Seasonal Hydrological and Meteorological Time Series

Time series models are often used in hydrology and meteorology studies to model streamflows series in order to make forecasting and generate synthetic series which are inputs for the analysis of complex water resources systems. In thispaper we introduce a new modeling approach for hydrologic and mete...

Full description

Autores:
Cepeda-Cuervo, Edilberto
Achcar, Jorge Alberto
Andrade, Marinho G.
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/68578
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/68578
http://bdigital.unal.edu.co/69611/
Palabra clave:
55 Ciencias de la tierra / Earth sciences and geology
Hydrology time series data
Meteorological time series
Conditional regression models
Bayesian analysis
MCMC methods
Series de tiempo hidrológicas
Series de tiempo meteorológicas
Modelos de regresión condicional
Análisis Bayesiano
Métodos MCMC.
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_7784ea2c1b88ab5ef7e58fc42f6db5ea
oai_identifier_str oai:repositorio.unal.edu.co:unal/68578
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Seasonal Hydrological and Meteorological Time Series
title Seasonal Hydrological and Meteorological Time Series
spellingShingle Seasonal Hydrological and Meteorological Time Series
55 Ciencias de la tierra / Earth sciences and geology
Hydrology time series data
Meteorological time series
Conditional regression models
Bayesian analysis
MCMC methods
Series de tiempo hidrológicas
Series de tiempo meteorológicas
Modelos de regresión condicional
Análisis Bayesiano
Métodos MCMC.
title_short Seasonal Hydrological and Meteorological Time Series
title_full Seasonal Hydrological and Meteorological Time Series
title_fullStr Seasonal Hydrological and Meteorological Time Series
title_full_unstemmed Seasonal Hydrological and Meteorological Time Series
title_sort Seasonal Hydrological and Meteorological Time Series
dc.creator.fl_str_mv Cepeda-Cuervo, Edilberto
Achcar, Jorge Alberto
Andrade, Marinho G.
dc.contributor.author.spa.fl_str_mv Cepeda-Cuervo, Edilberto
Achcar, Jorge Alberto
Andrade, Marinho G.
dc.subject.ddc.spa.fl_str_mv 55 Ciencias de la tierra / Earth sciences and geology
topic 55 Ciencias de la tierra / Earth sciences and geology
Hydrology time series data
Meteorological time series
Conditional regression models
Bayesian analysis
MCMC methods
Series de tiempo hidrológicas
Series de tiempo meteorológicas
Modelos de regresión condicional
Análisis Bayesiano
Métodos MCMC.
dc.subject.proposal.spa.fl_str_mv Hydrology time series data
Meteorological time series
Conditional regression models
Bayesian analysis
MCMC methods
Series de tiempo hidrológicas
Series de tiempo meteorológicas
Modelos de regresión condicional
Análisis Bayesiano
Métodos MCMC.
description Time series models are often used in hydrology and meteorology studies to model streamflows series in order to make forecasting and generate synthetic series which are inputs for the analysis of complex water resources systems. In thispaper we introduce a new modeling approach for hydrologic and meteorological time series assuming a continuous distribution for the data, where both the conditional mean and conditional varianceparameters are modeled. Bayesian methods using standard MCMC (Markov Chain Monte Carlo Methods) are used to simulate samples for the joint posterior distribution of interest. Two applications to real data sets illustrate the proposedmethodology, assuming that the observations come from a normal, a gamma or a beta distribution. A first example is given by a time series of monthly averages of natural streamflows, measured in the year period ranging from1931 to 2010 in Furnas hydroelectric dam, Brazil. A second example is given with a time series of 313 air humidity data measured in a weather station of Rio Claro, a Brazilian city located in southeastern of Brazil. These applications motivate us to introduce new classes of models to analyze hydrological and meteorological time series
publishDate 2018
dc.date.issued.spa.fl_str_mv 2018-04-01
dc.date.accessioned.spa.fl_str_mv 2019-07-03T07:10:57Z
dc.date.available.spa.fl_str_mv 2019-07-03T07:10:57Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv ISSN: 2339-3459
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/68578
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/69611/
identifier_str_mv ISSN: 2339-3459
url https://repositorio.unal.edu.co/handle/unal/68578
http://bdigital.unal.edu.co/69611/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv https://revistas.unal.edu.co/index.php/esrj/article/view/65577
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Earth Sciences Research Journal
Earth Sciences Research Journal
dc.relation.references.spa.fl_str_mv Cepeda Cuervo, Edilberto and Achcar, Jorge Alberto and Andrade, Marinho G. (2018) Seasonal Hydrological and Meteorological Time Series. Earth Sciences Research Journal, 22 (2). pp. 83-90. ISSN 2339-3459
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Geociencia
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/68578/1/65577-391089-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/68578/2/65577-391089-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv 85ac1e3399c9950ab6c2322b9435b6aa
57fe54f2cb7d5d20468c4af77ba7810e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089885211951104
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cepeda-Cuervo, Edilberto8f2ae6e2-1778-4f83-a496-0d49efcbe66a300Achcar, Jorge Alberto99c161ab-6e01-4ba5-bf64-a6528c49b480300Andrade, Marinho G.d641d233-d05c-4ee4-8df5-4e1c6a209ac13002019-07-03T07:10:57Z2019-07-03T07:10:57Z2018-04-01ISSN: 2339-3459https://repositorio.unal.edu.co/handle/unal/68578http://bdigital.unal.edu.co/69611/Time series models are often used in hydrology and meteorology studies to model streamflows series in order to make forecasting and generate synthetic series which are inputs for the analysis of complex water resources systems. In thispaper we introduce a new modeling approach for hydrologic and meteorological time series assuming a continuous distribution for the data, where both the conditional mean and conditional varianceparameters are modeled. Bayesian methods using standard MCMC (Markov Chain Monte Carlo Methods) are used to simulate samples for the joint posterior distribution of interest. Two applications to real data sets illustrate the proposedmethodology, assuming that the observations come from a normal, a gamma or a beta distribution. A first example is given by a time series of monthly averages of natural streamflows, measured in the year period ranging from1931 to 2010 in Furnas hydroelectric dam, Brazil. A second example is given with a time series of 313 air humidity data measured in a weather station of Rio Claro, a Brazilian city located in southeastern of Brazil. These applications motivate us to introduce new classes of models to analyze hydrological and meteorological time seriesLos modelos de series de tiempo se usan a menudo en estudios de hidrología y meteorología para modelar series de flujos a fin de hacer pronósticos y generar series sintéticas que son insumos para el análisis de sistemas complejos de recursos hídricos. En este artículo presentamos un nuevo enfoque de modelado para series de tiempo hidrológicas y meteorológicas asumiendo una distribución continua para los datos, donde se modelan los parámetros tanto de la media condicional como de la varianza condicional. Métodos bayesianos estándares que usan MCMC (Markov Chain Monte Carlo) son usados para simular muestras de la distribución  a posteriori conjunta de interés. Dos aplicaciones a conjuntos de datos reales ilustran la metodología propuesta,  asumiendo  que las observaciones provienen de una distribución normal,  gamma o beta. Un primer ejemplo está dado por una serie temporal de promedios mensuales de los caudales naturales, medidos en el período anual que va de 1931 a 2010 en la presa hidroeléctrica de Furnas, Brasil. Un segundo ejemplo considera una serie temporal de 313 datos de humedad del aire medidos en una estación meteorológica de Río Claro, una ciudad brasileña ubicada en el sureste de Brasil. Estas aplicaciones nos motivan a introducir nuevas clases de modelos para analizar series de tiempo hidrológicas y meteorológicas.application/pdfspaUniversidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Geocienciahttps://revistas.unal.edu.co/index.php/esrj/article/view/65577Universidad Nacional de Colombia Revistas electrónicas UN Earth Sciences Research JournalEarth Sciences Research JournalCepeda Cuervo, Edilberto and Achcar, Jorge Alberto and Andrade, Marinho G. (2018) Seasonal Hydrological and Meteorological Time Series. Earth Sciences Research Journal, 22 (2). pp. 83-90. ISSN 2339-345955 Ciencias de la tierra / Earth sciences and geologyHydrology time series dataMeteorological time seriesConditional regression modelsBayesian analysisMCMC methodsSeries de tiempo hidrológicasSeries de tiempo meteorológicasModelos de regresión condicionalAnálisis BayesianoMétodos MCMC.Seasonal Hydrological and Meteorological Time SeriesArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL65577-391089-1-PB.pdfapplication/pdf1234573https://repositorio.unal.edu.co/bitstream/unal/68578/1/65577-391089-1-PB.pdf85ac1e3399c9950ab6c2322b9435b6aaMD51THUMBNAIL65577-391089-1-PB.pdf.jpg65577-391089-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg7245https://repositorio.unal.edu.co/bitstream/unal/68578/2/65577-391089-1-PB.pdf.jpg57fe54f2cb7d5d20468c4af77ba7810eMD52unal/68578oai:repositorio.unal.edu.co:unal/685782024-05-27 23:09:38.333Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co