Short-Term Forecasting of Financial Time Series with Deep Neural Networks
In this work, a high-frequency strategy using Deep Neural Networks (DNNs) is presented. The input information to the DNN consists of: (i). Current time (hour and minute); (ii). the last n one-minute pseudo-returns, where n is the sliding window size parameter; (iii). the last n one-minute standard d...
- Autores:
-
Arévalo Murillo, Andrés Ricardo
- Tipo de recurso:
- Fecha de publicación:
- 2016
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/58015
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/58015
http://bdigital.unal.edu.co/54538/
- Palabra clave:
- 0 Generalidades / Computer science, information and general works
Short-term Forecasting
High-frequency Trading
Computational Finance
Deep Neural Networks
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_77ba7040e093a761f658c3da27177603 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/58015 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Hernandez Perez, German Jairo (Thesis advisor)090dc6ba-4c3a-4d51-8d3d-f19bde01494e-1Arévalo Murillo, Andrés Ricardoc411a714-debd-4269-b616-274c8e97a3fd3002019-07-02T13:32:13Z2019-07-02T13:32:13Z2016https://repositorio.unal.edu.co/handle/unal/58015http://bdigital.unal.edu.co/54538/In this work, a high-frequency strategy using Deep Neural Networks (DNNs) is presented. The input information to the DNN consists of: (i). Current time (hour and minute); (ii). the last n one-minute pseudo-returns, where n is the sliding window size parameter; (iii). the last n one-minute standard deviations of the price; (iv). The last n trend indicator, computed as the slope of the linear model fitted using the transaction prices inside a particular minute. The output DNN prediction is the next one-minute pseudo-return, this output is later transformed to obtain the next one-minute average price forecasting. The DNN predictions are used to build a high-frequency trading strategy that buys (sells) when the next predicted average price is above (below) the last closing price. This high-frequency trading strategy is only applicable to high liquidity stocks, because it requires to open and close positions in a time interval equal or less than one minute. For experimental testing, this work uses three datasets: (i). Apple stock (ticker: AAPL) from September to November of 2008. (ii). Apple stock (ticker: AAPL) from August of 2015 to August of 2016. (iii). Google stock (ticker: GOOG) from August of 2015 to August of 2016. Apple Inc. and Google Inc. are high liquidity stocks. The period of the first dataset covers the stock crash during the financial crisis of 2008. During this crash, the AAPL price suffered a dramatic fall from 172 to 98 dollars. This first dataset was chosen intentionally for demonstrate the performance of the proposed strategy under high volatility conditions. Whereas the second and third datasets were chosen in order to test the proposed strategy in normal market conditions. Multiple DNNs with different sliding window size parameter n and number of hidden layers L were trained. The best-performing-found DNN has a 65% of directional accuracy.Maestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial Ingeniería de SistemasIngeniería de SistemasArévalo Murillo, Andrés Ricardo (2016) Short-Term Forecasting of Financial Time Series with Deep Neural Networks. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá.0 Generalidades / Computer science, information and general worksShort-term ForecastingHigh-frequency TradingComputational FinanceDeep Neural NetworksShort-Term Forecasting of Financial Time Series with Deep Neural NetworksTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMORIGINAL1014262698.pdfapplication/pdf1029342https://repositorio.unal.edu.co/bitstream/unal/58015/1/1014262698.pdf37a52063c5a128521c71cb3a77ad8efdMD51THUMBNAIL1014262698.pdf.jpg1014262698.pdf.jpgGenerated Thumbnailimage/jpeg4925https://repositorio.unal.edu.co/bitstream/unal/58015/2/1014262698.pdf.jpg894280df96c52845dc4a5c234f3f8713MD52unal/58015oai:repositorio.unal.edu.co:unal/580152023-03-25 23:13:12.968Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
Short-Term Forecasting of Financial Time Series with Deep Neural Networks |
title |
Short-Term Forecasting of Financial Time Series with Deep Neural Networks |
spellingShingle |
Short-Term Forecasting of Financial Time Series with Deep Neural Networks 0 Generalidades / Computer science, information and general works Short-term Forecasting High-frequency Trading Computational Finance Deep Neural Networks |
title_short |
Short-Term Forecasting of Financial Time Series with Deep Neural Networks |
title_full |
Short-Term Forecasting of Financial Time Series with Deep Neural Networks |
title_fullStr |
Short-Term Forecasting of Financial Time Series with Deep Neural Networks |
title_full_unstemmed |
Short-Term Forecasting of Financial Time Series with Deep Neural Networks |
title_sort |
Short-Term Forecasting of Financial Time Series with Deep Neural Networks |
dc.creator.fl_str_mv |
Arévalo Murillo, Andrés Ricardo |
dc.contributor.advisor.spa.fl_str_mv |
Hernandez Perez, German Jairo (Thesis advisor) |
dc.contributor.author.spa.fl_str_mv |
Arévalo Murillo, Andrés Ricardo |
dc.subject.ddc.spa.fl_str_mv |
0 Generalidades / Computer science, information and general works |
topic |
0 Generalidades / Computer science, information and general works Short-term Forecasting High-frequency Trading Computational Finance Deep Neural Networks |
dc.subject.proposal.spa.fl_str_mv |
Short-term Forecasting High-frequency Trading Computational Finance Deep Neural Networks |
description |
In this work, a high-frequency strategy using Deep Neural Networks (DNNs) is presented. The input information to the DNN consists of: (i). Current time (hour and minute); (ii). the last n one-minute pseudo-returns, where n is the sliding window size parameter; (iii). the last n one-minute standard deviations of the price; (iv). The last n trend indicator, computed as the slope of the linear model fitted using the transaction prices inside a particular minute. The output DNN prediction is the next one-minute pseudo-return, this output is later transformed to obtain the next one-minute average price forecasting. The DNN predictions are used to build a high-frequency trading strategy that buys (sells) when the next predicted average price is above (below) the last closing price. This high-frequency trading strategy is only applicable to high liquidity stocks, because it requires to open and close positions in a time interval equal or less than one minute. For experimental testing, this work uses three datasets: (i). Apple stock (ticker: AAPL) from September to November of 2008. (ii). Apple stock (ticker: AAPL) from August of 2015 to August of 2016. (iii). Google stock (ticker: GOOG) from August of 2015 to August of 2016. Apple Inc. and Google Inc. are high liquidity stocks. The period of the first dataset covers the stock crash during the financial crisis of 2008. During this crash, the AAPL price suffered a dramatic fall from 172 to 98 dollars. This first dataset was chosen intentionally for demonstrate the performance of the proposed strategy under high volatility conditions. Whereas the second and third datasets were chosen in order to test the proposed strategy in normal market conditions. Multiple DNNs with different sliding window size parameter n and number of hidden layers L were trained. The best-performing-found DNN has a 65% of directional accuracy. |
publishDate |
2016 |
dc.date.issued.spa.fl_str_mv |
2016 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-02T13:32:13Z |
dc.date.available.spa.fl_str_mv |
2019-07-02T13:32:13Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/58015 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/54538/ |
url |
https://repositorio.unal.edu.co/handle/unal/58015 http://bdigital.unal.edu.co/54538/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial Ingeniería de Sistemas Ingeniería de Sistemas |
dc.relation.references.spa.fl_str_mv |
Arévalo Murillo, Andrés Ricardo (2016) Short-Term Forecasting of Financial Time Series with Deep Neural Networks. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/58015/1/1014262698.pdf https://repositorio.unal.edu.co/bitstream/unal/58015/2/1014262698.pdf.jpg |
bitstream.checksum.fl_str_mv |
37a52063c5a128521c71cb3a77ad8efd 894280df96c52845dc4a5c234f3f8713 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090029942702080 |