Parametric time-frequency analysis for discrimination of non-stationary signals
Abstract: In this master�s thesis discrimination of non-stationary signals using time varying parametric modeling and time frequency analysis is explored. This work consists of two parts, the first, to obtain a representation for non-stationary signals by parametric modeling and parametric time-fr...
- Autores:
-
Avendaño Valencia, Luis David
- Tipo de recurso:
- Fecha de publicación:
- 2009
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/69959
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/69959
http://bdigital.unal.edu.co/2087/
- Palabra clave:
- 62 Ingeniería y operaciones afines / Engineering
Procesamiento de señales
Electrónica médica
Señales fonocardiográficas
Detección de epilepsia
Signal processing
Electronics in medicine
Phonocardiographic signals
Detection of epilepsy
electroencephalografic signals
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_77bffc2d9dfa638a6c79796738898254 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/69959 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Parametric time-frequency analysis for discrimination of non-stationary signals |
dc.title.translated.spa.fl_str_mv |
Análisis tiempo-frecuencia paramétrico para la discriminación de señales no estacionarias |
title |
Parametric time-frequency analysis for discrimination of non-stationary signals |
spellingShingle |
Parametric time-frequency analysis for discrimination of non-stationary signals 62 Ingeniería y operaciones afines / Engineering Procesamiento de señales Electrónica médica Señales fonocardiográficas Detección de epilepsia Signal processing Electronics in medicine Phonocardiographic signals Detection of epilepsy electroencephalografic signals |
title_short |
Parametric time-frequency analysis for discrimination of non-stationary signals |
title_full |
Parametric time-frequency analysis for discrimination of non-stationary signals |
title_fullStr |
Parametric time-frequency analysis for discrimination of non-stationary signals |
title_full_unstemmed |
Parametric time-frequency analysis for discrimination of non-stationary signals |
title_sort |
Parametric time-frequency analysis for discrimination of non-stationary signals |
dc.creator.fl_str_mv |
Avendaño Valencia, Luis David |
dc.contributor.advisor.spa.fl_str_mv |
Castellanos Domínguez, César Germán (Thesis advisor) |
dc.contributor.author.spa.fl_str_mv |
Avendaño Valencia, Luis David |
dc.subject.ddc.spa.fl_str_mv |
62 Ingeniería y operaciones afines / Engineering |
topic |
62 Ingeniería y operaciones afines / Engineering Procesamiento de señales Electrónica médica Señales fonocardiográficas Detección de epilepsia Signal processing Electronics in medicine Phonocardiographic signals Detection of epilepsy electroencephalografic signals |
dc.subject.proposal.spa.fl_str_mv |
Procesamiento de señales Electrónica médica Señales fonocardiográficas Detección de epilepsia Signal processing Electronics in medicine Phonocardiographic signals Detection of epilepsy electroencephalografic signals |
description |
Abstract: In this master�s thesis discrimination of non-stationary signals using time varying parametric modeling and time frequency analysis is explored. This work consists of two parts, the first, to obtain a representation for non-stationary signals by parametric modeling and parametric time-frequency representations, and the second, feature selection and extraction based on time�frequency representations and time-varying data. In this study many advantages of non-stationary signal analysis using parametric methodology will be made evident. Among them it will be found that by means of these models it is possible to determine how signal�s structure changes along time and analogously, to determine how the frequency content of a signal changes. The effectiveness of this methodology depends on three main factors, first, the choice of the model structure, which in the case of TVAR modeling would be the problem to find the order of AR model, second, estimation of the model parameters and third, selection the structure of temporal change that is imposed on the dynamics of time-variant parameters. In this aspect, a revision and evaluation of different state of the art methodologies for model structure selection, estimation of TVAR parameters and temporal structures is made. It was found that the performance of parametric methodology depends directly on these three factors; however, the main influencing factor is the structure of temporal change imposed on the estimator and how it couples with the dynamics of a time-varying signal. The second addressed problem is how to use these time varying features (matricial features) to train classifiers. Features estimated with parametric models yield a complete representation of signal�s dynamics at the cost of large dimensionality and redundancy. Thus, a review of feature extraction methods devised for time-varying and matricial data is carried out. Also, relevance analysis is generalized for the case of matricial data. |
publishDate |
2009 |
dc.date.issued.spa.fl_str_mv |
2009 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-03T13:05:00Z |
dc.date.available.spa.fl_str_mv |
2019-07-03T13:05:00Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/69959 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/2087/ |
url |
https://repositorio.unal.edu.co/handle/unal/69959 http://bdigital.unal.edu.co/2087/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Manizales Facultad de Ingeniería y Arquitectura Departamento de Ingeniería Eléctrica, Electrónica y Computación Departamento de Ingeniería Eléctrica, Electrónica y Computación |
dc.relation.references.spa.fl_str_mv |
Avendaño Valencia, Luis David (2009) Parametric time-frequency analysis for discrimination of non-stationary signals = [Análisis tiempo-frecuencia paramétrico para la discriminación de señales no estacionarias]. Maestría thesis, Universidad Nacional de Colombia - Sede Manizales. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/69959/1/Luisdavidavendanovalencia.2009.pdf https://repositorio.unal.edu.co/bitstream/unal/69959/2/Luisdavidavendanovalencia.2009.pdf.jpg |
bitstream.checksum.fl_str_mv |
91d07823f8bff119590a57945c91c091 80dd029ed31dbf34d283edd2d3ba559f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089650602508288 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Castellanos Domínguez, César Germán (Thesis advisor)c792a029-43aa-4eb1-ac01-0b8ac24a537eAvendaño Valencia, Luis Davidb2c32e4b-7641-4a90-a7bf-fd548947ebbe3002019-07-03T13:05:00Z2019-07-03T13:05:00Z2009https://repositorio.unal.edu.co/handle/unal/69959http://bdigital.unal.edu.co/2087/Abstract: In this master�s thesis discrimination of non-stationary signals using time varying parametric modeling and time frequency analysis is explored. This work consists of two parts, the first, to obtain a representation for non-stationary signals by parametric modeling and parametric time-frequency representations, and the second, feature selection and extraction based on time�frequency representations and time-varying data. In this study many advantages of non-stationary signal analysis using parametric methodology will be made evident. Among them it will be found that by means of these models it is possible to determine how signal�s structure changes along time and analogously, to determine how the frequency content of a signal changes. The effectiveness of this methodology depends on three main factors, first, the choice of the model structure, which in the case of TVAR modeling would be the problem to find the order of AR model, second, estimation of the model parameters and third, selection the structure of temporal change that is imposed on the dynamics of time-variant parameters. In this aspect, a revision and evaluation of different state of the art methodologies for model structure selection, estimation of TVAR parameters and temporal structures is made. It was found that the performance of parametric methodology depends directly on these three factors; however, the main influencing factor is the structure of temporal change imposed on the estimator and how it couples with the dynamics of a time-varying signal. The second addressed problem is how to use these time varying features (matricial features) to train classifiers. Features estimated with parametric models yield a complete representation of signal�s dynamics at the cost of large dimensionality and redundancy. Thus, a review of feature extraction methods devised for time-varying and matricial data is carried out. Also, relevance analysis is generalized for the case of matricial data.Maestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Manizales Facultad de Ingeniería y Arquitectura Departamento de Ingeniería Eléctrica, Electrónica y ComputaciónDepartamento de Ingeniería Eléctrica, Electrónica y ComputaciónAvendaño Valencia, Luis David (2009) Parametric time-frequency analysis for discrimination of non-stationary signals = [Análisis tiempo-frecuencia paramétrico para la discriminación de señales no estacionarias]. Maestría thesis, Universidad Nacional de Colombia - Sede Manizales.62 Ingeniería y operaciones afines / EngineeringProcesamiento de señalesElectrónica médicaSeñales fonocardiográficasDetección de epilepsiaSignal processingElectronics in medicinePhonocardiographic signalsDetection of epilepsyelectroencephalografic signalsParametric time-frequency analysis for discrimination of non-stationary signalsAnálisis tiempo-frecuencia paramétrico para la discriminación de señales no estacionariasTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMORIGINALLuisdavidavendanovalencia.2009.pdfapplication/pdf2663235https://repositorio.unal.edu.co/bitstream/unal/69959/1/Luisdavidavendanovalencia.2009.pdf91d07823f8bff119590a57945c91c091MD51THUMBNAILLuisdavidavendanovalencia.2009.pdf.jpgLuisdavidavendanovalencia.2009.pdf.jpgGenerated Thumbnailimage/jpeg4808https://repositorio.unal.edu.co/bitstream/unal/69959/2/Luisdavidavendanovalencia.2009.pdf.jpg80dd029ed31dbf34d283edd2d3ba559fMD52unal/69959oai:repositorio.unal.edu.co:unal/699592023-06-11 23:03:13.019Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |