Short-Term Forecasting of Financial Time Series with Deep Neural Networks

In this work, a high-frequency strategy using Deep Neural Networks (DNNs) is presented. The input information to the DNN consists of: (i). Current time (hour and minute); (ii). the last n one-minute pseudo-returns, where n is the sliding window size parameter; (iii). the last n one-minute standard d...

Full description

Autores:
Arévalo Murillo, Andrés Ricardo
Tipo de recurso:
Fecha de publicación:
2016
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/58015
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/58015
http://bdigital.unal.edu.co/54538/
Palabra clave:
0 Generalidades / Computer science, information and general works
Short-term Forecasting
High-frequency Trading
Computational Finance
Deep Neural Networks
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_77ba7040e093a761f658c3da27177603
oai_identifier_str oai:repositorio.unal.edu.co:unal/58015
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Hernandez Perez, German Jairo (Thesis advisor)090dc6ba-4c3a-4d51-8d3d-f19bde01494e-1Arévalo Murillo, Andrés Ricardoc411a714-debd-4269-b616-274c8e97a3fd3002019-07-02T13:32:13Z2019-07-02T13:32:13Z2016https://repositorio.unal.edu.co/handle/unal/58015http://bdigital.unal.edu.co/54538/In this work, a high-frequency strategy using Deep Neural Networks (DNNs) is presented. The input information to the DNN consists of: (i). Current time (hour and minute); (ii). the last n one-minute pseudo-returns, where n is the sliding window size parameter; (iii). the last n one-minute standard deviations of the price; (iv). The last n trend indicator, computed as the slope of the linear model fitted using the transaction prices inside a particular minute. The output DNN prediction is the next one-minute pseudo-return, this output is later transformed to obtain the next one-minute average price forecasting. The DNN predictions are used to build a high-frequency trading strategy that buys (sells) when the next predicted average price is above (below) the last closing price. This high-frequency trading strategy is only applicable to high liquidity stocks, because it requires to open and close positions in a time interval equal or less than one minute. For experimental testing, this work uses three datasets: (i). Apple stock (ticker: AAPL) from September to November of 2008. (ii). Apple stock (ticker: AAPL) from August of 2015 to August of 2016. (iii). Google stock (ticker: GOOG) from August of 2015 to August of 2016. Apple Inc. and Google Inc. are high liquidity stocks. The period of the first dataset covers the stock crash during the financial crisis of 2008. During this crash, the AAPL price suffered a dramatic fall from 172 to 98 dollars. This first dataset was chosen intentionally for demonstrate the performance of the proposed strategy under high volatility conditions. Whereas the second and third datasets were chosen in order to test the proposed strategy in normal market conditions. Multiple DNNs with different sliding window size parameter n and number of hidden layers L were trained. The best-performing-found DNN has a 65% of directional accuracy.Maestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial Ingeniería de SistemasIngeniería de SistemasArévalo Murillo, Andrés Ricardo (2016) Short-Term Forecasting of Financial Time Series with Deep Neural Networks. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá.0 Generalidades / Computer science, information and general worksShort-term ForecastingHigh-frequency TradingComputational FinanceDeep Neural NetworksShort-Term Forecasting of Financial Time Series with Deep Neural NetworksTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMORIGINAL1014262698.pdfapplication/pdf1029342https://repositorio.unal.edu.co/bitstream/unal/58015/1/1014262698.pdf37a52063c5a128521c71cb3a77ad8efdMD51THUMBNAIL1014262698.pdf.jpg1014262698.pdf.jpgGenerated Thumbnailimage/jpeg4925https://repositorio.unal.edu.co/bitstream/unal/58015/2/1014262698.pdf.jpg894280df96c52845dc4a5c234f3f8713MD52unal/58015oai:repositorio.unal.edu.co:unal/580152023-03-25 23:13:12.968Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv Short-Term Forecasting of Financial Time Series with Deep Neural Networks
