Local dependence in bivariate copulae with Beta marginals

The local dependence function (LDF) describes changes in the correlation structure of continuous bivariate random variables along their range. Bivariate density functions with Beta marginals can be used to model jointly a wide variety of data with bounded outcomes in the (0,1) range, e.g. proportion...

Full description

Autores:
Koutoumanou, Eirini
Wade, Angie
Cortina-Borja, Mario
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/66497
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/66497
http://bdigital.unal.edu.co/67525/
Palabra clave:
51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
Beta distribution
local dependence function
copula
bivariate densities
Asociación
distribución Beta
cópula
correlación
función de distribución bivariada
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:The local dependence function (LDF) describes changes in the correlation structure of continuous bivariate random variables along their range. Bivariate density functions with Beta marginals can be used to model jointly a wide variety of data with bounded outcomes in the (0,1) range, e.g. proportions. In this paper we obtain expressions for the LDF of bivariate densities constructed using three different copula models (Frank, Gumbel and Joe)  with Beta marginal distributions, present examples for each,  and discuss an application of these models to analyse data collected in  a study of marks obtained on a statistics exam by postgraduate students.