A note on generalized mobius (s-functions

In [1] the concept of a conjugate pair of sets of positive integers is introduced.  Briefly, if Z denotés the set of positive integers and P and Q denote non-empty subsets of Z such that: if  n1  (pertenece a)  Z, n2 (pertenece a) Z, (n1,n2) = 1, then (1)  n = n1n2  (pertenece a)  P(resp. Q) n1  (pe...

Full description

Autores:
Albis González, Víctor Samuel
Tipo de recurso:
Article of journal
Fecha de publicación:
1968
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/42015
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/42015
http://bdigital.unal.edu.co/32112/
Palabra clave:
Integers
subsets
factorization
conjugate pair
functions
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_764486c42921b5e2d9a20358dcfd9636
oai_identifier_str oai:repositorio.unal.edu.co:unal/42015
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Albis González, Víctor Samuelea5d56fa-a0e5-4222-b928-0501cb48afbc3002019-06-28T10:26:54Z2019-06-28T10:26:54Z1968https://repositorio.unal.edu.co/handle/unal/42015http://bdigital.unal.edu.co/32112/In [1] the concept of a conjugate pair of sets of positive integers is introduced.  Briefly, if Z denotés the set of positive integers and P and Q denote non-empty subsets of Z such that: if  n1  (pertenece a)  Z, n2 (pertenece a) Z, (n1,n2) = 1, then (1)  n = n1n2  (pertenece a)  P(resp. Q) n1  (pertenece a) P,n2 (pertenece a) P (resp. Q), and, if in addition, for each integer  n (pertenece a)  Z there is a unique factorization of the form (2)  n = ab , a (pertenece a)  P, b (pertenece a)  Q, we say that each of the sets P and Q is a direct factor set of Z, and that (P,Q) is a conjugate pair. It is clear that  P (intersección) Q = {11}.  Among the generalized functions studied in [1] ,application/pdfspaUniversidad Nacuional de Colombia; Sociedad Colombiana de matemáticashttp://revistas.unal.edu.co/index.php/recolma/article/view/31460Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de MatemáticasRevista Colombiana de MatemáticasRevista Colombiana de Matemáticas; Vol. 2, núm. 1 (1968); 6-11 0034-7426Albis González, Víctor Samuel (1968) A note on generalized mobius (s-functions. Revista Colombiana de Matemáticas; Vol. 2, núm. 1 (1968); 6-11 0034-7426 .A note on generalized mobius (s-functionsArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTIntegerssubsetsfactorizationconjugate pairfunctionsORIGINAL31460-114046-1-PB.pdfapplication/pdf1503855https://repositorio.unal.edu.co/bitstream/unal/42015/1/31460-114046-1-PB.pdffd2a4c5ea4381181d2b672d4ee605b29MD51THUMBNAIL31460-114046-1-PB.pdf.jpg31460-114046-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg7521https://repositorio.unal.edu.co/bitstream/unal/42015/2/31460-114046-1-PB.pdf.jpg84f350dbeba77bc3ea6854256dd43435MD52unal/42015oai:repositorio.unal.edu.co:unal/420152024-02-03 23:06:25.091Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv A note on generalized mobius (s-functions
title A note on generalized mobius (s-functions
spellingShingle A note on generalized mobius (s-functions
Integers
subsets
factorization
conjugate pair
functions
title_short A note on generalized mobius (s-functions
title_full A note on generalized mobius (s-functions
title_fullStr A note on generalized mobius (s-functions
title_full_unstemmed A note on generalized mobius (s-functions
title_sort A note on generalized mobius (s-functions
dc.creator.fl_str_mv Albis González, Víctor Samuel
dc.contributor.author.spa.fl_str_mv Albis González, Víctor Samuel
dc.subject.proposal.spa.fl_str_mv Integers
subsets
factorization
conjugate pair
functions
topic Integers
subsets
factorization
conjugate pair
functions
description In [1] the concept of a conjugate pair of sets of positive integers is introduced.  Briefly, if Z denotés the set of positive integers and P and Q denote non-empty subsets of Z such that: if  n1  (pertenece a)  Z, n2 (pertenece a) Z, (n1,n2) = 1, then (1)  n = n1n2  (pertenece a)  P(resp. Q) n1  (pertenece a) P,n2 (pertenece a) P (resp. Q), and, if in addition, for each integer  n (pertenece a)  Z there is a unique factorization of the form (2)  n = ab , a (pertenece a)  P, b (pertenece a)  Q, we say that each of the sets P and Q is a direct factor set of Z, and that (P,Q) is a conjugate pair. It is clear that  P (intersección) Q = {11}.  Among the generalized functions studied in [1] ,
publishDate 1968
dc.date.issued.spa.fl_str_mv 1968
dc.date.accessioned.spa.fl_str_mv 2019-06-28T10:26:54Z
dc.date.available.spa.fl_str_mv 2019-06-28T10:26:54Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/42015
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/32112/
url https://repositorio.unal.edu.co/handle/unal/42015
http://bdigital.unal.edu.co/32112/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv http://revistas.unal.edu.co/index.php/recolma/article/view/31460
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Matemáticas
Revista Colombiana de Matemáticas
dc.relation.ispartofseries.none.fl_str_mv Revista Colombiana de Matemáticas; Vol. 2, núm. 1 (1968); 6-11 0034-7426
dc.relation.references.spa.fl_str_mv Albis González, Víctor Samuel (1968) A note on generalized mobius (s-functions. Revista Colombiana de Matemáticas; Vol. 2, núm. 1 (1968); 6-11 0034-7426 .
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacuional de Colombia; Sociedad Colombiana de matemáticas
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/42015/1/31460-114046-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/42015/2/31460-114046-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv fd2a4c5ea4381181d2b672d4ee605b29
84f350dbeba77bc3ea6854256dd43435
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090223631466496