title Short-Term Forecasting of Financial Time Series with Deep Neural Networks
spellingShingle Short-Term Forecasting of Financial Time Series with Deep Neural Networks
0 Generalidades / Computer science, information and general works
Short-term Forecasting
High-frequency Trading
Computational Finance
Deep Neural Networks
title_short Short-Term Forecasting of Financial Time Series with Deep Neural Networks
title_full Short-Term Forecasting of Financial Time Series with Deep Neural Networks
title_fullStr Short-Term Forecasting of Financial Time Series with Deep Neural Networks
title_full_unstemmed Short-Term Forecasting of Financial Time Series with Deep Neural Networks
title_sort Short-Term Forecasting of Financial Time Series with Deep Neural Networks
dc.creator.fl_str_mv Arévalo Murillo, Andrés Ricardo
dc.contributor.advisor.spa.fl_str_mv Hernandez Perez, German Jairo (Thesis advisor)
dc.contributor.author.spa.fl_str_mv Arévalo Murillo, Andrés Ricardo
dc.subject.ddc.spa.fl_str_mv 0 Generalidades / Computer science, information and general works
topic 0 Generalidades / Computer science, information and general works
Short-term Forecasting
High-frequency Trading
Computational Finance
Deep Neural Networks
dc.subject.proposal.spa.fl_str_mv Short-term Forecasting
High-frequency Trading
Computational Finance
Deep Neural Networks
description In this work, a high-frequency strategy using Deep Neural Networks (DNNs) is presented. The input information to the DNN consists of: (i). Current time (hour and minute); (ii). the last n one-minute pseudo-returns, where n is the sliding window size parameter; (iii). the last n one-minute standard deviations of the price; (iv). The last n trend indicator, computed as the slope of the linear model fitted using the transaction prices inside a particular minute. The output DNN prediction is the next one-minute pseudo-return, this output is later transformed to obtain the next one-minute average price forecasting. The DNN predictions are used to build a high-frequency trading strategy that buys (sells) when the next predicted average price is above (below) the last closing price. This high-frequency trading strategy is only applicable to high liquidity stocks, because it requires to open and close positions in a time interval equal or less than one minute. For experimental testing, this work uses three datasets: (i). Apple stock (ticker: AAPL) from September to November of 2008. (ii). Apple stock (ticker: AAPL) from August of 2015 to August of 2016. (iii). Google stock (ticker: GOOG) from August of 2015 to August of 2016. Apple Inc. and Google Inc. are high liquidity stocks. The period of the first dataset covers the stock crash during the financial crisis of 2008. During this crash, the AAPL price suffered a dramatic fall from 172 to 98 dollars. This first dataset was chosen intentionally for demonstrate the performance of the proposed strategy under high volatility conditions. Whereas the second and third datasets were chosen in order to test the proposed strategy in normal market conditions. Multiple DNNs with different sliding window size parameter n and number of hidden layers L were trained. The best-performing-found DNN has a 65% of directional accuracy.
publishDate 2016
dc.date.issued.spa.fl_str_mv 2016
dc.date.accessioned.spa.fl_str_mv 2019-07-02T13:32:13Z
dc.date.available.spa.fl_str_mv 2019-07-02T13:32:13Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/58015
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/54538/
url https://repositorio.unal.edu.co/handle/unal/58015
http://bdigital.unal.edu.co/54538/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial Ingeniería de Sistemas
Ingeniería de Sistemas
dc.relation.references.spa.fl_str_mv Arévalo Murillo, Andrés Ricardo (2016) Short-Term Forecasting of Financial Time Series with Deep Neural Networks. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/58015/1/1014262698.pdf
https://repositorio.unal.edu.co/bitstream/unal/58015/2/1014262698.pdf.jpg
bitstream.checksum.fl_str_mv 37a52063c5a128521c71cb3a77ad8efd
894280df96c52845dc4a5c234f3f8713
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090029942702080