Seasonal Hydrological and Meteorological Time Series
Time series models are often used in hydrology and meteorology studies to model streamflows series in order to make forecasting and generate synthetic series which are inputs for the analysis of complex water resources systems. In thispaper we introduce a new modeling approach for hydrologic and mete...
- Autores:
-
Cepeda-Cuervo, Edilberto
Achcar, Jorge Alberto
Andrade, Marinho G.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2018
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/68578
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/68578
http://bdigital.unal.edu.co/69611/
- Palabra clave:
- 55 Ciencias de la tierra / Earth sciences and geology
Hydrology time series data
Meteorological time series
Conditional regression models
Bayesian analysis
MCMC methods
Series de tiempo hidrológicas
Series de tiempo meteorológicas
Modelos de regresión condicional
Análisis Bayesiano
Métodos MCMC.
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_7784ea2c1b88ab5ef7e58fc42f6db5ea |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/68578 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Seasonal Hydrological and Meteorological Time Series |
title |
Seasonal Hydrological and Meteorological Time Series |
spellingShingle |
Seasonal Hydrological and Meteorological Time Series 55 Ciencias de la tierra / Earth sciences and geology Hydrology time series data Meteorological time series Conditional regression models Bayesian analysis MCMC methods Series de tiempo hidrológicas Series de tiempo meteorológicas Modelos de regresión condicional Análisis Bayesiano Métodos MCMC. |
title_short |
Seasonal Hydrological and Meteorological Time Series |
title_full |
Seasonal Hydrological and Meteorological Time Series |
title_fullStr |
Seasonal Hydrological and Meteorological Time Series |
title_full_unstemmed |
Seasonal Hydrological and Meteorological Time Series |
title_sort |
Seasonal Hydrological and Meteorological Time Series |
dc.creator.fl_str_mv |
Cepeda-Cuervo, Edilberto Achcar, Jorge Alberto Andrade, Marinho G. |
dc.contributor.author.spa.fl_str_mv |
Cepeda-Cuervo, Edilberto Achcar, Jorge Alberto Andrade, Marinho G. |
dc.subject.ddc.spa.fl_str_mv |
55 Ciencias de la tierra / Earth sciences and geology |
topic |
55 Ciencias de la tierra / Earth sciences and geology Hydrology time series data Meteorological time series Conditional regression models Bayesian analysis MCMC methods Series de tiempo hidrológicas Series de tiempo meteorológicas Modelos de regresión condicional Análisis Bayesiano Métodos MCMC. |
dc.subject.proposal.spa.fl_str_mv |
Hydrology time series data Meteorological time series Conditional regression models Bayesian analysis MCMC methods Series de tiempo hidrológicas Series de tiempo meteorológicas Modelos de regresión condicional Análisis Bayesiano Métodos MCMC. |
description |
Time series models are often used in hydrology and meteorology studies to model streamflows series in order to make forecasting and generate synthetic series which are inputs for the analysis of complex water resources systems. In thispaper we introduce a new modeling approach for hydrologic and meteorological time series assuming a continuous distribution for the data, where both the conditional mean and conditional varianceparameters are modeled. Bayesian methods using standard MCMC (Markov Chain Monte Carlo Methods) are used to simulate samples for the joint posterior distribution of interest. Two applications to real data sets illustrate the proposedmethodology, assuming that the observations come from a normal, a gamma or a beta distribution. A first example is given by a time series of monthly averages of natural streamflows, measured in the year period ranging from1931 to 2010 in Furnas hydroelectric dam, Brazil. A second example is given with a time series of 313 air humidity data measured in a weather station of Rio Claro, a Brazilian city located in southeastern of Brazil. These applications motivate us to introduce new classes of models to analyze hydrological and meteorological time series |
publishDate |
2018 |
dc.date.issued.spa.fl_str_mv |
2018-04-01 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-03T07:10:57Z |
dc.date.available.spa.fl_str_mv |
2019-07-03T07:10:57Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
ISSN: 2339-3459 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/68578 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/69611/ |
identifier_str_mv |
ISSN: 2339-3459 |
url |
https://repositorio.unal.edu.co/handle/unal/68578 http://bdigital.unal.edu.co/69611/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
https://revistas.unal.edu.co/index.php/esrj/article/view/65577 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Earth Sciences Research Journal Earth Sciences Research Journal |
dc.relation.references.spa.fl_str_mv |
Cepeda Cuervo, Edilberto and Achcar, Jorge Alberto and Andrade, Marinho G. (2018) Seasonal Hydrological and Meteorological Time Series. Earth Sciences Research Journal, 22 (2). pp. 83-90. ISSN 2339-3459 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Geociencia |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/68578/1/65577-391089-1-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/68578/2/65577-391089-1-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
85ac1e3399c9950ab6c2322b9435b6aa 57fe54f2cb7d5d20468c4af77ba7810e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089885211951104 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cepeda-Cuervo, Edilberto8f2ae6e2-1778-4f83-a496-0d49efcbe66a300Achcar, Jorge Alberto99c161ab-6e01-4ba5-bf64-a6528c49b480300Andrade, Marinho G.d641d233-d05c-4ee4-8df5-4e1c6a209ac13002019-07-03T07:10:57Z2019-07-03T07:10:57Z2018-04-01ISSN: 2339-3459https://repositorio.unal.edu.co/handle/unal/68578http://bdigital.unal.edu.co/69611/Time series models are often used in hydrology and meteorology studies to model streamflows series in order to make forecasting and generate synthetic series which are inputs for the analysis of complex water resources systems. In thispaper we introduce a new modeling approach for hydrologic and meteorological time series assuming a continuous distribution for the data, where both the conditional mean and conditional varianceparameters are modeled. Bayesian methods using standard MCMC (Markov Chain Monte Carlo Methods) are used to simulate samples for the joint posterior distribution of interest. Two applications to real data sets illustrate the proposedmethodology, assuming that the observations come from a normal, a gamma or a beta distribution. A first example is given by a time series of monthly averages of natural streamflows, measured in the year period ranging from1931 to 2010 in Furnas hydroelectric dam, Brazil. A second example is given with a time series of 313 air humidity data measured in a weather station of Rio Claro, a Brazilian city located in southeastern of Brazil. These applications motivate us to introduce new classes of models to analyze hydrological and meteorological time seriesLos modelos de series de tiempo se usan a menudo en estudios de hidrología y meteorología para modelar series de flujos a fin de hacer pronósticos y generar series sintéticas que son insumos para el análisis de sistemas complejos de recursos hídricos. En este artículo presentamos un nuevo enfoque de modelado para series de tiempo hidrológicas y meteorológicas asumiendo una distribución continua para los datos, donde se modelan los parámetros tanto de la media condicional como de la varianza condicional. Métodos bayesianos estándares que usan MCMC (Markov Chain Monte Carlo) son usados para simular muestras de la distribución a posteriori conjunta de interés. Dos aplicaciones a conjuntos de datos reales ilustran la metodología propuesta, asumiendo que las observaciones provienen de una distribución normal, gamma o beta. Un primer ejemplo está dado por una serie temporal de promedios mensuales de los caudales naturales, medidos en el período anual que va de 1931 a 2010 en la presa hidroeléctrica de Furnas, Brasil. Un segundo ejemplo considera una serie temporal de 313 datos de humedad del aire medidos en una estación meteorológica de Río Claro, una ciudad brasileña ubicada en el sureste de Brasil. Estas aplicaciones nos motivan a introducir nuevas clases de modelos para analizar series de tiempo hidrológicas y meteorológicas.application/pdfspaUniversidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Geocienciahttps://revistas.unal.edu.co/index.php/esrj/article/view/65577Universidad Nacional de Colombia Revistas electrónicas UN Earth Sciences Research JournalEarth Sciences Research JournalCepeda Cuervo, Edilberto and Achcar, Jorge Alberto and Andrade, Marinho G. (2018) Seasonal Hydrological and Meteorological Time Series. Earth Sciences Research Journal, 22 (2). pp. 83-90. ISSN 2339-345955 Ciencias de la tierra / Earth sciences and geologyHydrology time series dataMeteorological time seriesConditional regression modelsBayesian analysisMCMC methodsSeries de tiempo hidrológicasSeries de tiempo meteorológicasModelos de regresión condicionalAnálisis BayesianoMétodos MCMC.Seasonal Hydrological and Meteorological Time SeriesArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL65577-391089-1-PB.pdfapplication/pdf1234573https://repositorio.unal.edu.co/bitstream/unal/68578/1/65577-391089-1-PB.pdf85ac1e3399c9950ab6c2322b9435b6aaMD51THUMBNAIL65577-391089-1-PB.pdf.jpg65577-391089-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg7245https://repositorio.unal.edu.co/bitstream/unal/68578/2/65577-391089-1-PB.pdf.jpg57fe54f2cb7d5d20468c4af77ba7810eMD52unal/68578oai:repositorio.unal.edu.co:unal/685782024-05-27 23:09:38.333Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |