Estudio químico, actividad antioxidante y fotoprotectora de un hongo liquenizado del páramo de Sumapaz, Colombia como fuente potencial de compuestos para uso en protección solar

ilustraciones (principalmente a color), diagramas, fotografías, mapas

Autores:
Parra Gutiérrez, Sandy Johana
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86463
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86463
https://repositorio.unal.edu.co/
Palabra clave:
610 - Medicina y salud::615 - Farmacología y terapéutica
540 - Química y ciencias afines::547 - Química orgánica
Sunscreens (Cosmetics)
Hongos
Líquenes
Radiación solar
Fungi
Lichens
Solar radiation
Hongos liquenizados
Antioxidantes
Fotoprotección
Cladonia rappii
Lichenized fungi
Antioxidation
Photoprotection
Cladonia rapp
Protectores solares
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_767912b4ebf0b8a4ed7a103fb1931e0f
oai_identifier_str oai:repositorio.unal.edu.co:unal/86463
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Estudio químico, actividad antioxidante y fotoprotectora de un hongo liquenizado del páramo de Sumapaz, Colombia como fuente potencial de compuestos para uso en protección solar
dc.title.translated.eng.fl_str_mv Chemical study, antioxidant activity, and photoprotective properties of a lichenized fungus from the Sumapaz páramo, Colombia, as a potential source of compounds for use in sun protection
title Estudio químico, actividad antioxidante y fotoprotectora de un hongo liquenizado del páramo de Sumapaz, Colombia como fuente potencial de compuestos para uso en protección solar
spellingShingle Estudio químico, actividad antioxidante y fotoprotectora de un hongo liquenizado del páramo de Sumapaz, Colombia como fuente potencial de compuestos para uso en protección solar
610 - Medicina y salud::615 - Farmacología y terapéutica
540 - Química y ciencias afines::547 - Química orgánica
Sunscreens (Cosmetics)
Hongos
Líquenes
Radiación solar
Fungi
Lichens
Solar radiation
Hongos liquenizados
Antioxidantes
Fotoprotección
Cladonia rappii
Lichenized fungi
Antioxidation
Photoprotection
Cladonia rapp
Protectores solares
title_short Estudio químico, actividad antioxidante y fotoprotectora de un hongo liquenizado del páramo de Sumapaz, Colombia como fuente potencial de compuestos para uso en protección solar
title_full Estudio químico, actividad antioxidante y fotoprotectora de un hongo liquenizado del páramo de Sumapaz, Colombia como fuente potencial de compuestos para uso en protección solar
title_fullStr Estudio químico, actividad antioxidante y fotoprotectora de un hongo liquenizado del páramo de Sumapaz, Colombia como fuente potencial de compuestos para uso en protección solar
title_full_unstemmed Estudio químico, actividad antioxidante y fotoprotectora de un hongo liquenizado del páramo de Sumapaz, Colombia como fuente potencial de compuestos para uso en protección solar
title_sort Estudio químico, actividad antioxidante y fotoprotectora de un hongo liquenizado del páramo de Sumapaz, Colombia como fuente potencial de compuestos para uso en protección solar
dc.creator.fl_str_mv Parra Gutiérrez, Sandy Johana
dc.contributor.advisor.none.fl_str_mv Valencia Islas, Norma Angélica
dc.contributor.advisor.spa.fl_str_mv Rojas Araque, José Leopoldo
dc.contributor.author.none.fl_str_mv Parra Gutiérrez, Sandy Johana
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Química Medicinal
Grupo de Investigación en Estudios Biológicos y Fisicoquímicos de Líquenes Colombianos
dc.contributor.supervisor.none.fl_str_mv Rojas Araque José Leopoldo
dc.subject.ddc.spa.fl_str_mv 610 - Medicina y salud::615 - Farmacología y terapéutica
540 - Química y ciencias afines::547 - Química orgánica
topic 610 - Medicina y salud::615 - Farmacología y terapéutica
540 - Química y ciencias afines::547 - Química orgánica
Sunscreens (Cosmetics)
Hongos
Líquenes
Radiación solar
Fungi
Lichens
Solar radiation
Hongos liquenizados
Antioxidantes
Fotoprotección
Cladonia rappii
Lichenized fungi
Antioxidation
Photoprotection
Cladonia rapp
Protectores solares
dc.subject.lcc.eng.fl_str_mv Sunscreens (Cosmetics)
dc.subject.lemb.spa.fl_str_mv Hongos
Líquenes
Radiación solar
dc.subject.lemb.eng.fl_str_mv Fungi
Lichens
Solar radiation
dc.subject.proposal.spa.fl_str_mv Hongos liquenizados
Antioxidantes
Fotoprotección
dc.subject.proposal.none.fl_str_mv Cladonia rappii
dc.subject.proposal.eng.fl_str_mv Lichenized fungi
Antioxidation
Photoprotection
Cladonia rapp
dc.subject.bne.spa.fl_str_mv Protectores solares
description ilustraciones (principalmente a color), diagramas, fotografías, mapas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-16T17:00:38Z
dc.date.available.none.fl_str_mv 2024-07-16T17:00:38Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86463
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86463
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abhimanyu, K. K., Ravindra, C. S., & Avanapu, R. S. (2017). A validated HPTLC method for the quantification of friedelin in Putranjiva roxburghii Wall extracts and in polyherbal formulations. Bulletin of Faculty of Pharmacy, Cairo University, 55(1), 79–84. Https://doi.org/10.1016/J.BFOPCU.2016.11.002
Addor, F. A. S. A. (2017). Antioxidants in dermatology. Anais brasileiros de dermatologia, 92, 356-362.
Adin, C. A. (2021). Bilirubin as a therapeutic molecule: challenges and opportunities. Antioxidants 2021, Vol. 10, Page 1536, 10(10), 1536. https://doi.org/10.3390/ANTIOX10101536
Aguirre, J. (2006). Diversidad de los musgos (Briophita) y líquenes de Colombia-Una evaluación con propósitos de conservación (Doctoral dissertation, Tesis doctoral. Universidad Nacional de Colombia. Facultad de Ciencias. Instituto de Ciencias Naturales, Bogotá.
Aguirre, J. (2008). Diversidad y riqueza de musgos y líquenes en Colombia- Generalidades y metodología. Colombia diversidad biótica VI: Riqueza y diversidad de los musgos y líquenes en Colombia, 1-17.
Alonso, C., Montero, T., Arias, S., & Buendía, A. (2022). Current state of skin cancer prevention: a systematic review. Actas Dermo-Sifiliograficas, 113(8), 781–791. https://doi.org/10.1016/J.AD.2022.04.015
Baek, J., & Lee, M. G. (2016). Oxidative stress and antioxidant strategies in dermatology. Redox Report. 21(4), 164-169.
Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical biochemistry, 239(1), 70-76.
Bernal, R., Gradstein, S.R., & Celis, M. (2019). Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá.
Bernat, R. (2021). Recomendaciones sobre fotoprotección en una oficina de begoña, Farmacia. Begoña.
Bézivin, C., Tomasi, S., Rouaud, I., Delcros, J.-G., & Boustie, J. (2004). Cytotoxic activity of compounds from the lichen: Cladonia convoluta. Planta Med, 70:877-877.
Bharate, S., Kumar, V., & A Vishwakarma, R. (2016). Determining partition coefficient (Log P), distribution coefficient (Log D) and ionization constant (pKa) in early drug discovery. Combinatorial Chemistry & High Throughput Screening, 19(6), 461-469.
Bhattacharyya, S., Deep, P. R., Singh, S., & Nayak, B. (2016). Lichen secondary metabolites and its biological activity. Am. J. PharmTech Res, 6(6), 1-7.
Binev, Y., Marques, M. M. B., & Aires-de-Sousa, J. (2007). Prediction of 1H NMR coupling constants with associative neural networks trained for chemical shifts. Journal of Chemical Information and Modeling, 47(6), 2089–2097. https://doi.org/10.1021/CI700172N
Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative stress and antioxidant defense. World Allergy Organization 5: 9-19.
Brancaccio, M., Mennitti, C., Cesaro, A., Fimiani, F., Vano, M., Gargiulo, B., Caiazza, M., Amodio, F., Coto, I., D’alicandro, G., Mazzaccara, C., Lombardo, B., Pero, R., Terracciano, D., Limongelli, G., Calabrò, P., D’argenio, V., Frisso, G., & Scudiero, O. (2022). The biological role of vitamins in athletes’ muscle, heart and microbiota. International journal of environmental research and public health, 19(3), 1249. https://doi.org/10.3390/IJERPH19031249
Brand-Williams, W., Cuvelier, M. E., & Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1), 25-30.
Buso, P., Radice, M., Baldisserotto, A., Manfredini, S., & Vertuani, S. (2017). Guidelines for the development of herbal-based sunscreen. In Herbal medicine. IntechOpen.
Calcott, M. J., Ackerley, D. F., Knight, A., Keyzers, R. A., & Owen, J. G. (2018). Secondary metabolism in the lichen symbiosis. Chemical Society Reviews, 47(5), 1730–1760. https://doi.org/10.1039/C7CS00431A
Celia, J. A., Pérez de la Lastra, J. M., Plou, F. J., & Perez-Lebeña, E. (2021). The chemistry of reactive oxygen species (ros) revisited: outlining their role in biological macromolecules (dna, lipids and proteins) and induced pathologies. International Journal of Molecular Sciences 2021, Vol. 22, Page 4642, 22(9), 4642. https://doi.org/10.3390/IJMS22094642
Cetin Cakmak, K., & Gülçin, İ. (2019). Anticholinergic and antioxidant activities of usnic acid-an activity-structure insight. Toxicology Reports, 6, 1273–1280. https://doi.org/10.1016/J.TOXREP.2019.11.003
Chen, L., Hu, J. Y., & Wang, S. Q. (2012). The role of antioxidants in photoprotection: A critical review. Journal of the American Academy of Dermatology, 67(5), 1013–1024. https://doi.org/10.1016/J.JAAD.2012.02.009
Coelho de Assis, T. (2014). Identificação de metabólitos secundários e estudo de bioatividades de interesse agroquímico e farmacológico de plantas e líquen da Serra do Brigadeiro – MG. https://locus.ufv.br//handle/123456789/7634
Consortium of Lichen Herbaria - Cladonia rappii. (2023). https://lichenportal.org/portal/taxa/index.php?taxon=53461&clid=1035
Costa, M., Sezgin-Bayindir, Z., Losada-Barreiro, S., Paiva-Martins, F., Saso, L., & Bravo-Díaz, C. (2021). Polyphenols as antioxidants for extending food shelf-life and in the prevention of health diseases: encapsulation and interfacial phenomena. Biomedicines, 9(12). https://doi.org/10.3390/BIOMEDICINES9121909
Crawford, S. D. (2015). Lichens used in traditional medicine. Lichen Secondary Metabolites: Bioactive Properties and Pharmaceutical Potential, 27–80. https://doi.org/10.1007/978-3-319-13374-4_2/COVER
Cuendet, M., Hostettmann, K., Potterat, O., & Dyatmiko, W. (1997). Iridoid glucosides with free radical scavenging properties from Fagraea blumei. Helvetica Chimica Acta, 80(4), 1144–1152. https://doi.org/10.1002/HLCA.19970800411
Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717.
Díaz, M., Llorca, M., & Barceló, D. (2008). Organic UV filters and their photodegradates, metabolites and disinfection by-products in the aquatic environment. TrAC - Trends in Analytical Chemistry, 27(10), 873–887. https://doi.org/10.1016/J.TRAC.2008.08.012
Díaz-Reinoso, B., Rodríguez-González, I., & Domínguez, H. (2021). Towards greener approaches in the extraction of bioactives from lichens. Reviews in Environmental Science and Biotechnology, 20(4), 917–942. https://doi.org/10.1007/S11157-021-09595-9
Diffey, B. L. (1984). Whatever happened to the erythemal unit. Photodermatol Photoimmunol Photomed, 1, 103-105.
Donglikar, M. M., & Deore, S. L. (2016). Sunscreens: A review. Pharmacognosy Journals, 8(3).
Dunaway, S., Odin, R., Zhou, L., Ji, L., Zhang, Y., & Kadekaro, A. L. (2018). Natural antioxidants: Multiple mechanisms to protect skin from solar radiation. Frontiers in Pharmacology, 9(APR). https://doi.org/10.3389/fphar.2018.00392
Erna, M. (2017). Isolasi dan elusidasi struktur senyawa metabolit sekunder dari lichen sumatera Cladonia rappii serta pengujian aktivitas antibakteri. Diploma Thesis, Universitas Andalas.
Ertl, P., Rohde, B., & Selzer, P. (2000). Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. Journal of Medicinal Chemistry, 43(20), 3714–3717. https://doi.org/10.1021/JM000942E/SUPPL_FILE/JM000942E_S.PDF
Espín de Gea, J. C., Soler-Rivas, C., Wichers, H. J., & García-Viguera, C. (2000). Anthocyanin-based natural colorants: A new source of antiradical activity for foodstuff. Farris PK, Valacchi G. Ultraviolet light protection: is it really enough? Antioxidants (basel). 2022 Jul 29;11(8):1484. doi: 10.3390/antiox11081484. PMID: 36009203; PMCID: PMC9405175.
Farris PK, Valacchi G. Ultraviolet Light Protection: Is It Really Enough? Antioxidants (Basel). 2022 Jul 29;11(8):1484. doi: 10.3390/antiox11081484. PMID: 36009203; PMCID: PMC9405175.
Fazio AT, Adler MT, Bertoni MD, Sepúlveda CS, Damonte EB, Maier MS. Lichen secondary metabolites from the cultured lichen mycobionts of Teloschistes chrysophthalmus and Ramalina celastri and their antiviral activities. Z Naturforsch C J Biosci. 2007 Jul-Aug;62(7-8):543-9. doi: 10.1515/znc-2007-7-813. PMID: 17913069.Fernandes, J., and C.R. Gattass (2009). Topological polar surface area defines substrate transport by multidrug resistance associated protein 1 (MRP1/ABCC1), Journal of Medicinal Chemistry. 52(4), 1214-1218.
Fernandes, J., and C.R. Gattass (2009). Topological Polar Surface Area Defines Substrate Transport by Multidrug Resistance Associated Protein 1 (MRP1/ABCC1), J. Med. Chem., 52(4), 1214-1218.
Fernández-Moriano, C., Gómez-Serranillos, M. P., & Crespo, A. (2016). Antioxidant potential of lichen species and their secondary metabolites. A systematic review. Pharmaceutical Biology, 54(1), 1–17. https://doi.org/10.3109/13880209.2014.1003354
Fondo Colombiano de Enfermedades de Alto Costo. (2018). «23 de Mayo: Día mundial de la lucha contra el melanoma». Cuenta de Alto Costo (blog). https://cuentadealtocosto.org/site/investigaciones/dia-mundial-de-la-lucha-contra-el-melanoma-2/.
Fondo Colombiano de Enfermedades de Alto Costo. (2022). «Día mundial del melanoma 2023». Cuenta de Alto Costo (blog). https://cuentadealtocosto.org/cancer/dia-mundial-del-melanoma-2023/
Food and Drug Administration. (2007). Department of Health and Human Services Food and Drug Administration 21 CFR Parts 347 and 352. Federal Register, 72(165), 49070–49122.
Food and Drug Administration. (2011). Labeling and effectiveness testing; sunscreen drug products for over-the-counter human use. Final rule. Federal Register, 76(117), 35620–35665.
Galanty, A., Popiół, J., Paczkowska-Walendowska, M., Studzińska-Sroka, E., Paśko, P., Cielecka-Piontek, J., Pękala, E., & Podolak, I. (2021). (+)-Usnic acid as a promising candidate for a safe and stable topical photoprotective agent. Molecules 2021, Vol. 26, Page 5224, 26(17), 5224. https://doi.org/10.3390/MOLECULES26175224
Gaspar, L. R., Tharmann, J., Maia Campos, P. M. B. G., & Liebsch, M. (2013). Skin phototoxicity of cosmetic formulations containing photounstable and photostable UV-filters and vitamin A palmitate. Toxicology in Vitro, 27(1), 418–425. https://doi.org/10.1016/J.TIV.2012.08.006
GBIF. (2021). Cladonia rappii A.Evans.
Global Cancer Observatory (2020). https://gco.iarc.fr/
Goga, M., Elečko, J., Marcinčinová, M., Ručová, D., Bačkorová, M., & Bačkor, M. (2020). Lichen metabolites: an overview of some secondary metabolites and their biological potential. Co-evolution of secondary metabolites, 175-209.
Grice, H. (1986). Safety evaluation of butylated hydroxytoluene (BHT) in the liver, lung and gastrointestinal tract. Food Chem. Toxicol, 24, 1127–1130.
Guo, J., Li, Z. L., Wang, A. L., Liu, X. Q., Wang, J., Guo, X., ... & Hua, H. M. (2011). Three new phenolic compounds from the lichen Thamnolia vermicularis and their antiproliferative effects in prostate cancer cells. Planta medica, 77(18), 2042-2046.
Halliwell, B., & Gutteridge, J. M. C. (1990). The antioxidants of human extracellular fluids. Archives of Biochemistry and Biophysics, 280(1), 1–8. https://doi.org/10.1016/0003-9861(90)90510-6
Halliwell, B. (2000). Lipid peroxidation, antioxidants and cardiovascular disease: how should we move forward?. Cardiovascular research, 47(3), 410-418.
Halliwell, B. (2012). Free radicals and antioxidants: updating a personal view. Nutrition reviews, 70(5), 257-265.
Harris, I. S., & DeNicola, G. M. (2020). The complex interplay between antioxidants and ros in cancer. Trends in Cell Biology, 30(6), 440–451. https://doi.org/10.1016/j.tcb.2020.03.002
Hawksworth, D. L. (2015). Lichen secondary metabolites: bioactive properties and pharmaceutical potential. The Lichenologist, 47(4), 277–278. https://doi.org/10.1017/S0024282915000195
Hojerová, J., Medovcíková, A., & Mikula, M. (2011). Photoprotective efficacy and photostability of fifteen sunscreen products having the same label SPF subjected to natural sunlight. International journal of pharmaceutics, 408(1-2), 27-38.
Huang, R., Chen, H., Liang, J., Li, Y., Yang, J., Luo, C., Tang, Y., Ding, Y., Liu, X., Yuan, Q., Yu, H., Ye, Y., Xu, W., & Xie, X. (2021). Dual role of reactive oxygen species and their application in cancer therapy. Journal of Cancer, 12(18), 5543. https://doi.org/10.7150/JCA.54699
Huneck, S., & Yoshimura, I. (1996). Identification of lichen substances. Identification of lichen substances. https://doi.org/10.1007/978-3-642-85243-5
Ighodaro, O. M., & Akinloye, O. A. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54(4), 287–293. https://doi.org/10.1016/J.AJME.2017.09.001
Imamović, B., Trebše, P., Omeragić, E., Bečić, E., Pečet, A., & Dedić, M. (2022). Stability and removal of benzophenone-type uv filters from water matrices by advanced oxidation processes. Molecules 2022, Vol. 27, Page 1874, 27(6), 1874. https://doi.org/10.3390/MOLECULES27061874
Instituto Nacional de Cancerología. (2020). Diagnostico y tratamiento. https://www.cancer.gov.co/portafolio-1/unidades-funcionales-1/dermatologia-oncologica/diagnostico-tratamiento
Jesus, A., Sousa, E., Cruz, M. T., Cidade, H., Lobo, J. M. S., & Almeida, I. F. (2022). UV filters: challenges and prospects. Pharmaceuticals, 15(3). https://doi.org/10.3390/PH15030263/S1
Kammeyer, A., & Luiten, R. M. (2015). Oxidation events and skin aging. Ageing Research Reviews, 21, 16–29. https://doi.org/10.1016/J.ARR.2015.01.001
Kasper, D. L., Fauci, A. S., Hauser, S. L., Longo, D. L., Jameson, J. L., & Loscalzo, J. (2020). Manual de Medicina. New York, N.Y.: McGraw-Hill Education LLC.
Kassim, N. K., Lim, P. C., Ismail, A., & Awang, K. (2019). Isolation of antioxidative compounds from Micromelum minutum guided by preparative thin layer chromatography-2,2-diphenyl-1-picrylhydrazyl (PTLC-DPPH) bioautography method. Food Chemistry, 272, 185–191. https://doi.org/10.1016/J.FOODCHEM.2018.08.045
Kosanić, M., Ranković, B., & Vukojević, J. (2011). Antioxidant properties of some lichen species. Journal of Food Science and Technology, 48(5), 584–590. https://doi.org/10.1007/S13197-010-0174-2/METRICS
Kosanić, M., Ranković, B., Stanojković, T., Rančić, A., & Manojlović, N. (2014). Cladonia lichens and their major metabolites as possible natural antioxidant, antimicrobial and anticancer agents. Food Science and Technology, 59(1), 518–525. https://doi.org/10.1016/J.LWT.2014.04.047
Kuskoski, E. M., Asuero, A. G., Troncoso, A. M., Mancini-Filho, J., & Fett, R. (2005). Aplicación de diversos métodos químicos para determinar actividad antioxidante en pulpa de frutos. Food Science and Technology, 25, 726-732.
Lage, T. C. A., Horta, L. P., Montanari, R. M., Silva, J. G., De Fátima, Â., Fernandes, S. A., & Modolo, L. V. (2016). Structural elucidation and free radical scavenging activity of a new o-orsellinic acid derivative isolated from the lichen Cladonia Rappii. Natural Product Communications, 11(9), 1311–1312. https://doi.org/10.1177/1934578X1601100932
Lage, T. C. A., Maciel, T. M. S., Mota, Y. C. C., Sisto, F., Sabino, J. R., Santos, J. C. C., Figueiredo, I. M., Masia, C., De Fátima, Â., Fernandes, S. A., & Modolo, L. V. (2018). In vitro inhibition of Helicobacter pylori and interaction studies of lichen natural products with jack bean urease. New Journal of Chemistry, 42(7), 5356–5366. https://doi.org/10.1039/C8NJ00072G
Leal, A., Rojas, J. L., Valencia-Islas, N. A., & Castellanos, L. (2018). New β-orcinol depsides from Hypotrachyna caraccensis, a lichen from the páramo ecosystem and their free radical scavenging activity. Natural product research, 32(12), 1375-1382.
Liga Colombiana contra el Cáncer. (2022). Cáncer de piel y su clasificación. https://www.ligacancercolombia.org/educacion/clasificacion-cancer-de-piel/
Lingappan, K. (2018). NF-κB in oxidative stress. Current Opinion in Toxicology, 7, 81–86. https://doi.org/10.1016/j.cotox.2017.11.002
Liu, J. K. (2022). Natural products in cosmetics. Natural Products and Bioprospecting, 12(1). https://doi.org/10.1007/S13659-022-00363-Y
Lohezic, F., Legouin, B., Couteau, C., Boustie, J., & Coiffard, L. (2013). Lichenic extracts and metabolites as UV filters. Journal of Photochemistry and Photobiology B: Biology, 120, 17–28. https://doi.org/10.1016/J.JPHOTOBIOL.2013.01.009
López Ladino, J. A. (2021). Determinación de la actividad in vivo sobre la biosíntesis y acción de andrógenos endógenos de sustancias liquénicas seleccionadas. Tesis. Universidad Nacional de Colombia.
Macías, F. A., Molinillo, J. M. G., Varela, R. M., & Galindo, J. C. G. (2007). Allelopathy--a natural alternative for weed control. Pest Management Science, 63(4), 327–348. https://doi.org/10.1002/PS.1342
Mamta, Misra, K., Dhillon, G. S., Brar, S. K., & Verma, M. (2014). Antioxidants. Biotransformation of waste biomass into high value biochemicals, New York: Springer; 2014. 117-138 p.
Manassov, N.; Samy, M.N.; Datkhayev, U.; Avula, B.; Adams, S.J.; Katragunta, K.; Raman, V.; Khan, I.A.; Ross, S.A. ultrastructural, energy-dispersive X-ray spectroscopy, chemical study and LC-DAD-QToF chemical characterization of Cetraria islandica (L.) Ach. Molecules 2023, 28, 4493. https://doi.org/10.3390/molecules28114493
Mansur, J., Breder, M., Mansur, M., & Azulay, R. (1986). Determinação do fator de proteção solar por espectrofotometria. Anais Brasileiros de Dermatologia, 61(3), 121–124.
Mejía GJC, Atehortúa L, P. M. (2014). Foto-protección: mecanismos bioquímicos, punto de partida hacia mejores filtros solares. Dermatología Cosmética, Médica y Quirúrgica. 2014;12(4):272-281.
Milner, F. (2017) Estructura de la piel. American Cancer Society, s.l. cancer.org/1.800.227.2345
Ministerio de Salud de Colombia. (2020). «Vicesalud destacó acciones de Colombia frente al cáncer de piel». https://www.minsalud.gov.co/Paginas/Vicesalud-destaco-acciones-de-Colombia-frente-al-cancer-de-piel.aspx.
Mitsuda, H. (1966). Antioxidative action of indole compounds during the autoxidation of linoleic acid. Eiyo to Syokuryo, 19, 210-214.
Mohammadi M, Zambare V, Malek L, Gottardo C, Suntres Z & Christopher L (2020) Lichenochemicals: extraction, purification, characterization, and application as potential anticancer agents, Expert Opinion on Drug Discovery, 15:5, 575-601, DOI: 10.1080/17460441.2020.1730325
Molnár, K., & Farkas, E. (2010). Current results on biological activities of lichen secondary metabolites: A review. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 65(3–4), 157–173. https://doi.org/10.1515/ZNC-2010-3-401/MACHINEREADABLECITATION/RIS
Moncada, B., Plata, E. R., & Fazio, A. (2012). GLALIA Revista Electrónica del Grupo LatinoAmericano de Liquenólogos.
Nabavi, S. M., & Silva, A. S. (2022). Antioxidants effects in health : the bright and the dark side. Elsevier.
Nash, T. H. (2008). Lichen Biology. Lichen Biology, Second Edition, 1–486. https://doi.org/10.1017/CBO9780511790478
Ng, K. W., & Lau, W. M. (2015). Skin deep: The basics of human skin structure and drug penetration. Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement: Drug Manipulation Strategies and Vehicle Effects, 3–11. https://doi.org/10.1007/978-3-662-45013-0_1/COVER
Nguyen, K. H., Chollet-Krugler, M., Gouault, N., & Tomasi, S. (2013). UV-protectant metabolites from lichens and their symbiotic partners. Natural Product Reports, 30(12), 1490–1508. https://doi.org/10.1039/C3NP70064J
Nguyen, T.T., Mai, V.H., Nguyen, C.T., Huynh, V.L., Lai, H.N., Tran, T.H and Kanaori, K. (2020). Novel hopanoic acid and depside from the lichen Dirinaria applanata Rec. Nat. Prod. 14:4 (2020) 248-255. https://doi.org/10.25135/RNP.161.19.10.1441
Odabasoglu, F., Aslan, A., Cakir, A., Suleyman, H., Karagoz, Y., Halici, M., & Bayir, Y. (2004). Comparison of antioxidant activity and phenolic content of three lichen species. Phytotherapy Research, 18(11), 938–941. https://doi.org/10.1002/PTR.1488
Oyaizu, M. (1986). Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese journal of nutrition and dietetics, 44(6), 307-315.
Panyakaew, J., Chalom, S., Sookkhee, S., Saiai, A., Chandet, N., Meepowpan, P., Thavornyutikarn, P., & Mungkornasawakul, P. (2021). Kaempferia sp. extracts as UV protecting and antioxidant agents in sunscreen. Journal of Herbs, Spices and Medicinal Plants, 27(1), 37–56. https://doi.org/10.1080/10496475.2020.1777614
Pelizzo, M., Zattra, E., Nicolosi, P., Peserico, A., Garoli, D., & Alaibac, M. (2012). In vitro evaluation of sunscreens: an update for the clinicians. International Scholarly Research Notices. 2012;2012:352135. doi: 10.5402/2012/352135.
Perico-Franco, L. S., Rojas, J. L., Cerbón, M. A., González-Sánchez, I., & Valencia-Islas, N. A. (2015). Antioxidant activity and protective effect on cell and DNA oxidative damage of substances isolated from lichens of Colombian Páramo. Pharmaceutical and Biosciences Journal, 09-17.
Pfeifer, G. P. (2020). Mechanisms of UV-induced mutations and skin cancer. Genome Instability & Disease 2020 1:3, 1(3), 99–113. https://doi.org/10.1007/S42764-020-00009-8
Pisoschi, A. M., & Pop, A. (2015). The role of antioxidants in the chemistry of oxidative stress: A review. European journal of medicinal chemistry, 97, 55-74.
Pizzino, G., Bitto, A., Interdonato, M., Galfo, F., Irrera, N., Mecchio, A., Pallio, G., Ramistella, V., Luca, F. De, Minutoli, L., Squadrito, F., & Altavilla, D. (2014). Oxidative stress and DNA repair and detoxification gene expression in adolescents exposed to heavy metals living in the Milazzo-Valle del Mela area (Sicily, Italy). Redox Biology, 2(1), 686–693. https://doi.org/10.1016/J.REDOX.2014.05.003
Plaza, C. M, Salazar, C. P., Vizcaya, M., Rodríguez-Castillo, C, G., Medina-Ramírez, G. E., & Plaza, R. E. (2017). Potential antifungal activity of Cladonia aff. rappii A. Evans. Journal of Pharmacy & Pharmacognosy Research, 5(5), .
Plaza, Claudia M., Torres, L. E. D. de, Lücking, R. K., Vizcaya, M., & Medina, G. E. (2014). Antioxidant activity, total phenols and flavonoids of lichens from Venezuelan Andes. Journal of Pharmacy & Pharmacognosy Research, 2(5), 138–147. https://doaj.org/article/1e49b71619a7437fafd8536ec05b674a
Ponnampalam, E. N., Kiani, A., Santhiravel, S., Holman, B. W. B., Lauridsen, C., & Dunshea, F. R. (2022). The importance of dietary antioxidants on oxidative stress, meat and milk production, and their preservative aspects in farm animals: antioxidant action, animal health, and product quality—Invited Review. Animals : An Open Access Journal from MDPI, 12(23). https://doi.org/10.3390/ANI12233279
Pouillot, A., Polla, L. L., Tacchini, P., Neequaye, A., Polla, A., & Polla, B. (2011). Natural antioxidants and their effects on the skin. Formulating, packaging, and marketing of natural cosmetic products, 239-257.
Prenzler, P. D., Ryan, D., & Robards, K. (2021). Chapter 1 introduction to basic principles of antioxidant activity. 1–62. https://doi.org/10.1039/9781839165337-00001
Quilot, W. Garbarino, J. Piovano, M. Chamy, M., Gambaro, V.Oyarzun, M. Hormaechea, V. (1989). Studies on chilean lichens. XI.Secondary metabolites from antarctic lichens. Serie Científica - Instituto Antártico Chileno, (39), 75–89.
Rajendran, P., Nandakumar, N., Rengarajan, T., Palaniswami, R., Gnanadhas, E. N., Lakshminarasaiah, U., ... & Nishigaki, I. (2014). Antioxidants and human diseases. Clinica chimica acta, 436, 332-347.
Ramírez, N. (2009). Evaluación de las comunidades liquénicas en dos bosques con diferente historia de uso, de la reserva biológica el “encenillo” Colombia. Pontificia Universidad Javeriana.
Ranković, B. (Ed.). (2019). Lichen secondary metabolites: bioactive properties and pharmaceutical potential. Springer.
Rashid, M. A., Majid, M. A., & Quader, M. A. (1999). Complete NMR assignments of (+)-usnic acid. Fitoterapia, 70(1), 113–115. https://doi.org/10.1016/S0367-326X(98)00033-1
Rojas, J. L., Díaz-Santos, M., & Valencia-Islas, N. A. (2015). Metabolites with antioxidant and photo-protective properties from Usnea roccellina Motyka, a lichen from Colombian Andes. Pharmaceutical and Biosciences Journal, 18-26.
Santos, L. L., Wu, E. L., Grinias, K. M., Koetting, M. C., & Jain, P. (2021). Developability profile framework for lead candidate selection in topical dermatology. International Journal of Pharmaceutics, 604, 120750.
Sayre, R. M., Agin, P. P., LeVee, G. J., & Marlowe, E. (1979). A comparison of in vivo and in vitro testing of sunscreening formulas. Photochemistry and Photobiology, 29(3), 559-566.
Shaath, N. A. (2010). Ultraviolet filters. Photochemical & Photobiological Sciences : Official Journal of the European Photochemistry Association and the European Society for Photobiology, 9(4), 464–469. https://doi.org/10.1039/B9PP00174C
Sharifi-Rad, J., Rodrigues, C. F., Sharopov, F., Docea, A. O., Karaca, A. C., Sharifi-Rad, M., Karincaoglu, D. K., Gülseren, G., Şenol, E., Demircan, E., Taheri, Y., Suleria, H. A. R., Özçelik, B., Kasapoğlu, K. N., Gültekin-Özgüven, M., Daşkaya-Dikmen, C., Cho, W. C., Martins, N., & Calina, D. (2020). Diet, lifestyle and cardiovascular diseases: linking pathophysiology to cardioprotective effects of natural bioactive compounds. International Journal of Environmental Research and Public Health, 17(7). https://doi.org/10.3390/IJERPH17072326
Shiromi, P. S. A. I., Hewawasam, R. P., Jayalal, R. G. U., Rathnayake, H., Wijayaratne, W. M. D. G. B., & Wanniarachchi, D. (2021). Chemical composition and antimicrobial activity of two sri lankan lichens, Parmotrema rampoddense, and Parmotrema tinctorum against methicillin-sensitive and methicillin-resistant Staphylococcus aureus. Evidence-Based Complementary and Alternative Medicine, 2021. https://doi.org/10.1155/2021/9985325
Sierra, M. A., Danko, D. C., Sandoval, T. A., Pishchany, G., Moncada, B., Kolter, R., ... & Zambrano, M. M. (2020). The microbiomes of seven lichen genera reveal host specificity, a reduced core community and potential as source of antimicrobials. Frontiers in microbiology, 398
Silva, J. F., Ximenez, G. R., Bianchin, M., Jasper, J. O., Pastorini, L. H., Carvalho, J. E., Ruiz, A. L. T. G., Pomini, A. M., & Santin, S. M. O. (2020). Isolation of hopane triterpenes and other constituents from Machaerium brasiliense vogel (Fabaceae). Biochemical Systematics and Ecology, 93, 104182. https://doi.org/10.1016/j.bse.2020.104182
Silverman, R. B., & Holladay, M. W. (2014). The organic chemistry of drug design and drug action. Academic Press.
Sipman, H. J, & Aguirre J. C. (1982). Contribución al conocimiento de los líquenes de Colombia—i. clave genérica para los líquenes foliosos y fruticosos de los páramos colombianos. Caldasia, 603-34.
Smijs, T. G., & Pavel, S. (2011). Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnology, Science and Applications, 4(1), 95. https://doi.org/10.2147/NSA.S19419
Soto Medina, E., Diaz, D., & Montaño, J. (2021). Biogeography and richness of lichens in Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 45(174), 122-135.
Spribille, T., Tuovinen, V., Resl, P., Vanderpool, D., Wolinski, H., Aime, M. C., Schneider, K., Stabentheiner, E., Toome-Heller, M., Thor, G., Mayrhofer, H., Johannesson, H., & McCutcheon, J. P. (2016). Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science (New York, N.Y.), 353(6298), 488. https://doi.org/10.1126/SCIENCE.AAF8287
Suja, K. P., Jayalekshmy, A., & Arumughan, C. (2004). Free radical scavenging behavior of antioxidant compounds of sesame (Sesamum indicum L.) in DPPH• system. Journal of agricultural and food chemistry, 52(4), 912-915.
Tatipamula, V. B., Polimati, H., Gopaiah, K. V., Babu, A. K., Vantaku, S., Rao, P. R., & Killari, K. N. (2020). Bioactive metabolites from manglicolous lichen Ramalina leiodea (Nyl.) Nyl. Indian Journal of Pharmaceutical Sciences, 82(2), 379–384. https://doi.org/10.36468/PHARMACEUTICAL-SCIENCES.660
Thadani, V. M., Khan, S., Choudhary, M. I., & Karunaratne, V. (2009). Novel an glucosidase inhibitors from lichen Cladonia sp. Peradeniya University Research Session PURSE- 2009, University of Peradeniya , Sri Lanka , Vol.14. 3rd july. 2009 pp262
Tripathi, A. H., Negi, N., Gahtori, R., Kumari, A., Joshi, P., Tewari, L. M., Joshi, Y., Bajpai, R., Upreti, D. K., & Upadhyay, S. K. (2021). A review of anti-cancer and related properties of lichen-extracts and metabolites. Anti-Cancer Agents in Medicinal Chemistry, 22(1), 115–142. https://doi.org/10.2174/1871520621666210322094647
Türk, A. Ö., Yilmaz, M., Kivanç, M., & Türk, H. (2003). The antimicrobial activity of extracts of the lichen Cetraria aculeata and its protolichesterinic acid constituent. Zeitschrift Fur Naturforschung. C, Journal of Biosciences, 58(11–12), 850–854. https://doi.org/10.1515/ZNC-2003-11-1219
Valencia-Islas, N. A., Arguello, J. J., & Rojas, J. L. (2021). Antioxidant and photoprotective metabolites of Bunodophoron melanocarpum, a lichen from the Andean páramo. Pharmaceutical Sciences, 27(2), 281-290.
Wang F, Li YM (2010). New hopane triterpene from Dicranostigma leptopodum (Maxim) Fedde. J Asian Nat Prod Res. Jan;12(1):94-7. doi: 10.1080/10286020903443028. PMID: 20390749
White, P. A. S., Oliveira, R. C. M., Oliveira, A. P., Serafini, M. R., Araújo, A. A. S., Gelain, D. P., Moreira, J. C. F., Almeida, J. R. G. S., Quintans, J. S. S., Quintans-Junior, L. J., & Santos, M. R. V. (2014). Antioxidant activity and mechanisms of action of natural compounds isolated from lichens: a systematic review. Molecules, 19(9), 14496. https://doi.org/10.3390/MOLECULES190914496
Wirth, V. (2004). Guía de campo de los líquenes, musgos y hepáticas: con 288 especies de líquenes y 226 de briófitos (musgos y hepáticas). Omega.
Yang, X., Sun, Z., Wang, W., Zhou, Q., Shi, G., Wei, F., & Jiang, G. (2018). Developmental toxicity of synthetic phenolic antioxidants to the early life stage of zebrafish. The Science of the Total Environment, 643, 559–568. https://doi.org/10.1016/J.SCITOTENV.2018.06.213
Yen, G. C., Duh, P. D., & Tsai, H. L. (2002). Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food chemistry, 79(3), 307-313.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 148 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias Farmacéuticas
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86463/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86463/2/Tesis%20de%20maestr%c3%ada.%20Sandy%20Parra.
https://repositorio.unal.edu.co/bitstream/unal/86463/3/Tesis%20de%20maestr%c3%ada.%20Sandy%20Parra..jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
e2b878598599440cf4ea4e470b8d40e7
a07ddfe7fdba975e19994abd4c7d9c77
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089266177769472
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Valencia Islas, Norma Angélicaf66d4b4578cb5465e1d308cd1c9b7490Rojas Araque, José Leopoldoc1ec4bcd4aeaf37e1c6621364a6a9d41500Parra Gutiérrez, Sandy Johanaa2e23d8b041ca83f8e16350630c0adddGrupo de Investigación en Química MedicinalGrupo de Investigación en Estudios Biológicos y Fisicoquímicos de Líquenes ColombianosRojas Araque José Leopoldo2024-07-16T17:00:38Z2024-07-16T17:00:38Z2024https://repositorio.unal.edu.co/handle/unal/86463Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones (principalmente a color), diagramas, fotografías, mapasLos problemas dérmicos, entre ellos el cáncer de piel, relacionados con la exposición a la radiación solar y el consecuente estrés oxidativo generado, constituyen un problema de salud pública que puede prevenirse mediante el uso de agentes fotoprotectores y antioxidantes. Dado que dichos agentes convencionales han demostrado inestabilidad, ineficacia y problemas de seguridad, surge la necesidad de encontrar sustancias novedosas potencialmente más eficaces e inocuas. El objetivo de este trabajo consistió en obtener principios activos con propiedades antioxidantes y/o fotoprotectoras a partir de un hongo liquenizado presente en el páramo de Sumapaz, Colombia. Inicialmente, se realizó el tamizaje de las especies Peltigera neopolydactyla, Sticta humboldtii y Cladonia rappii que crecen directamente expuestas a la radiación solar en este ecosistema, indicando la posibilidad de que biosintetizaran metabolitos con las actividades mencionadas. Posteriormente, la investigación se centró en la especie que presentó el mejor perfil de actividad, Cladonia rappii. Se llevó a cabo la evaluación de la actividad antioxidante y fotoprotectora estableciendo el poder captador de radicales libres, el poder reductor férrico y la inhibición de la peroxidación lipídica. La actividad fotoprotectora se determinó in vitro, calculando el factor de protección solar (FPS), la longitud de onda crítica y la relación UVA/UVB. Se aislaron y caracterizaron cinco compuestos a partir de dicha especie: ácido fumarprotocetrárico (1), ácido úsnico (2), ácido 3-formil-2,4-dihidroxi-6-metil benzoico o ácido haematommico (3), ácido 9-metil- protocetrárico (4) y al ácido 3beta-hidroxi-hopan-29- oico (5), estos tres últimos se reportan por primera vez para C. rappii. A pesar de que el ácido fumarprotocetrárico resultó ser el componente mayoritario en el extracto activo de C. rappii, éste no exhibió una actividad antioxidante ni fotoprotectora destacada, por su parte, el ácido úsnico destacó como un potente antioxidante, demostrando su habilidad para captar radicales libres, reducir iones férricos e inhibir la peroxidación lipídica. Además, exhibió una marcada capacidad de protección contra las radiaciones UVB y UVA, clasificándose como un protector solar de amplio espectro. Este compuesto presenta propiedades fisicoquímicas que lo hacen idóneo para su aplicación tópica en dermatología, facilitando su absorción en el estrato córneo de la piel con el fin de ejercer un efecto protector. La evaluación de los compuestos 3 a 5 no fue posible debido a que se encontraban en cantidades minoritarias en hongo liquénico de estudio, lo que limitó la capacidad de llevar a cabo un análisis de sus propiedades, ya que su presencia no era suficiente para obtener resultados en las pruebas realizadas en esta investigación (Texto tomado de la fuente).Dermatological issues, including skin cancer, related to exposure to solar radiation and the resulting oxidative stress, constitute a public health problem that can be prevented through the use of photoprotective and antioxidant agents. Given that such conventional agents have demonstrated instability, inefficacy, and safety issues, there arises the need to find novel substances that are potentially more effective and safer. The objective of this study was to obtain active compounds with antioxidant and/or photoprotective properties from a lichenized fungus found in the páramo of Sumapaz, Colombia. Initially, screening was conducted on the species Peltigera neopolydactyla, Sticta humboldtii, and Cladonia rappii, which grow directly exposed to solar radiation in this ecosystem, indicating the possibility of biosynthesizing metabolites with the mentioned activities. Subsequently, the research focused on the species that exhibited the best activity profile, Cladonia rappii. The evaluation of antioxidant and photoprotective activity was carried out by establishing free radical scavenging power, ferric reducing power, and inhibition of lipid peroxidation. Photoprotective activity was determined in vitro by calculating the sun protection factor (SPF), critical wavelength, and UVA/UVB ratio. Five compounds were isolated and characterized from this species: fumarprotocetraric acid (1), usnic acid (2), 3-formyl-2,4-dihydroxy-6-methyl benzoic acid, or haematommic acid (3), 9-methyl-protocetraric acid (4), and 3-hydroxy-hopan-29-oic acid (5), with the latter three being reported for the first time in C. rappii. Despite fumarprotocetraric acid being the major component in the active extract of C. rappii, it did not exhibit remarkable antioxidant or photoprotective activity. On the other hand, usnic acid emerged as a potent antioxidant, demonstrating its ability to scavenge free radicals, reduce ferric ions, and inhibit lipid peroxidation. Additionally, it displayed a pronounced protective capacity against both UVB and UVA radiation, qualifying it as a broad-spectrum sunscreen. This compound possesses physicochemical properties that make it suitable for topical application in dermatology, facilitating its absorption into the stratum corneum of the skin to exert a protective effect. The evaluation of compounds 3 to 5 was not possible due to their minority presence in the studied lichenized fungus, limiting the ability to conduct a detailed analysis of their properties, as their presence was insufficient to yield significant results in the tests conducted in this research. Keywords: Lichenized fungi, antioxidation, photoprotection, Cladonia rappii.MaestríaMagíster en Ciencias Farmacéuticas4.2. Selección de la especie objeto de estudio 4.2.1. Recolección 4.2.2. Preparación de extractos 4.2.3. Evaluación de la actividad antioxidante . 4.2.4. Evaluación de la actividad fotoprotectora 4.3. Estudio químico de Cladonia rappii 4.3.1. Procedimientos experimentales generales 4.3.2. Confirmación de la identidad taxonómica de Cladonia rappii 4.3.3. Extracción de Cladonia rappii 4.3.4. Fraccionamiento del extracto 4.4. Estudio biológico de Cladonia rappii 4.4.2. Determinación de la actividad antioxidante 4.4.3. Determinación de la actividad fotoprotectora 4.5. Análisis estadísticoObtención de sustancias bioactivas a partir de fuentes naturales148 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias FarmacéuticasFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá610 - Medicina y salud::615 - Farmacología y terapéutica540 - Química y ciencias afines::547 - Química orgánicaSunscreens (Cosmetics)HongosLíquenesRadiación solarFungiLichensSolar radiationHongos liquenizadosAntioxidantesFotoprotecciónCladonia rappiiLichenized fungiAntioxidationPhotoprotectionCladonia rappProtectores solaresEstudio químico, actividad antioxidante y fotoprotectora de un hongo liquenizado del páramo de Sumapaz, Colombia como fuente potencial de compuestos para uso en protección solarChemical study, antioxidant activity, and photoprotective properties of a lichenized fungus from the Sumapaz páramo, Colombia, as a potential source of compounds for use in sun protectionTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMAbhimanyu, K. K., Ravindra, C. S., & Avanapu, R. S. (2017). A validated HPTLC method for the quantification of friedelin in Putranjiva roxburghii Wall extracts and in polyherbal formulations. Bulletin of Faculty of Pharmacy, Cairo University, 55(1), 79–84. Https://doi.org/10.1016/J.BFOPCU.2016.11.002Addor, F. A. S. A. (2017). Antioxidants in dermatology. Anais brasileiros de dermatologia, 92, 356-362.Adin, C. A. (2021). Bilirubin as a therapeutic molecule: challenges and opportunities. Antioxidants 2021, Vol. 10, Page 1536, 10(10), 1536. https://doi.org/10.3390/ANTIOX10101536Aguirre, J. (2006). Diversidad de los musgos (Briophita) y líquenes de Colombia-Una evaluación con propósitos de conservación (Doctoral dissertation, Tesis doctoral. Universidad Nacional de Colombia. Facultad de Ciencias. Instituto de Ciencias Naturales, Bogotá.Aguirre, J. (2008). Diversidad y riqueza de musgos y líquenes en Colombia- Generalidades y metodología. Colombia diversidad biótica VI: Riqueza y diversidad de los musgos y líquenes en Colombia, 1-17.Alonso, C., Montero, T., Arias, S., & Buendía, A. (2022). Current state of skin cancer prevention: a systematic review. Actas Dermo-Sifiliograficas, 113(8), 781–791. https://doi.org/10.1016/J.AD.2022.04.015Baek, J., & Lee, M. G. (2016). Oxidative stress and antioxidant strategies in dermatology. Redox Report. 21(4), 164-169.Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical biochemistry, 239(1), 70-76.Bernal, R., Gradstein, S.R., & Celis, M. (2019). Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá.Bernat, R. (2021). Recomendaciones sobre fotoprotección en una oficina de begoña, Farmacia. Begoña.Bézivin, C., Tomasi, S., Rouaud, I., Delcros, J.-G., & Boustie, J. (2004). Cytotoxic activity of compounds from the lichen: Cladonia convoluta. Planta Med, 70:877-877.Bharate, S., Kumar, V., & A Vishwakarma, R. (2016). Determining partition coefficient (Log P), distribution coefficient (Log D) and ionization constant (pKa) in early drug discovery. Combinatorial Chemistry & High Throughput Screening, 19(6), 461-469.Bhattacharyya, S., Deep, P. R., Singh, S., & Nayak, B. (2016). Lichen secondary metabolites and its biological activity. Am. J. PharmTech Res, 6(6), 1-7.Binev, Y., Marques, M. M. B., & Aires-de-Sousa, J. (2007). Prediction of 1H NMR coupling constants with associative neural networks trained for chemical shifts. Journal of Chemical Information and Modeling, 47(6), 2089–2097. https://doi.org/10.1021/CI700172NBirben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative stress and antioxidant defense. World Allergy Organization 5: 9-19.Brancaccio, M., Mennitti, C., Cesaro, A., Fimiani, F., Vano, M., Gargiulo, B., Caiazza, M., Amodio, F., Coto, I., D’alicandro, G., Mazzaccara, C., Lombardo, B., Pero, R., Terracciano, D., Limongelli, G., Calabrò, P., D’argenio, V., Frisso, G., & Scudiero, O. (2022). The biological role of vitamins in athletes’ muscle, heart and microbiota. International journal of environmental research and public health, 19(3), 1249. https://doi.org/10.3390/IJERPH19031249Brand-Williams, W., Cuvelier, M. E., & Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1), 25-30.Buso, P., Radice, M., Baldisserotto, A., Manfredini, S., & Vertuani, S. (2017). Guidelines for the development of herbal-based sunscreen. In Herbal medicine. IntechOpen.Calcott, M. J., Ackerley, D. F., Knight, A., Keyzers, R. A., & Owen, J. G. (2018). Secondary metabolism in the lichen symbiosis. Chemical Society Reviews, 47(5), 1730–1760. https://doi.org/10.1039/C7CS00431ACelia, J. A., Pérez de la Lastra, J. M., Plou, F. J., & Perez-Lebeña, E. (2021). The chemistry of reactive oxygen species (ros) revisited: outlining their role in biological macromolecules (dna, lipids and proteins) and induced pathologies. International Journal of Molecular Sciences 2021, Vol. 22, Page 4642, 22(9), 4642. https://doi.org/10.3390/IJMS22094642Cetin Cakmak, K., & Gülçin, İ. (2019). Anticholinergic and antioxidant activities of usnic acid-an activity-structure insight. Toxicology Reports, 6, 1273–1280. https://doi.org/10.1016/J.TOXREP.2019.11.003Chen, L., Hu, J. Y., & Wang, S. Q. (2012). The role of antioxidants in photoprotection: A critical review. Journal of the American Academy of Dermatology, 67(5), 1013–1024. https://doi.org/10.1016/J.JAAD.2012.02.009Coelho de Assis, T. (2014). Identificação de metabólitos secundários e estudo de bioatividades de interesse agroquímico e farmacológico de plantas e líquen da Serra do Brigadeiro – MG. https://locus.ufv.br//handle/123456789/7634Consortium of Lichen Herbaria - Cladonia rappii. (2023). https://lichenportal.org/portal/taxa/index.php?taxon=53461&clid=1035Costa, M., Sezgin-Bayindir, Z., Losada-Barreiro, S., Paiva-Martins, F., Saso, L., & Bravo-Díaz, C. (2021). Polyphenols as antioxidants for extending food shelf-life and in the prevention of health diseases: encapsulation and interfacial phenomena. Biomedicines, 9(12). https://doi.org/10.3390/BIOMEDICINES9121909Crawford, S. D. (2015). Lichens used in traditional medicine. Lichen Secondary Metabolites: Bioactive Properties and Pharmaceutical Potential, 27–80. https://doi.org/10.1007/978-3-319-13374-4_2/COVERCuendet, M., Hostettmann, K., Potterat, O., & Dyatmiko, W. (1997). Iridoid glucosides with free radical scavenging properties from Fagraea blumei. Helvetica Chimica Acta, 80(4), 1144–1152. https://doi.org/10.1002/HLCA.19970800411Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717.Díaz, M., Llorca, M., & Barceló, D. (2008). Organic UV filters and their photodegradates, metabolites and disinfection by-products in the aquatic environment. TrAC - Trends in Analytical Chemistry, 27(10), 873–887. https://doi.org/10.1016/J.TRAC.2008.08.012Díaz-Reinoso, B., Rodríguez-González, I., & Domínguez, H. (2021). Towards greener approaches in the extraction of bioactives from lichens. Reviews in Environmental Science and Biotechnology, 20(4), 917–942. https://doi.org/10.1007/S11157-021-09595-9Diffey, B. L. (1984). Whatever happened to the erythemal unit. Photodermatol Photoimmunol Photomed, 1, 103-105.Donglikar, M. M., & Deore, S. L. (2016). Sunscreens: A review. Pharmacognosy Journals, 8(3).Dunaway, S., Odin, R., Zhou, L., Ji, L., Zhang, Y., & Kadekaro, A. L. (2018). Natural antioxidants: Multiple mechanisms to protect skin from solar radiation. Frontiers in Pharmacology, 9(APR). https://doi.org/10.3389/fphar.2018.00392Erna, M. (2017). Isolasi dan elusidasi struktur senyawa metabolit sekunder dari lichen sumatera Cladonia rappii serta pengujian aktivitas antibakteri. Diploma Thesis, Universitas Andalas.Ertl, P., Rohde, B., & Selzer, P. (2000). Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. Journal of Medicinal Chemistry, 43(20), 3714–3717. https://doi.org/10.1021/JM000942E/SUPPL_FILE/JM000942E_S.PDFEspín de Gea, J. C., Soler-Rivas, C., Wichers, H. J., & García-Viguera, C. (2000). Anthocyanin-based natural colorants: A new source of antiradical activity for foodstuff. Farris PK, Valacchi G. Ultraviolet light protection: is it really enough? Antioxidants (basel). 2022 Jul 29;11(8):1484. doi: 10.3390/antiox11081484. PMID: 36009203; PMCID: PMC9405175.Farris PK, Valacchi G. Ultraviolet Light Protection: Is It Really Enough? Antioxidants (Basel). 2022 Jul 29;11(8):1484. doi: 10.3390/antiox11081484. PMID: 36009203; PMCID: PMC9405175.Fazio AT, Adler MT, Bertoni MD, Sepúlveda CS, Damonte EB, Maier MS. Lichen secondary metabolites from the cultured lichen mycobionts of Teloschistes chrysophthalmus and Ramalina celastri and their antiviral activities. Z Naturforsch C J Biosci. 2007 Jul-Aug;62(7-8):543-9. doi: 10.1515/znc-2007-7-813. PMID: 17913069.Fernandes, J., and C.R. Gattass (2009). Topological polar surface area defines substrate transport by multidrug resistance associated protein 1 (MRP1/ABCC1), Journal of Medicinal Chemistry. 52(4), 1214-1218.Fernandes, J., and C.R. Gattass (2009). Topological Polar Surface Area Defines Substrate Transport by Multidrug Resistance Associated Protein 1 (MRP1/ABCC1), J. Med. Chem., 52(4), 1214-1218.Fernández-Moriano, C., Gómez-Serranillos, M. P., & Crespo, A. (2016). Antioxidant potential of lichen species and their secondary metabolites. A systematic review. Pharmaceutical Biology, 54(1), 1–17. https://doi.org/10.3109/13880209.2014.1003354Fondo Colombiano de Enfermedades de Alto Costo. (2018). «23 de Mayo: Día mundial de la lucha contra el melanoma». Cuenta de Alto Costo (blog). https://cuentadealtocosto.org/site/investigaciones/dia-mundial-de-la-lucha-contra-el-melanoma-2/.Fondo Colombiano de Enfermedades de Alto Costo. (2022). «Día mundial del melanoma 2023». Cuenta de Alto Costo (blog). https://cuentadealtocosto.org/cancer/dia-mundial-del-melanoma-2023/Food and Drug Administration. (2007). Department of Health and Human Services Food and Drug Administration 21 CFR Parts 347 and 352. Federal Register, 72(165), 49070–49122.Food and Drug Administration. (2011). Labeling and effectiveness testing; sunscreen drug products for over-the-counter human use. Final rule. Federal Register, 76(117), 35620–35665.Galanty, A., Popiół, J., Paczkowska-Walendowska, M., Studzińska-Sroka, E., Paśko, P., Cielecka-Piontek, J., Pękala, E., & Podolak, I. (2021). (+)-Usnic acid as a promising candidate for a safe and stable topical photoprotective agent. Molecules 2021, Vol. 26, Page 5224, 26(17), 5224. https://doi.org/10.3390/MOLECULES26175224Gaspar, L. R., Tharmann, J., Maia Campos, P. M. B. G., & Liebsch, M. (2013). Skin phototoxicity of cosmetic formulations containing photounstable and photostable UV-filters and vitamin A palmitate. Toxicology in Vitro, 27(1), 418–425. https://doi.org/10.1016/J.TIV.2012.08.006GBIF. (2021). Cladonia rappii A.Evans.Global Cancer Observatory (2020). https://gco.iarc.fr/Goga, M., Elečko, J., Marcinčinová, M., Ručová, D., Bačkorová, M., & Bačkor, M. (2020). Lichen metabolites: an overview of some secondary metabolites and their biological potential. Co-evolution of secondary metabolites, 175-209.Grice, H. (1986). Safety evaluation of butylated hydroxytoluene (BHT) in the liver, lung and gastrointestinal tract. Food Chem. Toxicol, 24, 1127–1130.Guo, J., Li, Z. L., Wang, A. L., Liu, X. Q., Wang, J., Guo, X., ... & Hua, H. M. (2011). Three new phenolic compounds from the lichen Thamnolia vermicularis and their antiproliferative effects in prostate cancer cells. Planta medica, 77(18), 2042-2046.Halliwell, B., & Gutteridge, J. M. C. (1990). The antioxidants of human extracellular fluids. Archives of Biochemistry and Biophysics, 280(1), 1–8. https://doi.org/10.1016/0003-9861(90)90510-6Halliwell, B. (2000). Lipid peroxidation, antioxidants and cardiovascular disease: how should we move forward?. Cardiovascular research, 47(3), 410-418.Halliwell, B. (2012). Free radicals and antioxidants: updating a personal view. Nutrition reviews, 70(5), 257-265.Harris, I. S., & DeNicola, G. M. (2020). The complex interplay between antioxidants and ros in cancer. Trends in Cell Biology, 30(6), 440–451. https://doi.org/10.1016/j.tcb.2020.03.002Hawksworth, D. L. (2015). Lichen secondary metabolites: bioactive properties and pharmaceutical potential. The Lichenologist, 47(4), 277–278. https://doi.org/10.1017/S0024282915000195Hojerová, J., Medovcíková, A., & Mikula, M. (2011). Photoprotective efficacy and photostability of fifteen sunscreen products having the same label SPF subjected to natural sunlight. International journal of pharmaceutics, 408(1-2), 27-38.Huang, R., Chen, H., Liang, J., Li, Y., Yang, J., Luo, C., Tang, Y., Ding, Y., Liu, X., Yuan, Q., Yu, H., Ye, Y., Xu, W., & Xie, X. (2021). Dual role of reactive oxygen species and their application in cancer therapy. Journal of Cancer, 12(18), 5543. https://doi.org/10.7150/JCA.54699Huneck, S., & Yoshimura, I. (1996). Identification of lichen substances. Identification of lichen substances. https://doi.org/10.1007/978-3-642-85243-5Ighodaro, O. M., & Akinloye, O. A. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54(4), 287–293. https://doi.org/10.1016/J.AJME.2017.09.001Imamović, B., Trebše, P., Omeragić, E., Bečić, E., Pečet, A., & Dedić, M. (2022). Stability and removal of benzophenone-type uv filters from water matrices by advanced oxidation processes. Molecules 2022, Vol. 27, Page 1874, 27(6), 1874. https://doi.org/10.3390/MOLECULES27061874Instituto Nacional de Cancerología. (2020). Diagnostico y tratamiento. https://www.cancer.gov.co/portafolio-1/unidades-funcionales-1/dermatologia-oncologica/diagnostico-tratamientoJesus, A., Sousa, E., Cruz, M. T., Cidade, H., Lobo, J. M. S., & Almeida, I. F. (2022). UV filters: challenges and prospects. Pharmaceuticals, 15(3). https://doi.org/10.3390/PH15030263/S1Kammeyer, A., & Luiten, R. M. (2015). Oxidation events and skin aging. Ageing Research Reviews, 21, 16–29. https://doi.org/10.1016/J.ARR.2015.01.001Kasper, D. L., Fauci, A. S., Hauser, S. L., Longo, D. L., Jameson, J. L., & Loscalzo, J. (2020). Manual de Medicina. New York, N.Y.: McGraw-Hill Education LLC.Kassim, N. K., Lim, P. C., Ismail, A., & Awang, K. (2019). Isolation of antioxidative compounds from Micromelum minutum guided by preparative thin layer chromatography-2,2-diphenyl-1-picrylhydrazyl (PTLC-DPPH) bioautography method. Food Chemistry, 272, 185–191. https://doi.org/10.1016/J.FOODCHEM.2018.08.045Kosanić, M., Ranković, B., & Vukojević, J. (2011). Antioxidant properties of some lichen species. Journal of Food Science and Technology, 48(5), 584–590. https://doi.org/10.1007/S13197-010-0174-2/METRICSKosanić, M., Ranković, B., Stanojković, T., Rančić, A., & Manojlović, N. (2014). Cladonia lichens and their major metabolites as possible natural antioxidant, antimicrobial and anticancer agents. Food Science and Technology, 59(1), 518–525. https://doi.org/10.1016/J.LWT.2014.04.047Kuskoski, E. M., Asuero, A. G., Troncoso, A. M., Mancini-Filho, J., & Fett, R. (2005). Aplicación de diversos métodos químicos para determinar actividad antioxidante en pulpa de frutos. Food Science and Technology, 25, 726-732.Lage, T. C. A., Horta, L. P., Montanari, R. M., Silva, J. G., De Fátima, Â., Fernandes, S. A., & Modolo, L. V. (2016). Structural elucidation and free radical scavenging activity of a new o-orsellinic acid derivative isolated from the lichen Cladonia Rappii. Natural Product Communications, 11(9), 1311–1312. https://doi.org/10.1177/1934578X1601100932Lage, T. C. A., Maciel, T. M. S., Mota, Y. C. C., Sisto, F., Sabino, J. R., Santos, J. C. C., Figueiredo, I. M., Masia, C., De Fátima, Â., Fernandes, S. A., & Modolo, L. V. (2018). In vitro inhibition of Helicobacter pylori and interaction studies of lichen natural products with jack bean urease. New Journal of Chemistry, 42(7), 5356–5366. https://doi.org/10.1039/C8NJ00072GLeal, A., Rojas, J. L., Valencia-Islas, N. A., & Castellanos, L. (2018). New β-orcinol depsides from Hypotrachyna caraccensis, a lichen from the páramo ecosystem and their free radical scavenging activity. Natural product research, 32(12), 1375-1382.Liga Colombiana contra el Cáncer. (2022). Cáncer de piel y su clasificación. https://www.ligacancercolombia.org/educacion/clasificacion-cancer-de-piel/Lingappan, K. (2018). NF-κB in oxidative stress. Current Opinion in Toxicology, 7, 81–86. https://doi.org/10.1016/j.cotox.2017.11.002Liu, J. K. (2022). Natural products in cosmetics. Natural Products and Bioprospecting, 12(1). https://doi.org/10.1007/S13659-022-00363-YLohezic, F., Legouin, B., Couteau, C., Boustie, J., & Coiffard, L. (2013). Lichenic extracts and metabolites as UV filters. Journal of Photochemistry and Photobiology B: Biology, 120, 17–28. https://doi.org/10.1016/J.JPHOTOBIOL.2013.01.009López Ladino, J. A. (2021). Determinación de la actividad in vivo sobre la biosíntesis y acción de andrógenos endógenos de sustancias liquénicas seleccionadas. Tesis. Universidad Nacional de Colombia.Macías, F. A., Molinillo, J. M. G., Varela, R. M., & Galindo, J. C. G. (2007). Allelopathy--a natural alternative for weed control. Pest Management Science, 63(4), 327–348. https://doi.org/10.1002/PS.1342Mamta, Misra, K., Dhillon, G. S., Brar, S. K., & Verma, M. (2014). Antioxidants. Biotransformation of waste biomass into high value biochemicals, New York: Springer; 2014. 117-138 p.Manassov, N.; Samy, M.N.; Datkhayev, U.; Avula, B.; Adams, S.J.; Katragunta, K.; Raman, V.; Khan, I.A.; Ross, S.A. ultrastructural, energy-dispersive X-ray spectroscopy, chemical study and LC-DAD-QToF chemical characterization of Cetraria islandica (L.) Ach. Molecules 2023, 28, 4493. https://doi.org/10.3390/molecules28114493Mansur, J., Breder, M., Mansur, M., & Azulay, R. (1986). Determinação do fator de proteção solar por espectrofotometria. Anais Brasileiros de Dermatologia, 61(3), 121–124.Mejía GJC, Atehortúa L, P. M. (2014). Foto-protección: mecanismos bioquímicos, punto de partida hacia mejores filtros solares. Dermatología Cosmética, Médica y Quirúrgica. 2014;12(4):272-281.Milner, F. (2017) Estructura de la piel. American Cancer Society, s.l. cancer.org/1.800.227.2345Ministerio de Salud de Colombia. (2020). «Vicesalud destacó acciones de Colombia frente al cáncer de piel». https://www.minsalud.gov.co/Paginas/Vicesalud-destaco-acciones-de-Colombia-frente-al-cancer-de-piel.aspx.Mitsuda, H. (1966). Antioxidative action of indole compounds during the autoxidation of linoleic acid. Eiyo to Syokuryo, 19, 210-214.Mohammadi M, Zambare V, Malek L, Gottardo C, Suntres Z & Christopher L (2020) Lichenochemicals: extraction, purification, characterization, and application as potential anticancer agents, Expert Opinion on Drug Discovery, 15:5, 575-601, DOI: 10.1080/17460441.2020.1730325Molnár, K., & Farkas, E. (2010). Current results on biological activities of lichen secondary metabolites: A review. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 65(3–4), 157–173. https://doi.org/10.1515/ZNC-2010-3-401/MACHINEREADABLECITATION/RISMoncada, B., Plata, E. R., & Fazio, A. (2012). GLALIA Revista Electrónica del Grupo LatinoAmericano de Liquenólogos.Nabavi, S. M., & Silva, A. S. (2022). Antioxidants effects in health : the bright and the dark side. Elsevier.Nash, T. H. (2008). Lichen Biology. Lichen Biology, Second Edition, 1–486. https://doi.org/10.1017/CBO9780511790478Ng, K. W., & Lau, W. M. (2015). Skin deep: The basics of human skin structure and drug penetration. Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement: Drug Manipulation Strategies and Vehicle Effects, 3–11. https://doi.org/10.1007/978-3-662-45013-0_1/COVERNguyen, K. H., Chollet-Krugler, M., Gouault, N., & Tomasi, S. (2013). UV-protectant metabolites from lichens and their symbiotic partners. Natural Product Reports, 30(12), 1490–1508. https://doi.org/10.1039/C3NP70064JNguyen, T.T., Mai, V.H., Nguyen, C.T., Huynh, V.L., Lai, H.N., Tran, T.H and Kanaori, K. (2020). Novel hopanoic acid and depside from the lichen Dirinaria applanata Rec. Nat. Prod. 14:4 (2020) 248-255. https://doi.org/10.25135/RNP.161.19.10.1441Odabasoglu, F., Aslan, A., Cakir, A., Suleyman, H., Karagoz, Y., Halici, M., & Bayir, Y. (2004). Comparison of antioxidant activity and phenolic content of three lichen species. Phytotherapy Research, 18(11), 938–941. https://doi.org/10.1002/PTR.1488Oyaizu, M. (1986). Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese journal of nutrition and dietetics, 44(6), 307-315.Panyakaew, J., Chalom, S., Sookkhee, S., Saiai, A., Chandet, N., Meepowpan, P., Thavornyutikarn, P., & Mungkornasawakul, P. (2021). Kaempferia sp. extracts as UV protecting and antioxidant agents in sunscreen. Journal of Herbs, Spices and Medicinal Plants, 27(1), 37–56. https://doi.org/10.1080/10496475.2020.1777614Pelizzo, M., Zattra, E., Nicolosi, P., Peserico, A., Garoli, D., & Alaibac, M. (2012). In vitro evaluation of sunscreens: an update for the clinicians. International Scholarly Research Notices. 2012;2012:352135. doi: 10.5402/2012/352135.Perico-Franco, L. S., Rojas, J. L., Cerbón, M. A., González-Sánchez, I., & Valencia-Islas, N. A. (2015). Antioxidant activity and protective effect on cell and DNA oxidative damage of substances isolated from lichens of Colombian Páramo. Pharmaceutical and Biosciences Journal, 09-17.Pfeifer, G. P. (2020). Mechanisms of UV-induced mutations and skin cancer. Genome Instability & Disease 2020 1:3, 1(3), 99–113. https://doi.org/10.1007/S42764-020-00009-8Pisoschi, A. M., & Pop, A. (2015). The role of antioxidants in the chemistry of oxidative stress: A review. European journal of medicinal chemistry, 97, 55-74.Pizzino, G., Bitto, A., Interdonato, M., Galfo, F., Irrera, N., Mecchio, A., Pallio, G., Ramistella, V., Luca, F. De, Minutoli, L., Squadrito, F., & Altavilla, D. (2014). Oxidative stress and DNA repair and detoxification gene expression in adolescents exposed to heavy metals living in the Milazzo-Valle del Mela area (Sicily, Italy). Redox Biology, 2(1), 686–693. https://doi.org/10.1016/J.REDOX.2014.05.003Plaza, C. M, Salazar, C. P., Vizcaya, M., Rodríguez-Castillo, C, G., Medina-Ramírez, G. E., & Plaza, R. E. (2017). Potential antifungal activity of Cladonia aff. rappii A. Evans. Journal of Pharmacy & Pharmacognosy Research, 5(5), .Plaza, Claudia M., Torres, L. E. D. de, Lücking, R. K., Vizcaya, M., & Medina, G. E. (2014). Antioxidant activity, total phenols and flavonoids of lichens from Venezuelan Andes. Journal of Pharmacy & Pharmacognosy Research, 2(5), 138–147. https://doaj.org/article/1e49b71619a7437fafd8536ec05b674aPonnampalam, E. N., Kiani, A., Santhiravel, S., Holman, B. W. B., Lauridsen, C., & Dunshea, F. R. (2022). The importance of dietary antioxidants on oxidative stress, meat and milk production, and their preservative aspects in farm animals: antioxidant action, animal health, and product quality—Invited Review. Animals : An Open Access Journal from MDPI, 12(23). https://doi.org/10.3390/ANI12233279Pouillot, A., Polla, L. L., Tacchini, P., Neequaye, A., Polla, A., & Polla, B. (2011). Natural antioxidants and their effects on the skin. Formulating, packaging, and marketing of natural cosmetic products, 239-257.Prenzler, P. D., Ryan, D., & Robards, K. (2021). Chapter 1 introduction to basic principles of antioxidant activity. 1–62. https://doi.org/10.1039/9781839165337-00001Quilot, W. Garbarino, J. Piovano, M. Chamy, M., Gambaro, V.Oyarzun, M. Hormaechea, V. (1989). Studies on chilean lichens. XI.Secondary metabolites from antarctic lichens. Serie Científica - Instituto Antártico Chileno, (39), 75–89.Rajendran, P., Nandakumar, N., Rengarajan, T., Palaniswami, R., Gnanadhas, E. N., Lakshminarasaiah, U., ... & Nishigaki, I. (2014). Antioxidants and human diseases. Clinica chimica acta, 436, 332-347.Ramírez, N. (2009). Evaluación de las comunidades liquénicas en dos bosques con diferente historia de uso, de la reserva biológica el “encenillo” Colombia. Pontificia Universidad Javeriana.Ranković, B. (Ed.). (2019). Lichen secondary metabolites: bioactive properties and pharmaceutical potential. Springer.Rashid, M. A., Majid, M. A., & Quader, M. A. (1999). Complete NMR assignments of (+)-usnic acid. Fitoterapia, 70(1), 113–115. https://doi.org/10.1016/S0367-326X(98)00033-1Rojas, J. L., Díaz-Santos, M., & Valencia-Islas, N. A. (2015). Metabolites with antioxidant and photo-protective properties from Usnea roccellina Motyka, a lichen from Colombian Andes. Pharmaceutical and Biosciences Journal, 18-26.Santos, L. L., Wu, E. L., Grinias, K. M., Koetting, M. C., & Jain, P. (2021). Developability profile framework for lead candidate selection in topical dermatology. International Journal of Pharmaceutics, 604, 120750.Sayre, R. M., Agin, P. P., LeVee, G. J., & Marlowe, E. (1979). A comparison of in vivo and in vitro testing of sunscreening formulas. Photochemistry and Photobiology, 29(3), 559-566.Shaath, N. A. (2010). Ultraviolet filters. Photochemical & Photobiological Sciences : Official Journal of the European Photochemistry Association and the European Society for Photobiology, 9(4), 464–469. https://doi.org/10.1039/B9PP00174CSharifi-Rad, J., Rodrigues, C. F., Sharopov, F., Docea, A. O., Karaca, A. C., Sharifi-Rad, M., Karincaoglu, D. K., Gülseren, G., Şenol, E., Demircan, E., Taheri, Y., Suleria, H. A. R., Özçelik, B., Kasapoğlu, K. N., Gültekin-Özgüven, M., Daşkaya-Dikmen, C., Cho, W. C., Martins, N., & Calina, D. (2020). Diet, lifestyle and cardiovascular diseases: linking pathophysiology to cardioprotective effects of natural bioactive compounds. International Journal of Environmental Research and Public Health, 17(7). https://doi.org/10.3390/IJERPH17072326Shiromi, P. S. A. I., Hewawasam, R. P., Jayalal, R. G. U., Rathnayake, H., Wijayaratne, W. M. D. G. B., & Wanniarachchi, D. (2021). Chemical composition and antimicrobial activity of two sri lankan lichens, Parmotrema rampoddense, and Parmotrema tinctorum against methicillin-sensitive and methicillin-resistant Staphylococcus aureus. Evidence-Based Complementary and Alternative Medicine, 2021. https://doi.org/10.1155/2021/9985325Sierra, M. A., Danko, D. C., Sandoval, T. A., Pishchany, G., Moncada, B., Kolter, R., ... & Zambrano, M. M. (2020). The microbiomes of seven lichen genera reveal host specificity, a reduced core community and potential as source of antimicrobials. Frontiers in microbiology, 398Silva, J. F., Ximenez, G. R., Bianchin, M., Jasper, J. O., Pastorini, L. H., Carvalho, J. E., Ruiz, A. L. T. G., Pomini, A. M., & Santin, S. M. O. (2020). Isolation of hopane triterpenes and other constituents from Machaerium brasiliense vogel (Fabaceae). Biochemical Systematics and Ecology, 93, 104182. https://doi.org/10.1016/j.bse.2020.104182Silverman, R. B., & Holladay, M. W. (2014). The organic chemistry of drug design and drug action. Academic Press.Sipman, H. J, & Aguirre J. C. (1982). Contribución al conocimiento de los líquenes de Colombia—i. clave genérica para los líquenes foliosos y fruticosos de los páramos colombianos. Caldasia, 603-34.Smijs, T. G., & Pavel, S. (2011). Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnology, Science and Applications, 4(1), 95. https://doi.org/10.2147/NSA.S19419Soto Medina, E., Diaz, D., & Montaño, J. (2021). Biogeography and richness of lichens in Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 45(174), 122-135.Spribille, T., Tuovinen, V., Resl, P., Vanderpool, D., Wolinski, H., Aime, M. C., Schneider, K., Stabentheiner, E., Toome-Heller, M., Thor, G., Mayrhofer, H., Johannesson, H., & McCutcheon, J. P. (2016). Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science (New York, N.Y.), 353(6298), 488. https://doi.org/10.1126/SCIENCE.AAF8287Suja, K. P., Jayalekshmy, A., & Arumughan, C. (2004). Free radical scavenging behavior of antioxidant compounds of sesame (Sesamum indicum L.) in DPPH• system. Journal of agricultural and food chemistry, 52(4), 912-915.Tatipamula, V. B., Polimati, H., Gopaiah, K. V., Babu, A. K., Vantaku, S., Rao, P. R., & Killari, K. N. (2020). Bioactive metabolites from manglicolous lichen Ramalina leiodea (Nyl.) Nyl. Indian Journal of Pharmaceutical Sciences, 82(2), 379–384. https://doi.org/10.36468/PHARMACEUTICAL-SCIENCES.660Thadani, V. M., Khan, S., Choudhary, M. I., & Karunaratne, V. (2009). Novel an glucosidase inhibitors from lichen Cladonia sp. Peradeniya University Research Session PURSE- 2009, University of Peradeniya , Sri Lanka , Vol.14. 3rd july. 2009 pp262Tripathi, A. H., Negi, N., Gahtori, R., Kumari, A., Joshi, P., Tewari, L. M., Joshi, Y., Bajpai, R., Upreti, D. K., & Upadhyay, S. K. (2021). A review of anti-cancer and related properties of lichen-extracts and metabolites. Anti-Cancer Agents in Medicinal Chemistry, 22(1), 115–142. https://doi.org/10.2174/1871520621666210322094647Türk, A. Ö., Yilmaz, M., Kivanç, M., & Türk, H. (2003). The antimicrobial activity of extracts of the lichen Cetraria aculeata and its protolichesterinic acid constituent. Zeitschrift Fur Naturforschung. C, Journal of Biosciences, 58(11–12), 850–854. https://doi.org/10.1515/ZNC-2003-11-1219Valencia-Islas, N. A., Arguello, J. J., & Rojas, J. L. (2021). Antioxidant and photoprotective metabolites of Bunodophoron melanocarpum, a lichen from the Andean páramo. Pharmaceutical Sciences, 27(2), 281-290.Wang F, Li YM (2010). New hopane triterpene from Dicranostigma leptopodum (Maxim) Fedde. J Asian Nat Prod Res. Jan;12(1):94-7. doi: 10.1080/10286020903443028. PMID: 20390749White, P. A. S., Oliveira, R. C. M., Oliveira, A. P., Serafini, M. R., Araújo, A. A. S., Gelain, D. P., Moreira, J. C. F., Almeida, J. R. G. S., Quintans, J. S. S., Quintans-Junior, L. J., & Santos, M. R. V. (2014). Antioxidant activity and mechanisms of action of natural compounds isolated from lichens: a systematic review. Molecules, 19(9), 14496. https://doi.org/10.3390/MOLECULES190914496Wirth, V. (2004). Guía de campo de los líquenes, musgos y hepáticas: con 288 especies de líquenes y 226 de briófitos (musgos y hepáticas). Omega.Yang, X., Sun, Z., Wang, W., Zhou, Q., Shi, G., Wei, F., & Jiang, G. (2018). Developmental toxicity of synthetic phenolic antioxidants to the early life stage of zebrafish. The Science of the Total Environment, 643, 559–568. https://doi.org/10.1016/J.SCITOTENV.2018.06.213Yen, G. C., Duh, P. D., & Tsai, H. L. (2002). Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food chemistry, 79(3), 307-313.Estudio químico, actividad antioxidante y fotoprotectora de un hongo liquenizado del páramo de Sumapaz, Colombia como fuente potencial de compuestos para uso en protección solarBibliotecariosEstudiantesInvestigadoresMaestrosProveedores de ayuda financiera para estudiantesPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86463/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINALTesis de maestría. Sandy Parra.Tesis de maestría. Sandy Parra.Tesis de Maestría en Ciencias Farmacéuticasapplication/pdf5057376https://repositorio.unal.edu.co/bitstream/unal/86463/2/Tesis%20de%20maestr%c3%ada.%20Sandy%20Parra.e2b878598599440cf4ea4e470b8d40e7MD52THUMBNAILTesis de maestría. Sandy Parra..jpgTesis de maestría. Sandy Parra..jpgGenerated Thumbnailimage/jpeg5273https://repositorio.unal.edu.co/bitstream/unal/86463/3/Tesis%20de%20maestr%c3%ada.%20Sandy%20Parra..jpga07ddfe7fdba975e19994abd4c7d9c77MD53unal/86463oai:repositorio.unal.edu.co:unal/864632024-08-25 23:12:04.886Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=