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_77bffc2d9dfa638a6c79796738898254
oai_identifier_str oai:repositorio.unal.edu.co:unal/69959
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Parametric time-frequency analysis for discrimination of non-stationary signals
dc.title.translated.spa.fl_str_mv Análisis tiempo-frecuencia paramétrico para la discriminación de señales no estacionarias
title Parametric time-frequency analysis for discrimination of non-stationary signals
spellingShingle Parametric time-frequency analysis for discrimination of non-stationary signals
62 Ingeniería y operaciones afines / Engineering
Procesamiento de señales
Electrónica médica
Señales fonocardiográficas
Detección de epilepsia
Signal processing
Electronics in medicine
Phonocardiographic signals
Detection of epilepsy
electroencephalografic signals
title_short Parametric time-frequency analysis for discrimination of non-stationary signals
title_full Parametric time-frequency analysis for discrimination of non-stationary signals
title_fullStr Parametric time-frequency analysis for discrimination of non-stationary signals
title_full_unstemmed Parametric time-frequency analysis for discrimination of non-stationary signals
title_sort Parametric time-frequency analysis for discrimination of non-stationary signals
dc.creator.fl_str_mv Avendaño Valencia, Luis David
dc.contributor.advisor.spa.fl_str_mv Castellanos Domínguez, César Germán (Thesis advisor)
dc.contributor.author.spa.fl_str_mv Avendaño Valencia, Luis David
dc.subject.ddc.spa.fl_str_mv 62 Ingeniería y operaciones afines / Engineering
topic 62 Ingeniería y operaciones afines / Engineering
Procesamiento de señales
Electrónica médica
Señales fonocardiográficas
Detección de epilepsia
Signal processing
Electronics in medicine
Phonocardiographic signals
Detection of epilepsy
electroencephalografic signals
dc.subject.proposal.spa.fl_str_mv Procesamiento de señales
Electrónica médica
Señales fonocardiográficas
Detección de epilepsia
Signal processing
Electronics in medicine
Phonocardiographic signals
Detection of epilepsy
electroencephalografic signals
description Abstract: In this master�s thesis discrimination of non-stationary signals using time varying parametric modeling and time frequency analysis is explored. This work consists of two parts, the first, to obtain a representation for non-stationary signals by parametric modeling and parametric time-frequency representations, and the second, feature selection and extraction based on time�frequency representations and time-varying data. In this study many advantages of non-stationary signal analysis using parametric methodology will be made evident. Among them it will be found that by means of these models it is possible to determine how signal�s structure changes along time and analogously, to determine how the frequency content of a signal changes. The effectiveness of this methodology depends on three main factors, first, the choice of the model structure, which in the case of TVAR modeling would be the problem to find the order of AR model, second, estimation of the model parameters and third, selection the structure of temporal change that is imposed on the dynamics of time-variant parameters. In this aspect, a revision and evaluation of different state of the art methodologies for model structure selection, estimation of TVAR parameters and temporal structures is made. It was found that the performance of parametric methodology depends directly on these three factors; however, the main influencing factor is the structure of temporal change imposed on the estimator and how it couples with the dynamics of a time-varying signal. The second addressed problem is how to use these time varying features (matricial features) to train classifiers. Features estimated with parametric models yield a complete representation of signal�s dynamics at the cost of large dimensionality and redundancy. Thus, a review of feature extraction methods devised for time-varying and matricial data is carried out. Also, relevance analysis is generalized for the case of matricial data.
publishDate 2009
dc.date.issued.spa.fl_str_mv 2009
dc.date.accessioned.spa.fl_str_mv 2019-07-03T13:05:00Z
dc.date.available.spa.fl_str_mv 2019-07-03T13:05:00Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/69959
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/2087/
url https://repositorio.unal.edu.co/handle/unal/69959
http://bdigital.unal.edu.co/2087/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Sede Manizales Facultad de Ingeniería y Arquitectura Departamento de Ingeniería Eléctrica, Electrónica y Computación
Departamento de Ingeniería Eléctrica, Electrónica y Computación
dc.relation.references.spa.fl_str_mv Avendaño Valencia, Luis David (2009) Parametric time-frequency analysis for discrimination of non-stationary signals = [Análisis tiempo-frecuencia paramétrico para la discriminación de señales no estacionarias]. Maestría thesis, Universidad Nacional de Colombia - Sede Manizales.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/69959/1/Luisdavidavendanovalencia.2009.pdf
https://repositorio.unal.edu.co/bitstream/unal/69959/2/Luisdavidavendanovalencia.2009.pdf.jpg
bitstream.checksum.fl_str_mv 91d07823f8bff119590a57945c91c091
80dd029ed31dbf34d283edd2d3ba559f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089650602508288
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Castellanos Domínguez, César Germán (Thesis advisor)c792a029-43aa-4eb1-ac01-0b8ac24a537eAvendaño Valencia, Luis Davidb2c32e4b-7641-4a90-a7bf-fd548947ebbe3002019-07-03T13:05:00Z2019-07-03T13:05:00Z2009https://repositorio.unal.edu.co/handle/unal/69959http://bdigital.unal.edu.co/2087/Abstract: In this master�s thesis discrimination of non-stationary signals using time varying parametric modeling and time frequency analysis is explored. This work consists of two parts, the first, to obtain a representation for non-stationary signals by parametric modeling and parametric time-frequency representations, and the second, feature selection and extraction based on time�frequency representations and time-varying data. In this study many advantages of non-stationary signal analysis using parametric methodology will be made evident. Among them it will be found that by means of these models it is possible to determine how signal�s structure changes along time and analogously, to determine how the frequency content of a signal changes. The effectiveness of this methodology depends on three main factors, first, the choice of the model structure, which in the case of TVAR modeling would be the problem to find the order of AR model, second, estimation of the model parameters and third, selection the structure of temporal change that is imposed on the dynamics of time-variant parameters. In this aspect, a revision and evaluation of different state of the art methodologies for model structure selection, estimation of TVAR parameters and temporal structures is made. It was found that the performance of parametric methodology depends directly on these three factors; however, the main influencing factor is the structure of temporal change imposed on the estimator and how it couples with the dynamics of a time-varying signal. The second addressed problem is how to use these time varying features (matricial features) to train classifiers. Features estimated with parametric models yield a complete representation of signal�s dynamics at the cost of large dimensionality and redundancy. Thus, a review of feature extraction methods devised for time-varying and matricial data is carried out. Also, relevance analysis is generalized for the case of matricial data.Maestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Manizales Facultad de Ingeniería y Arquitectura Departamento de Ingeniería Eléctrica, Electrónica y ComputaciónDepartamento de Ingeniería Eléctrica, Electrónica y ComputaciónAvendaño Valencia, Luis David (2009) Parametric time-frequency analysis for discrimination of non-stationary signals = [Análisis tiempo-frecuencia paramétrico para la discriminación de señales no estacionarias]. Maestría thesis, Universidad Nacional de Colombia - Sede Manizales.62 Ingeniería y operaciones afines / EngineeringProcesamiento de señalesElectrónica médicaSeñales fonocardiográficasDetección de epilepsiaSignal processingElectronics in medicinePhonocardiographic signalsDetection of epilepsyelectroencephalografic signalsParametric time-frequency analysis for discrimination of non-stationary signalsAnálisis tiempo-frecuencia paramétrico para la discriminación de señales no estacionariasTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMORIGINALLuisdavidavendanovalencia.2009.pdfapplication/pdf2663235https://repositorio.unal.edu.co/bitstream/unal/69959/1/Luisdavidavendanovalencia.2009.pdf91d07823f8bff119590a57945c91c091MD51THUMBNAILLuisdavidavendanovalencia.2009.pdf.jpgLuisdavidavendanovalencia.2009.pdf.jpgGenerated Thumbnailimage/jpeg4808https://repositorio.unal.edu.co/bitstream/unal/69959/2/Luisdavidavendanovalencia.2009.pdf.jpg80dd029ed31dbf34d283edd2d3ba559fMD52unal/69959oai:repositorio.unal.edu.co:unal/699592023-06-11 23:03:13.019Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co